CN103757353B - The leaching method of anode and cathode mixed materials of waste LiCoxNiyMnzO 2 battery - Google Patents
The leaching method of anode and cathode mixed materials of waste LiCoxNiyMnzO 2 battery Download PDFInfo
- Publication number
- CN103757353B CN103757353B CN201310736548.8A CN201310736548A CN103757353B CN 103757353 B CN103757353 B CN 103757353B CN 201310736548 A CN201310736548 A CN 201310736548A CN 103757353 B CN103757353 B CN 103757353B
- Authority
- CN
- China
- Prior art keywords
- leaching
- sulfuric acid
- nickel
- positive
- mixed materials
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000002386 leaching Methods 0.000 title claims abstract description 58
- 238000000034 method Methods 0.000 title claims abstract description 26
- 239000000463 material Substances 0.000 title claims abstract description 23
- 239000002699 waste material Substances 0.000 title abstract description 4
- 229910011396 LiCoxNiyMnzO2 Inorganic materials 0.000 title abstract 3
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims abstract description 36
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims abstract description 19
- 229910017604 nitric acid Inorganic materials 0.000 claims abstract description 19
- 235000007164 Oryza sativa Nutrition 0.000 claims abstract description 12
- 239000000843 powder Substances 0.000 claims abstract description 12
- 235000009566 rice Nutrition 0.000 claims abstract description 12
- 239000010902 straw Substances 0.000 claims abstract description 12
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 30
- 239000010926 waste battery Substances 0.000 claims description 15
- 229910017052 cobalt Inorganic materials 0.000 claims description 14
- 239000010941 cobalt Substances 0.000 claims description 14
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 14
- 229910052759 nickel Inorganic materials 0.000 claims description 13
- 239000011572 manganese Substances 0.000 claims description 12
- 241000209094 Oryza Species 0.000 claims description 11
- 238000006243 chemical reaction Methods 0.000 claims description 10
- 239000000243 solution Substances 0.000 claims description 10
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 8
- FBDMTTNVIIVBKI-UHFFFAOYSA-N [O-2].[Mn+2].[Co+2].[Ni+2].[Li+] Chemical compound [O-2].[Mn+2].[Co+2].[Ni+2].[Li+] FBDMTTNVIIVBKI-UHFFFAOYSA-N 0.000 claims description 8
- 229910052748 manganese Inorganic materials 0.000 claims description 8
- 229910052751 metal Inorganic materials 0.000 claims description 8
- HFCVPDYCRZVZDF-UHFFFAOYSA-N [Li+].[Co+2].[Ni+2].[O-][Mn]([O-])(=O)=O Chemical compound [Li+].[Co+2].[Ni+2].[O-][Mn]([O-])(=O)=O HFCVPDYCRZVZDF-UHFFFAOYSA-N 0.000 claims description 7
- 239000002184 metal Substances 0.000 claims description 7
- 238000003756 stirring Methods 0.000 claims description 7
- 238000000926 separation method Methods 0.000 claims description 4
- 239000007787 solid Substances 0.000 claims description 4
- 150000002739 metals Chemical class 0.000 claims description 3
- 239000011259 mixed solution Substances 0.000 claims description 2
- 230000007797 corrosion Effects 0.000 abstract description 3
- 238000005260 corrosion Methods 0.000 abstract description 3
- 240000007594 Oryza sativa Species 0.000 abstract 1
- 238000013019 agitation Methods 0.000 abstract 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 12
- 229910052744 lithium Inorganic materials 0.000 description 12
- 239000002253 acid Substances 0.000 description 9
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 8
- 229910052802 copper Inorganic materials 0.000 description 8
- 239000010949 copper Substances 0.000 description 8
- 229910052782 aluminium Inorganic materials 0.000 description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 7
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- 239000002893 slag Substances 0.000 description 4
- 238000005406 washing Methods 0.000 description 4
- 238000003912 environmental pollution Methods 0.000 description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 241000080590 Niso Species 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 2
- 230000036632 reaction speed Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910018068 Li 2 O Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
技术领域 technical field
本发明涉及镍钴锰酸锂废电池正负极混合材料的一种浸出方法。 The invention relates to a method for leaching the positive and negative electrode mixed materials of nickel-cobalt lithium manganate waste batteries.
