CN103754886A - Preparation method for composite silica aerogel with ultra high strength and high specific surface area - Google Patents
Preparation method for composite silica aerogel with ultra high strength and high specific surface area Download PDFInfo
- Publication number
- CN103754886A CN103754886A CN201310687660.7A CN201310687660A CN103754886A CN 103754886 A CN103754886 A CN 103754886A CN 201310687660 A CN201310687660 A CN 201310687660A CN 103754886 A CN103754886 A CN 103754886A
- Authority
- CN
- China
- Prior art keywords
- gel
- preparation
- solution
- organic
- surface area
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 title claims abstract description 22
- 239000002131 composite material Substances 0.000 title claims abstract description 9
- 238000002360 preparation method Methods 0.000 title claims description 9
- 239000004965 Silica aerogel Substances 0.000 title claims 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 11
- 239000000463 material Substances 0.000 claims abstract description 11
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 11
- 239000010703 silicon Substances 0.000 claims abstract description 11
- 238000000034 method Methods 0.000 claims abstract description 8
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 claims description 42
- LFQCEHFDDXELDD-UHFFFAOYSA-N tetramethyl orthosilicate Chemical compound CO[Si](OC)(OC)OC LFQCEHFDDXELDD-UHFFFAOYSA-N 0.000 claims description 11
- BFXIKLCIZHOAAZ-UHFFFAOYSA-N methyltrimethoxysilane Chemical compound CO[Si](C)(OC)OC BFXIKLCIZHOAAZ-UHFFFAOYSA-N 0.000 claims description 10
- 239000003960 organic solvent Substances 0.000 claims description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 8
- 239000008367 deionised water Substances 0.000 claims description 7
- 229910021641 deionized water Inorganic materials 0.000 claims description 7
- 238000001035 drying Methods 0.000 claims description 7
- 239000005057 Hexamethylene diisocyanate Substances 0.000 claims description 6
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 6
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 claims description 6
- 239000004964 aerogel Substances 0.000 claims description 5
- 230000032683 aging Effects 0.000 claims description 4
- 238000003756 stirring Methods 0.000 claims description 4
- 239000012530 fluid Substances 0.000 claims description 3
- 238000002156 mixing Methods 0.000 claims 5
- 230000002708 enhancing effect Effects 0.000 claims 1
- 235000011194 food seasoning agent Nutrition 0.000 claims 1
- 238000009396 hybridization Methods 0.000 claims 1
- 239000000377 silicon dioxide Substances 0.000 abstract description 10
- 125000005442 diisocyanate group Chemical group 0.000 abstract description 5
- 238000006243 chemical reaction Methods 0.000 abstract description 4
- 239000012948 isocyanate Substances 0.000 abstract description 3
- 150000002513 isocyanates Chemical class 0.000 abstract description 3
- 239000002994 raw material Substances 0.000 abstract description 3
- 238000000352 supercritical drying Methods 0.000 abstract description 3
- 239000006087 Silane Coupling Agent Substances 0.000 abstract description 2
- 238000003980 solgel method Methods 0.000 abstract description 2
- 239000011240 wet gel Substances 0.000 abstract 2
- 150000001875 compounds Chemical class 0.000 abstract 1
- 239000012779 reinforcing material Substances 0.000 abstract 1
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 description 7
- 235000012239 silicon dioxide Nutrition 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 229910052681 coesite Inorganic materials 0.000 description 4
- 229910052906 cristobalite Inorganic materials 0.000 description 4
- 229910052682 stishovite Inorganic materials 0.000 description 4
- 229910052905 tridymite Inorganic materials 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 230000001588 bifunctional effect Effects 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000005416 organic matter Substances 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- 238000001157 Fourier transform infrared spectrum Methods 0.000 description 1
