CN103748540B - Active integrator for capacitive sensing array - Google Patents
Active integrator for capacitive sensing array Download PDFInfo
- Publication number
- CN103748540B CN103748540B CN201180070663.5A CN201180070663A CN103748540B CN 103748540 B CN103748540 B CN 103748540B CN 201180070663 A CN201180070663 A CN 201180070663A CN 103748540 B CN103748540 B CN 103748540B
- Authority
- CN
- China
- Prior art keywords
- active integrator
- capacitor
- circuit
- input
- touch
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000004044 response Effects 0.000 claims abstract description 62
- 239000004020 conductor Substances 0.000 claims abstract description 12
- 239000003990 capacitor Substances 0.000 claims description 88
- 238000012545 processing Methods 0.000 claims description 43
- 238000000034 method Methods 0.000 claims description 19
- 230000010354 integration Effects 0.000 claims description 11
- 230000008859 change Effects 0.000 claims description 9
- 230000001939 inductive effect Effects 0.000 claims description 2
- 238000007599 discharging Methods 0.000 claims 1
- 239000000872 buffer Substances 0.000 description 16
- 238000010586 diagram Methods 0.000 description 13
- 239000011159 matrix material Substances 0.000 description 9
- 238000003491 array Methods 0.000 description 8
- 238000005070 sampling Methods 0.000 description 8
- 238000005259 measurement Methods 0.000 description 7
- 230000033001 locomotion Effects 0.000 description 5
- 241000699666 Mus <mouse, genus> Species 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000001976 improved effect Effects 0.000 description 4
- 230000003542 behavioural effect Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000001965 increasing effect Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 241000218691 Cupressaceae Species 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000005888 antibody-dependent cellular phagocytosis Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000008093 supporting effect Effects 0.000 description 1
- 238000010897 surface acoustic wave method Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Abstract
公开了一种用于感应触摸感应阵列的电容的有源积分器。所述有源积分器被配置为接收来自所述触摸感应阵列的具有正部分和负部分的响应信号。所述响应信号表示导电体存在或没有存在于所述触摸感应阵列上。所述有源积分器被配置成连续地积分响应信号。
An active integrator for sensing capacitance of a touch-sensing array is disclosed. The active integrator is configured to receive a response signal from the touch-sensing array having a positive portion and a negative portion. The response signal indicates the presence or absence of a conductor on the touch-sensing array. The active integrator is configured to continuously integrate the response signal.
Description
相关申请related application
本申请要求于2011年4月5日提交的美国临时专利申请No.61/472,161的优先权,本文通过引用整个地并入其公开的全部内容。This application claims priority to US Provisional Patent Application No. 61/472,161, filed April 5, 2011, the entire disclosure of which is hereby incorporated by reference in its entirety.
技术领域technical field
本发明一般涉及电容触摸感应阵列,并且更特别是,涉及用于触摸感应阵列的接收电路的有源积分器。The present invention relates generally to capacitive touch-sensing arrays, and more particularly, to active integrators for receive circuits of touch-sensing arrays.
背景技术Background technique
计算设备,诸如笔记本电脑、个人数据助理(PDA)、自助服务终端和移动手机,具有用户接口设备,其也被称为人机接口设备(HID)。已变得更加常见的一个用户接口设备是触摸传感器板(也通常称为触摸板)。基本笔记本电脑的触摸传感器板模拟了个人计算机(PC)鼠标的功能。触摸传感器板为了内置便携性通常嵌入到PC笔记本中。触摸传感器板通过使用两个定义轴复制鼠标X/Y移动,这两个定义轴包含检测一个或多个导电体(例如手指)的位置的一批传感器元件。鼠标左/右键按钮的点击,可以通过位于触摸板附近的两个机械按钮,或者通过触摸传感器板本身上面的敲击命令,被复制。触摸传感器板提供用户接口设备用于执行这些功能:定位指针或者选择显示器上的项目。这些触摸传感器板可以包括多维传感器阵列用于检测多个轴上的运动。传感器阵列可以包括一维传感器阵列,检测一个轴上的运动。传感器阵列也可以是二维,检测两个轴上的运动。Computing devices, such as notebook computers, personal data assistants (PDAs), kiosks, and mobile handsets, have user interface devices, also known as human interface devices (HIDs). One user interface device that has become more common is the touch sensor pad (also commonly referred to as a touchpad). The touch-sensor board of a basic laptop emulates the functionality of a personal computer (PC) mouse. Touch sensor boards are usually embedded in PC notebooks for built-in portability. The touch sensor pad replicates mouse X/Y movement by using two defined axes that contain an array of sensor elements that detect the position of one or more conductive objects, such as a finger. Mouse left/right button clicks can be replicated via the two mechanical buttons located near the touchpad, or via tap commands on the touch sensor pad itself. The touch sensor pad provides a user interface device for performing functions such as positioning a pointer or selecting an item on the display. These touch sensor pads may include multi-dimensional sensor arrays for detecting motion in multiple axes. The sensor array may include a one-dimensional sensor array that detects motion in one axis. Sensor arrays can also be two-dimensional, detecting motion in two axes.
已变得更加常见的另一用户接口设备是触摸屏。触摸屏,也称为触摸屏幕、触摸窗口、触摸面板或触摸屏幕面板,是透明的显示器覆盖层,其通常是压敏(电阻或压电)、电敏感(电容式)、声敏(表面声波(SAW))或光敏(红外线)。这样的覆盖层的作用是允许显示器被作为输入设备使用,移除作为与显示器的内容交互的主要输入设备的键盘和/或鼠标。这些显示器可以连接到计算机,或者作为终端连接到网络。触摸屏已经在零售装置中、在销售点系统上、在ATM上、在移动手机上、在自助服务终端上、在游戏控制台上和在PDA上变得很熟悉,其中,触笔有时被用于操纵图形用户接口(GUI)和输入数据。用户可以触摸触摸屏或触摸传感器板以操纵数据。例如,用户能够通过使用手指触摸触摸屏表面应用单一触摸从菜单中选择项目。Another user interface device that has become more common is the touch screen. A touch screen, also known as a touch screen, touch window, touch panel or touch screen panel, is a transparent display overlay that is usually pressure sensitive (resistive or piezoelectric), electrically sensitive (capacitive), acoustically sensitive (surface acoustic wave ( SAW)) or photosensitive (infrared). The effect of such an overlay is to allow the display to be used as an input device, removing the keyboard and/or mouse as the primary input devices for interacting with the display's content. These displays can be connected to a computer, or connected to a network as a terminal. Touch screens have become familiar in retail devices, on point-of-sale systems, on ATMs, on mobile handsets, on kiosks, on game consoles, and on PDAs, where a stylus is sometimes used for Manipulating the Graphical User Interface (GUI) and entering data. Users can touch the touch screen or touch sensor pad to manipulate data. For example, a user can apply a single touch to select an item from a menu by touching the touchscreen surface with a finger.
某一类触摸感应阵列包括第一组隔开的线状电极以及排成直角且被介电层隔开的第二组电极。所得的交叉形成电容器的二维阵列,称为感应元件。触摸感应阵列可以用若干种方式进行扫描,其中之一(互电容感应)允许单个电容性元件被测量。另一方法(自电容感应)可以测量整个传感器带,或者甚至是整个传感器阵列,关于具体位置的信息较少,但是执行一个读取操作。One type of touch sensing array includes a first set of spaced apart linear electrodes and a second set of electrodes arranged at right angles and separated by a dielectric layer. The resulting intersections form a two-dimensional array of capacitors, known as inductive elements. A touch sensing array can be scanned in several ways, one of which (mutual capacitance sensing) allows a single capacitive element to be measured. Another method (self-capacitance sensing) can measure the entire sensor strip, or even the entire sensor array, with less information about the exact location, but perform one read operation.
当二维阵列的电容器靠近放置时,提供用于感应触摸的装置。导电体(例如手指或触笔)靠近触摸感应阵列,引起导电体附近的感应元件的总电容发生变化。可以测量这些电容的变化以产生“二维图”指示阵列上的触摸发生在何处。When the two-dimensional array of capacitors is placed in close proximity, a means for sensing touch is provided. The proximity of a conductive object (such as a finger or a stylus) to the touch-sensing array causes a change in the total capacitance of the sensing elements near the conductive object. Changes in these capacitances can be measured to produce a "two-dimensional map" indicating where touches on the array occurred.
一种测量这种电容变化的方式是形成电路,其包括以复用方式被应用到每一水平对齐的导体中的信号驱动器(如AC电流或电压源(“发射(TX)信号))。在每个垂直对齐的电极处,与应用的电流/电压电源同步地感应和类似地扫描每个电容的交叉部上累积的电荷。然后,通常使用电荷电压转换器(即,接收或“RX信号”)的形式测量该电荷,其被采样和保持,用于A/D转换器转换为输入到处理器的数字形式。处理器依次描绘电容图并确定触摸的位置。One way to measure this change in capacitance is to form a circuit that includes a signal driver (such as an AC current or voltage source ("transmit (TX) signal)) applied in a multiplexed fashion to each horizontally aligned conductor. At each vertically aligned electrode, the charge accumulated on the intersection of each capacitor is sensed and similarly scanned synchronously with the applied current/voltage power supply. Then, a charge-to-voltage converter (i.e., receive or "RX signal" This charge is measured in form of ), which is sampled and held for an A/D converter into digital form for input to the processor. The processor in turn traces the capacitive map and determines the location of the touch.