背景技术 Background technique
镍钴锰酸锂电池(正负极混合材料含的主要金属元素为镍、钴、锰、锂的电池)是一类新型电池,该电池使用报废后将产生大量废电池。由于这类电池含有大量重金属,若弃入环境,将对环境产生很大的直接和潜在危害。镍钴锰酸锂电池正负极混合材料主要含镍、钴、锂、铜、铝和锰,其中镍、钴和锂的总含量高达50%以上,很具回收价值。目前从镍钴锰酸锂废电池正负极混合材料中回收钴、锂和铜的工艺主要有火法工艺和湿法工艺。火法工艺得到的产品为合金材料,很难获得较纯的镍、钴和锂。湿法工艺比较容易得到较纯的镍、钴和锂。浸出是湿法工艺中必不可少的一个过程。目前镍钴锰酸锂废电池正负极混合材料的浸出方法主要有盐酸浸出法、硫酸浸出法、硝酸浸出法和混酸(硫酸加硝酸)浸出法。盐酸浸出法,设备腐蚀大,酸雾产生量大而污染环境。硫酸浸出法消耗较昂贵的氧化剂(如双氧水等)。硝酸浸出法的硝酸消耗量大,而且会产生大量氮氧化物,污染环境。所有的湿法工艺都存在如何经济地提高浸出速度、提高金属浸出率、降低酸耗和其它辅料消耗的问题。虽然硝酸加工业纯氧浸出法和混酸加工业纯氧浸出法较好地解决了上述问题,但浸出设备较复杂,而且废电池浸出所需工业纯氧量不大,废电池处理企业就地生产工业纯氧自用不经济,工业纯氧的储存、运输和使用比较麻烦。开发设备腐蚀小、浸出速度快、浸出率高、酸耗和其它辅料消耗低、使用方便、基本无环境污染的镍钴锰酸锂废电池正负极混合材料的浸出方法具有较大实用价值。 Nickel-cobalt lithium manganese oxide battery (battery whose main metal elements are nickel, cobalt, manganese, and lithium in the positive and negative mixed materials) is a new type of battery. After the battery is used and scrapped, a large number of waste batteries will be produced. Because this type of battery contains a large amount of heavy metals, if it is discarded into the environment, it will cause great direct and potential harm to the environment. The positive and negative mixed materials of nickel cobalt lithium manganate battery mainly contain nickel, cobalt, lithium, copper, aluminum and manganese, of which the total content of nickel, cobalt and lithium is as high as 50%, which is very valuable for recycling. At present, the processes for recovering cobalt, lithium and copper from the mixed positive and negative electrodes of nickel-cobalt lithium manganate waste batteries mainly include pyrotechnics and wet-processes. The products obtained by the fire process are alloy materials, and it is difficult to obtain relatively pure nickel, cobalt and lithium. The wet process is relatively easy to obtain relatively pure nickel, cobalt and lithium. Leaching is an essential process in the wet process. At present, the leaching methods of the mixed positive and negative electrodes of nickel-cobalt lithium manganate waste batteries mainly include hydrochloric acid leaching, sulfuric acid leaching, nitric acid leaching and mixed acid (sulfuric acid plus nitric acid) leaching. In the hydrochloric acid leaching method, the equipment is corroded, and the acid mist is produced in large quantities, which pollutes the environment. Sulfuric acid leaching consumes more expensive oxidants (such as hydrogen peroxide, etc.). The consumption of nitric acid in the nitric acid leaching method is large, and a large amount of nitrogen oxides will be produced, which will pollute the environment. All wet processes have the problem of how to economically increase the leaching speed, increase the metal leaching rate, and reduce the consumption of acid and other auxiliary materials. Although the pure oxygen leaching method in the nitric acid processing industry and the pure oxygen leaching method in the mixed acid processing industry have solved the above problems, the leaching equipment is more complicated, and the amount of industrial pure oxygen required for the leaching of waste batteries is not large, and waste battery treatment enterprises produce on-site Industrial pure oxygen is not economical for personal use, and the storage, transportation and use of industrial pure oxygen are troublesome. It is of great practical value to develop a leaching method for the mixed positive and negative electrodes of nickel-cobalt lithium manganese oxide waste batteries with low equipment corrosion, fast leaching speed, high leaching rate, low acid consumption and other auxiliary material consumption, convenient use, and basically no environmental pollution.
