CN103731236B - Blind detection method for physical downlink control channel - Google Patents
Blind detection method for physical downlink control channel Download PDFInfo
- Publication number
- CN103731236B CN103731236B CN201210390801.4A CN201210390801A CN103731236B CN 103731236 B CN103731236 B CN 103731236B CN 201210390801 A CN201210390801 A CN 201210390801A CN 103731236 B CN103731236 B CN 103731236B
- Authority
- CN
- China
- Prior art keywords
- dci
- length
- crc
- adaptive
- detection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001514 detection method Methods 0.000 title abstract description 51
- 238000000034 method Methods 0.000 claims description 31
- 230000008569 process Effects 0.000 claims description 20
- 230000003044 adaptive effect Effects 0.000 claims description 12
- 238000012795 verification Methods 0.000 claims description 12
- 230000008859 change Effects 0.000 claims description 2
- 238000005259 measurement Methods 0.000 claims description 2
- 230000002776 aggregation Effects 0.000 description 6
- 238000004220 aggregation Methods 0.000 description 6
- 125000004122 cyclic group Chemical group 0.000 description 4
- 230000007423 decrease Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
Landscapes
- Mobile Radio Communication Systems (AREA)
Abstract
Description
技术领域technical field
本申请涉及移动通信技术领域,特别涉及长期演进项目(LTE,LongTermEvolution)/LTE-A系统,尤其涉及一种物理下行控制信道(PDCCH,PhysicalDownlinkControl Channel)盲检的方法。The present application relates to the technical field of mobile communication, in particular to the Long Term Evolution (LTE, Long Term Evolution)/LTE-A system, and in particular to a method for blind detection of a Physical Downlink Control Channel (PDCCH, Physical Downlink Control Channel).
背景技术Background technique
3GPP LTE/LTE-A系统中的PDCCH承载了各种类型的下行控制信息。基站根据用户设备(UE)的实际信道条件,通过分配不同的时频资源,采用合理的调制编码,将控制信息发送给UE。UE通常不知道当前PDCCH占用的控制信道元素(CCE,Control Channel Elements)的数目大小,传送的是什么下行控制信息(DCI,Downlink Control Information)格式信息,也不知道自己需要的信息在哪个位置。但是UE知道自己当前在期待什么信息,例如在空闲(Idle)态UE期待的信息是paging,SI;发起随机接入后期待的是随机接入信道(RACH)应答,在有上行数据等待发送的时候期待ULGrant等。对于不同的期望信息UE用相应的无线网络临时标识(RNTI)去和CCE信息做循环冗余校验码(CRC,Cyclic Redundancy Check)校验,如果CRC校验成功,那么UE就知道这个信息是自己需要的,也可以进一步知道相应的DCI格式、调制方式,从而解出DCI内容。这就是所谓的盲检过程。The PDCCH in the 3GPP LTE/LTE-A system carries various types of downlink control information. The base station sends control information to the UE by allocating different time-frequency resources and using reasonable modulation and coding according to the actual channel conditions of the user equipment (UE). The UE usually does not know the number of control channel elements (CCE, Control Channel Elements) occupied by the current PDCCH, what format information of the downlink control information (DCI, Downlink Control Information) is transmitted, and does not know where the information it needs is located. But the UE knows what information it is currently expecting. For example, the information that the UE expects in the idle (Idle) state is paging, SI; after initiating random access, it expects a random access channel (RACH) response, and there is uplink data waiting to be sent Time to look forward to ULGrant et al. For different expected information, the UE uses the corresponding radio network temporary identifier (RNTI) to check the cyclic redundancy check code (CRC, Cyclic Redundancy Check) with the CCE information. If the CRC check is successful, then the UE knows that the information is If you need it, you can further know the corresponding DCI format and modulation method, so as to decode the DCI content. This is the so-called blind detection process.