常规的电容感应接收电路具有许多不足。由于导电体触摸所导致的电容变化通常很小。结果,出现在ADC处的很多电压表示感应元件阵列的基线电容,这样产生大型DC组件。由触摸引起的电容变化仅占基线电容的1%。此外,源电路通常是有噪声的,进而使精确的电容变化测量变得复杂化,并且产生低信噪比(SNR)。Conventional capacitive sensing receiver circuits suffer from a number of deficiencies. The change in capacitance due to the touch of a conductor is usually small. As a result, many voltages appearing at the ADC represent the baseline capacitance of the array of sensing elements, which creates a large DC component. The capacitance change induced by touch is only 1% of the baseline capacitance. In addition, the source circuit is often noisy, complicating accurate capacitance change measurements and yielding low signal-to-noise ratio (SNR).
附图简述Brief description of the drawings
本发明的实施方式,根据以下考虑结合附图提出的示例性实施方式的详细描述,将更容易被理解,其中相同的附图标记指的是相同的元件,其中:Embodiments of the present invention will be more readily understood from the following detailed description of exemplary embodiments set forth in consideration of the accompanying drawings, in which like reference numerals refer to like elements, wherein:
图1示出了电子系统的一个实施方式的框图,该实施方式包括处理设备,其可以被配置为测量来自柔性触摸感应表面的电容和计算或检测应用于柔性触摸感应表面的力的大小。1 shows a block diagram of one embodiment of an electronic system that includes a processing device that may be configured to measure capacitance from a flexible touch-sensitive surface and calculate or detect the magnitude of force applied to the flexible touch-sensitive surface.
图2示出了电容式触摸传感器阵列和将测量的电容转换成坐标的电容传感器的一个实施方式的框图。Figure 2 shows a block diagram of one embodiment of a capacitive touch sensor array and a capacitive sensor that converts measured capacitances into coordinates.
图3示出了有源积分电路的一个实施方式的电框图,该有源积分电路被配置为从接收电极接收RX信号以测量图2的触摸感应阵列的电容。3 illustrates an electrical block diagram of one embodiment of an active integrating circuit configured to receive an RX signal from a receive electrode to measure capacitance of the touch-sensing array of FIG. 2 .
图4是根据实施方式的图3的有源积分电路中采用的有源积分器、基线补偿电路以及抽样-保持(S/H)电路的组件的框图。4 is a block diagram of components of an active integrator, a baseline compensation circuit, and a sample-and-hold (S/H) circuit employed in the active integration circuit of FIG. 3, according to an embodiment.
图5是图3和4的有源积分电路中采用的S/H电路的组件的一个实施方式的示意图。5 is a schematic diagram of one embodiment of components of an S/H circuit employed in the active integrating circuits of FIGS. 3 and 4 .
图6A和6B是分别说明图4的有源积分器和图5的S/H电路相关联的各种开关和信号的操作和存在的相对时间的一个实施方式示意图。6A and 6B are schematic diagrams of one embodiment illustrating the operation and relative timing of the various switches and signals associated with the active integrator of FIG. 4 and the S/H circuit of FIG. 5, respectively.
图7是采用图4和5的组件的图1的触摸感应阵列的电容传感器的响应信道的频谱响应的一个实施方式的曲线图。7 is a graph of one embodiment of a spectral response of a response channel of a capacitive sensor of the touch-sensing array of FIG. 1 employing the components of FIGS. 4 and 5 .
图8是为了测量触摸感应阵列的电容进行操作有源积分器和有源积分电路的S/H电路的方法的一个实施方式的流程图。8 is a flowchart of one embodiment of a method of operating an active integrator and an S/H circuit of an active integrating circuit for measuring capacitance of a touch sensing array.
图9是更详细地说明连续地积分图8的响应信号的步骤的流程图。FIG. 9 is a flowchart illustrating in more detail the steps of continuously integrating the response signal of FIG. 8 .
图10是图2的另一实施方式,显示图2的电容传感器被配置为提供校准单元,该校准单元被配置为提供电容传感器的自校准。FIG. 10 is another embodiment of FIG. 2 showing the capacitive sensor of FIG. 2 configured to provide a calibration unit configured to provide self-calibration of the capacitive sensor.
具体实施方式detailed description
本发明的实施方式提供有源积分器,其被配置为测量触摸感应阵列或一部分阵列(如单个条)的电容。有源积分器被配置从触摸感应阵列上接收表示导电体存在或不存在于触摸感应阵列上的响应信号。响应信号通常被假定由交流电流/电压电源驱动的触摸感应阵列提供。结果,响应信号包括正部分和负部分。本文所描述的实施方式采用有源积分器和支撑电路以连续积分响应信号。该连续积分特性主要是有源积分器的开关电容的性质的结果。采用开关电容有源积分器的一个可能的优点可以是胜过传统设计的改善的SNR。在一个实施方式中,当开关频率匹配于响应信号的基频和相位时,输出信号具有以该响应信号的基频为中心的窄通带,导致实质上改善了的SNR。这种方法称为全波解调。Embodiments of the present invention provide active integrators configured to measure the capacitance of a touch-sensing array or a portion of an array, such as a single bar. The active integrator is configured to receive a response signal from the touch-sensing array indicating the presence or absence of electrical conductors on the touch-sensing array. The response signal is generally assumed to be provided by a touch-sensing array driven by an AC current/voltage supply. As a result, the response signal includes a positive part and a negative part. Embodiments described herein employ active integrators and supporting circuitry to continuously integrate the response signal. This continuous integration characteristic is primarily a result of the nature of the switched capacitance of the active integrator. One possible advantage of employing switched capacitor active integrators may be improved SNR over conventional designs. In one embodiment, when the switching frequency is matched to the fundamental frequency and phase of the response signal, the output signal has a narrow passband centered at the fundamental frequency of the response signal, resulting in substantially improved SNR. This method is called full-wave demodulation.
在一个实施方式中,有源积分器包括耦合到一对反馈电容器的运算放大器(opamp)。一个反馈电容器被配置为储存响应于响应信号的正部分的电荷,而第二反馈电容器被配置为储存响应于响应信号的负部分的电荷。第一反馈电容器和第二反馈电容器可被配置成可变的以允许触摸感应接收器的灵敏度校准。在一个实施方式中,有源积分器被耦合到采样-保持(S/H)电路,其被配置成借助于一个或多个开关全波解调有源积分器的输出信号。当响应信号的正部分存在时,第一电容器被配置以保持有源积分器的输出端上的正信号,且当响应信号的负部分存在时,第二电容器被配置以保持有源积分器的输出端上的负信号。In one embodiment, the active integrator includes an operational amplifier (opamp) coupled to a pair of feedback capacitors. One feedback capacitor is configured to store charge in response to a positive portion of the response signal, and a second feedback capacitor is configured to store charge in response to a negative portion of the response signal. The first feedback capacitor and the second feedback capacitor may be configured to be variable to allow sensitivity calibration of the touch sensitive receiver. In one embodiment, the active integrator is coupled to a sample-and-hold (S/H) circuit configured to full-wave demodulate the output signal of the active integrator by means of one or more switches. The first capacitor is configured to hold a positive signal on the output of the active integrator when the positive portion of the response signal is present, and the second capacitor is configured to hold the active integrator when the negative portion of the response signal is present. Negative signal on output.
图1示出了电子系统100的一个实施方式的框图,该实施方式包括处理设备110,其可以被配置为测量来自柔性触摸感应表面的电容和计算或检测应用于柔性触摸感应表面的力的大小。电子系统100包括触摸感应表面116(如触摸屏,或触摸板),其被耦合到处理设备110和主机150。在一个实施方式中,触摸感应表面116是二维用户接口,其使用传感器阵列121检测表面116上的触摸。1 illustrates a block diagram of one embodiment of an electronic system 100 that includes a processing device 110 that may be configured to measure capacitance from a flexible touch-sensitive surface and calculate or detect the magnitude of force applied to the flexible touch-sensitive surface. . Electronic system 100 includes a touch-sensitive surface 116 (eg, a touch screen, or touchpad) coupled to processing device 110 and host 150 . In one embodiment, touch-sensitive surface 116 is a two-dimensional user interface that uses sensor array 121 to detect touches on surface 116 .
在一个实施方式中,传感器阵列121包括设置为二维的矩阵(也称为XY矩阵)的传感器元件121(1)-121(N)(其中N是正整数)。传感器阵列121经由传输多路信号的一个或多个模拟总线115耦合到处理设备110的引脚113(1)-113(N)。在该实施方式中,每个传感器元件121(1)-121(N)被表示为电容器。在传感器阵列121中每个传感器的自电容由处理设备110中的电容传感器101进行测量。In one embodiment, sensor array 121 includes sensor elements 121(1)-121(N) (where N is a positive integer) arranged in a two-dimensional matrix (also referred to as an XY matrix). Sensor array 121 is coupled to pins 113(1)-113(N) of processing device 110 via one or more analog buses 115 that carry multiplexed signals. In this embodiment, each sensor element 121(1)-121(N) is represented as a capacitor. The self-capacitance of each sensor in sensor array 121 is measured by capacitive sensor 101 in processing device 110 .
在一个实施方式中,电容传感器101可包括松弛振荡器或用于将电容转换成测量值的其它装置。电容传感器101也可以包括计数器或计时器以测量振荡器输出。电容传感器101可以还包括软件组件来将计数值(如电容值)转换为传感器元件检测决策(也称为开关检测决策)或者相对幅度。在另一实施方式中,电容传感器101包括下面将会描述的有源积分电路300。In one embodiment, capacitive sensor 101 may include a relaxation oscillator or other device for converting capacitance into a measurement. Capacitive sensor 101 may also include a counter or timer to measure the oscillator output. Capacitive sensor 101 may further include software components to convert count values (eg, capacitance values) into sensor element detection decisions (also referred to as switch detection decisions) or relative magnitudes. In another embodiment, capacitive sensor 101 includes an active integration circuit 300 as will be described below.