发明内容 Contents of the invention
针对目前镍钴锰酸锂废电池正负极混合材料浸出的问题,本发明的目的是寻找一种金属浸出率高,浸出速度快,浸出率高,酸耗和其它辅料消耗低,使用方便,不用昂贵还原剂,基本无环境污染的镍钴锰酸锂废电池正负极混合材料的浸出方法,其特征在于将从镍钴锰酸锂废电池中分离出的并经焙烧预处理得到的正负极混合材料和≤1.5mm的稻草粉加入耐压、耐硫酸和硝酸腐蚀的反应釜中,加入硫酸和硝酸的混合溶液,并在密闭条件下进行搅拌浸出。浸出结束后进行液固分离,得到所需浸出溶液。反应温度为50℃~80℃,浸出的硫酸初始浓度为1mol/L~4mol/L,硝酸的初始浓度为5g/L~10g/L浸出时间为2h~4h,浸出过程进行搅拌,搅拌速度为30r/min~120r/min。硫酸加入量为加入反应容器的正负极混合材料中全部金属浸出的硫酸理论消耗量的110%~140%。稻草粉的加入量以干基计为正负极混合材料中镍、钴和锰总质量的60%~75%。 Aiming at the current problem of leaching the positive and negative mixed materials of nickel-cobalt-lithium-manganate waste batteries, the purpose of this invention is to find a metal with high leaching rate, fast leaching speed, high leaching rate, low acid consumption and other auxiliary material consumption, and easy to use. The method for leaching the positive and negative electrode mixed materials of nickel-cobalt lithium manganese oxide waste battery without expensive reducing agent and basically no environmental pollution is characterized in that the positive and negative electrodes separated from the nickel-cobalt lithium manganese oxide waste battery and obtained by roasting pretreatment Negative electrode mixed material and ≤1.5mm rice straw powder are put into a pressure-resistant, sulfuric acid and nitric acid corrosion-resistant reaction kettle, a mixed solution of sulfuric acid and nitric acid is added, and stirring and leaching are carried out under airtight conditions. After the leaching is completed, the liquid-solid separation is carried out to obtain the desired leaching solution. The reaction temperature is 50 ℃ ~ 80 ℃, the initial concentration of sulfuric acid leached is 1mol/L ~ 4mol/L, the initial concentration of nitric acid is 5g/L ~ 10g/L, the leaching time is 2h ~ 4h, the leaching process is stirred, and the stirring speed is 30r/min~120r/min. The amount of sulfuric acid added is 110% to 140% of the theoretical consumption of sulfuric acid for leaching all metals in the positive and negative electrode mixed materials added to the reaction vessel. The amount of rice straw powder added is 60% to 75% of the total mass of nickel, cobalt and manganese in the positive and negative electrode mixed materials on a dry basis.
