CN103731082B - A kind of permanent-magnetic synchronous motor stator magnetic linkage method of estimation based on Direct Torque Control - Google Patents
A kind of permanent-magnetic synchronous motor stator magnetic linkage method of estimation based on Direct Torque Control Download PDFInfo
- Publication number
- CN103731082B CN103731082B CN201410003662.4A CN201410003662A CN103731082B CN 103731082 B CN103731082 B CN 103731082B CN 201410003662 A CN201410003662 A CN 201410003662A CN 103731082 B CN103731082 B CN 103731082B
- Authority
- CN
- China
- Prior art keywords
- flux linkage
- angle
- control
- compensation
- motor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 45
- 230000001360 synchronised effect Effects 0.000 title claims abstract description 12
- 230000004907 flux Effects 0.000 claims abstract description 170
- 238000004364 calculation method Methods 0.000 claims abstract description 53
- 238000004422 calculation algorithm Methods 0.000 claims description 10
- 230000008569 process Effects 0.000 claims description 5
- 230000000737 periodic effect Effects 0.000 claims description 3
- 238000009825 accumulation Methods 0.000 claims 1
- 230000001276 controlling effect Effects 0.000 claims 1
- 230000001105 regulatory effect Effects 0.000 claims 1
- 238000005070 sampling Methods 0.000 abstract description 5
- 230000000694 effects Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 230000006870 function Effects 0.000 description 7
- 230000008859 change Effects 0.000 description 6
- 230000006872 improvement Effects 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000003631 expected effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Landscapes
- Control Of Ac Motors In General (AREA)
- Control Of Electric Motors In General (AREA)
Abstract
本文公开一种应用到永磁同步电机直接转矩控制系统的闭环磁链估计方法。利用实时采样测出的电压、电流信号,按照电压法磁链计算公式进行计算,得出初步估计磁链,然后将其与目标控制磁链作为输入量利用PI调节器进行动态闭环矫正,使其最终跟踪上目标控制磁链。其中直接转矩控制的给定控制磁链作为磁链估计器中的目标控制磁链幅值,利用位置传感器得出转子位置角,对该角度信息进行动态补偿,作为目标控制磁链的角度信息。通过对电压法磁链估计器的闭环调节,可以有效的消除其积分环节因直流偏置、积分初值造成的磁链计算偏差,精确地估计出真实磁链,在实际直接转矩控制系统中有很好的快速性、鲁棒性。
This paper discloses a closed-loop flux linkage estimation method applied to a direct torque control system of a permanent magnet synchronous motor. Use the voltage and current signals measured by real-time sampling to calculate according to the calculation formula of the voltage method flux linkage to obtain a preliminary estimated flux linkage, and then use the PI regulator to perform dynamic closed-loop correction with the target control flux linkage as the input to make it Finally track the upper target to control the magnetic link. The given control flux linkage of direct torque control is used as the target control flux linkage amplitude in the flux linkage estimator, the rotor position angle is obtained by using the position sensor, and the angle information is dynamically compensated as the angle information of the target control flux linkage . Through the closed-loop adjustment of the voltage method flux linkage estimator, it can effectively eliminate the flux calculation deviation caused by the DC bias and the initial integral value of the integral link, and accurately estimate the real flux linkage. In the actual direct torque control system It has good rapidity and robustness.
Description
技术领域technical field
本发明涉及一种永磁同步电机的磁链估计方法,尤其涉及一种基于直接转矩控制的永磁同步电机定子磁链估计方法。The invention relates to a method for estimating flux linkage of a permanent magnet synchronous motor, in particular to a method for estimating stator flux linkage of a permanent magnet synchronous motor based on direct torque control.
背景技术Background technique
在电机动态控制领域当中,直接转矩控制技术以其快速、准确的控制性能,越来越多的应用到永磁同步电机、异步机以及其他一些新型电机当中。在直接转矩动态控制当中,两个直接控制对象是转矩和磁链,二者都是由电压、电流、位置信息等变化量以及电机参数计算出来,因为转矩是由磁链和其它参数计算得出,所以对两个控制对象的计算问题实质上就是对电机磁链的准确计算。In the field of motor dynamic control, direct torque control technology is more and more applied to permanent magnet synchronous motors, asynchronous machines and other new motors because of its fast and accurate control performance. In direct torque dynamic control, the two direct control objects are torque and flux linkage, both of which are calculated from changes in voltage, current, position information, and motor parameters, because torque is determined by flux linkage and other parameters Therefore, the calculation of the two control objects is essentially the accurate calculation of the flux linkage of the motor.
