CN103743150A - Absorption compression type automatic-overlapping refrigerating system and use method - Google Patents
Absorption compression type automatic-overlapping refrigerating system and use method Download PDFInfo
- Publication number
- CN103743150A CN103743150A CN201310695791.XA CN201310695791A CN103743150A CN 103743150 A CN103743150 A CN 103743150A CN 201310695791 A CN201310695791 A CN 201310695791A CN 103743150 A CN103743150 A CN 103743150A
- Authority
- CN
- China
- Prior art keywords
- gas
- liquid
- phase working
- working medium
- pipeline
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Sorption Type Refrigeration Machines (AREA)
Abstract
本发明公开了一种吸收压缩式自复叠制冷系统,包括发生器等;发生器与溶液换热器相互连通,溶液换热器与吸收器相互连通;吸收器还与溶液换热器相互连通,溶液换热器与发生器相互连通;发生器还与冷凝器相互连通,冷凝器与气液分离器相互连通;气液分离器还与蒸发冷凝器相互连通,蒸发冷凝器与第一气液换热器相互连通,第一气液换热器与蒸发器相互连通,蒸发器与第一气液换热器相互连通,第一气液换热器与压缩机相互连通;气液分离器与蒸发冷凝器相互连通;压缩机和蒸发冷凝器分别与吸收器相互连通。
The invention discloses an absorption compression type self-cascading refrigeration system, which includes a generator, etc.; the generator communicates with a solution heat exchanger; the solution heat exchanger communicates with an absorber; the absorber communicates with a solution heat exchanger , the solution heat exchanger is connected to the generator; the generator is also connected to the condenser, and the condenser is connected to the gas-liquid separator; the gas-liquid separator is also connected to the evaporative condenser, and the evaporative condenser is connected to the first gas-liquid separator. The heat exchangers communicate with each other, the first gas-liquid heat exchanger communicates with the evaporator, the evaporator communicates with the first gas-liquid heat exchanger, the first gas-liquid heat exchanger communicates with the compressor; the gas-liquid separator communicates with the The evaporative condensers are communicated with each other; the compressor and the evaporative condensers are respectively communicated with the absorber.
Description
技术领域technical field
本发明涉及一种制冷与空调设备技术领域,具体是一种吸收压缩式自复叠制冷系统及使用方法。The invention relates to the technical field of refrigeration and air-conditioning equipment, in particular to an absorption-compression self-cascading refrigeration system and its use method.
背景技术Background technique
自复叠制冷系统采用沸点不同的混合工质,通过多级气液分离,依靠分离得到的高沸点富余组分的蒸发吸热和低沸点富余组分的冷凝放热的相互耦合,可获得较低的制冷蒸发温度,同时混合工质所具有的变温特性可减少蒸发器的不可逆损失。自复叠制冷系统的蒸发温度对压力的依赖关系比通常的制冷系统小,因此其节流损失和压缩机的压比也较小,通常用一个压缩机就可以满足应用要求。为了利用低品位热源(<200℃)做功,自复叠制冷系统也可以采用吸收式系统来代替压缩机,公开号为CN102759218的专利文献公开了一种压缩吸收耦合的自复叠低温制冷机,该制冷机的主要特点是高沸点富余工质在中压下吸收来自低沸点富余工质在高压下的冷凝热,低沸点富余工质在低压下蒸发,并通过压缩机压缩到高压,再与从发生器出来的气态的高沸点富余工质混合并冷凝。该系统可以在采用单级分凝的情况下获得较低蒸发温度,但是,该系统中低沸点富余工质循环对压缩机做功的依赖程度较大,因此不能更多地利用低品位热源。申请号为200910304102.1的专利公开了一种增压吸收型自复叠吸收制冷循环系统,该系统的主要特点是利用从气液分离器中出来的高压液体进入喷射器中引射从蒸发器中出来的低压蒸汽,从而对低压蒸汽起到一定的增压作用,但喷射器是一个不可逆损失较大设备,对系统效率的影响较大。The self-cascade refrigeration system uses mixed working fluids with different boiling points, through multi-stage gas-liquid separation, relying on the mutual coupling of the evaporation heat of the high-boiling point excess components and the condensation and heat release of the low-boiling point excess components to obtain a relatively high temperature. Low refrigeration evaporation temperature, and the variable temperature characteristic of the mixed working fluid can reduce the irreversible loss of the evaporator. The self-cascading refrigeration system's evaporating temperature has a smaller dependence on pressure than the usual refrigeration system, so its throttling loss and compressor pressure ratio are also small, and usually one compressor can meet the application requirements. In order to use a low-grade heat source (<200°C) to do work, the self-cascading refrigeration system can also use an absorption system to replace the compressor. The patent document with the publication number CN102759218 discloses a self-cascading low-temperature refrigerator coupled with compression and absorption. The main feature of this refrigerator is that the high-boiling point surplus working fluid absorbs the condensation heat from the low-boiling point surplus working substance at high pressure at medium pressure, and the low-boiling point surplus working substance evaporates at low pressure and is compressed to high pressure by a compressor, and then combined with The gaseous high boiling point surplus working fluid from the generator is mixed and condensed. This system can obtain a lower evaporation temperature under the condition of single-stage fractional condensation. However, the low-boiling-point surplus working fluid circulation in this system relies heavily on the work of the compressor, so it cannot make more use of low-grade heat sources. The patent application number is 200910304102.1 discloses a pressurized absorption type self-cascading absorption refrigeration cycle system, the main feature of this system is to use the high-pressure liquid coming out of the gas-liquid separator to enter the ejector and eject it from the evaporator The low-pressure steam has a certain boosting effect on the low-pressure steam, but the ejector is a device with a large irreversible loss, which has a great impact on the system efficiency.
为此,需要提供一种具有较高效率,保留压缩机增压的灵活性,减少对压缩机做功的依赖性,还能提高低品位能源利用率的吸收压缩式自复叠制冷系统。Therefore, it is necessary to provide an absorption-compression self-cascading refrigeration system that has higher efficiency, retains the flexibility of compressor boosting, reduces the dependence on compressor work, and can improve the utilization rate of low-grade energy.