- 229920005830 Polyurethane Foam Polymers 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 229910002808 Si–O–Si Inorganic materials 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 210000004177 elastic tissue Anatomy 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000002649 leather substitute Substances 0.000 description 1
- 239000008204 material by function Substances 0.000 description 1
- -1 methyl silicate Ester Chemical class 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 238000006068 polycondensation reaction Methods 0.000 description 1
- 239000011496 polyurethane foam Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000013341 scale-up Methods 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000002336 sorption--desorption measurement Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Images
Landscapes
- Silicon Compounds (AREA)
Abstract
本发明属于气凝胶材料技术领域,具体涉及一种超高强度、高比表面积复合二氧化硅气凝胶的制备方法。本发明采用溶胶凝胶—有机无机杂化的方法,即采用含有硅烷偶联剂的混合硅源通过溶胶凝胶的方式先形成湿凝胶,然后将异氰酸酯作为有机增强材料与湿凝胶复合,结合超临界干燥工艺,制备出高强度二异氰酸酯复合二氧化硅气凝胶材料。本发明具有原料易得、反应过程简单、等特点,所得到的材料具有纳米尺度的多级微结构,最大比表面积可达400m2/g以上,解决了常规二氧化硅气凝胶易碎,强度低等特点。
The invention belongs to the technical field of airgel materials, and in particular relates to a method for preparing composite silica airgel with ultrahigh strength and high specific surface area. The present invention adopts a sol-gel-organic-inorganic hybrid method, that is, a mixed silicon source containing a silane coupling agent is used to form a wet gel through a sol-gel method, and then the isocyanate is used as an organic reinforcing material to compound the wet gel. Combined with the supercritical drying process, a high-strength diisocyanate composite silica airgel material was prepared. The invention has the characteristics of easy-to-obtain raw materials, simple reaction process, etc., and the obtained material has a nanoscale multi-level microstructure, and the maximum specific surface area can reach more than 400m 2 /g, which solves the problem of the fragility of conventional silica airgel. Features such as low strength.
Description
技术领域 technical field
本发明属于高强度、高比表面积多孔材料制备技术领域,具体涉及一种在航天深空探测、轻质高强度隔热等方向有广泛应用的二氧化硅气凝胶类材料的通用方法。 The invention belongs to the technical field of preparing porous materials with high strength and high specific surface area, and in particular relates to a general method for silica airgel materials widely used in aerospace deep space exploration, light weight, high strength heat insulation and the like.
背景技术 Background technique
异氰酸酯可用于合成一系列性能优良的聚氨酯泡沫塑料、橡胶、弹力纤维、涂料、胶粘剂、合成革、人造木材等。气凝胶是一类具有多级分形结构的纳米多孔功能材料。由于兼备宏观特性和纳米效应,表现出许多独特的性能,具有广泛的应用前景。然而极差的力学性能是气凝胶被广泛使用的最大障碍。纯二氧化硅气凝胶弹性模量通常为105—107Pa,密度为120mg/cm3的二氧化硅气凝胶压缩强度为31kPa。将有机物与无机物杂化得到的复合材料在性质上兼有两种成分的性质—具有良好的力学性能、耐高温等。 Isocyanates can be used to synthesize a series of polyurethane foam plastics, rubber, elastic fibers, coatings, adhesives, synthetic leather, artificial wood, etc. with excellent properties. Aerogels are a class of nanoporous functional materials with hierarchical fractal structures. Due to the combination of macroscopic properties and nano-effects, it exhibits many unique properties and has broad application prospects. However, the extremely poor mechanical properties are the biggest obstacle to the widespread use of aerogels. The elastic modulus of pure silica airgel is usually 10 5 -10 7 Pa, and the compressive strength of silica airgel with a density of 120mg/cm 3 is 31kPa. The composite material obtained by hybridizing organic matter and inorganic matter has the properties of both components in nature-good mechanical properties, high temperature resistance, etc.
溶胶凝胶法制备的有机无机杂化气凝胶,采用含有双官能性的硅烷偶联剂—一端带有可自水解的烷氧基团,与无极前驱体共同参与溶胶凝胶反应,形成SiO2凝胶另一端为聚合基团,与有机物发生聚合反应,形成聚合物外壳,将无机SiO网络密封起来。经超临界流体干燥后,成为气凝胶。 The organic-inorganic hybrid airgel prepared by the sol-gel method uses a bifunctional silane coupling agent-one end has a self-hydrolyzable alkoxy group, which participates in the sol-gel reaction with the non-polar precursor to form SiO 2 The other end of the gel is a polymeric group, which reacts with organic matter to form a polymer shell and seal the inorganic SiO network. After being dried by supercritical fluid, it becomes aerogel.
