[go: up one dir, main page]

CN103754886A - Preparation method for composite silica aerogel with ultra high strength and high specific surface area - Google Patents

Preparation method for composite silica aerogel with ultra high strength and high specific surface area Download PDF

Info

Publication number
CN103754886A
CN103754886A CN201310687660.7A CN201310687660A CN103754886A CN 103754886 A CN103754886 A CN 103754886A CN 201310687660 A CN201310687660 A CN 201310687660A CN 103754886 A CN103754886 A CN 103754886A
Authority
CN
China
Prior art keywords
gel
preparation
solution
organic
surface area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201310687660.7A
Other languages
Chinese (zh)
Inventor
周斌
闫彭
杜艾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tongji University
Original Assignee
Tongji University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tongji University filed Critical Tongji University
Priority to CN201310687660.7A priority Critical patent/CN103754886A/en
Publication of CN103754886A publication Critical patent/CN103754886A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Silicon Compounds (AREA)

Abstract

本发明属于气凝胶材料技术领域,具体涉及一种超高强度、高比表面积复合二氧化硅气凝胶的制备方法。本发明采用溶胶凝胶—有机无机杂化的方法,即采用含有硅烷偶联剂的混合硅源通过溶胶凝胶的方式先形成湿凝胶,然后将异氰酸酯作为有机增强材料与湿凝胶复合,结合超临界干燥工艺,制备出高强度二异氰酸酯复合二氧化硅气凝胶材料。本发明具有原料易得、反应过程简单、等特点,所得到的材料具有纳米尺度的多级微结构,最大比表面积可达400m2/g以上,解决了常规二氧化硅气凝胶易碎,强度低等特点。

Figure 201310687660

The invention belongs to the technical field of airgel materials, and in particular relates to a method for preparing composite silica airgel with ultrahigh strength and high specific surface area. The present invention adopts a sol-gel-organic-inorganic hybrid method, that is, a mixed silicon source containing a silane coupling agent is used to form a wet gel through a sol-gel method, and then the isocyanate is used as an organic reinforcing material to compound the wet gel. Combined with the supercritical drying process, a high-strength diisocyanate composite silica airgel material was prepared. The invention has the characteristics of easy-to-obtain raw materials, simple reaction process, etc., and the obtained material has a nanoscale multi-level microstructure, and the maximum specific surface area can reach more than 400m 2 /g, which solves the problem of the fragility of conventional silica airgel. Features such as low strength.

Figure 201310687660

Description

一种超高强度、高比表面积复合二氧化硅气凝胶的制备方法A preparation method of ultra-high strength, high specific surface area composite silica airgel

技术领域 technical field

本发明属于高强度、高比表面积多孔材料制备技术领域,具体涉及一种在航天深空探测、轻质高强度隔热等方向有广泛应用的二氧化硅气凝胶类材料的通用方法。 The invention belongs to the technical field of preparing porous materials with high strength and high specific surface area, and in particular relates to a general method for silica airgel materials widely used in aerospace deep space exploration, light weight, high strength heat insulation and the like.

背景技术 Background technique

异氰酸酯可用于合成一系列性能优良的聚氨酯泡沫塑料、橡胶、弹力纤维、涂料、胶粘剂、合成革、人造木材等。气凝胶是一类具有多级分形结构的纳米多孔功能材料。由于兼备宏观特性和纳米效应,表现出许多独特的性能,具有广泛的应用前景。然而极差的力学性能是气凝胶被广泛使用的最大障碍。纯二氧化硅气凝胶弹性模量通常为105—107Pa,密度为120mg/cm3的二氧化硅气凝胶压缩强度为31kPa。将有机物与无机物杂化得到的复合材料在性质上兼有两种成分的性质—具有良好的力学性能、耐高温等。 Isocyanates can be used to synthesize a series of polyurethane foam plastics, rubber, elastic fibers, coatings, adhesives, synthetic leather, artificial wood, etc. with excellent properties. Aerogels are a class of nanoporous functional materials with hierarchical fractal structures. Due to the combination of macroscopic properties and nano-effects, it exhibits many unique properties and has broad application prospects. However, the extremely poor mechanical properties are the biggest obstacle to the widespread use of aerogels. The elastic modulus of pure silica airgel is usually 10 5 -10 7 Pa, and the compressive strength of silica airgel with a density of 120mg/cm 3 is 31kPa. The composite material obtained by hybridizing organic matter and inorganic matter has the properties of both components in nature-good mechanical properties, high temperature resistance, etc.