发明内容Contents of the invention
本发明要解决的技术问题是提供一种结构简单的吸收压缩式自复叠制冷系统及使用方法。The technical problem to be solved by the present invention is to provide an absorption compression self-cascading refrigeration system with a simple structure and a use method.
为了解决上述技术问题,本发明提供一种吸收压缩式自复叠制冷系统,包括发生器,溶液换热器,吸收器,溶液泵,冷凝器,气液分离器,蒸发冷凝器,第一气液换热器,蒸发器和压缩机;所述发生器的溶液出口与溶液换热器的高温溶液管道的一端相互连通,溶液换热器的高温溶液管道的另外一端与吸收器的溶液进口相互连通;所述吸收器的溶液出口与溶液换热器的低温溶液管道的一端相互连通,所述溶液换热器的低温溶液管道的另外一端与发生器的溶液进口相互连通;所述发生器的气体出口与冷凝器的冷凝管道的一端相互连通,所述冷凝器的冷凝管道的另外一端与气液分离器的湿蒸汽进口相互连通;所述气液分离器的气体出口与蒸发冷凝器的高温工质管道的一端相互连通,蒸发冷凝器的高温工质管道的另外一端与第一气液换热器的高温液体管道的一端相互连通,所述第一气液换热器的高温液体管道的另外一端与蒸发器的蒸发管道的一端相互连通,蒸发器的蒸发管道的另外一端与第一气液换热器的低温气体管道的一端相互连通,第一气液换热器的低温气体管道的另外一端与压缩机的气体入口相互连通;所述气液分离器的溶液出口与蒸发冷凝器的蒸发管道的一端相互连通;所述压缩机的气体出口和蒸发冷凝器的蒸发管道的另外一端分别与吸收器的气体进口相互连通。In order to solve the above technical problems, the present invention provides an absorption compression self-cascading refrigeration system, including a generator, a solution heat exchanger, an absorber, a solution pump, a condenser, a gas-liquid separator, an evaporative condenser, a first gas Liquid heat exchanger, evaporator and compressor; the solution outlet of the generator communicates with one end of the high-temperature solution pipeline of the solution heat exchanger, and the other end of the high-temperature solution pipeline of the solution heat exchanger communicates with the solution inlet of the absorber connected; the solution outlet of the absorber communicates with one end of the low-temperature solution pipeline of the solution heat exchanger, and the other end of the low-temperature solution pipeline of the solution heat exchanger communicates with the solution inlet of the generator; The gas outlet communicates with one end of the condensing pipe of the condenser, and the other end of the condensing pipe of the condenser communicates with the wet steam inlet of the gas-liquid separator; the gas outlet of the gas-liquid separator communicates with the high temperature of the evaporative condenser. One end of the working fluid pipeline communicates with each other, and the other end of the high-temperature working medium pipeline of the evaporating condenser communicates with one end of the high-temperature liquid pipeline of the first gas-liquid heat exchanger, and the high-temperature liquid pipeline of the first gas-liquid heat exchanger The other end communicates with one end of the evaporation pipeline of the evaporator, the other end of the evaporation pipeline of the evaporator communicates with one end of the low-temperature gas pipeline of the first gas-liquid heat exchanger, and the low-temperature gas pipeline of the first gas-liquid heat exchanger communicates with each other. The other end communicates with the gas inlet of the compressor; the solution outlet of the gas-liquid separator communicates with one end of the evaporation pipeline of the evaporation condenser; the other end of the gas outlet of the compressor and the evaporation pipeline of the evaporation condenser are respectively It communicates with the gas inlet of the absorber.
作为本发明所述的吸收压缩式自复叠制冷系统的改进:所述溶液换热器的高温溶液管道端口和吸收器的溶液进口之间设置有第一节流阀;所述吸收器的溶液出口与溶液换热器的低温溶液管道端口之间设置有溶液泵;所述第一气液换热器的高温液体管道的另外一端与蒸发器的蒸发管道的端口之间设置有第三节流阀;所述气液分离器的溶液出口与蒸发冷凝器的蒸发管道的端口之间设置有第二节流阀。As an improvement of the absorption compression self-cascading refrigeration system of the present invention: a first throttle valve is arranged between the high-temperature solution pipeline port of the solution heat exchanger and the solution inlet of the absorber; the solution of the absorber A solution pump is provided between the outlet and the low-temperature solution pipeline port of the solution heat exchanger; a third throttle is provided between the other end of the high-temperature liquid pipeline of the first gas-liquid heat exchanger and the port of the evaporation pipeline of the evaporator Valve; a second throttling valve is set between the solution outlet of the gas-liquid separator and the port of the evaporation pipeline of the evaporation condenser.
作为本发明所述的吸收压缩式自复叠制冷系统的进一步改进:所述压缩机的气体进口和压缩机的气体出口之间连接有二通阀。As a further improvement of the absorption compression self-cascading refrigeration system of the present invention: a two-way valve is connected between the gas inlet of the compressor and the gas outlet of the compressor.
作为本发明所述的吸收压缩式自复叠制冷系统的进一步改进:所述发生器、溶液换热器和冷凝器之间设置有第二气液换热器;所述溶液换热器的低温溶液管道与第二气液换热器的低温液体管道相互连接,所述第二气液换热器的低温液体管道与发生器的溶液进口相连接;发生器的气体出口与第二气液换热器的高温气体管道相连接,所述第二气液换热器的高温气体管道与冷凝器的冷凝管道相互连接。As a further improvement of the absorption compression self-cascading refrigeration system of the present invention: a second gas-liquid heat exchanger is arranged between the generator, the solution heat exchanger and the condenser; the low temperature of the solution heat exchanger The solution pipeline is connected to the low-temperature liquid pipeline of the second gas-liquid heat exchanger, and the low-temperature liquid pipeline of the second gas-liquid heat exchanger is connected to the solution inlet of the generator; the gas outlet of the generator is connected to the second gas-liquid exchanger. The high-temperature gas pipeline of the heater is connected, and the high-temperature gas pipeline of the second gas-liquid heat exchanger is connected with the condensation pipeline of the condenser.