如果UE按照CCE的顺序依次搜索过去,那么UE侧的计算量是相当可观的,尤其是对于带宽比较大,CCE数目比较多的系统,因此,盲检效率的好坏与系统的数据处理量和反应时间等特性有着很大的联系,盲检效率越高,系统性能就越优越。UE通过PDCCH盲检的方式(不同的CCE集合,不同的搜索空间以及统计意义上尽量少的检测次数)接收下行控制信息,既要防止出现各类DCI误检,又要保证合理的检测门限,降低漏检概率。If the UE searches in the order of CCEs, the amount of calculation on the UE side is considerable, especially for systems with relatively large bandwidth and a large number of CCEs. Therefore, the efficiency of blind detection depends on the data processing capacity of the system and Response time and other characteristics have a great relationship, the higher the efficiency of blind detection, the better the system performance. The UE receives downlink control information through PDCCH blind detection (different CCE sets, different search spaces, and as few detection times as possible in the statistical sense). It is necessary to prevent various DCI false detections and ensure a reasonable detection threshold. Reduce the probability of missed detection.
现有技术中,PDCCH盲检过程包括:In the prior art, the PDCCH blind detection process includes:
步骤101:在每个下行子帧,UE对控制区OFDM符号进行检测,对PDCCH信道进行解映射、解调和解扰,解扰后的数据作为盲检的输入数据。Step 101: In each downlink subframe, the UE detects the OFDM symbols in the control region, performs demapping, demodulation and descrambling on the PDCCH channel, and the descrambled data is used as input data for blind detection.
步骤102:计算当前搜索起始位置。Step 102: Calculate the current search starting position.
步骤103:根据CCE集合等级L在相应的搜索空间的起始位置读取CCEs,将读取的数据进行解速率匹配、维特比(Viterbi)译码,然后再将得到数据进行RNTI解扰和CRC校验。Step 103: Read the CCEs at the starting position of the corresponding search space according to the CCE set level L, perform rate matching and Viterbi decoding on the read data, and then perform RNTI descrambling and CRC on the obtained data check.
步骤104:如果校验成功,则接收数据并结束本流程;否则,放弃此次搜索,继续执行步骤105;Step 104: If the verification is successful, receive the data and end this process; otherwise, give up this search and continue to execute step 105;
步骤105:判断是否搜索完当前空间中所有的候选PDCCHs,若否,搜索起始位置加L,返回步骤103进行下一次搜索;若是,执行步骤106。Step 105: Determine whether all candidate PDCCHs in the current space have been searched, if not, add L to the search start position, and return to step 103 for the next search; if yes, execute step 106.
步骤106:判断是否盲检完所有集合等级,若是,盲检结束,否则,进入下一集合等级返回步骤102。Step 106: Determine whether the blind inspection of all aggregation levels is completed, if yes, the blind inspection ends, otherwise, enter the next aggregation level and return to step 102.
现有技术中的PDCCH盲检过程存在如下缺点:The PDCCH blind detection process in the prior art has the following disadvantages:
(1)、不同RNTI解扰存在的误检概率,如基站发送给某用户一个DCI,由于信道的变化和噪声的干扰,其他用户采用不同的RNTI盲检同样有可能CRC校验正确。(1) False detection probability of different RNTI descrambling. For example, if the base station sends a DCI to a certain user, due to channel changes and noise interference, other users may use different RNTI blind detections, and the CRC check may be correct.
(2)、不同长度DCI解速率匹配引入的误检概率,如基站发送给某用户一个DCI,由于信道的变化和噪声的干扰,该用户盲检可能解析出多个不同长度的DCI,且CRC校验都正确。(2) The false detection probability introduced by DCI solution rate matching of different lengths. For example, if a base station sends a DCI to a certain user, due to channel changes and noise interference, the user’s blind detection may resolve multiple DCIs of different lengths, and the CRC Calibration is correct.