磁链计算方法一般可分为电压计算法和电流计算法。电压计算法较为简单,它是利用定子电压方程,通过积分器计算出来的;电流法是利用转子电压方程,经过变换代入,得出磁链计算方程。电压法理论模型简单,但是实际应用当中,却存在一些问题,如低速时定子电阻变化、积分初值、采样信号中的直流偏置等的影响。电流计算法也存在缺点,电流法较多的依赖电机参数,而电机运行当中,随着温度以及速度的变化,电机参数也会有一定变化,此外高速时受转子时间常数的影响,致使高速时电流法磁链计算不如电压法精确。根据电压法和电流法的特点,可以使用低速电流法、高速电压法的计算方式,通过滤波器实现二者的转换,但是这种方式较为复杂而且是以两种方法均能在其工作区域内,实现精确计算为前提的。众多学者根据电压法以及电流法的特点做出了许多改进方法,如加入低通滤波器法,高低通滤波器配合法、闭环矫正法,卡尔曼滤波器法等,这些方法都一定程度上提高了磁链估计的准确度,但是也带来一些问题,加滤波器方法可以消除初始积分误差,衰减直流偏置,但会带来相位幅值偏置,高低通滤波器配合可以使在低通滤波器的基础上一定程度上改观磁链估计效果,但是引入了较多的参数,闭环矫正法稳态时有着不错的效果,但在实际直接转矩控制系统当中,动态时直接转矩控制效果会和磁链计算效果相互影响,双重影响的结果使得整个控制系统很容易失去稳定性,加滤波器的磁链计算方式也会存在动态时效果较差的问题,卡尔曼滤波器一定程度上缓解了电流法的缺点,但无法避免磁链计算中对电机参数的依赖,这对于不同工况下电机参数变化较大的电机来说仍然会存在较大的计算误差,加入卡尔曼滤波器也需要相对复杂的计算。Flux linkage calculation methods can generally be divided into voltage calculation method and current calculation method. The voltage calculation method is relatively simple. It uses the stator voltage equation and is calculated by an integrator; the current method uses the rotor voltage equation and substitutes it in to obtain the flux linkage calculation equation. The theoretical model of the voltage method is simple, but in practical applications, there are some problems, such as the influence of the stator resistance change at low speed, the initial value of the integral, and the DC bias in the sampling signal. The current calculation method also has shortcomings. The current method relies more on the motor parameters, and during the operation of the motor, with the change of temperature and speed, the motor parameters will also change to a certain extent. In addition, it is affected by the time constant of the rotor at high speed, resulting in The current method flux calculation is not as accurate as the voltage method. According to the characteristics of the voltage method and the current method, the calculation methods of the low-speed current method and the high-speed voltage method can be used, and the conversion between the two can be realized through a filter, but this method is more complicated and can be performed within the working area of the two methods. , to achieve accurate calculations. Many scholars have made many improvement methods according to the characteristics of voltage method and current method, such as adding low-pass filter method, high-low pass filter matching method, closed-loop correction method, Kalman filter method, etc., these methods have improved to a certain extent. The accuracy of the flux linkage estimation is improved, but it also brings some problems. The method of adding a filter can eliminate the initial integral error and attenuate the DC offset, but it will bring a phase amplitude offset. The combination of high and low pass filters can make the low pass On the basis of the filter, the effect of flux linkage estimation is improved to a certain extent, but more parameters are introduced. The closed-loop correction method has a good effect in steady state, but in the actual direct torque control system, the effect of direct torque control in dynamic state It will interact with the calculation effect of the flux linkage. The result of the double influence makes the entire control system easily lose stability. The calculation method of the flux linkage with the filter also has the problem of poor dynamic effect. The Kalman filter alleviates it to a certain extent. The shortcomings of the current method are eliminated, but the dependence on the motor parameters in the calculation of the flux linkage cannot be avoided. For motors with large changes in motor parameters under different working conditions, there will still be large calculation errors. Adding the Kalman filter also requires relatively complex calculations.
发明内容Contents of the invention
发明目的:针对上述现有技术,提出一种基于直接转矩控制的永磁同步电机定子磁链估计方法,过对电压法磁链估计器的闭环调节,有效的消除其积分环节因直流偏置、积分初值造成的磁链计算偏差,精确地估计出真实磁链。Purpose of the invention: Aiming at the above prior art, a permanent magnet synchronous motor stator flux estimation method based on direct torque control is proposed, through the closed-loop adjustment of the voltage method flux estimator, it can effectively eliminate the direct current bias of the integral link. , Integrate the flux calculation deviation caused by the initial value, and accurately estimate the real flux.
技术方案:一种基于直接转矩控制的永磁同步电机定子磁链估计方法,在初始控制周期计算磁链时,实时测得永磁同步电机的三相电压Ua、Ub、Uc,以及三相电流ia、ib、ic,将三相旋转坐标系下的所述电压和电流变换到αβ坐标系的电压uα、uβ、电流iα、iβ;在直接转矩控制系统一个控制周期内根据式(1)对所述电压uα、uβ进行积分计算,得到初步估计磁链 Technical solution: A permanent magnet synchronous motor stator flux linkage estimation method based on direct torque control. When calculating the flux linkage in the initial control cycle, the three-phase voltages U a , U b , and U c of the permanent magnet synchronous motor are measured in real time. and the three-phase current i a , i b , i c , transform the voltage and current in the three-phase rotating coordinate system into the voltage u α , u β , current i α , i β in the αβ coordinate system; in the direct torque In one control cycle of the control system, the voltage u α and u β are integrated and calculated according to the formula (1), and the preliminary estimated flux linkage is obtained
其中,Rs为电机定子电阻;Among them, R s is the motor stator resistance;
将所述初步估计磁链和目标控制磁链参考值通过PI控制算法得到直流偏置电压补偿量Vα、Vβ;其中,根据式(2)得到PI控制算法的积分项sumα、sumβ:The initial estimated flux linkage and target control flux linkage reference value The DC bias voltage compensation V α and V β are obtained through the PI control algorithm; among them, the integral items sum α and sum β of the PI control algorithm are obtained according to formula (2):
其中,Ki为积分系数;sumα′、sum′β为直接转矩控制系统上一控制周期得到的积分项,sumα′、sum′β初始值均为0;为目标控制磁链参考值:Among them, K i is the integral coefficient; sum α ′ and sum′ β are the integral items obtained in the previous control cycle of the direct torque control system, and the initial values of sum α ′ and sum′ β are both 0; To control the flux reference value for the target:
其中,ψ*为直接转矩控制系统的给定控制磁链,ψ*作为目标控制磁链幅值;θ为目标控制磁链的定子磁链角;Among them, ψ * is the given control flux linkage of the direct torque control system, ψ * is the amplitude of the target control flux linkage; θ is the stator flux angle of the target control flux linkage;
根据式(3)得到所述直流偏置电压补偿量Vα、Vβ: According to formula (3), the DC bias voltage compensation amounts V α and V β are obtained:
其中,Kp为比例系数;Among them, K p is the proportional coefficient;
根据所述直流偏置电压补偿量Vα、Vβ,根据式(4)计算得到磁链估计器估计的电机磁链 According to the DC bias voltage compensation amount V α , V β , the motor flux linkage estimated by the flux linkage estimator is calculated according to formula (4)
在下一个控制周期时,利用上一控制周期估计的电机磁链替换初步估计磁链代入式(2)计算,形成闭环调节系统;当闭环调节器实现对目标控制磁链 动态跟踪时,所述磁链估计器的估计磁链即为准确的电机磁链。In the next control cycle, use the estimated motor flux linkage of the previous control cycle Replace the initial estimate of the flux linkage Substituting formula (2) into the calculation to form a closed-loop adjustment system; when the closed-loop regulator realizes the target control flux linkage When tracking dynamically, the flux linkage estimator estimates the flux linkage is the exact motor flux linkage.