溶胶凝胶法制备的有机无机杂化气凝胶,采用含有双官能性的硅烷偶联剂—一端带有可自水解的烷氧基团,与无极前驱体共同参与溶胶凝胶反应,形成SiO2凝胶另一端为聚合基团,与有机物发生聚合反应,形成聚合物外壳,将无机SiO网络密封起来。经超临界流体干燥后,成为气凝胶。 The organic-inorganic hybrid airgel prepared by the sol-gel method uses a bifunctional silane coupling agent-one end has a self-hydrolyzable alkoxy group, which participates in the sol-gel reaction with the non-polar precursor to form SiO 2 The other end of the gel is a polymeric group, which reacts with organic matter to form a polymer shell and seal the inorganic SiO network. After being dried by supercritical fluid, it becomes aerogel.

发明内容 Contents of the invention

本发明的目的在于提供一种适用范围广、成本低廉、反应周期较短、可能工业放大的高强度、高比表面积二异氰酸酯复合SiO2气凝胶材料的制备方法。其基本思路在于通过添加含有双官能性的硅烷偶联剂先与其他硅源一同水解—缩聚,形成SiO2凝胶,采用甲基三甲氧基硅烷和异氰酸酯单体增强凝胶与有机复合物间的浸润性,使反应更充分,在凝胶外层包裹聚合物实现高强度、高比表面积有机增强SiO2气凝胶的制备、成型性提高与微结构调控。具体内容如下: The object of the present invention is to provide a kind of preparation method of diisocyanate composite SiO2 airgel material with high strength and high specific surface area, which has wide application range, low cost, short reaction cycle and possible industrial scale-up. The basic idea is to add a bifunctional silane coupling agent to hydrolyze and polycondense together with other silicon sources to form a SiO 2 gel, and use methyltrimethoxysilane and isocyanate monomers to strengthen the bond between the gel and the organic compound. The wettability makes the reaction more complete, and the polymer is wrapped in the outer layer of the gel to realize the preparation of organically reinforced SiO 2 airgel with high strength and high specific surface area, the improvement of formability and the regulation of microstructure. The specific content is as follows:

本发明提出了一种超高强度、高比表面积复合二氧化硅气凝胶的制备方法,采用溶胶凝胶—有机无机杂化的方法,具体步骤如下: The present invention proposes a method for preparing composite silica airgel with ultra-high strength and high specific surface area, which adopts a sol-gel-organic-inorganic hybrid method, and the specific steps are as follows:

(1) 将混合硅源溶于有机溶剂配成溶液A,将水与有机溶剂混合配成溶液B;  (1) Dissolve the mixed silicon source in an organic solvent to form a solution A, and mix water and an organic solvent to form a solution B;

(2)将步骤(1)中的溶液A、溶液B置于-60~-70摄氏度下混合,搅拌均匀,静置后得到凝胶;其中,混合硅源、有机溶剂、去离子水的添加比例为10-20ml: 25-45ml:5-15ml; (2) Mix solution A and solution B in step (1) at -60 to -70 degrees Celsius, stir evenly, and obtain a gel after standing; wherein, the addition of the mixed silicon source, organic solvent, and deionized water The ratio is 10-20ml: 25-45ml: 5-15ml;

(3) 将步骤(2)得到的凝胶经老化后,放入二异氰酸酯质量分数为10%、温度为70-80摄氏度的有机溶液中浸泡60-80小时; (3) After aging the gel obtained in step (2), put it into an organic solution with a mass fraction of diisocyanate of 10% and a temperature of 70-80 degrees Celsius for 60-80 hours;

(4)将步骤(3)所得凝胶在常温下老化后干燥,即获得所需的有机增强SiO2气凝胶材料。 (4) aging the gel obtained in step (3) at room temperature and then drying to obtain the desired organically reinforced SiO 2 airgel material.