(3)、低信噪比环境中16bit CRC校验的误判概率,如某用户由于信道的变化和噪声的干扰,盲检结果同样有可能CRC校验正确,并解析出基站没有发送的DCI。(3) Misjudgment probability of 16bit CRC check in low signal-to-noise ratio environment. For example, due to channel changes and noise interference for a user, the blind check result may also be correct, and the DCI not sent by the base station can be analyzed .
发明内容Contents of the invention
本申请提供了一种物理下行控制信道盲检的方法,可以降低误检概率。The present application provides a method for blind detection of a physical downlink control channel, which can reduce the probability of false detection.
本申请实施例提供的一种物理下行控制信道盲检的方法,包括:A method for blind detection of a physical downlink control channel provided in an embodiment of the present application includes:
根据控制信道元素CCE集合等级L在相应的搜索空间的起始位置读取CCEs;Read CCEs at the starting position of the corresponding search space according to the control channel element CCE set level L;
采用第一长度对读取的数据进行解速率匹配,Viterbi译码,然后再将得到数据进行无线网络临时标识RNTI解扰和循环冗余校验码CRC校验,其中RNTI解扰后得到的下行控制信息DCI称为第一DCI,得到的CRC校验称为第一CRC校验;Use the first length to perform rate matching on the read data, Viterbi decoding, and then descramble the data obtained by wireless network temporary identification RNTI and cyclic redundancy check code CRC check, wherein the downlink obtained after RNTI descrambling The control information DCI is called the first DCI, and the obtained CRC check is called the first CRC check;
若第一CRC校验错误,则认为校验失败并结束本流程;否则,进一步采用第二长度对读取的数据进行解速率匹配,Viterbi译码,然后再将得到数据进行RNTI解扰和CRC校验,其中RNTI解扰后得到的下行控制信息DCI称为第二DCI,得到的CRC校验称为第二CRC校验;If the first CRC check is wrong, it is considered that the check fails and the process ends; otherwise, the second length is further used to perform derate matching on the read data, Viterbi decoding, and then perform RNTI descrambling and CRC on the obtained data Checking, wherein the downlink control information DCI obtained after RNTI descrambling is called the second DCI, and the obtained CRC check is called the second CRC check;
若第二CRC校验错误,则认为校验失败并结束本流程;否则,进一步判断第一DCI和第二DCI是否相同;若第一DCI和第二DCI不同,则认为校验失败并结束本流程;若相同,则认为校验成功,接收数据并结束本流程。If the second CRC check is wrong, consider the check failed and end this process; otherwise, further judge whether the first DCI and the second DCI are the same; if the first DCI and the second DCI are different, consider the check failed and end this process process; if they are the same, it is considered that the verification is successful, the data is received and the process ends.
较佳地,所述第一长度为CCE集合等级L对应的默认解速率匹配长度Lx,根据集合等级L=1/2/4/8,分别对应默认长度Lx=72/144/288/576。Preferably, the first length is the default solution rate matching length L x corresponding to the CCE aggregation level L, and according to the aggregation level L=1/2/4/8, corresponding to the default length L x =72/144/288/ 576.
较佳地,所述第二长度为自适应解速率匹配长度Ly,自适应长度Ly的取值范围为[(Ldci+16),Lx],其中Ldci为当前盲检DCI长度,Lx为当前CCE集合等级L对应的默认解速率匹配长度。Preferably, the second length is the adaptive solution rate matching length L y , and the value range of the adaptive length L y is [(L dci +16), L x ], where L dci is the current blind detection DCI length , L x is the default solution rate matching length corresponding to the current CCE set level L.
较佳地,自适应长度Ly为取值范围[(Ldci+16),Lx]内的确定值。Preferably, the adaptive length L y is a determined value within the value range [(L dci +16), L x ].
较佳地,自适应长度Ly为符合取值范围内的可变值。Preferably, the adaptive length L y is a variable value within a value range.
较佳地,自适应长度Ly随UE测量信噪比SNR变化而改变,其规律为:随SNR升高而减小,直到最小值(Ldci+16);随SNR降低而增大,直到最大值Lx。Preferably, the adaptive length L y changes as the UE measures the signal-to-noise ratio SNR, and its law is: decrease as the SNR increases until the minimum value (L dci +16); increase as the SNR decreases until Maximum L x .