作为本发明的优选方案,利用转子位置传感器得出直接转矩控制下电机的转子位置角γ,并对所述转子位置角γ进行闭环动态补偿后,得出所述目标控制磁链的定子磁链角θ;所述动态补偿计算如式(5)所示:As a preferred solution of the present invention, the rotor position sensor is used to obtain the rotor position angle γ of the motor under direct torque control, and after closed-loop dynamic compensation is performed on the rotor position angle γ, the stator flux of the target control flux linkage is obtained. Chain angle θ; the dynamic compensation calculation is shown in formula (5):
θ=γ+δ(5)θ=γ+δ(5)
其中,γ为转子位置角;δ为转矩角,对转子位置角的补偿角等于所述转矩角;Wherein, γ is the rotor position angle; δ is the torque angle, and the compensation angle to the rotor position angle is equal to the torque angle;
所述转矩角计算如式(6)所示:The calculation of the torque angle is shown in formula (6):
其中,为由所述利用反正切函数计算得出的目标控制磁链定子磁链角;为根据所述式(2)计算得到的估计电机磁链利用反正切函数计算得出的电机磁链的定子磁链角;in, for the reason stated Using the target control flux stator flux angle calculated by the arc tangent function; is the estimated motor flux calculated according to the formula (2) The stator flux angle of the motor flux calculated by using the arctangent function;
在闭环补偿过程中,对补偿值进行周期性计算时采用累加器累加计算的方法,如式(7)所示:In the closed-loop compensation process, the accumulator is used to calculate the compensation value periodically, as shown in formula (7):
sum=sum+gel(7)sum=sum+gel(7)
其中sum为补偿角累加器,其初始值为0,gel为根据所述式(6)计算得出的转子位置角的补偿角;累加器记忆本直接转矩控制系统控制周期的角度补偿值,并代入下周期的角度补偿计算中实现角度的周期性动态补偿,所述周期值设置为0.3-3个电机电气周期。Wherein sum is the compensation angle accumulator, and its initial value is 0, and gel is the compensation angle of the rotor position angle calculated according to the formula (6); the accumulator memorizes the angle compensation value of the direct torque control system control cycle, And it is substituted into the angle compensation calculation of the next cycle to realize the periodic dynamic compensation of the angle, and the cycle value is set to 0.3-3 electrical cycles of the motor.
有益效果:与现有技术相比,本发明利用实时采样测出的电压、电流信号,按照电压法磁链计算公式进行计算,得出初步估计磁链,然后将其与目标控制磁链作为输入量利用PI调节器进行动态闭环矫正,使其最终跟踪上目标控制磁链。其中直接转矩控制的给定控制磁链作为磁链估计器中的目标控制磁链幅值,利用位置传感器得出转子位置角,对该角度信息进行动态补偿,作为目标控制磁链的角度信息。通过对电压法磁链估计器的闭环调节,本发明消除了磁链计算中的磁链直流偏置、积分初始值误差问题,有效的提高磁链计算的准确性,同时也会一定程度上降低磁链计算当中对定子电阻的敏感性,相较于加入滤波环节磁链计算方法以及没有角度补偿的闭环磁链计算方法,本发明算法在直接转矩控制系统表现出更好的准确性、鲁棒性。在实际直接转矩控制系统中磁链的角度信息准确性是整个控制统稳定性的关键环节,所以目标磁链的角度信息估计要做到稳定、连续、准确,因为本发明中采用了转子位置角作为磁链估计的基本角度信息,所以有较好的稳性行、连续性,通过角度补偿可以有效地提高磁链估计的准确性。Beneficial effects: Compared with the prior art, the present invention utilizes the voltage and current signals measured by real-time sampling, calculates according to the flux calculation formula of the voltage method, obtains a preliminary estimated flux linkage, and then uses it and the target control flux linkage as input The quantity uses the PI regulator for dynamic closed-loop correction, so that it can finally track the upper target control flux linkage. The given control flux linkage of direct torque control is used as the target control flux linkage amplitude in the flux linkage estimator, the rotor position angle is obtained by using the position sensor, and the angle information is dynamically compensated as the angle information of the target control flux linkage . Through the closed-loop adjustment of the voltage method flux linkage estimator, the present invention eliminates the flux linkage DC bias and integral initial value error problems in the flux linkage calculation, effectively improves the accuracy of the flux linkage calculation, and at the same time reduces the Sensitivity to stator resistance in the calculation of flux linkage, compared with the calculation method of adding filter link flux linkage and the closed-loop flux linkage calculation method without angle compensation, the algorithm of the present invention shows better accuracy and robustness in the direct torque control system Stickiness. In the actual direct torque control system, the accuracy of the angle information of the flux linkage is the key link of the stability of the whole control system, so the estimation of the angle information of the target flux linkage should be stable, continuous and accurate, because the rotor position is used in the present invention Angle is the basic angle information of flux linkage estimation, so it has better stability and continuity. Angle compensation can effectively improve the accuracy of flux linkage estimation.