应当注意,已知各种测量电容的方法,例如电流对电压相移测量、电阻器-电容器充电计时、电容性桥分压器、电荷转移、逐次逼近、∑-Δ调制器、电荷累加电路、场效应、互电容、频移,或其它电容测量算法。然而,应当注意,代替评估相对于阈值的原始计数,电容传感器101可以评估其它测量结果以确定用户交互。例如,在具有∑-Δ调制器的电容传感器101中,电容传感器101评估输出的脉冲宽度的比例,代替超过或低于某阈值的原始计数。It should be noted that various methods of measuring capacitance are known, such as current versus voltage phase shift measurements, resistor-capacitor charge timing, capacitive bridge dividers, charge transfer, successive approximation, sigma-delta modulators, charge accumulation circuits, Field effect, mutual capacitance, frequency shift, or other capacitance measurement algorithms. It should be noted, however, that instead of evaluating raw counts against a threshold, capacitive sensor 101 may evaluate other measurements to determine user interaction. For example, in a capacitive sensor 101 with a sigma-delta modulator, the capacitive sensor 101 evaluates the ratio of the pulse width of the output, instead of raw counts above or below some threshold.
在一个实施方式中,处理设备110还包括处理逻辑102。处理逻辑102的操作可以在固件中实现,或者,其也可以在于硬件或软件中实现。处理逻辑102可以接收来自电容传感器101的信号,并且确定传感器阵列121的状态,例如物体(例如,手指)被检测到是在传感器阵列121上,还是接近于传感器阵列121(如,确定物体的存在),当检测到在传感器阵列上的物体时(如,确定物体的位置),跟踪物体的运动,或与在触摸传感器上探测到的物体相关的其它信息。In one embodiment, processing device 110 also includes processing logic 102 . The operations of processing logic 102 may be implemented in firmware, alternatively, they may be implemented in hardware or software. Processing logic 102 may receive signals from capacitive sensors 101 and determine the state of sensor array 121, such as whether an object (e.g., a finger) is detected on sensor array 121, or in proximity to sensor array 121 (e.g., to determine the presence of an object ), when an object is detected on the sensor array (eg, to determine the position of the object), track the motion of the object, or other information related to the object detected on the touch sensor.
在另一实施方式中,代替在处理设备110中执行处理逻辑102的操作,处理设备110可发送原始数据或部分处理数据给主机150。如图1所示,主机150可以包括决策逻辑151,该决策逻辑151执行处理逻辑102的部分或全部操作。决策逻辑151的操作可在固件、硬件、软件或其组合中实现。主机150可以包括应用152中的高级应用程序编程接口(API),其对接收到的数据执行例程,如补偿敏感性差异、其它补偿算法、基线更新例程、启动和/或初始化例程、插值操作,或缩放操作。关于处理逻辑102所描述的操作可以在处理设备110外部的决策逻辑151、应用152、或在其它硬件、软件和/或固件中实现。在一些其它实施方式中,处理设备110为主机150。In another embodiment, instead of executing the operations of processing logic 102 in processing device 110 , processing device 110 may send raw data or partially processed data to host 150 . As shown in FIG. 1 , host 150 may include decision logic 151 that performs some or all of the operations of processing logic 102 . The operations of decision logic 151 may be implemented in firmware, hardware, software, or a combination thereof. Host 150 may include a high-level application programming interface (API) in applications 152 that performs routines on received data, such as compensation for sensitivity differences, other compensation algorithms, baseline update routines, start-up and/or initialization routines, Interpolation operation, or scaling operation. The operations described with respect to processing logic 102 may be implemented in decision logic 151 external to processing device 110, in applications 152, or in other hardware, software, and/or firmware. In some other implementations, the processing device 110 is the host computer 150 .
在另一实施方式中,处理设备110还可以包括非感应动作块103。该块103可以被用于处理和/或接收/发送数据到和从主机150。例如,附加组件(例如,键盘、小键盘、鼠标、跟踪球、LED、显示器,或其它外部设备)可以被实现来与处理设备110一起随着传感器阵列121操作。In another implementation manner, the processing device 110 may further include a non-sensing action block 103 . This block 103 may be used to process and/or receive/send data to and from the host 150 . For example, additional components (eg, keyboards, keypads, mice, trackballs, LEDs, displays, or other external devices) may be implemented to operate with processing device 110 along with sensor array 121 .
在一个实施方式中,电子系统100被实现于包括触摸感应表面116作为用户界面的设备中,例如手持电子设备、便携式电话、蜂窝电话、笔记本电脑、个人计算机、个人数据助理(PDA)、自助服务终端、键盘、电视机、遥控器、监视器、手持多媒体设备、手持视频播放器、游戏设备、家庭或工业应用的控制面板,或者其它计算机外部或输入装置。或者,电子系统100可用于其它类型的设备中。应当注意的是,电子系统1000的组件可包括上述所有组件。或者,电子系统100可以只包括某些上述部件,或者包括本文未列出的附加组件。In one embodiment, the electronic system 100 is implemented in a device that includes a touch-sensitive surface 116 as a user interface, such as a handheld electronic device, a cellular phone, a cellular phone, a notebook computer, a personal computer, a personal data assistant (PDA), a self-service Terminals, keyboards, televisions, remote controls, monitors, handheld multimedia devices, handheld video players, gaming equipment, control panels for home or industrial applications, or other computer peripherals or input devices. Alternatively, electronic system 100 may be used in other types of devices. It should be noted that the components of the electronic system 1000 may include all of the components described above. Alternatively, electronic system 100 may include only some of the components described above, or include additional components not listed herein.
图2示出了电容式触摸传感器阵列121和将测量的电容转换成坐标的电容传感器101的一个实施方式的框图。基于测量的电容计算出坐标。在一个实施方式中,传感器阵列121和电容传感器101被实现于诸如电子系统100的系统中。传感器阵列121包括N×M个电极的矩阵225(N个接收电极和M个发射电极),这些电极还包括发射(TX)电极222和接收(RX)电极223。在矩阵225中的每个电极通过多路分解器212和多路复用器213被连接到电容感应电路201。FIG. 2 shows a block diagram of one embodiment of a capacitive touch sensor array 121 and a capacitive sensor 101 that converts measured capacitances into coordinates. Coordinates are calculated based on the measured capacitance. In one embodiment, sensor array 121 and capacitive sensor 101 are implemented in a system such as electronic system 100 . Sensor array 121 includes a matrix 225 of N×M electrodes (N receive electrodes and M transmit electrodes), which also includes transmit (TX) electrodes 222 and receive (RX) electrodes 223 . Each electrode in matrix 225 is connected to capacitive sensing circuit 201 through demultiplexer 212 and multiplexer 213 .
电容传感器101包括多路复用器控制211、多路分解器212和多路复用器213、时钟发生器214、信号发生器215、解调电路216和模拟数字转换器(ADC)217。ADC217还与触摸坐标转换器218耦合。触摸坐标转换器218将信号输出到处理逻辑102。Capacitive sensor 101 includes multiplexer control 211 , demultiplexer 212 and multiplexer 213 , clock generator 214 , signal generator 215 , demodulation circuit 216 and analog-to-digital converter (ADC) 217 . ADC 217 is also coupled to touch coordinate converter 218 . Touch coordinate converter 218 outputs signals to processing logic 102 .
在一个实施方式中,处理逻辑102可以是处理核心102。处理核心可以驻留在共同的载体基底上,例如,像集成电路(“IC”)模具基板、多芯片模块基板等。或者,处理核心102的组件可以是一个或多个单独的集成电路和/或离散组件。在一个示例性实施方式中,处理核心102被配置为提供智能控制用于片上可编程系统该片上可编程系统由加利福尼亚圣何塞赛的普拉斯半导体公司(Cypress Semiconductor Corporation,SanJose,California)制造。或者,处理核心102可以是本领域的技术人员所熟知的一个或者多个其它处理设备,例如微处理器或中央处理单元、控制器、专用处理器、数字信号处理器(“DSP”)、专用集成电路(“ASIC”)和现场可编程门阵列(“FPGA”)等。在一个实施方式中,处理核心102和处理设备110的其它组件集成进同一集成电路中。In one implementation, the processing logic 102 may be a processing core 102 . The processing cores may reside on a common carrier substrate, such as, for example, an integrated circuit ("IC") die substrate, a multi-chip module substrate, or the like. Alternatively, the components of processing core 102 may be one or more separate integrated circuits and/or discrete components. In an exemplary embodiment, processing core 102 is configured to provide intelligent control for programmable system-on-chip The on-chip programmable system is manufactured by Cypress Semiconductor Corporation, San Jose, California. Alternatively, processing core 102 may be one or more other processing devices known to those skilled in the art, such as a microprocessor or central processing unit, controller, special purpose processor, digital signal processor ("DSP"), special purpose Integrated Circuits ("ASICs") and Field Programmable Gate Arrays ("FPGAs"), among others. In one embodiment, processing core 102 and other components of processing device 110 are integrated into the same integrated circuit.
应当注意的是,本文所述的实施方式并不限于使得处理核心102被耦合到主机150的配置,而是可以包括测量触摸感应阵列121上的电容和向主计算机发送原始数据的系统,其中,在主计算机中原始数据被应用进行分析。实际上,通过处理核心102完成的处理也可以在主机中完成。主机可以是微处理器,例如也可以是被受益于本公开的本领域的普通技术人员理解的其它类型的处理设备。It should be noted that the embodiments described herein are not limited to configurations such that processing core 102 is coupled to host computer 150, but may include systems that measure capacitance on touch-sensing array 121 and send raw data to a host computer, wherein, Raw data is applied to the main computer for analysis. In fact, the processing done by the processing core 102 can also be done in the host. The host may be a microprocessor, for example, or other types of processing devices as would be understood by those of ordinary skill in the art having the benefit of this disclosure.