从以上技术方案可以看出,如果默认长度解速率匹配或自适应长度解速率匹配最终的CRC校验失败,均认为校验失败;而即使两者均CRC校验成功,还需要验证两者得到的DCI是否相同,只有在DCI相同的情况下才认为校验成功,与现有技术中的常规PDCCH盲检流程相比,平均检测次数会增加一次,误检概率会有很大改善,同时由于组合盲检比常规盲检要求更严格,有利于提高PDCCH检测正确率,降低PDCCH误检风险。From the above technical solutions, it can be seen that if the final CRC check of the default length solution rate matching or adaptive length solution rate matching fails, the check is considered to be a failure; and even if both CRC checks are successful, it is necessary to verify both Whether the DCI is the same, only when the DCI is the same, the verification is considered successful. Compared with the conventional PDCCH blind detection process in the prior art, the average number of detections will increase by one time, and the probability of false detection will be greatly improved. At the same time, due to Combined blind detection has stricter requirements than conventional blind detection, which is conducive to improving the correct rate of PDCCH detection and reducing the risk of PDCCH false detection.
附图说明Description of drawings
图1为现有技术中的PDCCH盲检流程示意图;FIG. 1 is a schematic diagram of a PDCCH blind detection process in the prior art;
图2为本申请实施例提供的PDCCH盲检流程示意图。FIG. 2 is a schematic diagram of a PDCCH blind detection process provided by an embodiment of the present application.
具体实施方式detailed description
本申请针对现有PDCCH盲检过程存在的问题,通过组合盲检的方式,采用至少两种长度进行解速率匹配,通过平衡PDCCH检测门限,漏检概率,误检概率,平均检测次数和最大检测次数等指标的关系,整体上提高PDCCH检测正确率,降低PDCCH误检风险。This application aims at the problems existing in the existing PDCCH blind detection process. By combining blind detection, at least two lengths are used for solution rate matching, and by balancing the PDCCH detection threshold, missed detection probability, false detection probability, average detection times and maximum detection The relationship between indicators such as the number of times improves the PDCCH detection accuracy rate on the whole and reduces the risk of PDCCH false detection.
为使本申请技术方案的技术原理、特点以及技术效果更加清楚,以下结合具体实施例对本申请技术方案进行详细阐述。In order to make the technical principles, features and technical effects of the technical solution of the present application clearer, the technical solution of the present application will be described in detail below in conjunction with specific embodiments.
本申请技术方案主要是针对图1所示现有技术的PDCCH盲检流程中的步骤103加以改进,改进后的步骤103如图2所示,包括如下步骤:The technical solution of the present application is mainly aimed at improving step 103 in the PDCCH blind detection process of the prior art shown in Figure 1, and the improved step 103 is shown in Figure 2, including the following steps:
步骤103-1:根据CCE集合等级L在相应的搜索空间的起始位置读取CCEs。Step 103-1: Read the CCEs at the starting position of the corresponding search space according to the CCE set level L.
步骤103-2:采用第一长度对读取的数据进行解速率匹配,Viterbi译码,然后再将得到数据进行无线网络临时标识RNTI解扰和循环冗余校验码CRC校验,其中RNTI解扰后得到的下行控制信息DCI称为第一DCI,得到的CRC校验称为第一CRC校验。Step 103-2: Use the first length to perform derate matching on the read data, Viterbi decoding, and then perform wireless network temporary identifier RNTI descrambling and cyclic redundancy check code CRC check on the obtained data, wherein RNTI descrambling The downlink control information DCI obtained after scrambling is called the first DCI, and the obtained CRC check is called the first CRC check.
步骤103-3:判断第一CRC校验是否正确,若是,执行步骤103-4,否则认为校验失败,转至步骤105。Step 103-3: Determine whether the first CRC check is correct, if yes, execute step 103-4, otherwise consider the check failed, go to step 105.