发明内容 Contents of the invention
本发明的目的在于提供一种适用范围广、成本低廉、反应周期较短、可能工业放大的高强度、高比表面积二异氰酸酯复合SiO2气凝胶材料的制备方法。其基本思路在于通过添加含有双官能性的硅烷偶联剂先与其他硅源一同水解—缩聚,形成SiO2凝胶,采用甲基三甲氧基硅烷和异氰酸酯单体增强凝胶与有机复合物间的浸润性,使反应更充分,在凝胶外层包裹聚合物实现高强度、高比表面积有机增强SiO2气凝胶的制备、成型性提高与微结构调控。具体内容如下: The object of the present invention is to provide a kind of preparation method of diisocyanate composite SiO2 airgel material with high strength and high specific surface area, which has wide application range, low cost, short reaction cycle and possible industrial scale-up. The basic idea is to add a bifunctional silane coupling agent to hydrolyze and polycondense together with other silicon sources to form a SiO 2 gel, and use methyltrimethoxysilane and isocyanate monomers to strengthen the bond between the gel and the organic compound. The wettability makes the reaction more complete, and the polymer is wrapped in the outer layer of the gel to realize the preparation of organically reinforced SiO 2 airgel with high strength and high specific surface area, the improvement of formability and the regulation of microstructure. The specific content is as follows:
本发明提出了一种超高强度、高比表面积复合二氧化硅气凝胶的制备方法,采用溶胶凝胶—有机无机杂化的方法,具体步骤如下: The present invention proposes a method for preparing composite silica airgel with ultra-high strength and high specific surface area, which adopts a sol-gel-organic-inorganic hybrid method, and the specific steps are as follows:
(1) 将混合硅源溶于有机溶剂配成溶液A,将水与有机溶剂混合配成溶液B; (1) Dissolve the mixed silicon source in an organic solvent to form a solution A, and mix water and an organic solvent to form a solution B;
(2)将步骤(1)中的溶液A、溶液B置于-60~-70摄氏度下混合,搅拌均匀,静置后得到凝胶;其中,混合硅源、有机溶剂、去离子水的添加比例为10-20ml: 25-45ml:5-15ml; (2) Mix solution A and solution B in step (1) at -60 to -70 degrees Celsius, stir evenly, and obtain a gel after standing; wherein, the addition of the mixed silicon source, organic solvent, and deionized water The ratio is 10-20ml: 25-45ml: 5-15ml;
(3) 将步骤(2)得到的凝胶经老化后,放入二异氰酸酯质量分数为10%、温度为70-80摄氏度的有机溶液中浸泡60-80小时; (3) After aging the gel obtained in step (2), put it into an organic solution with a mass fraction of diisocyanate of 10% and a temperature of 70-80 degrees Celsius for 60-80 hours;
(4)将步骤(3)所得凝胶在常温下老化后干燥,即获得所需的有机增强SiO2气凝胶材料。 (4) aging the gel obtained in step (3) at room temperature and then drying to obtain the desired organically reinforced SiO 2 airgel material.
本发明中,步骤(1)中的混合硅源由硅酸甲酯(TMOS)、甲基三甲氧基硅烷(MTMS)和3-胺丙基三乙氧基硅烷(APTES)组成,硅酸甲酯、甲基三甲氧基硅烷和3-胺丙基三乙氧基硅烷体积比:4-12ml:1-6ml:2.5-10ml。 In the present invention, the mixed silicon source in step (1) is composed of methyl silicate (TMOS), methyltrimethoxysilane (MTMS) and 3-aminopropyltriethoxysilane (APTES), methyl silicate Ester, methyltrimethoxysilane and 3-aminopropyltriethoxysilane volume ratio: 4-12ml:1-6ml:2.5-10ml.
本发明中,步骤(1)和步骤(3)中的有机溶剂为乙腈。 In the present invention, the organic solvent in step (1) and step (3) is acetonitrile.
本发明中,步骤(3)中的二异氰酸酯为六亚甲基二异氰酸酯(HDI)。 In the present invention, the diisocyanate in step (3) is hexamethylene diisocyanate (HDI).
本发明中,步骤(4)中所述干燥方法为超临界流体干燥、冷冻干燥、加热脱气干燥或常压自然干燥等方式中任一种。 In the present invention, the drying method described in step (4) is any one of methods such as supercritical fluid drying, freeze drying, heating degassing drying or normal pressure natural drying.
本发明制备的有机增强SiO2气凝胶具有高强度、高比表面积和多级分形的纳米多孔网络结构,成功解决了纯SiO2纳米多孔气凝胶脆性大,易碎,有机增强后比较面积低的难题,在航天深空探测、轻质高强度隔热等方向等领域都具有重要的意义。 The organically reinforced SiO2 airgel prepared by the present invention has high strength, high specific surface area and multi-level fractal nanoporous network structure, which successfully solves the problem that the pure SiO2 nanoporous airgel is brittle and fragile, and the comparative area after organic enhancement The low problem is of great significance in the fields of aerospace deep space exploration, light weight and high strength heat insulation and other fields.