本发明中,步骤(1)中的混合硅源由硅酸甲酯(TMOS)、甲基三甲氧基硅烷(MTMS)和3-胺丙基三乙氧基硅烷(APTES)组成,硅酸甲酯、甲基三甲氧基硅烷和3-胺丙基三乙氧基硅烷体积比:4-12ml:1-6ml:2.5-10ml。 In the present invention, the mixed silicon source in step (1) is composed of methyl silicate (TMOS), methyltrimethoxysilane (MTMS) and 3-aminopropyltriethoxysilane (APTES), methyl silicate Ester, methyltrimethoxysilane and 3-aminopropyltriethoxysilane volume ratio: 4-12ml:1-6ml:2.5-10ml.

本发明中,步骤(1)和步骤(3)中的有机溶剂为乙腈。 In the present invention, the organic solvent in step (1) and step (3) is acetonitrile.

本发明中,步骤(3)中的二异氰酸酯为六亚甲基二异氰酸酯(HDI)。 In the present invention, the diisocyanate in step (3) is hexamethylene diisocyanate (HDI).

本发明中,步骤(4)中所述干燥方法为超临界流体干燥、冷冻干燥、加热脱气干燥或常压自然干燥等方式中任一种。 In the present invention, the drying method described in step (4) is any one of methods such as supercritical fluid drying, freeze drying, heating degassing drying or normal pressure natural drying.

本发明制备的有机增强SiO2气凝胶具有高强度、高比表面积和多级分形的纳米多孔网络结构,成功解决了纯SiO2纳米多孔气凝胶脆性大,易碎,有机增强后比较面积低的难题,在航天深空探测、轻质高强度隔热等方向等领域都具有重要的意义。 The organically reinforced SiO2 airgel prepared by the present invention has high strength, high specific surface area and multi-level fractal nanoporous network structure, which successfully solves the problem that the pure SiO2 nanoporous airgel is brittle and fragile, and the comparative area after organic enhancement The low problem is of great significance in the fields of aerospace deep space exploration, light weight and high strength heat insulation and other fields.

附图说明 Description of drawings

图1 实施例1样品的照片; Fig. 1 The photograph of embodiment 1 sample;

图2 实施例1样品的傅立叶变换红外光谱图; The Fourier transform infrared spectrogram of Fig. 2 embodiment 1 sample;

图3 实施例1样品的扫描电子显微镜照片; The scanning electron micrograph of Fig. 3 embodiment 1 sample;

图4 实施例1样品的氮气吸附脱附曲线; The nitrogen adsorption-desorption curve of Fig. 4 embodiment 1 sample;

图5 实施例1孔径分布图; Fig. 5 embodiment 1 pore size distribution figure;

图6 实施例1 应力应变曲线。 Fig. 6 Example 1 stress-strain curve.

具体实施方式 Detailed ways

以下通过实施例及附图进一步具体说明本发明。(各原料均为市售原料,无特别说明纯度均为化学纯或分析纯等级)。 The present invention will be further specifically described below through the examples and accompanying drawings. (All raw materials are commercially available raw materials, and the purity is chemically pure or analytically pure grade unless otherwise specified).

实施例1:高强度、高比表面积二异氰酸酯复合SiO2气凝胶的制备 Embodiment 1 : high strength, high specific surface area diisocyanate composite SiO 2 preparation of airgel