本发明的目的是这样实现的:在密闭并有稻草粉和硝酸存在的条件下,硫酸浸出经焙烧预处理后的镍钴锰酸锂废电池正负极混合材料(材料中的金属元素呈氧化物形态)时,浸出过程发生如下主要化学反应: The object of the present invention is achieved like this: under the condition that airtight and there are rice straw powder and nitric acid to exist, sulfuric acid leaches the mixed positive and negative electrodes of spent nickel-cobalt lithium manganese oxide battery after roasting pretreatment (the metal element in the material is oxidized form), the following main chemical reactions occur during the leaching process:
NiO+H2SO4=NiSO4+H2O NiO+H 2 SO 4 =NiSO 4 +H 2 O
CuO+H2SO4=CuSO4+H2O CuO+H 2 SO 4 =CuSO 4 +H 2 O
Al2O3+3H2SO4=Al2(SO4)3+3H2O Al 2 O 3 +3H 2 SO 4 =Al 2 (SO 4 ) 3 +3H 2 O
Li2O+H2SO4=Li2SO4+H2O Li 2 O+H 2 SO 4 =Li 2 SO 4 +H 2 O
nC6H10O5+nH2SO4=n(C5H11O5)HSO4 nC 6 H 10 O 5 +nH 2 SO 4 =n(C 5 H 11 O 5 )HSO 4
n(C5H11O5)HSO4+nH2O=nC6H12O6+nH2SO4 n(C 5 H 11 O 5 )HSO 4 +nH 2 O=nC 6 H 12 O 6 +nH 2 SO 4
C6H12O6+8HNO3=8NO+6CO2+10H2O C 6 H 12 O 6 +8HNO 3 =8NO+6CO 2 +10H 2 O
nC6H10O5+8nHNO3=8nNO+6nCO2+9nH2O nC 6 H 10 O 5 +8nHNO 3 =8nNO+6nCO 2 +9nH 2 O
3Ni2O3+6H2SO4+2NO=6NiSO4+2HNO3+5H2O 3Ni 2 O 3 +6H 2 SO 4 +2NO=6NiSO 4 +2HNO 3 +5H 2 O
3Co2O3+6H2SO4+2NO=6CoSO4+2HNO3+5H2O 3Co 2 O 3 +6H 2 SO 4 +2NO=6CoSO 4 +2HNO 3 +5H 2 O
3Mn2O3+6H2SO4+2NO=6MnSO4+2HNO3+5H2O 3Mn 2 O 3 +6H 2 SO 4 +2NO=6MnSO 4 +2HNO 3 +5H 2 O
Ni2O3、Co2O3和Mn2O3的总反应为: The overall reaction of Ni 2 O 3 , Co 2 O 3 and Mn 2 O 3 is:
12nNi2O3+nC6H10O5+24nH2SO4=24nNiSO4+6nCO2+29nH2O 12nNi 2 O 3 +nC 6 H 10 O 5 +24nH 2 SO 4 =24nNiSO 4 +6nCO 2 +29nH 2 O
12nCo2O3+nC6H10O5+24nH2SO4=24nCoSO4+6nCO2+29nH2O 12nCo 2 O 3 +nC 6 H 10 O 5 +24nH 2 SO 4 =24nCoSO 4 +6nCO 2 +29nH 2 O
12nMn2O3+nC6H10O5+24nH2SO4=24nMnSO4+6nCO2+29nH2O 12nMn 2 O 3 +nC 6 H 10 O 5 +24nH 2 SO 4 =24nMnSO 4 +6nCO 2 +29nH 2 O
稻草粉中的其它有机物也与硝酸反应生成NO、CO2和H2O,生成的NO与Ni2O3、Co2O3和Mn2O3按前述反应生成NiSO4、CoSO4、MnSO4、HNO3和H2O。 Other organic matter in rice straw powder also reacts with nitric acid to generate NO, CO 2 and H 2 O, and the generated NO reacts with Ni 2 O 3 , Co 2 O 3 and Mn 2 O 3 to generate NiSO 4 , CoSO 4 , MnSO 4 , HNO 3 and H 2 O.
由于硝酸与稻草粉的反应速度较快,产生的NO与Ni2O3、Co2O3和Mn2O3的反应也较快,由此加快整个浸出过程,并实现Ni2O3、Co2O3和Mn2O3较完全浸出。NO可以彻底破坏正负极混合材料中高价氧化物的层状结构,提高有价金属的浸出率。 Due to the fast reaction speed between nitric acid and rice straw powder, the reaction of NO produced with Ni 2 O 3 , Co 2 O 3 and Mn 2 O 3 is also fast, thus speeding up the whole leaching process and realizing Ni 2 O 3 , Co 2 O 3 and Mn 2 O 3 are more completely leached. NO can completely destroy the layered structure of high-valent oxides in the positive and negative mixed materials, and improve the leaching rate of valuable metals.