电子系统100中除触摸感应阵列121之外的组件可以被集成到处理核心102的IC,或者是,在单独的IC中。或者,电子系统100的描述可被生成并被编译以并入其它集成电路中。例如,描述电子系统100的行为级代码或其部分可以使用硬件描述性语言生成,例如VHDL或Verilog,并且存储到机器可存取介质(如CD-ROM、硬盘、软盘等)。此外,行为级代码可被编译为寄存器传输级(“RTL”)代码、网表,或者甚至是电路布局,并存储到机器可存取介质中。行为级代码、RTL代码、网表和电路布局都表示描述电子系统100的各种抽象级别。Components of the electronic system 100 other than the touch-sensing array 121 may be integrated into the IC of the processing core 102, or, in a separate IC. Alternatively, a description of electronic system 100 may be generated and compiled for incorporation into other integrated circuits. For example, behavioral level code or portions thereof describing electronic system 100 may be generated using a hardware descriptive language, such as VHDL or Verilog, and stored on a machine-accessible medium (eg, CD-ROM, hard disk, floppy disk, etc.). Additionally, behavioral level code can be compiled into register transfer level ("RTL") code, netlist, or even circuit layout and stored to a machine-accessible medium. Behavioral level code, RTL code, netlist, and circuit layout all represent various levels of abstraction that describe electronic system 100 .
应当注意的是,电子系统100的组件可包括上述所有组件。或者,电子系统100可仅包括某些上述组件。It should be noted that the components of the electronic system 100 may include all of the components described above. Alternatively, the electronic system 100 may include only some of the above-described components.
在一个实施方式中,电子系统100被用于笔记本电脑。或者,电子设备可以用于其它应用中,例如移动手机、个人数据助理(“PDA”)、键盘、电视机、远程控制器、监视器、手持多媒体设备、手持视频播放器、手持游戏设备或控制面板。In one embodiment, electronic system 100 is used in a notebook computer. Alternatively, the electronic device may be used in other applications such as mobile handsets, personal data assistants ("PDAs"), keyboards, televisions, remote controls, monitors, handheld multimedia devices, handheld video players, handheld gaming devices, or control panel.
在电极矩阵225中发射和接收电极可以被设置以致每个发射电极重叠且穿过每个接收电极以形成交叉阵列,同时保持彼此电隔离。因此,每个发射电极可以电容耦合每个接收电极。例如,发射电极222在发射电极222和接收电极223重叠点处电容耦合接收电极223。The transmit and receive electrodes may be arranged in the electrode matrix 225 such that each transmit electrode overlaps and passes through each receive electrode to form a crossed array, while remaining electrically isolated from each other. Thus, each transmit electrode can capacitively couple each receive electrode. For example, transmit electrode 222 capacitively couples receive electrode 223 at the point where transmit electrode 222 and receive electrode 223 overlap.
时钟发生器214将时钟信号提供至信号发生器215,信号发生器215生成TX信号224提供给触摸感应阵列121的发射电极。在一个实施方式中,信号发生器215包括一组根据来自时钟发生器214的时钟信号进行操作的开关。通过周期性地将信号发生器215的输出连接到第一电压,然后连接到第二电压,开关可以产生TX信号224,其中所述第一电压和第二电压是不同的。在另一实施方式中,将在下面描述有源积分电路300被耦合到信号发生器215。本领域的普通技术人员要理解的是,信号发生器215可以提供TX信号224,TX信号224可以是具有正部分和负部分的任何周期信号,包括,例如,正弦波、矩形波、三角波等。The clock generator 214 provides a clock signal to the signal generator 215 , and the signal generator 215 generates a TX signal 224 to provide to the transmitting electrodes of the touch sensing array 121 . In one embodiment, signal generator 215 includes a set of switches that operate according to a clock signal from clock generator 214 . The switch can generate the TX signal 224 by periodically connecting the output of the signal generator 215 to a first voltage and then to a second voltage, wherein the first voltage and the second voltage are different. In another embodiment, the active integrating circuit 300 is coupled to the signal generator 215 as will be described below. Those of ordinary skill in the art will appreciate that signal generator 215 may provide TX signal 224, which may be any periodic signal having positive and negative components, including, for example, sine waves, rectangular waves, triangular waves, and the like.
信号发生器215的输出连接有多路分解器212,多路分解器212允许TX信号224被应用于触摸感应阵列121的M个电极的任何一个。在一个实施方式中,多路复用器控制211控制多路分解器212,以便使得TX信号224以受控顺序应用到每个发射电极222。多路分解器212也可以用于使TX信号224当前没有应用到的其它发射电极接地、浮动或将另外的信号连接至其。The output of the signal generator 215 is connected to a demultiplexer 212 which allows the TX signal 224 to be applied to any one of the M electrodes of the touch sensing array 121 . In one embodiment, multiplexer control 211 controls demultiplexer 212 such that TX signal 224 is applied to each transmit electrode 222 in a controlled sequence. The demultiplexer 212 may also be used to ground, float, or connect additional signals to other transmit electrodes to which the TX signal 224 is not currently applied.
因为发射和接收电极之间电容耦合,被应用至每个发射电极的TX信号224感应出每个接收电极内的电流。例如,当TX信号224通过多路分解器212被应用到发射电极222上时,TX信号224在矩阵225的接收电极上感应出RX信号227。通过使用多路复用器213,接收电极的每一个上的RX信号227然后可被顺序地测量,以便将N个接收电极的每个顺序地连接至解调电路216。Because of the capacitive coupling between the transmit and receive electrodes, the TX signal 224 applied to each transmit electrode induces a current in each receive electrode. For example, when TX signal 224 is applied to transmit electrode 222 via demultiplexer 212 , TX signal 224 induces RX signal 227 on receive electrodes of matrix 225 . Using the multiplexer 213 , the RX signal 227 on each of the receive electrodes can then be measured sequentially in order to sequentially connect each of the N receive electrodes to the demodulation circuit 216 .
通过使用多路分解器212和多路复用器213来选择TX电极和RX电极的每一个可用的组合,TX电极和RX电极之间的每个交叉部相关联的互电容可以被感应到。为了提高性能,多路复用器213也可能被分段以允许矩阵225中的一个以上的接收电极路由到附加的解调电路216。在优化的配置中,其中存在解调电路216和接收电极的1对1对应的实例,多路复用器213可能不存在于系统中。By using demultiplexer 212 and multiplexer 213 to select each available combination of TX electrodes and RX electrodes, the mutual capacitance associated with each intersection between TX electrodes and RX electrodes can be sensed. To improve performance, multiplexer 213 may also be segmented to allow more than one receive electrode in matrix 225 to be routed to additional demodulation circuitry 216 . In an optimized configuration, where there is an instance of a 1-to-1 correspondence of demodulation circuit 216 and receive electrodes, multiplexer 213 may not be present in the system.
当物体(例如手指)靠近电极矩阵225时,该物体使仅某些电极之间的互电容降低。例如,如果手指被置于发射电极222和接收电极223的交叉部附近,手指的存在将减小电极222和223之间的互电容。因此,能够通过在一个或多个接收电极上测量到降低的互电容的时候识别TX信号224被应用到的发射电极,以及识别具有降低的互电容的一个或多个接收电极,来确定触摸板上手指的位置。When an object, such as a finger, comes close to the electrode matrix 225, the object reduces the mutual capacitance between only some of the electrodes. For example, if a finger is placed near the intersection of transmit electrode 222 and receive electrode 223 , the presence of the finger will reduce the mutual capacitance between electrodes 222 and 223 . Accordingly, a touchpad can be determined by identifying the transmit electrodes to which the TX signal 224 is applied when a reduced mutual capacitance is measured on one or more receive electrodes, and identifying one or more receive electrodes with reduced mutual capacitance. position of the upper finger.
通过在矩阵225中确定电极的每一个交叉部相关的互电容,可以确定一个或多个触摸接触的位置。该确定可以是连续的、并行地,或者可以更加频繁地发生在普遍使用的电极中。By determining the mutual capacitance associated with each intersection of electrodes in matrix 225, the location of one or more touch contacts can be determined. This determination can be continuous, in parallel, or can occur more frequently in commonly used electrodes.
在可选的实施方式中,用于检测手指或导电体存在的其它方法可能被用于,手指或导电体在可能以网格或其它图案排列的一个或多个电极处促使电容的增加。例如,被置于电容传感器的电极附近的手指,可能会引入额外的接地电容,这增加了电极和接地之间的总电容。手指的位置可以根据在检测到增加电容的一个或多个电极的位置来进行确定。In alternative embodiments, other methods for detecting the presence of fingers or electrical conductors that induce an increase in capacitance at one or more electrodes, possibly arranged in a grid or other pattern, may be used. For example, a finger placed near an electrode of a capacitive sensor may introduce additional capacitance to ground, which increases the total capacitance between the electrode and ground. The location of the finger can be determined from the location of one or more electrodes where increased capacitance is detected.
感应电流信号227通过解调电路216进行整流。通过解调电路216整流的电流输出然后可以通过ADC217进行过滤并转换成数字代码。在一个实施方式中,解调电路可能包括下文将要描述的有源积分电路300。The induced current signal 227 is rectified by the demodulation circuit 216 . The current output rectified by demodulation circuit 216 may then be filtered by ADC 217 and converted into digital code. In one embodiment, the demodulation circuit may include an active integration circuit 300 which will be described below.
数字代码通过触摸坐标转换器218转换为表示在触摸传感器阵列121上的输入的位置的触摸坐标。该触摸坐标作为输入信号被发送至处理逻辑102。在一个实施方式中,输入信号在处理逻辑102的输入端被接收到。在一个实施方式中,该输入端可能被配置为接收指示多个行坐标和多个列坐标的电容测量。可选地,该输入端可能被配置成接收行坐标和列坐标。The digital code is converted by touch coordinate converter 218 into touch coordinates representing the location of the input on touch sensor array 121 . The touch coordinates are sent to processing logic 102 as an input signal. In one embodiment, the input signal is received at an input of the processing logic 102 . In one embodiment, the input may be configured to receive capacitance measurements indicative of a plurality of row coordinates and a plurality of column coordinates. Optionally, the input may be configured to receive row and column coordinates.