附图说明Description of drawings
图1是永磁电机直接转矩控制框图;Figure 1 is a block diagram of direct torque control of a permanent magnet motor;
图2是为磁链计算整体框图;Figure 2 is an overall block diagram for flux linkage calculation;
图3是为磁链角度补偿原理框图;Fig. 3 is a functional block diagram for flux linkage angle compensation;
图4是为磁链角度补偿计算框图;Fig. 4 is the calculation block diagram for flux linkage angle compensation;
图5是为采用本发明方法进行角度补偿的磁链计算效果;Fig. 5 is the flux linkage calculation effect for adopting the method of the present invention to carry out angle compensation;
图6是为不进行角度补偿时的磁链计算效果;Figure 6 is the calculation effect of flux linkage without angle compensation;
图7角度补偿值的变化情况Figure 7 The change of angle compensation value
具体实施方式detailed description
下面结合附图对本发明做更进一步的解释。The present invention will be further explained below in conjunction with the accompanying drawings.
本发明的matlab仿真实施例的直接转矩控制系统框图如图1所示,其中,永磁同步电机的参数为:极对数p=2,定子电阻Rs=2Ω,直轴电感Ld=31.06mH,交轴电感Lq=80.69mH,永磁磁链直接转矩控制系统采用开关表矢量控制方式,根据控制系统特性确定控制流程中用到的控制参数,本实施例中,matlab仿真步长设置为1×10-5s,直流电源电压设置为700V,磁链估计器中Kp=100,积分系数Ki=200,角度补偿周期为0.018s,进行角度补偿时,PI调节器输出限幅为[-120,120],控制转速设定值为1300r/min,负载转矩为40N·m,控制磁链给定值为1.13Wb,此外电压采样中含有3V的直流偏置。The direct torque control system block diagram of the matlab simulation embodiment of the present invention is as shown in Figure 1, wherein, the parameter of permanent magnet synchronous motor is: number of pole pairs p=2, stator resistance Rs= 2Ω , direct axis inductance Ld = 31.06mH, quadrature axis inductance L q =80.69mH, permanent magnet flux linkage The direct torque control system adopts the switch table vector control method, and the control parameters used in the control process are determined according to the characteristics of the control system. In this embodiment, the matlab simulation step length is set to 1×10 -5 s, and the DC power supply voltage is set to 700V , in the flux linkage estimator, K p =100, the integral coefficient K i =200, the angle compensation period is 0.018s, when the angle compensation is performed, the output limit of the PI regulator is [-120,120], and the control speed setting value is 1300r/ min, the load torque is 40N·m, the given value of the control flux linkage is 1.13Wb, and the voltage sampling contains a DC bias of 3V.
图2所示的磁链估计器整体的原理框图,利用电压法计算磁链,首先需要利用传感器采样电压、电流信号,利用位置传感器采样得出转子位置角γ。在初始计算磁链时,实时测得永磁同步电机的三相电压Ua、Ub、Uc,以及三相电流ia、ib、ic,将三相旋转坐标系下的所述电压和电流变换到αβ坐标系的电压uα、uβ、电流iα、iβ;坐标转换公式如下式所示:The overall functional block diagram of the flux linkage estimator shown in Figure 2 uses the voltage method to calculate the flux linkage. First, it needs to use the sensor to sample the voltage and current signals, and use the position sensor to sample the rotor position angle γ. In the initial calculation of flux linkage, the three-phase voltage U a , U b , U c of the permanent magnet synchronous motor and the three-phase current ia , ib , ic were measured in real time, and the three-phase rotating coordinate system Transform the voltage and current into the voltage u α , u β , current i α , i β of the αβ coordinate system; the coordinate transformation formula is shown in the following formula:
在直接转矩控制系统一个控制周期内,根据式(1)对所述电压uα、uβ进行积分计算,得到初步估计磁链 In one control cycle of the direct torque control system, the voltage u α and u β are integrated and calculated according to formula (1), and the preliminary estimated flux linkage is obtained
其中,Rs为电机定子电阻;Among them, R s is the motor stator resistance;
将所述初步估计磁链和目标控制磁链参考值通过PI控制算法得到直流偏置电压补偿量Vα、Vβ;通过PI调节器形成一个闭环调节系统,对数字控制系统中存在的采样误差以及电机转子所在位置带来的积分计算初始值误差进行动态矫正。其中,PI控制器的比例积分环节根据式(2)、式(3)进行计算;其中,根据式(2)得到PI控制算法的积分项sumα、sumβ:The initial estimated flux linkage and target control flux linkage reference value The DC offset voltage compensation V α and V β are obtained through the PI control algorithm; a closed-loop adjustment system is formed through the PI regulator, and the sampling error in the digital control system and the initial value error of the integral calculation caused by the position of the motor rotor are analyzed. dynamic correction. Among them, the proportional integral link of the PI controller is calculated according to formula (2) and formula (3); among them, the integral items sum α and sum β of the PI control algorithm are obtained according to formula (2):
其中,Ki为积分系数;sumα′、sum′β为直接转矩控制系统上一控制周期得到的积分项,sumα′、sum′β初始值均为0;为目标控制磁链参考值:Among them, K i is the integral coefficient; sum α ′ and sum′ β are the integral items obtained in the previous control cycle of the direct torque control system, and the initial values of sum α ′ and sum′ β are both 0; To control the flux reference value for the target:
其中,ψ*为直接转矩控制系统的给定控制磁链,ψ*作为目标控制磁链幅值;θ为目标控制磁链的定子磁链角;Among them, ψ * is the given control flux linkage of the direct torque control system, ψ * is the amplitude of the target control flux linkage; θ is the stator flux angle of the target control flux linkage;
根据式(3)得到所述直流偏置电压补偿量Vα、Vβ:According to formula (3), the DC bias voltage compensation amounts V α and V β are obtained:
其中,Kp为比例系数;Among them, K p is the proportional coefficient;
根据所述直流偏置电压补偿量Vα、Vβ,根据式(4)计算得到磁链估计器估计的电机磁链 According to the DC bias voltage compensation amount V α , V β , the motor flux linkage estimated by the flux linkage estimator is calculated according to formula (4)