相对于现有方法,本发明的突出优点是采用稻草粉作还原剂,硝酸作浸出加速剂浸出镍钴锰酸锂废电池正负极混合材料,反应速度快,反应酸度较低,硫酸和还原剂的消耗量小,并且稻草粉便宜;正负极混合材料中高价氧化物的层状结构破坏彻底,可提高金属浸出率;浸出液后续处理中不需要中和大量的酸,成本较低;浸出液后续处理中产生的废弃物量少,降低了污染治理费用,具有明显的经济效益和环境效益;过程在密闭条件下进行,避免了NO逸出产生的环境污染。 Compared with the existing method, the outstanding advantage of the present invention is that rice straw powder is used as the reducing agent, and nitric acid is used as the leaching accelerator to leach the mixed positive and negative electrodes of nickel-cobalt-lithium-manganese-oxide waste batteries. The reaction speed is fast and the reaction acidity is low. The consumption of the agent is small, and the rice straw powder is cheap; the layered structure of the high-valent oxide in the positive and negative mixed materials is completely destroyed, which can improve the metal leaching rate; the subsequent treatment of the leachate does not need to neutralize a large amount of acid, and the cost is low; the leachate The amount of waste generated in the subsequent treatment is small, reducing the cost of pollution control, and has obvious economic and environmental benefits; the process is carried out under airtight conditions, which avoids environmental pollution caused by NO escape.
具体实施方法Specific implementation method
实施例1:将100g镍钴锰酸锂废电池正负极混合材料(含镍14.5%、钴20.3%、锂17.5%、铝2.2%、铜2.5%、锰12.9%)和≤1.5mm稻草粉29g加入容积为2L的衬钛压力反应釜中,加入硫酸浓度为1.5mol/L、硝酸浓度为5g/L的混酸溶液1650ml,在50℃~60℃下密闭搅拌(搅拌速度80r/min)浸出4h,浸出结束后进行液固分离,得到1600ml浸出溶液(不含浸出渣洗涤水)。镍、钴、锂、铜、铝和锰的浸出率分别为99.1%、98.8%、99.0%、99.1%、98.7%和99.2%(按进入浸出溶液和浸出渣洗涤液中的镍、钴、锂、铜、铝和锰计算)。 Example 1: 100g nickel-cobalt lithium manganese oxide waste battery positive and negative mixed material (containing 14.5% nickel, 20.3% cobalt, 17.5% lithium, 2.2% aluminum, 2.5% copper, 12.9% manganese) and ≤1.5mm rice straw powder Add 29g into a titanium-lined pressure reactor with a volume of 2L, add 1650ml of a mixed acid solution with a concentration of sulfuric acid of 1.5mol/L and a concentration of nitric acid of 5g/L, and stir at 50°C to 60°C (stirring speed 80r/min) for leaching After 4 hours, liquid-solid separation was carried out after leaching, and 1600ml of leaching solution was obtained (excluding leaching slag washing water). The leaching rates of nickel, cobalt, lithium, copper, aluminum and manganese are 99.1%, 98.8%, 99.0%, 99.1%, 98.7% and 99.2% respectively (according to the nickel, cobalt and lithium in the leaching solution and leaching slag washing solution , copper, aluminum and manganese calculations).