在一个实施方式中,一种用于跟踪触摸感应表面上的接触位置的系统可以基于根据电容传感器阵列进行的电容测量确定每次接触的力的大小。在一个实施方式中,还能够确定在触摸感应表面应用于多个接触中的每一个接触的力度的电容触摸传感系统,可以是由柔性材料构造的,例如PMMA,并可能在电容传感器阵列和LCD显示面板之间没有遮蔽。在这种实施方式中,传感器元件的电容改变可能是由LCD显示面板的VCOM平面比较近的传感器元件的位移引起的。In one embodiment, a system for tracking the location of contacts on a touch-sensitive surface can determine a force magnitude for each contact based on capacitive measurements from an array of capacitive sensors. In one embodiment, a capacitive touch-sensing system that is also capable of determining the force applied to each of a plurality of contacts on the touch-sensing surface may be constructed of a flexible material, such as PMMA, and may be constructed between a capacitive sensor array and There is no shading between the LCD display panels. In such an embodiment, the capacitance change of the sensor elements may be caused by the displacement of the sensor elements closer to the VCOM plane of the LCD display panel.
图3表示有源积分电路300的一个实施方式的电框图,该有源积分电路300被配置以接收来自接收电极的RX信号227,以测量图2中的触摸感应阵列121或部分阵列(如,单个带)的电容。有源积分电路300包括:校准单元321、有源积分器326、采样-保持(S/H)电路340和时序器电路345。图2的多路复用器213被耦合到有源积分器326的第一输入324。基线补偿电路328通过一个或多个开关330被耦合至有源积分器326的第一输入324。虚拟-接地VY被耦合到有源积分器326的第二输入338。有源积分器326的输出339被耦合到采样-保持(S/H)电路340。S/H电路340通过第一和第二输出342,344差动地被耦合至ADC217。在下文中称作时序器电路345的中央控制电路,总体上控制(如由参考标记“A”表示)在整个触摸屏子系统(TSS)中的所有开关和活动,包括下文将要结合图3、6A、6B和8进行描述的有源积分电路300。校准单元321提供了电容传感器101的自校准,并且通过一个或多个开关331既耦合到RX信号227又耦合到多路复用器213,以及下文将要结合图10进行描述的通过一个或多个开关(未示出)耦合到TX信号227和多路复用分解器212。FIG. 3 shows an electrical block diagram of one embodiment of an active integrating circuit 300 configured to receive the RX signal 227 from the receiving electrodes to measure the touch sensing array 121 of FIG. 2 or a portion of the array (e.g., single band) capacitor. The active integration circuit 300 includes: a calibration unit 321 , an active integrator 326 , a sample-and-hold (S/H) circuit 340 and a sequencer circuit 345 . The multiplexer 213 of FIG. 2 is coupled to a first input 324 of an active integrator 326 . Baseline compensation circuit 328 is coupled to first input 324 of active integrator 326 through one or more switches 330 . The virtual-ground VY is coupled to the second input 338 of the active integrator 326 . The output 339 of the active integrator 326 is coupled to a sample-and-hold (S/H) circuit 340 . S/H circuit 340 is differentially coupled to ADC 217 through first and second outputs 342 , 344 . A central control circuit, hereinafter referred to as the sequencer circuit 345, generally controls (as represented by reference numeral "A") all switching and activities throughout the touch screen subsystem (TSS), including those described below in connection with FIGS. 6B and 8 describe the active integrating circuit 300. Calibration unit 321 provides self-calibration of capacitive sensor 101, and is coupled to both RX signal 227 and multiplexer 213 via one or more switches 331, and via one or more A switch (not shown) is coupled to the TX signal 227 and the demultiplexer 212 .
图4是在图3的有源积分电路300中采用的有源积分器326、基线补偿电路328和S/H电路340的组件的方框图。在一个实施方式中,有源积分器326可以是开关电容器积分器,该开关电容器积分器包括具有负输入端450、正输入端452和输出端454的运算放大器446。第一积分电容器456(也被标记为CINTP),经由开关458a-458d在输出端454和负输入端450之间进行耦合。第二积分电容器460(也被标记为CINTN),经由多个开关462a-462d在输出端454和负输入端450之间耦合。4 is a block diagram of the components of active integrator 326, baseline compensation circuit 328, and S/H circuit 340 employed in active integration circuit 300 of FIG. In one embodiment, the active integrator 326 may be a switched capacitor integrator including an operational amplifier 446 having a negative input 450 , a positive input 452 , and an output 454 . A first integrating capacitor 456 (also labeled C INTP ) is coupled between output 454 and negative input 450 via switches 458a-458d. A second integrating capacitor 460 (also labeled C INTN ) is coupled between output 454 and negative input 450 via a plurality of switches 462a-462d.
图5是在图3和4的有源积分电路300中采用的S/H电路340的一个实施方式的组件的示意图。在一个实施方式中,S/H电路340包括第一S/H电容器466a(也被标记为CSHP),第一S/H电容器466a经由开关468a(也被标记为“shp”)在S/H缓冲器467a的输入端和运算放大器446的输出端454之间耦合或解耦。S/H电路340也包括第二S/H电容器466b(也被标记为CSHN),第二S/H电容器466b经由开关468b(也被标记为“shn”)在S/H缓冲器467b的输入端和运算放大器46的输出端454之间耦合或解耦。S/H缓冲器467a、467B的输出端和S/H缓冲器本身经由标记为“adc_;”的开关469a-469d耦合或解耦差分ADC217的正输入342和负输入344。标记为“shpp”、“shnn”、“!shp&&!adc_采样”和“!shn&&!adc_采样”的多个开关470a-470d将S/H缓冲器配置用于将在下面描述的目的。出于下文将要描述的目的,分别输入到S/H缓冲器467a、467B的标记为“bufp_pdb”和“bufn_pdb”的输入471a、471b被用于通电或断电每个S/H缓冲器467a、467B。FIG. 5 is a schematic diagram of the components of one embodiment of the S/H circuit 340 employed in the active integrating circuit 300 of FIGS. 3 and 4 . In one embodiment, the S/H circuit 340 includes a first S/H capacitor 466a (also denoted C SHP ) that is switched at S/H via a switch 468a (also denoted "shp"). The input terminal of the H buffer 467a is coupled or decoupled from the output terminal 454 of the operational amplifier 446 . The S/H circuit 340 also includes a second S/H capacitor 466b (also labeled C SHN ), which is connected to the S/H buffer 467b via a switch 468b (also labeled "shn"). The input is coupled or decoupled from the output 454 of the operational amplifier 46 . The outputs of S/H buffers 467a, 467B and the S/H buffers themselves are coupled or decoupled to positive and negative inputs 342, 344 of differential ADC 217 via switches 469a-469d labeled "adc_;". A plurality of switches 470a-470d labeled "shpp", "shnn", "!shp&&!adc_sampling" and "!shn&&!adc_sampling" configure the S/H buffers for purposes that will be described below. Inputs 471a, 471b labeled "bufp_pdb" and "bufn_pdb" to the S/H buffers 467a, 467B, respectively, are used to power on or off each of the S/H buffers 467a, 467a, 467B, for purposes described below. 467B.
参考图3-5,时序器345从整体上完全控制在整个触摸屏子系统(TSS)中所有开关和活动。这包括激活TX信号,TX信号被应用于触摸感应阵列121(例如,变高或者变低)、有源积分器326中的开关(例如,p1、p2、p1p、p2p)、基线控制开关pwc1/pwc2、IDAC值和S/H电路340等等。使用时序器345,在RX和TX电路中的所有活动以完全同步的方式发生,以下将结合图7进行描述。时序器电路345作为处理设备的部分来实现,该处理设备由定制的通用数字块(UDB)组成,该定制通用数字块(UDB)被配置用于根据图6a和6b的时序图为有源积分器326中所有开关提供计时。正如在本文所应用的,UDB是被优化以产生所有常见的嵌入式外设和具体应用或设计的定制功能的自由逻辑(PLD)和结构逻辑(数据路径)的集合。UDB可以被用于实现各种通用和具体的数字逻辑设备,包括但不限于,现场可编程门阵列(FPGA)、可编程阵列逻辑(PAL)和复杂可编程逻辑器件(CPLD)等。Referring to Figures 3-5, the sequencer 345 as a whole completely controls all switches and activities in the entire touch screen subsystem (TSS). This includes activating the TX signal that is applied to the touch sense array 121 (e.g., going high or low), the switches in the active integrator 326 (e.g., p1, p2, p1p, p2p), the baseline control switch pwc1/ pwc2, IDAC value and S/H circuit 340 and so on. Using the sequencer 345, all activity in the RX and TX circuits occurs in a fully synchronized manner, as will be described below in conjunction with FIG. sequencer circuit 345 as The processing device is implemented as part of a custom universal digital block (UDB) configured for all switches in the active integrator 326 according to the timing diagrams of FIGS. 6a and 6b. Timing is provided. As used herein, a UDB is a collection of free logic (PLD) and structured logic (datapath) optimized to generate all common embedded peripherals and custom functions for a specific application or design. UDBs can be used to implement various general and specific digital logic devices, including but not limited to Field Programmable Gate Arrays (FPGAs), Programmable Array Logic (PALs), and Complex Programmable Logic Devices (CPLDs).