作为本发明所述的吸收压缩式自复叠制冷系统的进一步改进:所述发生器内的工质为二元或二元以上的非共沸混合工质。As a further improvement of the absorption-compression self-cascading refrigeration system of the present invention: the working medium in the generator is a binary or more than binary non-azeotropic mixed working medium.
作为本发明所述的吸收压缩式自复叠制冷系统的进一步改进:所述压缩机为变频压缩机。As a further improvement of the absorption-compression self-cascading refrigeration system of the present invention: the compressor is an inverter compressor.
一种吸收压缩式自复叠制冷系统的使用方法:步骤如下:A method for using an absorption compression self-cascading refrigeration system: the steps are as follows:
通过加热二元或二元以上的非共沸混合工质,产生低沸点富余气相工质Ⅰ和高沸点富余液相工质Ⅰ;将低沸点富余气相工质Ⅰ经过外部冷源的冷凝后,进行气液分离,产生低沸点富余气相工质Ⅱ和高沸点富余液相工质Ⅱ;所述低沸点富余气相工质Ⅱ和高沸点富余液相工质Ⅱ之间相互热交换,将低沸点富余气相工质Ⅱ冷凝成为液相工质Ⅰ,高沸点富余液相工质Ⅱ吸热蒸发成为气相工质Ⅰ;液相工质Ⅰ依次经过放热降温以及吸热蒸发步骤后,成为气相工质Ⅱ;气相工质Ⅱ通过与液相工质Ⅰ相互热交换后,与气相工质Ⅰ混合为低沸点富余气相工质Ⅲ;高沸点富余液相工质Ⅰ放热后温度降低,再与低沸点富余气相工质Ⅲ相混合,并吸收低沸点富余气相工质Ⅲ,成为液相工质Ⅱ;液相工质Ⅱ与高沸点富余液相工质Ⅰ热交换后重新成为二元或二元以上的非共沸混合工质,并进行下一轮的循环。By heating the non-azeotropic mixture of binary or more than binary working fluid, a low-boiling point surplus gas-phase working substance I and a high-boiling point surplus liquid-phase working substance I are produced; after the low-boiling point surplus gas-phase working substance I is condensed by an external cold source, Carry out gas-liquid separation to produce low-boiling point surplus gas-phase working medium II and high-boiling point surplus liquid-phase working substance II; the low-boiling point surplus gas-phase working medium II and high-boiling point surplus liquid-phase working substance II are mutually heat-exchanged to convert the low-boiling point The excess gas-phase working medium II condenses to become liquid-phase working medium I, and the high-boiling point excess liquid-phase working medium II absorbs heat and evaporates to become gas-phase working medium I; liquid-phase working medium I undergoes the steps of exothermic cooling and endothermic evaporation to become gas-phase working Gas-phase working medium II; after heat exchange with liquid-phase working medium I, gas-phase working medium II is mixed with gas-phase working medium I to form low-boiling point surplus gas-phase working medium III; after high-boiling point surplus liquid-phase working medium I releases heat, the temperature decreases, and then mixed with gas-phase working substance I The low-boiling-point excess gas-phase working medium III is mixed and absorbed by the low-boiling point excess gas-phase working medium III to become liquid-phase working medium II; The zeotropic mixed working medium above yuan will be used for the next round of circulation.
本发明吸收压缩式自复叠制冷系统与使用方法与现有自复叠制冷系统相比,具有以下优点:Compared with the existing self-cascading refrigeration system, the absorption-compression self-cascading refrigeration system and the use method of the present invention have the following advantages:
1)与电驱动的压缩式自复叠系统相比,能同时采用低品位热能和电能进行联合驱动,可减少高品位能源消耗,增加对低品位能源的利用率。1) Compared with the electric-driven compression self-cascading system, it can simultaneously use low-grade thermal energy and electric energy for joint drive, which can reduce high-grade energy consumption and increase the utilization rate of low-grade energy.
2)与热驱动的吸收式自复叠系统相比,可利用变频压缩机对蒸发器出来的低压气体进行增压,避免了多级复叠,简化了系统配置,蒸发温度的调节也更为灵活。2) Compared with the heat-driven absorption self-cascading system, the frequency conversion compressor can be used to pressurize the low-pressure gas from the evaporator, which avoids multi-stage cascade, simplifies the system configuration, and makes the adjustment of the evaporation temperature easier. flexible.
3)与现有的电、热联合驱动的吸收压缩自复叠系统相比,本发明中的溶液吸收循环承担了更多的驱动功,因此进一步减少了压缩机功耗和压比,扩大了对低品位能源的利用率。另外,本发明具有吸收压缩和吸收式两种工作模式,可根据情况切换运行,如当所需蒸发温度较高或外部冷源温度较低时,系统可按热驱动的吸收式模式工作,从而大大减少了高品位电能消耗。3) Compared with the existing electric and thermal combined absorption compression self-cascading system, the solution absorption cycle in the present invention undertakes more driving work, thus further reducing the power consumption and pressure ratio of the compressor, and expanding the Utilization of low-grade energy. In addition, the present invention has two working modes of absorption compression and absorption, which can be switched according to the situation. For example, when the required evaporation temperature is high or the temperature of the external cold source is low, the system can work in the heat-driven absorption mode, thereby Greatly reduced high-grade power consumption.
附图说明Description of drawings
下面结合附图对本发明的具体实施方式作进一步详细说明。The specific implementation manners of the present invention will be described in further detail below in conjunction with the accompanying drawings.
图1是本发明吸收压缩式自复叠制冷系统的一种结构示意图;Fig. 1 is a kind of structural representation of absorption compression type self-cascading refrigeration system of the present invention;
图2是本发明吸收压缩式自复叠制冷系统的另外一种结构示意图。Fig. 2 is another structural schematic diagram of the absorption compression self-cascading refrigeration system of the present invention.