选取混合硅源(硅酸甲酯:甲基三甲氧基硅烷:3-胺丙基三乙氧基硅烷体积比:4:1:2.5)、有机溶剂、去离子水的体积比为:10ml:25ml:5ml将硅酸甲酯(TMOS)、乙腈、甲基三甲氧基硅烷、3-胺丙基三乙氧基硅烷,混合成18ml的A溶液,去离子水和乙腈混合成22的B溶液。将A溶液冷却至-70°C左右,倒入B溶液,迅速搅拌,至于室温中凝胶。24h后用乙腈进行3次溶液替换,每次8-12h。将凝胶放入质量分数为10%的六亚甲基二异氰酸酯的乙腈溶液中浸泡24h,放入新鲜乙腈溶液中,至于70°C的烘箱中放置3*24h。将凝胶放置于新鲜乙腈溶液中进行3次替换,每次8-12h。最后进行超临界干燥,得到密度为330mg/cm3的增强气凝胶。其实物照片如图1所示。 Select the mixed silicon source (methyl silicate: methyltrimethoxysilane: 3-aminopropyltriethoxysilane volume ratio: 4:1:2.5), the volume ratio of organic solvent and deionized water is: 10ml: 25ml: 5ml Methyl silicate (TMOS), acetonitrile, methyltrimethoxysilane, 3-aminopropyltriethoxysilane, mixed into 18ml solution A, deionized water and acetonitrile mixed into 22 solution B . Cool solution A to about -70°C, pour into solution B, stir rapidly, and gel at room temperature. After 24 hours, the solution was replaced with acetonitrile for 3 times, 8-12 hours each time. Soak the gel in an acetonitrile solution with a mass fraction of 10% hexamethylene diisocyanate for 24 hours, put it in a fresh acetonitrile solution, and place it in an oven at 70°C for 3*24 hours. The gel was placed in fresh acetonitrile solution for 3 replacements, each time 8-12h. Finally, supercritical drying was carried out to obtain a reinforced aerogel with a density of 330 mg/cm 3 . Its physical photos are shown in Figure 1.

实施例2:选取混合硅源(硅酸甲酯:甲基三甲氧基硅烷:3-胺丙基三乙氧基硅烷体积比:12:6:10)、有机溶剂、去离子水的体积比为:20ml:45ml:15ml。将硅酸甲酯将硅酸甲酯(TMOS)、乙腈、甲基三甲氧基硅烷、3-胺丙基三乙氧基硅烷,混合成的35ml的A溶液,去离子水和乙腈混合成45ml的B溶液。将A溶液冷却至-60°C -70°C左右,倒入B溶液,迅速搅拌,至于室温中凝胶。24h后用乙腈进行3次溶液替换,每次8-12h。将凝胶放入质量分数为10%的六亚甲基二异氰酸酯的乙腈溶液中浸泡24h,放入新鲜乙腈溶液中,至于70°C的烘箱中放置3*24h。将凝胶放置于新鲜乙腈溶液中进行3次替换,每次8-12h。最后进行超临界干燥, Embodiment 2 : choose the volume ratio of mixed silicon source (methyl silicate: methyltrimethoxysilane: 3-aminopropyltriethoxysilane volume ratio: 12:6:10), organic solvent, deionized water For: 20ml:45ml:15ml. Methyl silicate Methyl silicate (TMOS), acetonitrile, methyltrimethoxysilane, 3-aminopropyltriethoxysilane, mixed into 35ml A solution, deionized water and acetonitrile mixed into 45ml B solution. Cool solution A to about -60°C -70°C, pour into solution B, stir rapidly, and gel at room temperature. After 24 hours, the solution was replaced with acetonitrile for 3 times, 8-12 hours each time. Soak the gel in an acetonitrile solution with a mass fraction of 10% hexamethylene diisocyanate for 24 hours, put it in fresh acetonitrile solution, and place it in an oven at 70°C for 3*24 hours. The gel was placed in fresh acetonitrile solution for 3 replacements, each time 8-12h. Finally, supercritical drying was carried out.