在图4描述的实施方式中,基线补偿电路328包括被耦合在接地和增益模块474之间的电流输出数字模拟转换器(IDAC)472。增益模块474通过也分别标记为pwc1和pwc2的一对开关476a-476b被耦合到运算放大器446的输入负输入端450。开关476a(pwc1)被配置为将负电流IDACN应用到运算放大器446的负输入端450,以便通过pwc1的操作抵消源自于出现在触摸感应阵列121的输出上的响应信号的正基线电荷。同样,开关476b(pwc2)被配置为将IDACP应用到运算放大器446的负输入端450,以便通过pwc2的操作抵消源自于存在触摸感应阵列121的输出上的响应信号的负基线电荷。In the embodiment depicted in FIG. 4 , the baseline compensation circuit 328 includes a current output digital-to-analog converter (IDAC) 472 coupled between ground and a gain block 474 . Gain block 474 is coupled to input negative input 450 of operational amplifier 446 through a pair of switches 476a-476b, also labeled pwc1 and pwc2, respectively. Switch 476a ( pwc1 ) is configured to apply negative current I DACN to negative input 450 of operational amplifier 446 to cancel the positive baseline charge resulting from the response signal appearing on the output of touch-sensing array 121 through the operation of pwc1 . Likewise, switch 476b (pwc2) is configured to apply I DACP to negative input 450 of operational amplifier 446 so that the negative baseline charge resulting from the presence of the response signal on the output of touch-sensing array 121 is canceled by the operation of pwc2.
在一个实施方式中,基线补偿电路328用来最小化在ADC217的差分输入处出现的响应信号的基线偏置,以便最大化表示导电体接近触摸感应阵列121引起的电容变化的输出位的数目。结果,可提高电容传感器101的动态范围。In one embodiment, baseline compensation circuit 328 is used to minimize the baseline bias of the response signal present at the differential inputs of ADC 217 in order to maximize the number of output bits representing capacitance changes caused by the proximity of electrical conductors to touch-sensing array 121 . As a result, the dynamic range of the capacitive sensor 101 can be improved.
与传感器面板的设计和制造相关联的公差能够使一些传感元件的基线电容产生显著的变化,甚至是在单个触摸感应阵列121中。这可以进一步减少ADC217的动态范围,因为来自任意感测线的固定电荷只不过是不携带关于触摸事件的信息的基线电荷。因此,不是在基线补偿电路(即,IDAC472)中使用单个的、固定值,该值可以实时编程以补偿当前检测到的感测线的实际基线电荷。最佳设置可以或者是在整个触摸系统的制造时间,或者是在最终产品的加电过程中,于“自校正”例程中被确定。Tolerances associated with the design and manufacture of the sensor panel can cause significant variations in the baseline capacitance of some sensing elements, even within a single touch-sensing array 121 . This can further reduce the dynamic range of the ADC 217 since the fixed charge from any sense line is nothing more than a baseline charge that carries no information about the touch event. Thus, instead of using a single, fixed value in the baseline compensation circuit (ie, IDAC472), this value can be programmed in real time to compensate for the actual baseline charge of the currently detected sense line. Optimal settings can be determined in a "self-calibration" routine, either at manufacturing time throughout the touch system, or during power-up of the final product.
图6A和6B分别图解说明了图4的有源积分器326和图5的S/H电路340相关联的各种开关和信号的操作和存在的相对时间的一个实施方式。耦合到有源积分器326的开关458a-458d、462a-462d和耦合到S/H电路340的开关468a、468b、469a-469d和470a-470d均计时以持续地实质上没有“停滞时间”连续积分响应信号的正部分和负部分。一旦响应信号的负部分已经进行积分,在响应信号的正部分可以在电容器CINTP上积分之前,实际上在切换到电容器CINTP中没有延迟。此外,一旦正或负信号已经进行积分,积分信号可以分别通过耦合到S/H电路340的开关468a、468b、469a-469d和470a-470d施加在CSHP上,然后是CSHN。S/H电路340的“差分”输出因此被配置为全波整流输入的积分响应信号,使得输入信号的相同极性总是呈现给ADC217的差分输入342、344。6A and 6B illustrate one embodiment of the operation and relative timing of the various switches and signals associated with the active integrator 326 of FIG. 4 and the S/H circuit 340 of FIG. 5, respectively. The switches 458a-458d, 462a-462d coupled to the active integrator 326 and the switches 468a, 468b, 469a-469d, and 470a-470d coupled to the S/H circuit 340 are all timed to continue continuously with substantially no "dead time" Integrate the positive and negative parts of the response signal. Once the negative part of the response signal has been integrated, there is virtually no delay in switching to capacitor C INTP before the positive part of the response signal can be integrated on capacitor C INTP . Additionally, once the positive or negative signal has been integrated, the integrated signal may be applied to C SHP and then C SHN via switches 468a, 468b, 469a-469d, and 470a-470d coupled to S/H circuit 340, respectively. The “differential” output of the S/H circuit 340 is thus configured as the integrated response signal of the full wave rectified input such that the same polarity of the input signal is always presented to the differential inputs 342 , 344 of the ADC 217 .
图7图解了采用图4和5的组件的图1的触摸感应阵列121的电容传感器101的响应信道的频谱响应的一个实施方式。由于有源积分器326在积分的同时可以实质上同步驱动S/H电路340,并且电容器456、460中的一个可以保持或复位,而另一个是实质上没有停滞时间地连续积分,比起使用单个电容器和非时间/极性协调S/H电路340的积分的信道,得到的信道具有窄带频率响应780,其响应782也显示在图7中。窄带频率响应具有对应于输入信号(即,TX信号224)的基频的峰值784。结果,SNR相比于常规的设计得到了显著的提高。7 illustrates one embodiment of the spectral response of the response channel of capacitive sensor 101 of touch-sensing array 121 of FIG. 1 employing the components of FIGS. 4 and 5 . Since the active integrator 326 can substantially synchronously drive the S/H circuit 340 while integrating, and one of the capacitors 456, 460 can be held or reset while the other integrates continuously with substantially no dead time, compared to using The integrated channel of a single capacitor and non-time/polarity coordinating S/H circuit 340, the resulting channel has a narrowband frequency response 780 whose response 782 is also shown in FIG. The narrowband frequency response has a peak 784 corresponding to the fundamental frequency of the input signal (ie, TX signal 224). As a result, the SNR is significantly improved compared to conventional designs.
图8是操作有源积分电路300的有源积分器326和S/H电路340用于测量触摸感应阵列121的电容的方法的一个实施方式的流程图800。在块802,有源积分器326从触摸感应阵列121接收具有正部分和负部分的响应信号(例如,周期性响应信号具有负部分(后面是正部分),例如正弦波、矩形波、三角波等)。响应信号表示导电体存在或没有存在于触摸感应阵列121上。在块804,有源积分器326连续地积分响应信号(以全波整流方式,参见下面的图8)。只要响应信号存在,块802和804这样在每个响应信号的周期无限地重复下去。FIG. 8 is a flowchart 800 of one embodiment of a method of operating active integrator 326 and S/H circuit 340 of active integration circuit 300 for measuring the capacitance of touch-sensing array 121 . At block 802, the active integrator 326 receives a response signal from the touch-sensing array 121 having a positive portion and a negative portion (e.g., a periodic response signal having a negative portion followed by a positive portion, such as a sine wave, rectangular wave, triangle wave, etc.) . The response signal indicates the presence or absence of the conductor on the touch-sensing array 121 . At block 804, the active integrator 326 continuously integrates the response signal (in a full-wave rectified manner, see FIG. 8 below). Blocks 802 and 804 are thus repeated indefinitely for each period of the response signal as long as the response signal exists.
图9是更详细地示出图8的连续地积分响应信号的块804的流程图。现在参照图4、5和9,在块902,响应于响应信号的正部分的电荷累加在第一积分电容器456,CINTP上。更特别是,当TX信号227被激活从高到低时,在有源积分器326中相应的开关458a、458b(p1/p1p)则被闭合,而开关462a、462b(p2/p2p)被断开。输入电荷然后可以在电容器456(CINTP)上积分,使得电容器456两端的电压在积分器的输出处(即,节点454)产生增加的电压。积分电容器的输入450恒定地保持在Vx,其与Vy(即,节点452)相同,Vy在操作中不改变。FIG. 9 is a flow diagram illustrating the continuously integrating response signal block 804 of FIG. 8 in more detail. Referring now to FIGS. 4 , 5 and 9 , at block 902 , charge is accumulated on the first integrating capacitor 456 , C INTP , in response to the positive portion of the response signal. More specifically, when the TX signal 227 is activated from high to low, the corresponding switches 458a, 458b (p1/p1p) in the active integrator 326 are closed and the switches 462a, 462b (p2/p2p) are open. open. The input charge may then be integrated across capacitor 456 (C INTP ), such that the voltage across capacitor 456 produces an increasing voltage at the output of the integrator (ie, node 454 ). The input 450 of the integrating capacitor is held constantly at Vx, which is the same as Vy (ie, node 452 ), which does not change during operation.
在块904,响应于响应信号的负部分的电荷累加到第二积分电容器460,CINTN上。更特别是,在所有的信号都已经稳定后,TX信号227由时序器345引导以应用低到高转变,同时开关458a、458b(p1/p1p)被断开,而开关462a、462b(P2/P2P)被闭合。这将电容器460(CINTN)连接至有源积分器326,同时电容器456(CINTP)处于浮动状态,因此暂时保持其电荷(电容器456上的电荷不能泄漏)。另外,进入的电荷已经被积分后,在块906,周期再次开始,将电容器456(CINTP)切换回有源积分器326以收集下一电荷包,以及诸如此类。因此,正电荷包在电容器456(CINTP)上累积,而负电荷包在电容器460(CINTN)上累积。At block 904, charge in response to the negative portion of the response signal is accumulated on the second integrating capacitor 460, C INTN . More particularly, after all signals have stabilized, the TX signal 227 is directed by the sequencer 345 to apply a low-to-high transition, while the switches 458a, 458b (p1/p1p) are open and the switches 462a, 462b (p2/ P2P) is closed. This connects capacitor 460 (C INTN ) to active integrator 326, while capacitor 456 (C INTP ) is floating, thus temporarily holding its charge (the charge on capacitor 456 cannot leak). Additionally, after the incoming charge has been integrated, at block 906 the cycle begins again, switching capacitor 456 (C INTP ) back to active integrator 326 to collect the next charge packet, and so on. Thus, positive charge packets accumulate on capacitor 456 (C INTP ), while negative charge packets accumulate on capacitor 460 (C INTN ).