具体实施方式Detailed ways
实施实例1、如图1给出了一种吸收压缩式自复叠制冷系统,包括发生器1,溶液换热器2,吸收器4,溶液泵5,冷凝器6,气液分离器7,蒸发冷凝器8,第一气液换热器11,蒸发器13和压缩机14。Implementation example 1, Figure 1 provides a kind of absorption compression type self-cascading refrigeration system, including
发生器1的溶液出口与溶液换热器2的高温溶液管道的一端相互连通,溶液换热器2的高温溶液管道的另外一端与吸收器4的溶液进口相互连通;溶液换热器2的高温溶液管道端口和吸收器4的溶液进口之间设置有第一节流阀3;吸收器4的溶液出口与溶液换热器2的低温溶液管道的一端相互连通,溶液换热器2的低温溶液管道的另外一端与发生器1的溶液进口相互连通;吸收器4的溶液出口与溶液换热器2的低温溶液管道端口之间设置有溶液泵5;发生器1的气体出口与冷凝器6的冷凝管道的一端相互连通,冷凝器6的冷凝管道的另外一端与气液分离器7的湿蒸汽进口相互连通;气液分离器7的气体出口与蒸发冷凝器8的高温工质管道的一端相互连通,蒸发冷凝器8的高温工质管道的另外一端与第一气液换热器11的高温液体管道的一端相互连通,第一气液换热器11的高温液体管道的另外一端与蒸发器13的蒸发管道的一端相互连通,蒸发器13的蒸发管道的另外一端与第一气液换热器11的低温气体管道的一端相互连通,第一气液换热器11的低温气体管道的另外一端与压缩机14的气体入口相互连通;第一气液换热器11的高温液体管道的另外一端与蒸发器13的蒸发管道的端口之间设置有第三节流阀12;气液分离器7的溶液出口与蒸发冷凝器8的蒸发管道的一端相互连通;气液分离器7的溶液出口与蒸发冷凝器8的蒸发管道的端口之间设置有第二节流阀9;压缩机14的气体出口和蒸发冷凝器8的蒸发管道的另外一端分别与吸收器4的气体进口相互连通。The solution outlet of the
压缩机14的气体进口和压缩机14的气体出口之间连接有二通阀10。A two-
以上所述的压缩机14为变频压缩机,可根据设定出口压力进行控制。以上所述的发生器1内的工质为二元或二元以上的非共沸混合工质,吸收器1内吸收混合工质气体的溶液可仅由被吸收气体本身的液相组分构成,也可包括另外的在工作温度范围内基本不蒸发的第三方组分。所用混合工质可从工作温度、热物理性质及技术经济指标等方面进行选择。The above-mentioned
实际使用时,发生器1中的混合工质,具体步骤如下:In actual use, the mixed working fluid in
一、吸收压缩模式(如图1所示,压缩机14开启,二通阀10关闭):1. Absorption compression mode (as shown in Figure 1, the
1、外部热源对发生器1在高压下加热,使发生器1中的混合工质受热蒸发,产生低沸点富余气相工质Ⅰ和高沸点富余液相工质Ⅰ;1. The external heat source heats the
1.1、低沸点富余气相Ⅰ:1.1. Low boiling point excess gas phase I:
1.1.1、低沸点富余气相Ⅰ从发生器1的气体出口流出,进入冷凝器6的冷凝管道内,通过外部冷源对冷凝管道冷凝,冷凝管道中的低沸点富余气相Ⅰ温度降低,干度下降,成为湿蒸汽Ⅰ;1.1.1. The low boiling point excess gas phase I flows out from the gas outlet of the
1.1.2、湿蒸汽Ⅰ进入气液分离器7,气液分离器7将湿蒸汽Ⅰ进行气液分离,产生低沸点富余气相工质Ⅱ和高沸点富余液相工质Ⅱ;1.1.2. The wet steam I enters the gas-
1.1.3、低沸点富余气相工质Ⅱ从气液分离器7的气体出口流出,进入蒸发冷凝器8的冷凝管道内,低沸点富余气相工质Ⅱ在蒸发冷凝器8的冷凝管道内放热后,温度降低,冷凝成为与该气相工质等浓度的液相工质Ⅰ;1.1.3. The low-boiling point excess gas-phase working medium II flows out from the gas outlet of the gas-
同时,高沸点富余液相工质Ⅱ从气液分离器7的液体出口流出,通过第二节流阀9,压力从高压降到中压,同时温度下降后进入蒸发冷凝器8的蒸发管道;在蒸发冷凝器8的蒸发管道中,高沸点富余液相工质Ⅱ吸热蒸发后(低沸点富余气相工质Ⅱ在蒸发冷凝器8的冷凝管道内放热,被高沸点富余液相工质Ⅱ吸收),温度升高,成为气相工质Ⅰ;At the same time, the high-boiling-point excess liquid-phase working medium II flows out from the liquid outlet of the gas-
1.1.4、液相工质Ⅰ进入第一气液换热器11的高温液体管道,放热后温度进一步降低,然后通过第三节流阀12,压力从高压降低到低压,同时温度下降后进入蒸发器13的蒸发管道,并在蒸发器13的蒸发管道中吸热蒸发,温度升高,成为气相工质Ⅱ;1.1.4. The liquid-phase working medium I enters the high-temperature liquid pipeline of the first gas-
1.1.5、气相工质Ⅱ进入第一气液换热器11的低温气体管道,吸热(步骤1.1.4中,液相工质Ⅰ在第一气液换热器11的高温液体管道中放热)后温度进一步升高,然后进入压缩机14的气体进口,被压缩机14从低压增压到中压,最后从压缩机14的气体出口流出;1.1.5. The gas-phase working medium II enters the low-temperature gas pipeline of the first gas-
1.1.6、气相工质Ⅰ与气相工质Ⅱ混合为中压下的低沸点富余气相工质Ⅲ;1.1.6. Gas-phase working medium I and gas-phase working medium II are mixed to form low-boiling point-rich gas-phase working medium III under medium pressure;
1.2、高沸点富余液相工质Ⅰ:1.2. High boiling point excess liquid phase working medium Ⅰ:
1.2.1、从发生器1的液体出口流出的高沸点富余液相工质Ⅰ流入溶液换热器2的高温液体管道,放热后温度降低,再通过第一节流阀3降压到中压后进入吸收器4;1.2.1. The high-boiling-point excess liquid-phase working medium I flowing out from the liquid outlet of
2、中压下的低沸点富余气相工质Ⅲ进入吸收器4,与从吸收器4液体进口流入的高沸点富余液相工质Ⅰ相混合后被吸收,成为液相工质Ⅱ,而所放出的吸收潜热被外部冷源所带走;2. The low-boiling point excess gas-phase working medium III under medium pressure enters the