步骤103-4:采用第二长度对读取的数据进行解速率匹配,Viterbi译码,然后再将得到数据进行RNTI解扰和CRC校验,其中RNTI解扰后得到的下行控制信息DCI称为第二DCI,得到的CRC校验称为第二CRC校验。Step 103-4: Use the second length to perform derate matching on the read data, Viterbi decoding, and then perform RNTI descrambling and CRC check on the obtained data, wherein the downlink control information DCI obtained after RNTI descrambling is called For the second DCI, the obtained CRC check is called the second CRC check.
步骤103-5:判断第二CRC校验是否正确,若是,执行步骤103-6,否则认为校验失败,转至步骤105。Step 103-5: Determine whether the second CRC check is correct, if yes, execute step 103-6, otherwise consider the check failed, go to step 105.
步骤103-6:判断第一DCI和第二DCI是否相同,若是,执行步骤103-7;否则,认为校验失败转至步骤105。Step 103-6: Determine whether the first DCI and the second DCI are the same, if yes, perform step 103-7; otherwise, consider the verification failed and go to step 105.
步骤103-7:认为校验成功,则接收数据并结束本流程。Step 103-7: If the verification is considered successful, the data is received and this process ends.
较佳地,第一长度为CCE集合等级L对应的默认解速率匹配长度Lx,根据集合等级L=1/2/4/8,分别对应默认长度Lx=72/144/288/576。Preferably, the first length is the default solution rate matching length L x corresponding to the CCE aggregation level L, which corresponds to the default length L x =72/144/288/576 respectively according to the aggregation level L=1/2/4/8.
较佳地,第二长度为自适应解速率匹配长度Ly,自适应长度Ly的取值范围为[(Ldci+16),Lx],其中Ldci为当前盲检DCI长度,Lx为当前CCE集合等级L对应的默认解速率匹配长度。Preferably, the second length is the adaptive solution rate matching length L y , and the value range of the adaptive length L y is [(L dci +16), L x ], wherein L dci is the current blind detection DCI length, L x is the default solution rate matching length corresponding to the current CCE set level L.
本申请实施例给出几种确定Ly的方法:The embodiment of the present application provides several methods for determining Ly :
(1)自适应长度Ly为取值范围[(Ldci+16),Lx]内的确定值,确定值可以配置为最大值Lx,或者配置为最小值(Ldci+16),或者配置为其他中间值。例如,可以采用如下公式来确定Ly的值:Ly={(Ldci+16)+(Lx)}/2;(1) The adaptive length L y is a certain value within the value range [(L dci +16), L x ], and the certain value can be configured as the maximum value L x , or as the minimum value (L dci +16), Or configure to other intermediate values. For example, the following formula can be used to determine the value of L y : L y ={(L dci +16)+(L x )}/2;
(2)自适应长度Ly为符合取值范围内的可变值,随UE测量信噪比SNR变化而改变,其规律为:随SNR升高而减小,直到最小值(Ldci+16);随SNR降低而增大,直到最大值Lx。(2) The adaptive length L y is a variable value within the value range, which changes with the change of UE measurement signal-to-noise ratio SNR . ); increases with decreasing SNR up to a maximum value of L x .
上述两种方法仅用于示例,并不用于对本申请技术方案进行限定。The above two methods are only used as examples, and are not intended to limit the technical solution of the present application.
从以上流程可以看出,如果默认长度解速率匹配或自适应长度解速率匹配最终的CRC校验失败,均认为校验失败;而即使两者均CRC校验成功,还需要验证两者得到的DCI是否相同,只有在DCI相同的情况下才认为校验成功,从而避免了因偶然CRC误差导致的误检。It can be seen from the above process that if the final CRC check of the default length solution rate matching or adaptive length solution rate matching fails, the check is considered to be a failure; Whether the DCIs are the same, the verification is considered successful only when the DCIs are the same, thereby avoiding false detections caused by accidental CRC errors.