在块908,910处,当正负电荷分别在电容器456(CINTP)和电容器460(CINTN)的两端产生相对于节点450(Vy)的相应的正负电压时,输出采样电容器466a(CSHP)和466b(CSHN)已经经由一对开关468a-468b(shp)和一对开关470a-470b(shn)相应的非重叠闭合/断开而分别被连接到积分器输出454/从积分器输出454移除。结果,输出采样电容器466a(CSHP)和466b(CSHN)在其两端分别与相应的积分电容器456、460承载相同的电压。At blocks 908, 910, output sampling capacitor 466a ( C SHP ) and 466b (C SHN ) have been connected to/from the integrator output 454 via corresponding non-overlapping closing/opening of a pair of switches 468a-468b (shp) and a pair of switches 470a-470b (shn), respectively. output 454 is removed. As a result, output sampling capacitors 466a (C SHP ) and 466b (C SHN ) carry the same voltage across them as corresponding integrating capacitors 456 , 460 , respectively.
预定数量的循环N之后,在块912,图2的下游ADC217由时序器345引导以测量电容器466a(CSHP)和466b(CSHN)之间的差分电压(称为“次积分”),在这个时候,在块914,电容器456,460、466a和466b复位,并且整个处理重新开始。差分电压分别表示电容器456(CINTP)和460(CINTN)上的正电荷和负电荷的差异。结果,任何TX脉冲的两个半周期加在一起,这相当于全波整流。尽管两个半周期是在离散的步骤积分,但其间有具有非常短的中断以适应积分电容器的切换,该操作实质上被称为“连续”积分。After a predetermined number of cycles N, at block 912, the downstream ADC 217 of FIG. 2 is directed by the sequencer 345 to measure the differential voltage between capacitors 466a (C SHP ) and 466b (C SHN ) (referred to as the "sub-integration"), at block 912 At this point, at block 914, capacitors 456, 460, 466a, and 466b are reset, and the entire process begins anew. The differential voltage represents the difference in positive and negative charges on capacitors 456 (C INTP ) and 460 (C INTN ), respectively. As a result, the two half cycles of any TX pulse add together, which is equivalent to full-wave rectification. Although the two half-cycles are integrated in discrete steps, with very short interruptions in between to accommodate switching of the integrating capacitor, this operation is essentially called "continuous" integration.
更特别是,S/H电路340在三个阶段进行操作以便产生差分电压给ADC217。这三个阶段包括从积分器电路326采样、在S/H电路340上保持取样电荷和驱动ADC217。下面的步骤描述相关的信号。More specifically, S/H circuit 340 operates in three phases to generate a differential voltage to ADC 217 . These three stages include sampling from integrator circuit 326 , holding the sampled charge on S/H circuit 340 and driving ADC 217 . The following steps describe the associated signals.
S/H缓冲器467a、467b的每个都对上一Tx时钟周期的积分器输出进行454采样。正S/H缓冲器467a采样正积分电容器456(CINTP)(通常,在Tx具有它的最后高边缘的时候),负S/H缓冲器467a采样负积分电容器460(CINTP)(在Tx具有它的最后的低边缘的时候)。要转换的第一信号是缓冲器通电信号471a、471b(bufp_pdb和bufn_pdb)。S/H缓冲器467a、467b被动态驱动,因此它们仅仅在采样相位(shp)期间和驱动ADC相位(adc_采样)期间消耗电流。在采样模式中,操作开关470a(shpp)使S/H缓冲器467a进入单位增益模式并且在采样电容器466a(CSHP)和466b(CSHN)的右侧设置VY。操作开关468a(shp)以在采样/保持电容器466a(CSHP)上采样正输入(来自有源积分器326)。当这两个信号返回到0,S/H缓冲器467a、467b经由输入471a、471b(bufp_pdb和bufn_pdb)断电,采样/保持电容器468a(CSHP)的一个节点经由开关470b(!shp&&!adc_采样)连接至VY,并且第二节点是浮动的。这允许在CSHP上“保持”采样的正积分器电压。类似的操作在采样/保持电容器466b(CSHN)上采样和保持负积分器电压。刚好在adc_采样转换之前,S/H缓冲器467a、467b再次加电(bufp_pdb和bufn_pdb),CSHP和CSHN被放入在环绕它们各自的缓冲器的反馈中,并且ADC217内的SAR电容器CADCP和CADCN充电达到CSHP和CSHN上存储的值。Each of the S/H buffers 467a, 467b samples 454 the integrator output for the previous Tx clock cycle. Positive S/H buffer 467a samples positive integrating capacitor 456 (C INTP ) (typically, when Tx has its last high edge), and negative S/H buffer 467a samples negative integrating capacitor 460 (C INTP ) (at Tx with its last low edge). The first signal to be converted is the buffer power on signal 471a, 471b (bufp_pdb and bufn_pdb). The S/H buffers 467a, 467b are driven dynamically so they only consume current during the sampling phase (shp) and during the driving ADC phase (adc_sample). In sampling mode, operating switch 470a (shpp) puts S/H buffer 467a into unity gain mode and sets V Y to the right of sampling capacitors 466a (C SHP ) and 466b (C SHN ). Switch 468a (shp) is operated to sample the positive input (from active integrator 326 ) on sample/hold capacitor 466a ( CSHP ). When these two signals return to 0, the S/H buffers 467a, 467b are powered down via inputs 471a, 471b (bufp_pdb and bufn_pdb), one node of sample/hold capacitor 468a (C SHP ) is via switch 470b (!shp && !adc _sample) to V Y , and the second node is floating. This allows "holding" of the sampled positive integrator voltage on C SHP . A similar operation samples and holds the negative integrator voltage on sample/hold capacitor 466b (C SHN ). Just before the adc_sample conversion, the S/H buffers 467a, 467b are powered up again (bufp_pdb and bufn_pdb), C SHP and C SHN are placed in the feedback surrounding their respective buffers, and the SAR capacitors inside the ADC 217 C ADCP and C ADCN charge up to the values stored on C SHP and C SHN .
在有源积分器326的输入和输出处的时间重叠的连续积分导致面板扫描时间更快,这能够也降低工作电流。工作电流降低可以减少电池消耗,这在具有触摸感应阵列的电池操作系统中是特别重要的。Continuous integration with time overlap at the input and output of active integrator 326 results in faster panel scan times, which can also reduce operating current. The reduced operating current reduces battery drain, which is especially important in battery-operated systems with touch-sensing arrays.
在有源积分电路300的另一个实施方式中,可以除去单一输入、双输出S/H电路340,而ADC217可以用足够快的单一输入ADC取代。具有足够快的AC,ADC可以直接在输出454上快速采样自积分器电路326发出的正向和负向信号,且然后处理核心102可数字化地将这两个信号相减。In another embodiment of the active integrating circuit 300, the single-input, dual-output S/H circuit 340 can be eliminated, and the ADC 217 can be replaced with a sufficiently fast single-input ADC. With a sufficiently fast AC, the ADC can quickly sample the positive-going and negative-going signals from integrator circuit 326 directly on output 454, and then processing core 102 can digitally subtract the two signals.
图10是示出电容传感器101的图2的另一实施方式中,该电容传感器被配置为提供校准单元321,该校准单元321被配置为提供电容传感器101的自校准并且经由选择电路1092和多路分解器212在输入TX信号227与触摸感应阵列121之间耦合。校准单元321包括第一电容器1094(也被标记为CFM),第二电容器1096(也标记为CM),和与第二电容器1096串联的开关1098。校准单元321被配置成通过使用电容器1094、1096模拟导电体的不存在和存在以便于校准电容传感器101。校准单元321可以用来校准互电容感应以及自电容感应。例如,分别地,断开的开关1098可以模拟触摸事件,闭合的开关1098可以模拟无触摸事件(即,由于互电容的值实际上是在触摸期间降低)。使用这些芯片上的电容器,触摸类信号可被生成,允许测定(并随后进行校对)每个信道从前至后的增益。在完成校准之后,所有信道表现出同样的总增益到实际的触摸信号上,这明显改善了手指触摸位置的计算精度。用于增益校准的方法可以包括每一个积分电容器的实际电容值(或数字值1004)的编程。FIG. 10 is another embodiment of FIG. 2 showing capacitive sensor 101 configured to provide a calibration unit 321 configured to provide self-calibration of capacitive sensor 101 and via selection circuit 1092 and multiple Demultiplexer 212 is coupled between input TX signal 227 and touch-sensing array 121 . The calibration unit 321 includes a first capacitor 1094 (also denoted CFM), a second capacitor 1096 (also denoted CM), and a switch 1098 in series with the second capacitor 1096 . The calibration unit 321 is configured to facilitate calibrating the capacitive sensor 101 by using capacitors 1094, 1096 to simulate the absence and presence of electrical conductors. The calibration unit 321 can be used to calibrate mutual capacitance sensing and self capacitance sensing. For example, an open switch 1098 can simulate a touch event, and a closed switch 1098 can simulate a no-touch event (ie, because the value of the mutual capacitance actually decreases during a touch), respectively. Using these on-chip capacitors, touch-like signals can be generated, allowing the determination (and subsequent calibration) of each channel's gain from front to back. After calibration, all channels exhibit the same overall gain to the actual touch signal, which significantly improves the calculation accuracy of the finger touch position. Methods for gain calibration may include programming the actual capacitance value (or digital value 1004) of each integrating capacitor.