3、液相工质Ⅱ从吸收器4的液体出口流出后进入被溶液泵5,被溶液泵5加压后成为高压液体;3. The liquid-phase working medium II flows out from the liquid outlet of the
4、被溶液泵5加压的高压液体进入溶液换热器2的低温液体管道,吸热后温度升高(步骤1.2.1中,从发生器1的液体出口流出的高沸点富余液相工质Ⅰ在溶液换热器2的高温液体管道内放热),并从发生器1的液体进口流入发生器1。4. The high-pressure liquid pressurized by the
二、本发明的吸收压缩式自复叠制冷系统在吸收模式下工作时(压缩机14关闭,二通阀10打开),工作步骤如下:2. When the absorption-compression self-cascading refrigeration system of the present invention works in the absorption mode (the
1、外部热源对发生器1在高压下加热,使发生器1中的混合工质受热蒸发,产生低沸点富余气相工质Ⅰ和高沸点富余液相工质Ⅰ;1. The external heat source heats the
1.1、低沸点富余气相Ⅰ:1.1. Low boiling point excess gas phase I:
1.1.1、低沸点富余气相Ⅰ从发生器1的气体出口流出,进入冷凝器6的冷凝管道内,通过外部冷源对冷凝管道冷凝,冷凝管道中的低沸点富余气相Ⅰ温度降低,干度下降,成为湿蒸汽Ⅰ;1.1.1. The low boiling point excess gas phase I flows out from the gas outlet of the
1.1.2、湿蒸汽Ⅰ进入气液分离器7,气液分离器7将湿蒸汽Ⅰ进行气液分离,产生低沸点富余气相工质Ⅱ和高沸点富余液相工质Ⅱ;1.1.2. The wet steam I enters the gas-
1.1.3、低沸点富余气相工质Ⅱ从气液分离器7的气体出口流出,进入蒸发冷凝器8的冷凝管道内,低沸点富余气相工质Ⅱ在蒸发冷凝器8的冷凝管道内放热后,温度降低,冷凝成为与该气相工质等浓度的液相工质Ⅰ;1.1.3. The low-boiling point excess gas-phase working medium II flows out from the gas outlet of the gas-
同时,高沸点富余液相工质Ⅱ从气液分离器7的液体出口流出,通过第二节流阀9,压力从高压降到低压,同时温度下降后进入蒸发冷凝器8的蒸发管道;在蒸发冷凝器8的蒸发管道中,高沸点富余液相工质Ⅱ吸热蒸发后(低沸点富余气相工质Ⅱ在蒸发冷凝器8的冷凝管道内放热,被高沸点富余液相工质Ⅱ吸收),温度升高,成为气相工质Ⅰ;At the same time, the high-boiling-point excess liquid-phase working medium II flows out from the liquid outlet of the gas-
1.1.4、液相工质Ⅰ进入第一气液换热器11的高温液体管道,放热后温度进一步降低,然后通过第三节流阀12,压力从高压降低到低压,同时温度下降后进入蒸发器13的蒸发管道,并在蒸发器13的蒸发管道中吸热蒸发,温度升高,成为气相工质Ⅱ;1.1.4. The liquid-phase working medium I enters the high-temperature liquid pipeline of the first gas-
1.1.5、气相工质Ⅱ进入第一气液换热器11的低温气体管道,吸热(步骤1.1.4中,液相工质Ⅰ在第一气液换热器11的高温液体管道中放热)后温度进一步升高,然后通过二通阀10后流入吸收器4;1.1.5. The gas-phase working medium II enters the low-temperature gas pipeline of the first gas-
1.1.6、气相工质Ⅰ与气相工质Ⅱ混合为低压下的低沸点富余气相工质Ⅲ;1.1.6. Gas-phase working medium I and gas-phase working medium II are mixed to form low-boiling point-rich gas-phase working medium III under low pressure;
1.2、高沸点富余液相工质Ⅰ:1.2. High boiling point excess liquid phase working medium Ⅰ:
1.2.1、从发生器1的液体出口流出的高沸点富余液相工质Ⅰ流入溶液换热器2的高温液体管道,放热后温度降低,再通过第一节流阀3降压到低压后进入吸收器4;1.2.1. The high-boiling point excess liquid-phase working medium I flowing out from the liquid outlet of the
2、中压下的低沸点富余气相工质Ⅲ进入吸收器4,与从吸收器4液体进口流入的高沸点富余液相工质Ⅰ相混合后被吸收,成为液相工质Ⅱ,而所放出的吸收潜热被外部冷源所带走;2. The low-boiling point excess gas-phase working medium III under medium pressure enters the
3、液相工质Ⅱ从吸收器4的液体出口流出后进入被溶液泵5,被溶液泵5加压后成为高压液体;3. The liquid-phase working medium II flows out from the liquid outlet of the
4、被溶液泵5加压的高压液体进入溶液换热器2的低温液体管道,吸热后温度升高(步骤1.2.1中,从发生器1的液体出口流出的高沸点富余液相工质Ⅰ在溶液换热器2的高温液体管道内放热),并从发生器1的液体进口流入发生器1。4. The high-pressure liquid pressurized by the
吸收压缩式工作模式和吸收式工作模式可根据实际运行情况进行切换,当所需蒸发温度较低或冷源温度较高时,系统可切换为吸收压缩式工作模式运行;当所需蒸发温度较高或冷源温度较低时,系统可切换为吸收式工作模式运行。Absorption compression working mode and absorption working mode can be switched according to actual operating conditions. When the required evaporation temperature is low or the cooling source temperature is high, the system can switch to absorption compression working mode; when the required evaporation temperature is high When the temperature of the cold source is high or the temperature of the cold source is low, the system can switch to the absorption mode of operation.