实施例2:将300g镍钴锰酸锂废电池正负极混合材料(含镍14.5%、钴20.3%、锂17.5%、铝2.2%、铜2.5%、锰12.9%)和≤1.5mm稻草粉105g加入容积为5L的衬钛压力反应釜中,加入硫酸浓度为3mol/L、硝酸浓度为10g/L的混酸溶液3000ml,在70℃~80℃下密闭搅拌(搅拌速度70r/min)浸出2h,浸出结束后进行液固分离,得到2800ml浸出溶液(不包括浸出渣洗涤水)。镍、钴、锂、铜、铝和锰的浸出率分别为99.4%、99.3%、99.6%、99.2%、98.7%和99.3%(按进入浸出溶液和浸出渣洗涤液中的镍、钴、锂、铜、铝和锰计算)。 Example 2: 300g nickel-cobalt lithium manganate waste battery positive and negative mixed material (containing 14.5% nickel, 20.3% cobalt, 17.5% lithium, 2.2% aluminum, 2.5% copper, 12.9% manganese) and ≤1.5mm rice straw powder Add 105g into a titanium-lined pressure reactor with a volume of 5L, add 3000ml of a mixed acid solution with a sulfuric acid concentration of 3mol/L and a nitric acid concentration of 10g/L, and leaching at 70°C to 80°C (stirring speed 70r/min) for 2h , after the leaching is finished, liquid-solid separation is carried out to obtain 2800ml leaching solution (excluding leaching slag washing water). The leaching rates of nickel, cobalt, lithium, copper, aluminum and manganese are 99.4%, 99.3%, 99.6%, 99.2%, 98.7% and 99.3% respectively (according to the nickel, cobalt and lithium in the leaching solution and leaching slag washing solution , copper, aluminum and manganese calculations).
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310736548.8A CN103757353B (en) | 2013-12-29 | 2013-12-29 | The leaching method of anode and cathode mixed materials of waste LiCoxNiyMnzO 2 battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310736548.8A CN103757353B (en) | 2013-12-29 | 2013-12-29 | The leaching method of anode and cathode mixed materials of waste LiCoxNiyMnzO 2 battery |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103757353A CN103757353A (en) | 2014-04-30 |
CN103757353B true CN103757353B (en) | 2016-01-20 |
Family
ID=50524667
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310736548.8A Expired - Fee Related CN103757353B (en) | 2013-12-29 | 2013-12-29 | The leaching method of anode and cathode mixed materials of waste LiCoxNiyMnzO 2 battery |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103757353B (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5127963A (en) * | 1991-03-21 | 1992-07-07 | Rubber Recycling, Inc. | Process for detoxifying lead contaminated materials |
CN101619394A (en) * | 2009-06-23 | 2010-01-06 | 四川师范大学 | Method for leaching anode and cathode mixed material of waste lithium nickel manganese cobalt battery |
CN101942569A (en) * | 2010-10-28 | 2011-01-12 | 湖南邦普循环科技有限公司 | Method for recovering lithium from waste lithium ion battery and waste pole piece |
CN102030375A (en) * | 2010-10-29 | 2011-04-27 | 北京矿冶研究总院 | Method for preparing lithium cobaltate by directly using failed lithium ion battery |
CN102101701A (en) * | 2010-12-31 | 2011-06-22 | 湖南邦普循环科技有限公司 | Method for recovering cobalt and lithium from waste lithium cobaltite and preparing lithium cobaltite |
CN102347521A (en) * | 2011-10-08 | 2012-02-08 | 佛山市邦普循环科技有限公司 | Method for recycling manganese and lithium from power type lithium manganate battery for electric automobile |
CN103088215A (en) * | 2012-10-16 | 2013-05-08 | 赣州市豪鹏科技有限公司 | Method for separating nickel-cobalt and manganese in nickel-cobalt-manganese material with high manganese-cobalt ratio |
CN103326088A (en) * | 2013-07-04 | 2013-09-25 | 厦门钨业股份有限公司 | Comprehensive recovery method of waste lithium ion battery |
-
2013
- 2013-12-29 CN CN201310736548.8A patent/CN103757353B/en not_active Expired - Fee Related
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5127963A (en) * | 1991-03-21 | 1992-07-07 | Rubber Recycling, Inc. | Process for detoxifying lead contaminated materials |
CN101619394A (en) * | 2009-06-23 | 2010-01-06 | 四川师范大学 | Method for leaching anode and cathode mixed material of waste lithium nickel manganese cobalt battery |
CN101942569A (en) * | 2010-10-28 | 2011-01-12 | 湖南邦普循环科技有限公司 | Method for recovering lithium from waste lithium ion battery and waste pole piece |