在自校准模式中,触摸感应阵列121的每个信道1000a-1000n还可以经由多路分解器212、多路复用器213、有源积分器326、采样-保持电路340和ADC217通过扫描信道1000a-1000n一次一个进行进一步校准,其中,ADC217接着数字化连接到处理核心102。在一个实施方式中,根据图8中所示的方法,选择的信道1000a-1000n之一通过有源积分器326、采样-保持电路340和ADC217进行连续积分。在处理核心102内以软件模拟选择电路802以及两个或多个增益校正值804,用于数字校准在工厂或在电容传感器101的运行操作期间在相同或不同的触摸感应阵列121内和之间的组件变化引起的信道方差。组件1002、1004的某些或全部可以使用受益于本公开的本领域普通技术人员可理解的其它技术来实现。In self-calibration mode, each channel 1000a-1000n of the touch-sensing array 121 can also pass through the scan channel 1000a via the demultiplexer 212, the multiplexer 213, the active integrator 326, the sample-hold circuit 340 and the ADC - 1000n are further calibrated one at a time, where ADC 217 is then digitally connected to processing core 102 . In one embodiment, a selected one of channels 1000a-1000n is continuously integrated by active integrator 326, sample-and-hold circuit 340, and ADC 217 according to the method shown in FIG. The selection circuit 802 and the two or more gain correction values 804 are simulated in software within the processing core 102 for digital calibration within and between the same or different touch-sensing arrays 121 at the factory or during run-time operation of the capacitive sensor 101 The channel variance caused by component variation of . Some or all of the components 1002, 1004 may be implemented using other techniques as would be understood by one of ordinary skill in the art having the benefit of this disclosure.
再次返回到图10,得到的校准值1004可以存储在存储器中并可以作为“数字增益校准”因子应用于信道1000a-1000n的每个输出。数字增益校准允许触摸位置精度至小于近似约0.2mm。Returning again to FIG. 10, the resulting calibration values 1004 can be stored in memory and can be applied as a "digital gain calibration" factor to each output of channels 1000a-1000n. Digital gain calibration allows touch location accuracy to less than approximately about 0.2 mm.
返回到图4,在一个实施方式中,第一积分电容器456和第二积分电容器460可以是可变/可编程电容器以允许第二增益程度的校正,用于消除信道增益方差。Returning to FIG. 4, in one embodiment, the first integrating capacitor 456 and the second integrating capacitor 460 may be variable/programmable capacitors to allow correction of a second degree of gain for canceling channel gain variance.
本文所述的本发明的实施方式包括各种操作。这些操作可以通过硬件组件、软件、固件或其组合来执行。正如在这里所使用的,术语“耦合”可以表示直接耦合或通过一个或多个中间组件间接耦合。本文描述的提供于不同总线上的任何信号都可以与其它信号分时复用并提供于一个或多个公共总线上。另外,电路组件或块之间的互连可以显示为总线或单一信号线。每一总线可以可选地为一条或多条单信号线,并且每条单信号线可以可选地为总线。Embodiments of the invention described herein include various operations. These operations may be performed by hardware components, software, firmware or a combination thereof. As used herein, the term "coupled" may mean directly coupled or indirectly coupled through one or more intermediate components. Any signals described herein that are provided on different buses may be time multiplexed with other signals and provided on one or more common buses. Additionally, the interconnections between circuit components or blocks may be shown as buses or as single signal lines. Each bus can optionally be one or more single signal lines, and each single signal line can optionally be a bus.
某些实施方式可实施作为一种计算机程序产品,其可以包括在计算机可读介质上储存的指令。这些指令可以被用于给通用或专用处理器编程来执行指定操作。计算机可读介质包括用于以机器(例如,计算机)可读形式(例如,软件、处理应用)存储或传输信息的任何机制。计算机可读存储介质可以包括,但不限于,磁存储介质(例如,软盘);光存储介质(例如,CD-ROM);磁光存储介质;只读存储器(ROM);随机存取存储器(RAM);可擦可编程存储器(例如,EPROM和EEPROM);闪存,或者适于存储电子指令的其他类型的介质。计算机可读传输介质包括但不限于,电的、光的、声的或其它形式的传播信号(例如,载波、红外信号、数字信号等),或者适于发送电子指令的其他类型的介质。Certain embodiments may be implemented as a computer program product, which may include instructions stored on a computer-readable medium. These instructions can be used to program a general or special purpose processor to perform specified operations. A computer-readable medium includes any mechanism for storing or transmitting information in a form (eg, software, processing application) readable by a machine (eg, a computer). Computer-readable storage media may include, but are not limited to, magnetic storage media (e.g., floppy disks); optical storage media (e.g., CD-ROMs); magneto-optical storage media; read-only memory (ROM); ); erasable programmable memory (eg, EPROM and EEPROM); flash memory, or other types of media suitable for storing electronic instructions. Computer readable transmission media include, but are not limited to, electrical, optical, acoustic or other forms of propagated signals (eg, carrier waves, infrared signals, digital signals, etc.), or other types of media suitable for transmitting electronic instructions.
另外,某些实施方式可以在分布式计算环境中实施,其中计算机可读介质是由一个以上计算机系统存储和/或执行的。此外,在计算机系统之间传递的信息可以或者被拉或者被推过连接计算机系统的传输介质。Additionally, certain embodiments may be practiced in a distributed computing environment, where the computer readable medium is stored and/or executed by more than one computer system. In addition, information passed between computer systems can either be pulled or pushed across the transmission media connecting the computer systems.
虽然本文中的操作方法是以特定的顺序显示和描述的,但每种方法的操作顺序可以改变,以使得某些操作可以按照相反的顺序执行,或使得某些操作可以至少部分与其它操作同时执行。在另一实施方式中,不同操作的指令或子操作可以按照间歇和/或交替的方式。Although methods of operation herein are shown and described in a particular order, the order of operations for each method may be changed such that certain operations may be performed in reverse order or such that certain operations may be performed at least in part concurrently with other operations implement. In another embodiment, instructions or sub-operations of different operations may be performed in an intermittent and/or alternating manner.
在先前的说明中,已经参考特定的示例性实施方式对本发明进行了说明。然而,很显然在不偏离如所附权利要求书要求保护的本发明的更广的精神和范围内,可对本发明进行各种改进和变化。因此,本说明书和附图认为是具有示例性意义而非限制性意义。In the foregoing specification, the invention has been described with reference to specific exemplary embodiments. It will, however, be evident that various modifications and changes can be made therein without departing from the broader spirit and scope of the invention as claimed in the appended claims. Accordingly, the specification and drawings are to be regarded in an illustrative rather than a restrictive sense.
Claims (20)
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161472161P | 2011-04-05 | 2011-04-05 | |
US61/472,161 | 2011-04-05 | ||
US13/249,514 | 2011-09-30 | ||
US13/249,514 US9268441B2 (en) | 2011-04-05 | 2011-09-30 | Active integrator for a capacitive sense array |
PCT/US2011/067153 WO2012138397A1 (en) | 2011-04-05 | 2011-12-23 | Active integrator for a capacitive sense array |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103748540A CN103748540A (en) | 2014-04-23 |
CN103748540B true CN103748540B (en) | 2016-11-30 |
Family
ID=
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101685364A (en) * | 2008-09-27 | 2010-03-31 | 盛群半导体股份有限公司 | Sensing device and method of touch panel |
CN101840294A (en) * | 2010-01-21 | 2010-09-22 | 宸鸿科技(厦门)有限公司 | Method for scanning projective capacitive touch panel |
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101685364A (en) * | 2008-09-27 | 2010-03-31 | 盛群半导体股份有限公司 | Sensing device and method of touch panel |
CN101840294A (en) * | 2010-01-21 | 2010-09-22 | 宸鸿科技(厦门)有限公司 | Method for scanning projective capacitive touch panel |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9268441B2 (en) | Active integrator for a capacitive sense array | |
US11995250B2 (en) | Active stylus and capacitive position detection system having touch object detecting mode and stylus detecting mode | |
US10775929B2 (en) | Suppressing noise in touch panels using a shield layer | |
US10788937B2 (en) | Reducing sleep current in a capacitance sensing system | |
CN101896825B (en) | Compensation circuit for a TX-RX capacitive sensor | |
US8058937B2 (en) | Setting a discharge rate and a charge rate of a relaxation oscillator circuit | |
US8717331B2 (en) | Reducing water influence on a touch-sensing device | |
US9513755B2 (en) | Lattice structure for capacitance sensing electrodes | |
US8786295B2 (en) | Current sensing apparatus and method for a capacitance-sensing device | |
US10068121B2 (en) | Baseline compensation for capacitive sensing | |
CN102576278B (en) | Dynamic mode for quick touch response switches | |
US8730187B2 (en) | Techniques for sorting data that represents touch positions on a sensing device | |
US20080143681A1 (en) | Circular slider with center button | |
KR20140010859A (en) | Gain correction for fast panel scanning | |
US20160026295A1 (en) | Generating a baseline compensation signal based on a capacitive circuit | |
JP7608434B2 (en) | Angle detection for passive dials attached to touch screens | |
CN102667398A (en) | Flexible capacitive sensor array | |
WO2014143572A1 (en) | Mutual capacitance sensing using a self-capacitance sensing device | |
US9019220B1 (en) | Baseline charge compensation | |
CN103748540B (en) | Active integrator for capacitive sensing array |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20151223 Address after: American California Applicant after: Parade Technologies, Ltd. Address before: American California Applicant before: Cypress Semiconductor Corp. |
|
GR01 | Patent grant |