图2所示,样品的傅立叶变换红外光谱则表明,混合硅源经水解—缩聚反应得到Si-O-Si网络结构,胺基与有机物六亚甲基二异氰酸酯反应并最终生成聚合物外壳。图3中的扫描电子显微镜照片则表明,该材料具有纳米量级的网络组成的相互贯通的多孔结构。图4、5的氮气吸附脱附及孔径分布图则进一步证明,该材料还具有20 nm左右的精细结构,而样品的比表面积高达446.3 m2/g。图6的应力应变曲线表明材料的力学性能。综合测试结果表明,该材料为具有多级结构的高强度、高比表面积二异氰酸酯复合SiO2气凝胶。 As shown in Figure 2, the Fourier transform infrared spectrum of the sample shows that the Si-O-Si network structure is obtained through the hydrolysis-polycondensation reaction of the mixed silicon source, and the amine group reacts with the organic hexamethylene diisocyanate to finally form a polymer shell. The scanning electron micrographs in Figure 3 show that the material has an interpenetrating porous structure composed of nanoscale networks. The nitrogen adsorption and desorption and pore size distribution diagrams in Figures 4 and 5 further prove that the material also has a fine structure of about 20 nm, and the specific surface area of the sample is as high as 446.3 m 2 /g. The stress-strain curves in Figure 6 indicate the mechanical properties of the material. Comprehensive test results show that the material is a high-strength, high-specific-surface-area diisocyanate-composite SiO2 airgel with a multi-level structure.

Claims (5)

1. a preparation method for superstrength, high-specific surface area dioxide composite silica aerogel, is characterized in that adopting the method for collosol and gel-organic inorganic hybridization, and concrete steps are as follows:
(1) mixing silicon source is dissolved in to organic solvent wiring solution-forming A, by deionized water and organic solvent mixing wiring solution-forming B;
(2) by mixing under the be placed in-60--70 of solution A and solution B of step (1) gained degree Celsius, stir, obtain gel after standing; Wherein, the adding proportion of mixing silicon source, organic solvent, deionized water is 10-20ml:25-45ml:5-15ml;
(3) gel step (2) being obtained, after aging, is put into vulcabond massfraction and is 10%, temperature is that the organic solution of 70-80 degree Celsius is soaked 60-80 hour;
(4) step (3) gained gel is aging rear dry at normal temperatures, obtain required organic enhancing SiO 2nanoporous aerogel material.
2. preparation method according to claim 1, it is characterized in that the mixing silicon source in step (1) is comprised of methyl silicate, methyltrimethoxy silane and 3-amine propyl-triethoxysilicane, methyl silicate, methyltrimethoxy silane and 3-amine propyl-triethoxysilicane volume ratio: 4-12ml:1-6ml:2.5-10ml.
3. preparation method according to claim 1, is characterized in that the organic solvent described in step (1) and step (3) is acetonitrile.
4. preparation method according to claim 1, is characterized in that the vulcabond described in step (3) is hexamethylene diisocyanate.
5. preparation method according to claim 1, it is characterized in that drying means described in step (4) is supercritical fluid drying, lyophilize, heat de-airing is dry or normal pressure seasoning mode in any.
CN201310687660.7A 2013-12-17 2013-12-17 Preparation method for composite silica aerogel with ultra high strength and high specific surface area Pending CN103754886A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310687660.7A CN103754886A (en) 2013-12-17 2013-12-17 Preparation method for composite silica aerogel with ultra high strength and high specific surface area

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310687660.7A CN103754886A (en) 2013-12-17 2013-12-17 Preparation method for composite silica aerogel with ultra high strength and high specific surface area

Publications (1)

Publication Number Publication Date
CN103754886A true CN103754886A (en) 2014-04-30

Family

ID=50522255

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310687660.7A Pending CN103754886A (en) 2013-12-17 2013-12-17 Preparation method for composite silica aerogel with ultra high strength and high specific surface area

Country Status (1)