实施实例2,如图2,系统由发生器1,溶液换热器2,第一节流阀3,吸收器4,溶液泵5,冷凝器6,气液分离器7,蒸发冷凝器8,第二节流阀9,二通阀10,第一气液换热器11,第三节流阀12,蒸发器13、压缩机14和第二气液换热器15组成。Implementation example 2, as shown in Figure 2, the system consists of
为减少发生器的吸热量,提高系统COP,在实施例2中,本发明的吸收压缩式自复叠制冷系统采用在实施例1的配置基础上,采用在发生器1、溶液换热器2和冷凝器6之间设置第二气液换热器15的设置方式:即,溶液换热器2的低温溶液管道与第二气液换热器15的低温液体管道相互连接,第二气液换热器15的低温液体管道与发生器1的溶液进口相连接;发生器1的气体出口与第二气液换热器15的高温气体管道相连接,第二气液换热器15的高温气体管道与冷凝器6的冷凝管道相互连接。其余连接方式与实施实例1完全相同。In order to reduce the heat absorption of the generator and improve the COP of the system, in
本实施例的的工作流程与实施实例1的区别如下:The difference between the workflow of this embodiment and the implementation example 1 is as follows:
1、从发生器1的气体出口流出的低沸点富余气相工质进入第二气液换热器15的高温气体管道,与同时进入第二气液换热器15的低温液体管道中的溶液换热,放热后被部分冷凝,温度降低,干度下降,再进入冷凝器6并在其冷凝管道中被外部冷源进一步部分冷凝,温度、干度进一步下降,成为湿蒸汽后进入气液分离器7;1. The low-boiling-point excess gas-phase working medium flowing out from the gas outlet of the
2、吸收器2的液体出口流入的液相工质被溶液泵5加压后成为高压液体,再进入溶液换热器2的低温液体管道,吸热后温度升高,再进入第二气液换热器15的低温液体管道,吸热后温度升高,最后从发生器1的液体进口流入发生器1。2. The liquid-phase working medium flowing in from the liquid outlet of the
其余工作流程与实施实例1完全相同。The rest of the work flow is exactly the same as that of Example 1.
实施实例2增设了第二气液换热器15,回收了发生器气体出口流出的低沸点富余气相工质在部分冷凝时排出的冷凝潜热,减少了在发生器中加热溶液时的热量消耗,可提高系统COP。Implementation example 2 adds the second gas-
实施实例1和实施实例2的计算参数见表1(针对1kg蒸发器混合制冷剂)。设计条件为:环境温度22℃,工质为R23/R134a,所需驱动热源的最高温度高于64.4℃,所需冷却液的最低温度低于24.2℃,发生器的发生压力为3Mpa,吸收器的压力为1.6Mpa,蒸发器的蒸发压力为0.6Mpa,制冷剂蒸发温度在-25.4℃~-3.9℃范围内。实施实例1计算得到的COP(定义为蒸发吸热量与压缩机功耗和发生器吸热量之比)为29.4%,系统火用效(定义为蒸发器输出的冷火用与系统全部火用输入之比)为23.45%;实施实例2与实施实例1相比,回收了发生器出口气相混合工质在部分冷凝时的一部分热量用于加热进入发生器的溶液,因此所需要发生器吸热量有所降低,使得COP和系统火用效分别升高到36.3%和26.7%,表明该改进具有一定实际效果。在表1相同条件下,相比专利CN102759218提出的压缩吸收耦合的吸收式自复叠制冷系统,本发明通过多消耗至少143.4kJ/kg的热量将压缩机功耗减少到59.5%,同时将压缩机压比从5减小到2.67,增加了对低品位能源的依赖,减小对高品位电能的消耗,从而有效地实现了本发明的最初目的。综上所述,本发明所提出的一种吸收压缩式自复叠制冷系统,具有较高效率,保留了压缩机增压的灵活性,减少对压缩机做功的依赖性,还能提高低品位能源利用率,压缩机排气温度低,具有较好的应用价值。The calculation parameters of implementation example 1 and implementation example 2 are shown in Table 1 (for 1kg evaporator mixed refrigerant). The design conditions are: the ambient temperature is 22°C, the working fluid is R23/R134a, the maximum temperature of the required driving heat source is higher than 64.4°C, the minimum temperature of the required cooling liquid is lower than 24.2°C, the pressure of the generator is 3Mpa, and the absorber The pressure of the evaporator is 1.6Mpa, the evaporation pressure of the evaporator is 0.6Mpa, and the evaporation temperature of the refrigerant is in the range of -25.4°C to -3.9°C. The COP (defined as the ratio of the heat absorbed by evaporation to the power consumption of the compressor and the heat absorbed by the generator) calculated in Example 1 is 29.4%. The input ratio) is 23.45%; compared with implementation example 1, implementation example 2 reclaims part of the heat of the generator outlet gas-phase mixed working medium when it is partially condensed and is used to heat the solution entering the generator, so the required generator absorbs The heat is reduced, so that the COP and system exergy efficiency rise to 36.3% and 26.7%, respectively, indicating that the improvement has a certain practical effect. Under the same conditions in Table 1, compared with the compression absorption coupling absorption self-cascading refrigeration system proposed by the patent CN102759218, the present invention reduces the power consumption of the compressor to 59.5% by consuming at least 143.4kJ/kg more heat, and simultaneously compresses The machine pressure ratio is reduced from 5 to 2.67, which increases the dependence on low-grade energy and reduces the consumption of high-grade electric energy, thereby effectively realizing the original purpose of the present invention. In summary, the absorption compression self-cascading refrigeration system proposed by the present invention has higher efficiency, retains the flexibility of compressor pressurization, reduces the dependence on compressor work, and can also improve low-grade Energy utilization rate, compressor discharge temperature is low, and has good application value.