附图说明 Description of drawings
图1 实施例1样品的照片; Fig. 1 The photograph of embodiment 1 sample;
图2 实施例1样品的傅立叶变换红外光谱图; The Fourier transform infrared spectrogram of Fig. 2 embodiment 1 sample;
图3 实施例1样品的扫描电子显微镜照片; The scanning electron micrograph of Fig. 3 embodiment 1 sample;
图4 实施例1样品的氮气吸附脱附曲线; The nitrogen adsorption-desorption curve of Fig. 4 embodiment 1 sample;
图5 实施例1孔径分布图; Fig. 5 embodiment 1 pore size distribution figure;
图6 实施例1 应力应变曲线。 Fig. 6 Example 1 stress-strain curve.
具体实施方式 Detailed ways
以下通过实施例及附图进一步具体说明本发明。(各原料均为市售原料,无特别说明纯度均为化学纯或分析纯等级)。 The present invention will be further specifically described below through the examples and accompanying drawings. (All raw materials are commercially available raw materials, and the purity is chemically pure or analytically pure grade unless otherwise specified).
实施例1:高强度、高比表面积二异氰酸酯复合SiO2气凝胶的制备 Embodiment 1 : high strength, high specific surface area diisocyanate composite SiO 2 preparation of airgel
选取混合硅源(硅酸甲酯:甲基三甲氧基硅烷:3-胺丙基三乙氧基硅烷体积比:4:1:2.5)、有机溶剂、去离子水的体积比为:10ml:25ml:5ml将硅酸甲酯(TMOS)、乙腈、甲基三甲氧基硅烷、3-胺丙基三乙氧基硅烷,混合成18ml的A溶液,去离子水和乙腈混合成22的B溶液。将A溶液冷却至-70°C左右,倒入B溶液,迅速搅拌,至于室温中凝胶。24h后用乙腈进行3次溶液替换,每次8-12h。将凝胶放入质量分数为10%的六亚甲基二异氰酸酯的乙腈溶液中浸泡24h,放入新鲜乙腈溶液中,至于70°C的烘箱中放置3*24h。将凝胶放置于新鲜乙腈溶液中进行3次替换,每次8-12h。最后进行超临界干燥,得到密度为330mg/cm3的增强气凝胶。其实物照片如图1所示。 Select the mixed silicon source (methyl silicate: methyltrimethoxysilane: 3-aminopropyltriethoxysilane volume ratio: 4:1:2.5), the volume ratio of organic solvent and deionized water is: 10ml: 25ml: 5ml Methyl silicate (TMOS), acetonitrile, methyltrimethoxysilane, 3-aminopropyltriethoxysilane, mixed into 18ml solution A, deionized water and acetonitrile mixed into 22 solution B . Cool solution A to about -70°C, pour into solution B, stir rapidly, and gel at room temperature. After 24 hours, the solution was replaced with acetonitrile for 3 times, 8-12 hours each time. Soak the gel in an acetonitrile solution with a mass fraction of 10% hexamethylene diisocyanate for 24 hours, put it in a fresh acetonitrile solution, and place it in an oven at 70°C for 3*24 hours. The gel was placed in fresh acetonitrile solution for 3 replacements, each time 8-12h. Finally, supercritical drying was carried out to obtain a reinforced aerogel with a density of 330 mg/cm 3 . Its physical photos are shown in Figure 1.