Country Link
CN (1) CN103754886A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104341594A (en) * 2014-10-20 2015-02-11 同济大学 Preparation method of crosslinked polyimide silicon dioxide mixed gas gel
CN105384950A (en) * 2015-12-14 2016-03-09 同济大学 Low-cost preparation method of low-density crosslinking type polyimide aerogel material
CN105777175A (en) * 2016-01-29 2016-07-20 卓达新材料科技集团有限公司 Method for preparing germanium oxide and hafnium oxide hybrid aerogel composite
CN108238602A (en) * 2016-12-23 2018-07-03 天津新滨工程技术检测有限公司 A kind of preparation method of composite silica airgel material and airgel material prepared by the method
CN108862290A (en) * 2018-08-17 2018-11-23 佛山朝鸿新材料科技有限公司 A kind of preparation method of rubber composite material special-purpose nanometer silica
CN110075766A (en) * 2019-04-03 2019-08-02 同济大学 A kind of preparation method of concentration gradient aerogel composite
CN110735194A (en) * 2019-11-29 2020-01-31 福建六树网络科技有限公司 silicon dioxide composite aerogel, PET polyester fiber and polyester fabric
CN111517332A (en) * 2020-05-25 2020-08-11 福建拓烯新材料科技有限公司 Preparation method of improved silicon dioxide aerogel and silicon dioxide aerogel
CN111924850A (en) * 2020-07-08 2020-11-13 南京工业大学 Preparation method of polymer cross-linking modified spherical silica aerogel material
WO2022032338A1 (en) * 2020-08-10 2022-02-17 Commonwealth Scientific And Industrial Research Organisation Microporous aerogel
CN115466518A (en) * 2022-10-08 2022-12-13 中国人民解放军海军工程大学 Organic-inorganic in-situ hybrid aerogel heat-insulating material and preparation method thereof
CN115571885A (en) * 2022-10-31 2023-01-06 陕西科技大学 Isocyanate grafted modified silica aerogel and preparation method thereof
CN116393049A (en) * 2022-11-24 2023-07-07 信和新材料(苏州)有限公司 A method for preparing high-porosity silicon-based airgel by drying under normal pressure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB795052A (en) * 1953-08-14 1958-05-14 Monsanto Chemicals Modifying the properties of the surface of silica aerogels
TW200619141A (en) * 2004-12-09 2006-06-16 Ind Tech Res Inst Preparation of silica aerogel crosslinked with organic molecule
CN103043672A (en) * 2011-10-17 2013-04-17 清华大学 A kind of atmospheric pressure drying prepares the method for polymer modified SiO2 airgel
CN103333358A (en) * 2013-07-02 2013-10-02 北京师范大学 Reusable low-cost silica aerogel oil-absorbing sponge and preparation method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB795052A (en) * 1953-08-14 1958-05-14 Monsanto Chemicals Modifying the properties of the surface of silica aerogels
TW200619141A (en) * 2004-12-09 2006-06-16 Ind Tech Res Inst Preparation of silica aerogel crosslinked with organic molecule
CN103043672A (en) * 2011-10-17 2013-04-17 清华大学 A kind of atmospheric pressure drying prepares the method for polymer modified SiO2 airgel
CN103333358A (en) * 2013-07-02 2013-10-02 北京师范大学 Reusable low-cost silica aerogel oil-absorbing sponge and preparation method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
吴国友等: "甲基三甲氧基硅烷对块状SiO2气凝胶性能和结构的影响", 《硅酸盐学报》, vol. 36, no. 7, 31 July 2009 (2009-07-31) *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104341594A (en) * 2014-10-20 2015-02-11 同济大学 Preparation method of crosslinked polyimide silicon dioxide mixed gas gel
CN105384950A (en) * 2015-12-14 2016-03-09 同济大学 Low-cost preparation method of low-density crosslinking type polyimide aerogel material
CN105777175A (en) * 2016-01-29 2016-07-20 卓达新材料科技集团有限公司 Method for preparing germanium oxide and hafnium oxide hybrid aerogel composite
CN108238602A (en) * 2016-12-23 2018-07-03 天津新滨工程技术检测有限公司 A kind of preparation method of composite silica airgel material and airgel material prepared by the method
CN108862290A (en) * 2018-08-17 2018-11-23 佛山朝鸿新材料科技有限公司 A kind of preparation method of rubber composite material special-purpose nanometer silica
CN110075766A (en) * 2019-04-03 2019-08-02 同济大学 A kind of preparation method of concentration gradient aerogel composite
CN110735194B (en) * 2019-11-29 2022-07-08 浙江艾恋针织服饰有限公司 Silicon dioxide composite aerogel, PET polyester fiber and polyester fabric
CN110735194A (en) * 2019-11-29 2020-01-31 福建六树网络科技有限公司 silicon dioxide composite aerogel, PET polyester fiber and polyester fabric
CN111517332A (en) * 2020-05-25 2020-08-11 福建拓烯新材料科技有限公司 Preparation method of improved silicon dioxide aerogel and silicon dioxide aerogel
CN111517332B (en) * 2020-05-25 2021-09-07 福建拓烯新材料科技有限公司 Preparation method of improved silicon dioxide aerogel and silicon dioxide aerogel
CN111924850A (en) * 2020-07-08 2020-11-13 南京工业大学 Preparation method of polymer cross-linking modified spherical silica aerogel material
WO2022032338A1 (en) * 2020-08-10 2022-02-17 Commonwealth Scientific And Industrial Research Organisation Microporous aerogel
CN115466518A (en) * 2022-10-08 2022-12-13 中国人民解放军海军工程大学 Organic-inorganic in-situ hybrid aerogel heat-insulating material and preparation method thereof
CN115466518B (en) * 2022-10-08 2023-05-23 中国人民解放军海军工程大学 Organic-inorganic in-situ hybridization aerogel heat insulation material and preparation method thereof
CN115571885A (en) * 2022-10-31 2023-01-06 陕西科技大学 Isocyanate grafted modified silica aerogel and preparation method thereof
CN116393049A (en) * 2022-11-24 2023-07-07 信和新材料(苏州)有限公司 A method for preparing high-porosity silicon-based airgel by drying under normal pressure