当闭环调节器实现对目标控制磁链动态跟踪时,所述直流偏置电压补偿量Vα、Vβ均为0,所述初步估计磁链即为准确的电机磁链 When the closed-loop regulator achieves the target control flux linkage During dynamic tracking, the DC bias voltage compensation V α and V β are both 0, and the preliminary estimated flux linkage is the exact motor flux linkage
其中,直接转矩控制系统的给定控制磁链ψ*作为目标控制磁链幅值,电机额定转速运行范围内磁链的给定值按照效率最高、损耗最小的原则来给定磁链幅值,当电机转速高于额定转速时按照弱磁算法给定磁链幅值;目标控制磁链给定幅值如下式所示:Among them, the given control flux linkage ψ * of the direct torque control system is used as the target control flux linkage amplitude, and the given value of the flux linkage within the rated speed operating range of the motor is given according to the principle of the highest efficiency and the smallest loss. , when the motor speed is higher than the rated speed, the flux linkage amplitude is given according to the field weakening algorithm; the given amplitude of the target control flux linkage is shown in the following formula:
其中,Pl为电机的损耗功率,ρ=交轴电感/直轴电感,即电机凸极率,Te为电机电磁转矩,f(Pl)为依据损耗最小原则得出的磁链计算幅值,φf为永磁磁链。当电机运行在额定转速以上时,目标控制磁链设定幅值按照弱磁算法f′(Te,n)来计算,两个计算函数和电机本身特性以及实际控制算法目标相关。对于交直轴电感不等的电机,依据电机转矩和转矩角变化一直性原则建立最大值约束。Among them, P l is the loss power of the motor, ρ = quadrature axis inductance/direct axis inductance, that is, the saliency of the motor, Te is the electromagnetic torque of the motor, and f(P l ) is the calculation amplitude of flux linkage based on the principle of minimum loss value, φ f is the permanent magnet flux linkage. When the motor runs above the rated speed, the target control flux linkage setting amplitude is calculated according to the flux-weakening algorithm f'(Te,n), and the two calculation functions are related to the characteristics of the motor itself and the actual control algorithm target. For motors with unequal inductance between AC and D axis, the maximum value constraint is established according to the principle of the linearity of the motor torque and torque angle change.
如图3所示为角度补偿的矢量原理图,目标控制磁链的角度信息利用位置传感器测量得出,因为测量出的位置信息信号并不是准确的磁链计算角度信息信号,所以需对位置信息信号进行角度补偿,得出定子磁链角θ。利用转子位置传感器得出直接转矩控制下电机的转子位置角γ,并对所述转子位置角γ进行闭环动态补偿后,得出所述目标控制磁链的定子磁链角θ;所述动态补偿计算如式(5)所示:Figure 3 shows the vector schematic diagram of angle compensation. The angle information of the target control flux linkage is measured by the position sensor. Because the measured position information signal is not an accurate flux linkage calculation angle information signal, the position information needs to be corrected. The signal is angle compensated to obtain the stator flux linkage angle θ. Use the rotor position sensor to obtain the rotor position angle γ of the motor under direct torque control, and after performing closed-loop dynamic compensation to the rotor position angle γ, obtain the stator flux linkage angle θ of the target control flux linkage; the dynamic Compensation calculation is shown in formula (5):
θ=γ+δ(5)θ=γ+δ(5)
其中,γ为转子位置角;δ为转矩角,对转子位置角的补偿角等于所述转矩角;Wherein, γ is the rotor position angle; δ is the torque angle, and the compensation angle to the rotor position angle is equal to the torque angle;
所述转矩角计算如式(6)所示:The calculation of the torque angle is shown in formula (6):
其中,为由所述利用反正切函数计算得出的目标控制磁链定子磁链角;为根据所述式(2)计算得到的估计电机磁链利用反正切函数计算得出的电机磁链的定子磁链角;in, for the reason stated Using the target control flux stator flux angle calculated by the arc tangent function; is the estimated motor flux calculated according to the formula (2) The stator flux angle of the motor flux calculated by using the arctangent function;
图3中为定子磁链,该磁链包括定子电流产生的磁链和经由磁场调制后永磁磁链从图3中可以看出αβ坐标系中将定子磁链分解到两坐标轴的定子磁链角为转子位置角γ与转矩角δ之和。结合图3可得出电机的转矩方程:Figure 3 is the stator flux linkage, which includes the flux linkage generated by the stator current and permanent magnet flux linkage after magnetic field modulation It can be seen from Fig. 3 that in the αβ coordinate system, the stator flux linkage angle decomposed into two coordinate axes is the sum of the rotor position angle γ and the torque angle δ. Combined with Figure 3, the torque equation of the motor can be obtained:
其中,Tem为电机电磁转矩,δ为定转子磁链夹角,即转矩角,p为定子绕组极对数,Ld为电机的直轴电感,Lq为电机的交轴电感,ψs为定子磁链幅值。由式(7)可以看出,转矩是和转矩角相关的一个物理量,其具体关系根据电机相应参数来定,对于交直轴电感相等的永磁电机来说,在定子磁链幅值恒定以及电机其他参数不变的情况下,电机的转矩和sinδ成正比,即δ在0-90度变化的范围内,随着电机转矩的增加,转矩角也会随之增加。磁链角度为转矩角和转速位置角之和,若在不进行角度补偿的情况下,相当于直接将转速位置角作为磁链角,定子磁链幅值一定时,在小转矩运行的情况下,因为转矩角较小,所以不会带来较大误差,若在大转矩的情况下,转矩角较大,则会带来很大的磁链计算误差,从而使得整个DTC控制系统不能实现预期效果,所以进行准确的角度补偿是必要的,对于凸极率不为1的永磁电机,在大转矩运行的情况下,转矩角较大,若不采用角度补偿,磁链计算误差也会很大。Among them, T em is the electromagnetic torque of the motor, δ is the angle between the stator and rotor flux linkage, that is, the torque angle, p is the number of pole pairs of the stator winding, L d is the direct axis inductance of the motor, L q is the quadrature axis inductance of the motor, ψ s is the amplitude of stator flux linkage. It can be seen from formula (7) that the torque is a physical quantity related to the torque angle, and its specific relationship is determined according to the corresponding parameters of the motor. And when other parameters of the motor remain unchanged, the torque of the motor is proportional to sin δ, that is, δ is in the range of 0-90 degrees. As the torque of the motor increases, the torque angle will also increase. The flux angle is the sum of the torque angle and the rotational speed position angle. If no angle compensation is performed, it is equivalent to directly taking the rotational speed position angle as the flux linkage angle. When the stator flux linkage amplitude is constant, the Under normal circumstances, because the torque angle is small, it will not bring a large error. If the torque angle is large in the case of high torque, it will bring a large flux calculation error, so that the entire DTC The control system cannot achieve the expected effect, so it is necessary to perform accurate angle compensation. For permanent magnet motors with a saliency ratio not equal to 1, the torque angle is relatively large in the case of high torque operation. If angle compensation is not used, Flux linkage calculation errors will also be large.