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请的保护范围,凡在本申请技术方案的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本申请保护的范围之内。The above descriptions are only preferred embodiments of the application, and are not intended to limit the scope of protection of the application. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the technical solutions of the application are It should be included within the protection scope of this application.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210390801.4A CN103731236B (en) | 2012-10-15 | 2012-10-15 | Blind detection method for physical downlink control channel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210390801.4A CN103731236B (en) | 2012-10-15 | 2012-10-15 | Blind detection method for physical downlink control channel |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103731236A CN103731236A (en) | 2014-04-16 |
CN103731236B true CN103731236B (en) | 2017-02-01 |
Family
ID=50455177
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210390801.4A Active CN103731236B (en) | 2012-10-15 | 2012-10-15 | Blind detection method for physical downlink control channel |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103731236B (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105763286A (en) * | 2014-12-15 | 2016-07-13 | 深圳市中兴微电子技术有限公司 | Method and device for identifying wrong detection control information |
CN104683069B (en) | 2015-02-13 | 2018-04-27 | 大唐联仪科技有限公司 | A kind of physical downlink control channel PDCCH blind checking method and system |
WO2018145258A1 (en) | 2017-02-08 | 2018-08-16 | 南通朗恒通信技术有限公司 | Terminal for dynamic scheduling, and method and apparatus in base station |
EP3679668B1 (en) | 2017-09-29 | 2022-04-06 | Huawei Technologies Co., Ltd. | Devices and methods for encoding downlink control information in a communication network |
CN108039940B (en) * | 2017-11-24 | 2020-12-11 | 天津大学 | An Invalid CCE Elimination Method for PDCCH in LTE System |
WO2020019298A1 (en) * | 2018-07-27 | 2020-01-30 | 华为技术有限公司 | Signal transmission method and device |
CN109196798B (en) * | 2018-08-31 | 2021-11-09 | 北京小米移动软件有限公司 | Auxiliary method and device for detecting physical downlink control channel |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1482669A1 (en) * | 2003-05-30 | 2004-12-01 | Matsushita Electric Industrial Co., Ltd. | A method and receiver for buffering data employing HARQ and two stage rate matching |
CN101801014A (en) * | 2010-03-05 | 2010-08-11 | 上海华为技术有限公司 | Method and device for detecting physical broadcast channel |
CN102035623A (en) * | 2010-12-21 | 2011-04-27 | 大唐移动通信设备有限公司 | Method and device for confirming system frame number |
CN102056198A (en) * | 2009-10-31 | 2011-05-11 | 华为技术有限公司 | Downlink channel transmission and detection method, device and system |
CN102170649A (en) * | 2011-04-19 | 2011-08-31 | 中兴通讯股份有限公司 | Method and apparatus of PDCCH blind detection apparatus |
CN102186193A (en) * | 2011-05-06 | 2011-09-14 | 中兴通讯股份有限公司 | Method and device for judging error detection |
CN102215183A (en) * | 2010-04-01 | 2011-10-12 | 中兴通讯股份有限公司 | Blind detection device and method |
CN102684820A (en) * | 2011-03-16 | 2012-09-19 | 中兴通讯股份有限公司 | Method and device for judging error detection of physical downlink control channel |
-
2012
- 2012-10-15 CN CN201210390801.4A patent/CN103731236B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1482669A1 (en) * | 2003-05-30 | 2004-12-01 | Matsushita Electric Industrial Co., Ltd. | A method and receiver for buffering data employing HARQ and two stage rate matching |
CN102056198A (en) * | 2009-10-31 | 2011-05-11 | 华为技术有限公司 | Downlink channel transmission and detection method, device and system |
CN101801014A (en) * | 2010-03-05 | 2010-08-11 | 上海华为技术有限公司 | Method and device for detecting physical broadcast channel |
CN102215183A (en) * | 2010-04-01 | 2011-10-12 | 中兴通讯股份有限公司 | Blind detection device and method |