Similar Documents

Publication Publication Date Title
CN103754886A (en) Preparation method for composite silica aerogel with ultra high strength and high specific surface area
CN104341594B (en) Preparation method of crosslinked polyimide silicon dioxide mixed gas gel
Zu et al. Versatile double-cross-linking approach to transparent, machinable, supercompressible, highly bendable aerogel thermal superinsulators
Zhao et al. Thermal and mechanical performances of the superflexible, hydrophobic, silica-based aerogel for thermal insulation at ultralow temperature
Kaya et al. Sustainable nanocomposites of epoxy and silica xerogel synthesized from corn stalk ash: Enhanced thermal and acoustic insulation performance
Xue et al. Advances in multiple reinforcement strategies and applications for silica aerogel
Zhang et al. Facile preparation of a phenyl-reinforced flexible silica aerogel with excellent thermal stability and fire resistance
EP3743464B1 (en) Organic-inorganic aerogel composites, methods and uses thereof
TW201819476A (en) Polysiloxane based aerogels
JP2008537570A (en) A process for producing monolithic xerogels and aerogels composed of silica / latex hybrids modified with alkoxysilane groups under subcritical conditions.
CN106732214A (en) A kind of hydrophobicity natural polymer/attapulgite composite aerogel and preparation method thereof
CN101973752A (en) Glass fiber reinforced silicon dioxide aerogel composite material and preparation method thereof
CN104607161A (en) Preparation method of graphene modified super-hydrophobic adsorption material
US9650500B2 (en) Nanoporous particles in a hollow latex matrix
JP2017507110A (en) Method for producing airgel by dielectric heating
CN107987311A (en) A kind of preparation method of hydrophobicity melamine sponge enhancing polysilsesquioxane composite aerogel
Fei et al. Preparation of tetraethoxysilane-based silica aerogels with polyimide cross-linking from 3, 3′, 4, 4′-biphenyltetracarboxylic dianhydride and 4, 4′-oxydianiline
CN109701494A (en) Aerogel composite material and preparation method thereof
WO2022259044A1 (en) Fibre-reinforced aerogel composites from mixed silica and rubber sols and a method to produce the rubber-silica aerogel composites
CN104119060A (en) Fiber cross-linking aerogel composite material and preparation method thereof
CN105585725B (en) A kind of preparation method and application of heat-insulating flame-retardant foamed material
Li et al. Facile fabrication of superhydrophobic, mechanically strong multifunctional silica-based aerogels at benign temperature
CN109734950A (en) Aerogel composite material and preparation method thereof
Zhao et al. Thermally insulating SiO2/psa composite aerogels with heat resistance and mechanical properties via the Thiol–Yne click reaction
CN103437187B (en) Method for preparing hollow silicon dioxide/waterborne polyurethane composite slurry used for synthetic leather

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20140430