实施例2:选取混合硅源(硅酸甲酯:甲基三甲氧基硅烷:3-胺丙基三乙氧基硅烷体积比:12:6:10)、有机溶剂、去离子水的体积比为:20ml:45ml:15ml。将硅酸甲酯将硅酸甲酯(TMOS)、乙腈、甲基三甲氧基硅烷、3-胺丙基三乙氧基硅烷,混合成的35ml的A溶液,去离子水和乙腈混合成45ml的B溶液。将A溶液冷却至-60°C -70°C左右,倒入B溶液,迅速搅拌,至于室温中凝胶。24h后用乙腈进行3次溶液替换,每次8-12h。将凝胶放入质量分数为10%的六亚甲基二异氰酸酯的乙腈溶液中浸泡24h,放入新鲜乙腈溶液中,至于70°C的烘箱中放置3*24h。将凝胶放置于新鲜乙腈溶液中进行3次替换,每次8-12h。最后进行超临界干燥, Embodiment 2 : choose the volume ratio of mixed silicon source (methyl silicate: methyltrimethoxysilane: 3-aminopropyltriethoxysilane volume ratio: 12:6:10), organic solvent, deionized water For: 20ml:45ml:15ml. Methyl silicate Methyl silicate (TMOS), acetonitrile, methyltrimethoxysilane, 3-aminopropyltriethoxysilane, mixed into 35ml A solution, deionized water and acetonitrile mixed into 45ml B solution. Cool solution A to about -60°C -70°C, pour into solution B, stir rapidly, and gel at room temperature. After 24 hours, the solution was replaced with acetonitrile for 3 times, 8-12 hours each time. Soak the gel in an acetonitrile solution with a mass fraction of 10% hexamethylene diisocyanate for 24 hours, put it in fresh acetonitrile solution, and place it in an oven at 70°C for 3*24 hours. The gel was placed in fresh acetonitrile solution for 3 replacements, each time 8-12h. Finally, supercritical drying was carried out.
图2所示,样品的傅立叶变换红外光谱则表明,混合硅源经水解—缩聚反应得到Si-O-Si网络结构,胺基与有机物六亚甲基二异氰酸酯反应并最终生成聚合物外壳。图3中的扫描电子显微镜照片则表明,该材料具有纳米量级的网络组成的相互贯通的多孔结构。图4、5的氮气吸附脱附及孔径分布图则进一步证明,该材料还具有20 nm左右的精细结构,而样品的比表面积高达446.3 m2/g。图6的应力应变曲线表明材料的力学性能。综合测试结果表明,该材料为具有多级结构的高强度、高比表面积二异氰酸酯复合SiO2气凝胶。 As shown in Figure 2, the Fourier transform infrared spectrum of the sample shows that the Si-O-Si network structure is obtained through the hydrolysis-polycondensation reaction of the mixed silicon source, and the amine group reacts with the organic hexamethylene diisocyanate to finally form a polymer shell. The scanning electron micrographs in Figure 3 show that the material has an interpenetrating porous structure composed of nanoscale networks. The nitrogen adsorption and desorption and pore size distribution diagrams in Figures 4 and 5 further prove that the material also has a fine structure of about 20 nm, and the specific surface area of the sample is as high as 446.3 m 2 /g. The stress-strain curves in Figure 6 indicate the mechanical properties of the material. Comprehensive test results show that the material is a high-strength, high-specific-surface-area diisocyanate-composite SiO2 airgel with a multi-level structure.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310687660.7A CN103754886A (en) | 2013-12-17 | 2013-12-17 | Preparation method for composite silica aerogel with ultra high strength and high specific surface area |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310687660.7A CN103754886A (en) | 2013-12-17 | 2013-12-17 | Preparation method for composite silica aerogel with ultra high strength and high specific surface area |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103754886A true CN103754886A (en) | 2014-04-30 |
Family
ID=50522255
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310687660.7A Pending CN103754886A (en) | 2013-12-17 | 2013-12-17 | Preparation method for composite silica aerogel with ultra high strength and high specific surface area |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103754886A (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104341594A (en) * | 2014-10-20 | 2015-02-11 | 同济大学 | Preparation method of crosslinked polyimide silicon dioxide mixed gas gel |
CN105384950A (en) * | 2015-12-14 | 2016-03-09 | 同济大学 | Low-cost preparation method of low-density crosslinking type polyimide aerogel material |
CN105777175A (en) * | 2016-01-29 | 2016-07-20 | 卓达新材料科技集团有限公司 | Method for preparing germanium oxide and hafnium oxide hybrid aerogel composite |
CN108238602A (en) * | 2016-12-23 | 2018-07-03 | 天津新滨工程技术检测有限公司 | A kind of preparation method of composite silica airgel material and airgel material prepared by the method |
CN108862290A (en) * | 2018-08-17 | 2018-11-23 | 佛山朝鸿新材料科技有限公司 | A kind of preparation method of rubber composite material special-purpose nanometer silica |