CN102035623A (en) * | 2010-12-21 | 2011-04-27 | 大唐移动通信设备有限公司 | Method and device for confirming system frame number |
CN102684820A (en) * | 2011-03-16 | 2012-09-19 | 中兴通讯股份有限公司 | Method and device for judging error detection of physical downlink control channel |
CN102170649A (en) * | 2011-04-19 | 2011-08-31 | 中兴通讯股份有限公司 | Method and apparatus of PDCCH blind detection apparatus |
CN102186193A (en) * | 2011-05-06 | 2011-09-14 | 中兴通讯股份有限公司 | Method and device for judging error detection |
Non-Patent Citations (4)
Title |
---|
3GPPLTE系统下行链路译码的研究与实现;滕菲;《中国优秀硕士学位论文全文数据库(电子期刊)》;20111115;第I136-97页 * |
LTE物理下行控制信道盲检过程研究;罗友宝;《电视技术》;20101217;第75-79页 * |
UE specific PDCCH scrambling for blind detection complexity reduction;Mitsubishi Electric;《3GPP TSG RAN WG1 #52 meeting》;20080215;第1-5页 * |
一种LTE系统中减少PDCCH盲检次数的方法;李小文;《电子技术应用》;20120406;第38卷(第4期);第87-89页 * |
Also Published As
Publication number | Publication date |
---|---|
CN103731236A (en) | 2014-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103731236B (en) | Blind detection method for physical downlink control channel | |
CN109673056B (en) | Adaptive blind detection method of PDCCH based on power measurement in 5G system | |
US10582476B2 (en) | Search process for physical downlink control channels in a communication system | |
US9172504B2 (en) | Method, apparatus and system for downlink channel transmission | |
CN103069731B (en) | Transceiving method and device in multi-carrier wireless communication system | |
CN101841892B (en) | Method, equipment and system for indicating and detecting PDCCH in a carrier aggregation system | |
US8843792B2 (en) | Method and apparatus for reducing false detection of control information | |
CN105680996A (en) | PDCCH blind detection method in LTE system | |
CN102244885A (en) | Blind detection method and device for control channel | |
JP2018511279A (en) | Method and system for blind detection of physical downlink control channel (PDCCH) | |
US20140211712A1 (en) | Method for transmitting downlink control information, method for blind detection, base station and terminal equipment | |
CN102246548A (en) | Blind detection method and device for physical layer downlink control channel | |
WO2012151976A1 (en) | Method and device for judging error detection | |
CN113938257B (en) | Method, device and equipment for detecting physical downlink control channel and storage medium | |
CN111867097B (en) | Method and device for receiving downlink control information | |
CN102195742A (en) | Configuration method of physical downlink control channel, network equipment and terminal | |
CN107210834A (en) | Receiver apparatus and its method | |
CN103297187A (en) | Mitigation of false pdcch detection | |
WO2016197472A1 (en) | Method and device for processing enhanced physical downlink control channel, and storage medium | |
US10178659B2 (en) | Device and method of handling shortened enhanced physical downlink control channel transmission | |
CN109952730A (en) | It is decoded using power detection with the channel signal of the unknown identification information of station of the error-tested based on redundancy reduction | |
CN119544413A (en) | Downlink control information detection method, device, electronic device, storage medium and computer program product | |
KR102407923B1 (en) | Apparatus and method for controlling decoding | |
CN112583418B (en) | CRC verification method and device | |
CN115052358A (en) | PDCCH blind detection method, device, electronic equipment and storage medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CP03 | Change of name, title or address |
Address after: 100080 Putian Building, No. 6 North Second Street, Haidian District, Beijing Patentee after: POTEVIO INFORMATION TECHNOLOGY Co.,Ltd. Address before: 100080 6, two North Street, Haidian District, Beijing, Haidian Patentee before: PETEVIO INSTITUTE OF TECHNOLOGY Co.,Ltd. |
|
CP03 | Change of name, title or address |