以上实施实例中,可综合考虑具体的使用条件与要求、技术经济性能等因素合理确定系统的设计参数,以兼顾系统的适用性和经济性。In the above implementation examples, the design parameters of the system can be reasonably determined by comprehensively considering the specific use conditions and requirements, technical and economic performance and other factors, so as to take into account the applicability and economy of the system.
表1实施实例1、实施实例2的热力计算结果(1kg蒸发器混合制冷剂)Table 1 Thermodynamic calculation results of implementation example 1 and implementation example 2 (1kg evaporator mixed refrigerant)
最后,还需要注意的是,以上列举的仅是本发明的若干个具体实施例。显然,本发明不限于以上实施例,还可以有许多变形。本领域的普通技术人员能从本发明公开的内容直接导出或联想到的所有变形,均应认为是本发明的保护范围。Finally, it should be noted that the above examples are only some specific embodiments of the present invention. Obviously, the present invention is not limited to the above embodiments, and many variations are possible. All deformations that can be directly derived or associated by those skilled in the art from the content disclosed in the present invention should be considered as the protection scope of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310695791.XA CN103743150B (en) | 2013-12-17 | 2013-12-17 | Absorption-compression self-cascading refrigeration system and method of use |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310695791.XA CN103743150B (en) | 2013-12-17 | 2013-12-17 | Absorption-compression self-cascading refrigeration system and method of use |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103743150A true CN103743150A (en) | 2014-04-23 |
CN103743150B CN103743150B (en) | 2017-01-18 |
Family
ID=50500197
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310695791.XA Active CN103743150B (en) | 2013-12-17 | 2013-12-17 | Absorption-compression self-cascading refrigeration system and method of use |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103743150B (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104006570A (en) * | 2014-06-05 | 2014-08-27 | 中国科学院工程热物理研究所 | Direct and reverse cycle coupling based absorption and compression combined type refrigerating system and method |
CN104214988A (en) * | 2014-09-03 | 2014-12-17 | 中国科学院工程热物理研究所 | Absorption refrigeration system with dual temperature heat sources |
CN104482688A (en) * | 2014-11-27 | 2015-04-01 | 华南理工大学 | Solar absorbing compressing combined type refrigerating system and method |
CN105180507A (en) * | 2015-09-23 | 2015-12-23 | 内蒙古科技大学 | Self-overlapping vortex tube absorbing refrigerating system |
CN105823265A (en) * | 2015-04-13 | 2016-08-03 | 李华玉 | First-kind thermally driven compression-absorption heat pump |
CN105910341A (en) * | 2015-04-13 | 2016-08-31 | 李华玉 | First kind thermal driving compression-absorption heat pump |
CN106016821A (en) * | 2015-04-13 | 2016-10-12 | 李华玉 | First-class heat drive compression-absorption type heat pump |
CN106091474A (en) * | 2016-06-17 | 2016-11-09 | 珠海格力电器股份有限公司 | Ammonia water absorption-compression type refrigeration/heat pump system and heat exchange method |
CN110056936A (en) * | 2019-04-24 | 2019-07-26 | 东北大学 | A kind of low ebb electric heat storage cascade type heat pump heating system and mode |
CN110173929A (en) * | 2019-04-29 | 2019-08-27 | 同济大学 | A kind of absorption of band machinery recuperation of heat-compression mixture circulatory system and working method |
CN110325806A (en) * | 2016-10-05 | 2019-10-11 | 江森自控科技公司 | Heat pump for HVAC & R system |
CN111457616A (en) * | 2020-03-30 | 2020-07-28 | 普泛能源技术研究院(北京)有限公司 | Improved method for enhancing heat exchange of generator, generator and absorption refrigeration and heat pump |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4031712A (en) * | 1975-12-04 | 1977-06-28 | The University Of Delaware | Combined absorption and vapor-compression refrigeration system |
DE4415199A1 (en) * | 1994-04-30 | 1995-11-02 | Inst Luft Und Kaeltetechnik Gm | Refrigerating plant using absorption principle |
JP2004138316A (en) * | 2002-10-17 | 2004-05-13 | Tokyo Gas Co Ltd | Combined refrigeration equipment |
CN101886857A (en) * | 2010-07-08 | 2010-11-17 | 张端桥 | Parallel connection type solar collector tube generator and absorbing type refrigeration air-conditioning system formed by same |
CN102230686A (en) * | 2011-06-12 | 2011-11-02 | 浙江理工大学 | Lithium bromide absorption-compression type series boosting refrigeration/heating pump system |
CN102759218A (en) * | 2012-07-23 | 2012-10-31 | 浙江大学 | Auto-cascade low-temperature refrigerator of compressing, absorbing and coupling |
-
2013
- 2013-12-17 CN CN201310695791.XA patent/CN103743150B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4031712A (en) * | 1975-12-04 | 1977-06-28 | The University Of Delaware | Combined absorption and vapor-compression refrigeration system |
DE4415199A1 (en) * | 1994-04-30 | 1995-11-02 | Inst Luft Und Kaeltetechnik Gm | Refrigerating plant using absorption principle |
JP2004138316A (en) * | 2002-10-17 | 2004-05-13 | Tokyo Gas Co Ltd | Combined refrigeration equipment |
CN101886857A (en) * | 2010-07-08 | 2010-11-17 | 张端桥 | Parallel connection type solar collector tube generator and absorbing type refrigeration air-conditioning system formed by same |
CN102230686A (en) * | 2011-06-12 | 2011-11-02 | 浙江理工大学 | Lithium bromide absorption-compression type series boosting refrigeration/heating pump system |
CN102759218A (en) * | 2012-07-23 | 2012-10-31 | 浙江大学 | Auto-cascade low-temperature refrigerator of compressing, absorbing and coupling |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104006570B (en) * | 2014-06-05 | 2016-10-19 | 中国科学院工程热物理研究所 | Absorption-compression composite refrigeration system and method based on forward and reverse cycle coupling |
CN104006570A (en) * | 2014-06-05 | 2014-08-27 | 中国科学院工程热物理研究所 | Direct and reverse cycle coupling based absorption and compression combined type refrigerating system and method |