CN110075766A (en) * | 2019-04-03 | 2019-08-02 | 同济大学 | A kind of preparation method of concentration gradient aerogel composite |
CN110735194A (en) * | 2019-11-29 | 2020-01-31 | 福建六树网络科技有限公司 | silicon dioxide composite aerogel, PET polyester fiber and polyester fabric |
CN111517332A (en) * | 2020-05-25 | 2020-08-11 | 福建拓烯新材料科技有限公司 | Preparation method of improved silicon dioxide aerogel and silicon dioxide aerogel |
CN111924850A (en) * | 2020-07-08 | 2020-11-13 | 南京工业大学 | Preparation method of polymer cross-linking modified spherical silica aerogel material |
WO2022032338A1 (en) * | 2020-08-10 | 2022-02-17 | Commonwealth Scientific And Industrial Research Organisation | Microporous aerogel |
CN115466518A (en) * | 2022-10-08 | 2022-12-13 | 中国人民解放军海军工程大学 | Organic-inorganic in-situ hybrid aerogel heat-insulating material and preparation method thereof |
CN115571885A (en) * | 2022-10-31 | 2023-01-06 | 陕西科技大学 | Isocyanate grafted modified silica aerogel and preparation method thereof |
CN116393049A (en) * | 2022-11-24 | 2023-07-07 | 信和新材料(苏州)有限公司 | A method for preparing high-porosity silicon-based airgel by drying under normal pressure |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB795052A (en) * | 1953-08-14 | 1958-05-14 | Monsanto Chemicals | Modifying the properties of the surface of silica aerogels |
TW200619141A (en) * | 2004-12-09 | 2006-06-16 | Ind Tech Res Inst | Preparation of silica aerogel crosslinked with organic molecule |
CN103043672A (en) * | 2011-10-17 | 2013-04-17 | 清华大学 | A kind of atmospheric pressure drying prepares the method for polymer modified SiO2 airgel |
CN103333358A (en) * | 2013-07-02 | 2013-10-02 | 北京师范大学 | Reusable low-cost silica aerogel oil-absorbing sponge and preparation method thereof |
-
2013
- 2013-12-17 CN CN201310687660.7A patent/CN103754886A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB795052A (en) * | 1953-08-14 | 1958-05-14 | Monsanto Chemicals | Modifying the properties of the surface of silica aerogels |
TW200619141A (en) * | 2004-12-09 | 2006-06-16 | Ind Tech Res Inst | Preparation of silica aerogel crosslinked with organic molecule |
CN103043672A (en) * | 2011-10-17 | 2013-04-17 | 清华大学 | A kind of atmospheric pressure drying prepares the method for polymer modified SiO2 airgel |
CN103333358A (en) * | 2013-07-02 | 2013-10-02 | 北京师范大学 | Reusable low-cost silica aerogel oil-absorbing sponge and preparation method thereof |
Non-Patent Citations (1)
Title |
---|
吴国友等: "甲基三甲氧基硅烷对块状SiO2气凝胶性能和结构的影响", 《硅酸盐学报》, vol. 36, no. 7, 31 July 2009 (2009-07-31) * |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104341594A (en) * | 2014-10-20 | 2015-02-11 | 同济大学 | Preparation method of crosslinked polyimide silicon dioxide mixed gas gel |
CN105384950A (en) * | 2015-12-14 | 2016-03-09 | 同济大学 | Low-cost preparation method of low-density crosslinking type polyimide aerogel material |
CN105777175A (en) * | 2016-01-29 | 2016-07-20 | 卓达新材料科技集团有限公司 | Method for preparing germanium oxide and hafnium oxide hybrid aerogel composite |
CN108238602A (en) * | 2016-12-23 | 2018-07-03 | 天津新滨工程技术检测有限公司 | A kind of preparation method of composite silica airgel material and airgel material prepared by the method |
CN108862290A (en) * | 2018-08-17 | 2018-11-23 | 佛山朝鸿新材料科技有限公司 | A kind of preparation method of rubber composite material special-purpose nanometer silica |
CN110075766A (en) * | 2019-04-03 | 2019-08-02 | 同济大学 | A kind of preparation method of concentration gradient aerogel composite |
CN110735194B (en) * | 2019-11-29 | 2022-07-08 | 浙江艾恋针织服饰有限公司 | Silicon dioxide composite aerogel, PET polyester fiber and polyester fabric |
CN110735194A (en) * | 2019-11-29 | 2020-01-31 | 福建六树网络科技有限公司 | silicon dioxide composite aerogel, PET polyester fiber and polyester fabric |
CN111517332A (en) * | 2020-05-25 | 2020-08-11 | 福建拓烯新材料科技有限公司 | Preparation method of improved silicon dioxide aerogel and silicon dioxide aerogel |
CN111517332B (en) * | 2020-05-25 | 2021-09-07 | 福建拓烯新材料科技有限公司 | Preparation method of improved silicon dioxide aerogel and silicon dioxide aerogel |