在闭环补偿过程中,对补偿值进行周期性计算时采用累加器累加计算的方法,如式(8)所示:In the closed-loop compensation process, the accumulator is used to calculate the compensation value periodically, as shown in formula (8):
sum=sum+gel(8)sum=sum+gel(8)
其中sum为补偿角累加器,其初始值为0,gel为根据所述式(6)计算得出的转子位置角的补偿角;累加器记忆本直接转矩控制系统控制周期的角度补偿值,并代入下周期的角度补偿计算中实现角度的周期性动态补偿,所述周期值设置为0.3-3个电机电气周期。Wherein sum is the compensation angle accumulator, and its initial value is 0, and gel is the compensation angle of the rotor position angle calculated according to the formula (6); the accumulator memorizes the angle compensation value of the direct torque control system control cycle, And it is substituted into the angle compensation calculation of the next cycle to realize the periodic dynamic compensation of the angle, and the cycle value is set to 0.3-3 electrical cycles of the motor.
如图4所述为磁链角度补偿的具体过程,首先将计算的磁链和设定磁链的相位计算出来,根据正切的角度计算特点,以及计算磁链与设定磁链相位的先后关系,分情况考虑二者的角度差,如图4所示,将估计电机磁链利用反正切函数计算其定子磁链角,将目标控制磁链的利用反正切函数计算得出的目标控制磁链定子磁链角,而后将二者作差,因为电机一般正常工况下该角度差值,应在[-π/2,π/2]之间,所以超出了这个范围,则根据具体情况增加一个正切的角度周期π,或者减小一个周期π,具体为当二者的差值小于-π/2时,则应增加一个周期,当二者的差值大于π/2时,则应减小一个周期,这样保证了输出的二者之差一定落在[-π/2,π/2]区间内。因为整个直接转矩控制系统,需一定的动作响应时间,所以需要设定一个补偿周期,每一个周期补偿一次,周期值设置一般选取0.3-3个电机电气周期,设定一个补偿范围,即步长动作阀值,在这个范围内更新补偿值,若不在这个范围内,也就是目标控制磁链和计算磁链相位相差不大时,不需更新补偿值,还采用上一个补偿周期得出的角度补偿值,补偿器采用了一个累加器模式,因为当实际值与计算值相差角度为gel时,若补偿值为gel,则这个补偿周期过后实际磁链和计算磁链之间相位差接近零,下一个补偿周期的补偿角度就接近零,则再到下一个补偿周期二者的相位差又会恢复,实际直接转矩控制系统中,最终二者的相位差值会稳定到gel/2,采用一个累加器好处是只要锁定计算磁链和实际磁链之间的相位差进行补偿后,就将补偿值记忆在累加器里,从而将实际准确的相位差稳定下来,进行角度补偿,使得计算磁链和实际磁链的相位差落在设定的范围内。此外要对累加器的输出值进行限幅,防止出现很大的补偿偏差,造成整个控制系统失去稳定性。As shown in Figure 4, it is the specific process of flux linkage angle compensation. First, calculate the phase of the calculated flux linkage and the set flux linkage, according to the calculation characteristics of the tangent angle, and the sequence relationship between the calculated flux linkage and the set flux linkage phase , considering the angle difference between the two according to the situation, as shown in Figure 4, the motor flux linkage will be estimated Using the arctangent function to calculate the stator flux angle, the target control flux Use the target control flux stator flux angle calculated by the arctangent function, and then make a difference between the two, because the angle difference should be between [-π/2, π/2] under normal working conditions of the motor , so beyond this range, according to the specific situation, add a tangent angle period π, or decrease a period π, specifically when the difference between the two is less than -π/2, you should increase a period, when the two When the difference is greater than π/2, one cycle should be reduced, which ensures that the difference between the two outputs must fall within the interval [-π/2, π/2]. Because the entire direct torque control system requires a certain action response time, it is necessary to set a compensation cycle, and compensate once in each cycle. The cycle value setting generally selects 0.3-3 electrical cycles of the motor, and sets a compensation range. Long action threshold, update the compensation value within this range. If it is not within this range, that is, when the phase difference between the target control flux linkage and the calculated flux linkage is not large, there is no need to update the compensation value, and the value obtained in the previous compensation cycle is used. Angle compensation value, the compensator adopts an accumulator mode, because when the angle difference between the actual value and the calculated value is gel, if the compensation value is gel, the phase difference between the actual flux linkage and the calculated flux linkage will be close to zero after the compensation period , the compensation angle in the next compensation cycle will be close to zero, and then the phase difference between the two will recover in the next compensation cycle. In the actual direct torque control system, the final phase difference between the two will stabilize to gel/2, The advantage of using an accumulator is that as long as the phase difference between the calculated flux linkage and the actual flux linkage is locked and compensated, the compensation value will be stored in the accumulator, thereby stabilizing the actual and accurate phase difference and performing angle compensation. The phase difference between the flux linkage and the actual flux linkage falls within the set range. In addition, it is necessary to limit the output value of the accumulator to prevent a large compensation deviation from causing the entire control system to lose stability.