CN104214988A (en) * | 2014-09-03 | 2014-12-17 | 中国科学院工程热物理研究所 | Absorption refrigeration system with dual temperature heat sources |
CN104214988B (en) * | 2014-09-03 | 2016-05-04 | 中国科学院工程热物理研究所 | A kind of two temperature-heat-source absorption system |
CN104482688A (en) * | 2014-11-27 | 2015-04-01 | 华南理工大学 | Solar absorbing compressing combined type refrigerating system and method |
CN105910341B (en) * | 2015-04-13 | 2020-04-07 | 李华玉 | First-class thermally driven compression-absorption heat pump |
CN105910341A (en) * | 2015-04-13 | 2016-08-31 | 李华玉 | First kind thermal driving compression-absorption heat pump |
CN106016821A (en) * | 2015-04-13 | 2016-10-12 | 李华玉 | First-class heat drive compression-absorption type heat pump |
CN105823265A (en) * | 2015-04-13 | 2016-08-03 | 李华玉 | First-kind thermally driven compression-absorption heat pump |
CN105823265B (en) * | 2015-04-13 | 2020-04-07 | 李华玉 | First-class thermally driven compression-absorption heat pump |
CN105180507A (en) * | 2015-09-23 | 2015-12-23 | 内蒙古科技大学 | Self-overlapping vortex tube absorbing refrigerating system |
CN105180507B (en) * | 2015-09-23 | 2019-10-01 | 内蒙古科技大学 | A kind of Auto-cascade cycle vortex tube absorbent refrigeration system |
CN106091474A (en) * | 2016-06-17 | 2016-11-09 | 珠海格力电器股份有限公司 | Ammonia water absorption-compression type refrigeration/heat pump system and heat exchange method |
CN106091474B (en) * | 2016-06-17 | 2018-09-18 | 珠海格力电器股份有限公司 | Ammonia water absorption-compression type refrigeration/heat pump system and heat exchange method |
CN110325806A (en) * | 2016-10-05 | 2019-10-11 | 江森自控科技公司 | Heat pump for HVAC & R system |
US11486612B2 (en) | 2016-10-05 | 2022-11-01 | Johnson Controls Tyco IP Holdings LLP | Heat pump for a HVACandR system |
CN110056936A (en) * | 2019-04-24 | 2019-07-26 | 东北大学 | A kind of low ebb electric heat storage cascade type heat pump heating system and mode |
CN110056936B (en) * | 2019-04-24 | 2020-09-15 | 东北大学 | A kind of low valley electric heat storage cascade heat pump heating method |
CN110173929A (en) * | 2019-04-29 | 2019-08-27 | 同济大学 | A kind of absorption of band machinery recuperation of heat-compression mixture circulatory system and working method |
CN110173929B (en) * | 2019-04-29 | 2020-11-27 | 同济大学 | An absorption-compression mixed cycle system with mechanical heat recovery and its working method |
CN111457616A (en) * | 2020-03-30 | 2020-07-28 | 普泛能源技术研究院(北京)有限公司 | Improved method for enhancing heat exchange of generator, generator and absorption refrigeration and heat pump |
CN111457616B (en) * | 2020-03-30 | 2021-02-12 | 普泛能源技术研究院(北京)有限公司 | Improved method for enhancing heat exchange of generator, generator and absorption refrigeration and heat pump |
Also Published As
Publication number | Publication date |
---|---|
CN103743150B (en) | 2017-01-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103743150B (en) | Absorption-compression self-cascading refrigeration system and method of use | |
CN104929706B (en) | Combined cycle energy supplying system | |
CN106895603B (en) | Operation method of compression/absorption closed parallel compound gas heat pump system | |
CN101949611B (en) | Low-grade heat energy auxiliary-drive composite low-temperature refrigerating system | |
CN106766352A (en) | Steam jet type cooling device and its refrigerating method that heat/work(joint drives | |
CN105004100B (en) | Vapor compression refrigeration/heat pump system of single refrigerant circuit, more pressures of inspiration(Pi) | |
CN105135729B (en) | Vapor compression refrigeration/heat pump of single refrigerant loop, more pressures at expulsion | |
CN104132486B (en) | A kind of non-pump type thermojet refrigerating and circulating method and device | |
CN210688806U (en) | Refrigeration device | |
CN106225319A (en) | A kind of double evaporating temperatures refrigeration and heat pump air conditioner unit and the method for back-heating type non-azeotropic mixed working medium | |
CN110173913A (en) | A kind of steam compressed high temperature heat pump unit of very large super cooling degree | |
CN102287949A (en) | Self-cascade system with vortex tube | |
KR101449899B1 (en) | Economizer, Heat Pump and Cooling-heating System using thereof | |
CN106257159A (en) | A kind of double thermal source big temperature difference heat pump assembly and heating method | |
CN105004095B (en) | A composite heat pump system with cogeneration of transcritical cycle and two-stage absorption heat pump | |
CN211316632U (en) | Supercritical CO is striden in ejector pressure boost subcooling expander coupling2System for controlling a power supply | |
CN101776358B (en) | Varied concentration mixed working medium auto-cascade refrigerator | |
CN110793230A (en) | Large-temperature span high-temperature heat pump system | |
CN105019954B (en) | Combined cycle energy supplying system | |
CN211120093U (en) | A dual temperature refrigeration system with dual ejectors | |
CN109163470A (en) | A kind of ultralow temperature carbon dioxide water chiller-heater unit | |
CN211060438U (en) | Parallel compression machinery supercooling double-condenser combined supply system | |
CN102338504B (en) | Absorption-compression type dual-temperature second-kind heat pump system | |
CN205783983U (en) | The heat high efficiente callback device of air source handpiece Water Chilling Units | |
CN110701812A (en) | Supercritical CO is striden in ejector pressure boost subcooling expander coupling2System and application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20200907 Address after: 404601 group 6, Jiuliu village, Yongle Town, Fengjie County, Chongqing Patentee after: Chongqing Kuizhou Cold Chain Logistics Co.,Ltd. Address before: Hangzhou City, Zhejiang province 310018 Xiasha Higher Education Park No. 2 Street No. 5 Patentee before: Zhejiang University of Technology |