CN111924850A (en) * | 2020-07-08 | 2020-11-13 | 南京工业大学 | Preparation method of polymer cross-linking modified spherical silica aerogel material |
WO2022032338A1 (en) * | 2020-08-10 | 2022-02-17 | Commonwealth Scientific And Industrial Research Organisation | Microporous aerogel |
CN115466518A (en) * | 2022-10-08 | 2022-12-13 | 中国人民解放军海军工程大学 | Organic-inorganic in-situ hybrid aerogel heat-insulating material and preparation method thereof |
CN115466518B (en) * | 2022-10-08 | 2023-05-23 | 中国人民解放军海军工程大学 | Organic-inorganic in-situ hybridization aerogel heat insulation material and preparation method thereof |
CN115571885A (en) * | 2022-10-31 | 2023-01-06 | 陕西科技大学 | Isocyanate grafted modified silica aerogel and preparation method thereof |
CN116393049A (en) * | 2022-11-24 | 2023-07-07 | 信和新材料(苏州)有限公司 | A method for preparing high-porosity silicon-based airgel by drying under normal pressure |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103754886A (en) | Preparation method for composite silica aerogel with ultra high strength and high specific surface area | |
CN104341594B (en) | Preparation method of crosslinked polyimide silicon dioxide mixed gas gel | |
Zu et al. | Versatile double-cross-linking approach to transparent, machinable, supercompressible, highly bendable aerogel thermal superinsulators | |
Zhao et al. | Thermal and mechanical performances of the superflexible, hydrophobic, silica-based aerogel for thermal insulation at ultralow temperature | |
Kaya et al. | Sustainable nanocomposites of epoxy and silica xerogel synthesized from corn stalk ash: Enhanced thermal and acoustic insulation performance | |
Xue et al. | Advances in multiple reinforcement strategies and applications for silica aerogel | |
Zhang et al. | Facile preparation of a phenyl-reinforced flexible silica aerogel with excellent thermal stability and fire resistance | |
EP3743464B1 (en) | Organic-inorganic aerogel composites, methods and uses thereof | |
TW201819476A (en) | Polysiloxane based aerogels | |
JP2008537570A (en) | A process for producing monolithic xerogels and aerogels composed of silica / latex hybrids modified with alkoxysilane groups under subcritical conditions. | |
CN106732214A (en) | A kind of hydrophobicity natural polymer/attapulgite composite aerogel and preparation method thereof | |
CN101973752A (en) | Glass fiber reinforced silicon dioxide aerogel composite material and preparation method thereof | |
CN104607161A (en) | Preparation method of graphene modified super-hydrophobic adsorption material | |
US9650500B2 (en) | Nanoporous particles in a hollow latex matrix | |
JP2017507110A (en) | Method for producing airgel by dielectric heating | |
CN107987311A (en) | A kind of preparation method of hydrophobicity melamine sponge enhancing polysilsesquioxane composite aerogel | |
Fei et al. | Preparation of tetraethoxysilane-based silica aerogels with polyimide cross-linking from 3, 3′, 4, 4′-biphenyltetracarboxylic dianhydride and 4, 4′-oxydianiline | |
CN109701494A (en) | Aerogel composite material and preparation method thereof | |
WO2022259044A1 (en) | Fibre-reinforced aerogel composites from mixed silica and rubber sols and a method to produce the rubber-silica aerogel composites | |
CN104119060A (en) | Fiber cross-linking aerogel composite material and preparation method thereof | |
CN105585725B (en) | A kind of preparation method and application of heat-insulating flame-retardant foamed material | |
Li et al. | Facile fabrication of superhydrophobic, mechanically strong multifunctional silica-based aerogels at benign temperature | |
CN109734950A (en) | Aerogel composite material and preparation method thereof | |
Zhao et al. | Thermally insulating SiO2/psa composite aerogels with heat resistance and mechanical properties via the Thiol–Yne click reaction | |
CN103437187B (en) | Method for preparing hollow silicon dioxide/waterborne polyurethane composite slurry used for synthetic leather |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20140430 |