图5和图6比较了直转矩控制系统中采用闭环磁链估计方法在进行角度补偿和不进行角度补偿的情况下,两相旋转坐标系中,一相磁链的计算情况,从图中可以看出,进行角度补偿可以有效地提高磁链的估计效果。Figure 5 and Figure 6 compare the calculation of one-phase flux linkage in the two-phase rotating coordinate system in the case of using the closed-loop flux linkage estimation method in the direct torque control system with and without angle compensation. From the figure It can be seen that angle compensation can effectively improve the estimation effect of flux linkage.
图7为采用角度补偿方法后,角度补偿计算值的变化情况。从图中可以看出,利用角度补偿计算模块可以很快的锁定系统的角度补偿值,实现对磁链计算模块稳定,准确的角度补偿。Fig. 7 shows the change of the angle compensation calculation value after adopting the angle compensation method. It can be seen from the figure that the angle compensation value of the system can be quickly locked by using the angle compensation calculation module, and stable and accurate angle compensation for the flux linkage calculation module can be realized.
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。The above is only a preferred embodiment of the present invention, it should be pointed out that, for those of ordinary skill in the art, without departing from the principle of the present invention, some improvements and modifications can also be made, and these improvements and modifications can also be made. It should be regarded as the protection scope of the present invention.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410003662.4A CN103731082B (en) | 2014-01-03 | 2014-01-03 | A kind of permanent-magnetic synchronous motor stator magnetic linkage method of estimation based on Direct Torque Control |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410003662.4A CN103731082B (en) | 2014-01-03 | 2014-01-03 | A kind of permanent-magnetic synchronous motor stator magnetic linkage method of estimation based on Direct Torque Control |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103731082A CN103731082A (en) | 2014-04-16 |
CN103731082B true CN103731082B (en) | 2016-05-18 |
Family
ID=50455044
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410003662.4A Active CN103731082B (en) | 2014-01-03 | 2014-01-03 | A kind of permanent-magnetic synchronous motor stator magnetic linkage method of estimation based on Direct Torque Control |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103731082B (en) |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101840509B1 (en) * | 2014-04-29 | 2018-03-20 | 엘에스산전 주식회사 | Rotation angle estimation module for sensorless vector control of PMSM |
CN106330033B (en) * | 2015-07-10 | 2018-11-23 | 广州汽车集团股份有限公司 | A kind of method for controlling permanent magnet synchronous motor, device and permanent-magnet synchronous system |
CN105245159A (en) * | 2015-09-08 | 2016-01-13 | 江苏大学 | Direct torque control method of five-phase permanent magnet fault-tolerant motor based on new pulse width modulation |
CN106533295B (en) * | 2016-12-21 | 2018-12-28 | 阳光电源股份有限公司 | Permanent magnet synchronous motor method for controlling position-less sensor and device |
CN107181439B (en) * | 2017-07-20 | 2019-10-01 | 中车株洲电力机车研究所有限公司 | A kind of method for controlling permanent magnet synchronous motor and system |
CN107241045B (en) * | 2017-07-31 | 2019-09-13 | 广东威灵电机制造有限公司 | Permanent-magnetic synchronous motor stator Flux Observation Method, flux observer and storage medium |
CN107294456B (en) * | 2017-07-31 | 2020-02-11 | 广东威灵电机制造有限公司 | Permanent magnet synchronous motor stator flux linkage observation method, flux linkage observer and storage medium |
CN107248831B (en) * | 2017-07-31 | 2019-10-25 | 广东威灵电机制造有限公司 | Permanent-magnetic synchronous motor stator Flux Observation Method, flux observer and storage medium |
CN107294455B (en) * | 2017-07-31 | 2019-10-01 | 广东威灵电机制造有限公司 | Permanent-magnetic synchronous motor stator Flux Observation Method, flux observer and storage medium |
CN107809191B (en) * | 2017-10-24 | 2020-01-07 | 厦门金龙汽车新能源科技有限公司 | Angle observation method for synchronous motor speed sensorless |
CN110943667B (en) * | 2018-09-25 | 2023-06-09 | 欧姆龙(上海)有限公司 | Control device and control method for induction motor |
CN109450324A (en) * | 2018-12-14 | 2019-03-08 | 中车株洲电机有限公司 | Bearing calibration, system, device and readable storage medium storing program for executing based on direct-axis voltage |
CN112039383B (en) * | 2019-05-14 | 2022-03-29 | 麦克维尔空调制冷(武汉)有限公司 | Motor control method, motor control device and motor system |
CN110333468B (en) * | 2019-07-12 | 2021-07-02 | 核工业理化工程研究院 | Inversion test correction method applied to rectifier |
CN110995109B (en) * | 2019-10-29 | 2021-08-10 | 东南大学 | Direct torque flux linkage control method for alternating current magnetic modulation type memory motor |
CN112825466B (en) * | 2019-11-19 | 2022-08-16 | 中车株洲电力机车研究所有限公司 | Control method and system of permanent magnet synchronous motor |
CN110943661B (en) * | 2019-11-25 | 2021-07-20 | 阳光电源股份有限公司 | Rotor magnetic field orientation deviation online correction method and device |