CN102030375A (en) * | 2010-10-29 | 2011-04-27 | 北京矿冶研究总院 | Method for preparing lithium cobaltate by directly using failed lithium ion battery |
CN102101701A (en) * | 2010-12-31 | 2011-06-22 | 湖南邦普循环科技有限公司 | Method for recovering cobalt and lithium from waste lithium cobaltite and preparing lithium cobaltite |
CN102347521A (en) * | 2011-10-08 | 2012-02-08 | 佛山市邦普循环科技有限公司 | Method for recycling manganese and lithium from power type lithium manganate battery for electric automobile |
CN103088215A (en) * | 2012-10-16 | 2013-05-08 | 赣州市豪鹏科技有限公司 | Method for separating nickel-cobalt and manganese in nickel-cobalt-manganese material with high manganese-cobalt ratio |
CN103326088A (en) * | 2013-07-04 | 2013-09-25 | 厦门钨业股份有限公司 | Comprehensive recovery method of waste lithium ion battery |
Non-Patent Citations (1)
Title |
---|
"氧化锰矿还原浸出工艺技术研究进展";李进中等;《中国锰业》;20111128;第29卷(第4期);1-7 * |
Also Published As
Publication number | Publication date |
---|---|
CN103757353A (en) | 2014-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103757353B (en) | The leaching method of anode and cathode mixed materials of waste LiCoxNiyMnzO 2 battery | |
CN103757320B (en) | The leaching method of anode and cathode mixed materials of waste LiCoxNiyMnzO 2 battery | |
CN103757307B (en) | The leaching method of Ni-MH used battery anode and cathode mixed material | |
CN103757310B (en) | The leaching method of Ni-MH used battery anode and cathode mixed material | |
CN103757390B (en) | The leaching method of anode material of waste LiCoO battery | |
CN103757263B (en) | The leaching method of anode material of used nickel cadmium battery | |
CN103757322A (en) | Method for leaching positive pole material of waste nickel-metal hydride battery | |
CN103757317A (en) | Method for leaching positive pole material of waste nickel-metal hydride battery | |
CN103757323A (en) | Method for leaching positive-negative pole material mixture of waste lithium nickel cobalt manganese oxide battery | |
CN103757341A (en) | Leaching method of nickel cobalt lithium manganate waste battery positive-negative electrode mixed material | |
CN103757344A (en) | Leaching method of nickel cobalt lithium manganate waste battery positive-negative electrode mixed material | |
CN103757299A (en) | Method for leaching positive-negative pole material mixture of waste lithium nickel cobalt manganese oxide battery | |
CN103757335A (en) | Leaching method of nickel cobalt lithium manganate waste battery positive-negative electrode mixed material | |
CN103757363A (en) | Leaching method of nickel-cadmium waste battery positive-negative electrode mixed material | |
CN103757382A (en) | Leaching method of lithium cobaltate waste battery positive electrode material | |
CN103757300A (en) | Method for leaching positive pole material of waste nickel-metal hydride battery | |
CN103757361A (en) | Leaching method of nickel-cadmium waste battery positive-negative electrode mixed material | |
CN103757241A (en) | Leaching method of nickel-cadmium waste battery positive-negative electrode mixed material | |
CN103757305A (en) | Method for leaching positive pole material of waste nickel-metal hydride battery | |
CN103757348A (en) | Leaching method of nickel-cadmium waste battery positive electrode material | |
CN103757392A (en) | Leaching method of lithium cobaltate waste battery positive electrode material | |
CN103757237A (en) | Method for leaching positive-negative pole material mixture of waste nickel-metal hydride battery | |
CN103757389A (en) | Leaching method of lithium cobaltate waste battery positive electrode material | |
CN103757242A (en) | Leaching method of nickel-cadmium waste battery positive electrode material | |
CN103757357A (en) | Leaching method of nickel-cadmium waste battery positive electrode material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160120 Termination date: 20161229 |
|
CF01 | Termination of patent right due to non-payment of annual fee |