CN112910351B (en) * | 2021-01-20 | 2023-03-31 | 上海辛格林纳新时达电机有限公司 | Three-phase motor VF control vibration suppression method and device |
CN112865641B (en) * | 2021-04-13 | 2023-06-02 | 中国第一汽车股份有限公司 | Method and device for reducing motor torque fluctuation, vehicle and storage medium |
CN114649983A (en) * | 2022-02-23 | 2022-06-21 | 美的威灵电机技术(上海)有限公司 | Field weakening control method and device for motor |
CN117294198B (en) * | 2023-11-24 | 2024-02-20 | 珠海格力电器股份有限公司 | Motor flux linkage compensation method, device, storage medium and controller |
CN117674659B (en) * | 2023-12-11 | 2024-08-23 | 南京工业大学 | Stator resistance sensitivity analysis method for sensorless control system based on voltage model |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102237843A (en) * | 2011-07-14 | 2011-11-09 | 中国矿业大学 | High-performance variable frequency speed regulation method of high-voltage winding asynchronous motor rotor |
CN103414424A (en) * | 2013-06-19 | 2013-11-27 | 山西潞安环保能源开发股份有限公司 | AC motor stator flux linkage estimation method |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2151918A1 (en) * | 2008-08-07 | 2010-02-10 | Bombardier Transportation GmbH | Operating a synchronous motor having a permanent magnet rotor |
-
2014
- 2014-01-03 CN CN201410003662.4A patent/CN103731082B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102237843A (en) * | 2011-07-14 | 2011-11-09 | 中国矿业大学 | High-performance variable frequency speed regulation method of high-voltage winding asynchronous motor rotor |
CN103414424A (en) * | 2013-06-19 | 2013-11-27 | 山西潞安环保能源开发股份有限公司 | AC motor stator flux linkage estimation method |
Non-Patent Citations (2)
Title |
---|
基于改进磁链观测器的感应电机转速辨识;陈振锋;《电工技术学报》;20120430;第27卷(第4期);第42-47页 * |
无速度传感器异步电机矢量控制研究;洪亮等;《沈阳化工大学学报》;20130331;第27卷(第1期);第74-77页 * |
Also Published As
Publication number | Publication date |
---|---|
CN103731082A (en) | 2014-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103731082B (en) | A kind of permanent-magnetic synchronous motor stator magnetic linkage method of estimation based on Direct Torque Control | |
US9059653B2 (en) | Rotating electrical machine control device | |
US7501776B2 (en) | Apparatus for controlling high speed operation of motor and method thereof | |
CN110350835A (en) | A kind of permanent magnet synchronous motor method for controlling position-less sensor | |
CN107171610B (en) | Rotor position estimation method, rotor position estimation device and motor | |
CN105680754B (en) | A kind of rectangular axis current phasor composite controller of permagnetic synchronous motor | |
TWI580170B (en) | Control device of ac rotary machine and method for calculating degree of correction of magnetic pole position | |
CN102684592B (en) | Torque and flux linkage control method for permanent synchronous motor | |
US8896249B2 (en) | Method of position sensorless control of an electrical machine | |
CN104104301B (en) | Passivity-based control method for speed-senseless interpolating permanent magnet synchronous motor | |
CN104901600A (en) | Sensorless control method of permanent magnet synchronous motor in wide rotating speed scope | |
CN102545740A (en) | Low-speed position sensorless control method for surface mounted permanent magnet synchronous motor | |
CN103516284A (en) | Permanent magnet synchronous motor current increment prediction algorithm | |
CN104836504A (en) | Adaptive fault tolerant control method with salient pole permanent magnet synchronous motor precise torque output | |
CN107579690A (en) | A kind of ultrahigh speed permagnetic synchronous motor method for estimating rotating speed based on sliding formwork observation | |
CN106059435B (en) | A method of improving permanent-magnet synchronous motor rotor position estimated accuracy | |
CN103997269B (en) | A kind of control method of Power Robot drive system | |
CN109600080A (en) | A kind of salient-pole permanent-magnet synchronous motor method for controlling position-less sensor | |
CN106385216B (en) | A kind of permanent magnet synchronous motor predictive current control steady-state error removing method and system | |
CN109936319B (en) | Method and device for setting parameters of rotating speed controller | |
CN110649851B (en) | Multi-parameter decoupling online identification method for asynchronous motor | |
Comanescu et al. | Development of a flux, speed and rotor time constant estimation scheme for the sensorless induction motor drive | |
CN111327243A (en) | Rotating electrical machine control device and control method thereof | |
CN108649849A (en) | One kind is simply without sensor permanent magnet synchronous motor speed estimation method | |
CN114301349A (en) | Parameter-adaptive EKF-based velocity and position estimation method for PMSM |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |