[go: up one dir, main page]

CN103730421A - Formation method of CMOS - Google Patents

Formation method of CMOS Download PDF

Info

Publication number
CN103730421A
CN103730421A CN201210393612.2A CN201210393612A CN103730421A CN 103730421 A CN103730421 A CN 103730421A CN 201210393612 A CN201210393612 A CN 201210393612A CN 103730421 A CN103730421 A CN 103730421A
Authority
CN
China
Prior art keywords
region
forming
pmos
layer
sccm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201210393612.2A
Other languages
Chinese (zh)
Inventor
何有丰
金兰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Manufacturing International Shanghai Corp
Original Assignee
Semiconductor Manufacturing International Shanghai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Manufacturing International Shanghai Corp filed Critical Semiconductor Manufacturing International Shanghai Corp
Priority to CN201210393612.2A priority Critical patent/CN103730421A/en
Publication of CN103730421A publication Critical patent/CN103730421A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/01Manufacture or treatment
    • H10D84/0123Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs
    • H10D84/0126Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs
    • H10D84/0165Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs the components including complementary IGFETs, e.g. CMOS devices
    • H10D84/0184Manufacturing their gate sidewall spacers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/01Manufacture or treatment
    • H10D84/0123Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs
    • H10D84/0126Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs
    • H10D84/0165Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs the components including complementary IGFETs, e.g. CMOS devices
    • H10D84/017Manufacturing their source or drain regions, e.g. silicided source or drain regions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/01Manufacture or treatment
    • H10D84/02Manufacture or treatment characterised by using material-based technologies
    • H10D84/03Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology
    • H10D84/038Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology using silicon technology, e.g. SiGe

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

一种CMOS的形成方法,包括:提供半导体衬底,在所述半导体衬底上形成栅极结构;形成覆盖所述栅极结构和半导体衬底的氧化物层,形成覆盖所述氧化物层的氮化物层;形成覆盖NMOS区域的第一阻挡层;刻蚀PMOS区域的氮化物层和氧化物层形成PMOS侧墙;以PMOS区域的栅极结构和PMOS侧墙为掩膜,在所述PMOS区域的半导体衬底中待形成源区和漏区的区域形成凹槽;去除所述第一阻挡层,在所述凹槽内外延填充硅锗材料;形成覆盖PMOS区域的第二阻挡层;刻蚀NMOS区域的氮化物层和氧化物层形成NMOS侧墙,去除所述第二阻挡层。本发明的CMOS形成方法,源/漏极和栅极之间不存在漏电流。

Figure 201210393612

A method for forming a CMOS, comprising: providing a semiconductor substrate, forming a gate structure on the semiconductor substrate; forming an oxide layer covering the gate structure and the semiconductor substrate, forming an oxide layer covering the oxide layer A nitride layer; forming a first barrier layer covering the NMOS region; etching the nitride layer and the oxide layer in the PMOS region to form a PMOS sidewall; using the gate structure and the PMOS sidewall of the PMOS region as a mask, in the PMOS In the semiconductor substrate of the region, a groove is formed in the region where the source region and the drain region are to be formed; the first barrier layer is removed, and silicon germanium material is epitaxially filled in the groove; a second barrier layer covering the PMOS region is formed; The nitride layer and the oxide layer in the NMOS region are etched to form the NMOS sidewalls, and the second barrier layer is removed. In the CMOS forming method of the present invention, there is no leakage current between the source/drain and the gate.

Figure 201210393612

Description

CMOS的形成方法Formation method of CMOS

技术领域 technical field

本发明涉及半导体技术领域,尤其涉及一种CMOS的形成方法。The invention relates to the technical field of semiconductors, in particular to a method for forming a CMOS.

背景技术 Background technique

MOS晶体管通过在栅极施加电压,调节通过沟道区域的电流来产生开关信号。在现有半导体器件制造工艺中,为了提高MOS晶体管的性能,通常采用在MOS晶体管的沟道区域引入应力以提高载流子迁移率。对于PMOS晶体管而言,可以采用嵌入式硅锗技术(Embedded SiGe Technology)以在晶体管的沟道区域产生压应力,进而提高载流子迁移率。所谓嵌入式硅锗技术是指在半导体衬底的需要形成源区及漏区的区域中埋置硅锗材料,利用硅与硅锗(SiGe)之间的晶格失配对沟道区域产生压应力。MOS transistors generate switching signals by regulating the current through the channel region by applying a voltage to the gate. In the existing semiconductor device manufacturing process, in order to improve the performance of the MOS transistor, stress is usually introduced into the channel region of the MOS transistor to increase the carrier mobility. For PMOS transistors, embedded silicon germanium technology (Embedded SiGe Technology) can be used to generate compressive stress in the channel region of the transistor, thereby improving carrier mobility. The so-called embedded silicon germanium technology refers to embedding silicon germanium materials in the regions where the source region and the drain region need to be formed on the semiconductor substrate, and using the lattice mismatch between silicon and silicon germanium (SiGe) to generate compressive stress on the channel region .

现有技术提供了一种CMOS的形成方法。请参考图1,为现有技术采用嵌入式硅锗技术形成CMOS的流程示意图,包括:The prior art provides a method for forming a CMOS. Please refer to Figure 1, which is a schematic diagram of the process of forming CMOS using embedded silicon germanium technology in the prior art, including:

步骤S101,提供半导体衬底,在所述半导体衬底上形成栅极结构。In step S101 , a semiconductor substrate is provided, and a gate structure is formed on the semiconductor substrate.

步骤S102,形成覆盖栅极结构和半导体衬底的氧化硅层和氮化硅层,依次刻蚀氮化物层和氧化物层形成NMOS侧墙和PMOS侧墙。Step S102 , forming a silicon oxide layer and a silicon nitride layer covering the gate structure and the semiconductor substrate, and sequentially etching the nitride layer and the oxide layer to form NMOS sidewalls and PMOS sidewalls.

步骤S103,形成覆盖半导体衬底和栅极结构的外延选择层(EpitaxySelectivitV Film)。所述的选择外延层通常为氧化硅,后续使用选择性外延工艺形成硅锗层时,硅锗材料主要在生长在硅材料上,而较少生长在外延选择层上。Step S103, forming an epitaxial selection layer (Epitaxy SelectivitV Film) covering the semiconductor substrate and the gate structure. The selective epitaxial layer is usually silicon oxide, and when the silicon germanium layer is subsequently formed using a selective epitaxial process, the silicon germanium material is mainly grown on the silicon material, and less grown on the epitaxial selective layer.

步骤S104,形成覆盖NMOS区域的阻挡层,在PMOS区域半导体衬底中待形成源区和漏区的区域形成凹槽,去除阻挡层。所述阻挡层通常为光刻胶层,用于在刻蚀过程中保护NMOS区域免受损伤。Step S104, forming a barrier layer covering the NMOS region, forming grooves in the semiconductor substrate in the PMOS region where the source region and the drain region are to be formed, and removing the barrier layer. The barrier layer is usually a photoresist layer, which is used to protect the NMOS region from damage during the etching process.

步骤S105,在所述凹槽内外延形成硅锗层。由于所述凹槽位于PMOS区域待形成源区和漏区的区域,而所述半导体衬底的其余表面被外延选择层覆盖,硅锗选择性生长在所述凹槽内,形成具有嵌入式硅锗源/漏的PMOS。Step S105, epitaxially forming a SiGe layer in the groove. Since the groove is located in the PMOS area where the source region and the drain region are to be formed, and the remaining surface of the semiconductor substrate is covered by the epitaxial selective layer, silicon germanium is selectively grown in the groove to form a Germanium source/drain PMOS.

S106,去除外延选择层。S106, removing the epitaxial selection layer.

其他有关嵌入式硅锗源/漏PMOS的形成方法还可以参考公开号为CN1870295的中国专利申请。For other methods of forming embedded silicon germanium source/drain PMOS, please refer to the Chinese patent application with publication number CN1870295.

但是,现有技术形成嵌入式硅锗源/漏CMOS的方法,源/漏极和栅极之间存在漏电流。However, in the prior art method of forming an embedded silicon germanium source/drain CMOS, leakage current exists between the source/drain and the gate.

发明内容 Contents of the invention

本发明解决的问题是现有技术形成的嵌入式硅锗源/漏CMOS中源/漏极和栅极之间存在漏电流。The problem solved by the invention is that there is a leakage current between the source/drain and the gate in the embedded silicon germanium source/drain CMOS formed in the prior art.

为解决上述问题,本发明提供了一种CMOS的形成方法,包括:In order to solve the above problems, the invention provides a method for forming a CMOS, comprising:

提供半导体衬底,所述半导体衬底具有PMOS区域和NMOS区域,所述PMOS区域和NMOS区域之间具有隔离结构;在所述PMOS区域和NOMS区域形成栅极结构;形成覆盖所述栅极结构和半导体衬底的氧化物层,形成覆盖所述氧化物层的氮化物层;形成覆盖NMOS区域的第一阻挡层;刻蚀PMOS区域的氮化物层和氧化物层形成PMOS侧墙;以PMOS区域的栅极结构和PMOS侧墙为掩膜,在所述PMOS区域的半导体衬底中待形成源区和漏区的区域形成凹槽;去除所述第一阻挡层,以所述PMOS侧墙和覆盖NMOS区域的氮化物层为外延选择层,在所述凹槽内外延填充硅锗材料;形成覆盖PMOS区域的第二阻挡层;刻蚀NMOS区域的氮化物层和氧化物层形成NMOS侧墙,去除所述第二阻挡层。A semiconductor substrate is provided, the semiconductor substrate has a PMOS region and an NMOS region, an isolation structure is provided between the PMOS region and the NMOS region; a gate structure is formed in the PMOS region and the NOMS region; and the gate structure is formed to cover the gate structure and the oxide layer of the semiconductor substrate, forming a nitride layer covering the oxide layer; forming a first barrier layer covering the NMOS region; etching the nitride layer and the oxide layer in the PMOS region to form a PMOS sidewall; The gate structure and the PMOS sidewall of the region are masks, and grooves are formed in the semiconductor substrate of the PMOS region where the source region and the drain region are to be formed; the first barrier layer is removed to remove the PMOS sidewall And the nitride layer covering the NMOS area is an epitaxial selection layer, and the silicon germanium material is epitaxially filled in the groove; the second barrier layer covering the PMOS area is formed; the nitride layer and the oxide layer of the NMOS area are etched to form the NMOS side wall, remove the second barrier layer.

可选的,所述硅锗材料的形成工艺为选择性外延。Optionally, the formation process of the silicon germanium material is selective epitaxy.

可选的,所述选择性外延工艺的参数包括:反应气体包括硅源气体和锗源气体,所述硅源气体为SiH4或SiH2Cl2,流量为1sccm~1000sccm;所述锗源气体为GeH4,流量为1sccm~1000sccm;反应温度为500~800摄氏度;反应气压为1~100Torr。Optionally, the parameters of the selective epitaxy process include: the reaction gas includes silicon source gas and germanium source gas, the silicon source gas is SiH 4 or SiH 2 Cl 2 , and the flow rate is 1 sccm-1000 sccm; the germanium source gas It is GeH 4 , the flow rate is 1 sccm-1000 sccm; the reaction temperature is 500-800 degrees Celsius; the reaction pressure is 1-100 Torr.

可选的,所述选择性外延工艺的反应气体还包括HCl和H2,所述HCl的流量为1sccm~1000sccm,所述H2的流量为0.1slm~50slm。Optionally, the reaction gas of the selective epitaxy process further includes HCl and H 2 , the flow rate of the HCl is 1 sccm-1000 sccm, and the flow rate of the H 2 is 0.1 slm-50 slm.

可选的,所述凹槽为Sigma形凹槽,所述Sigma形凹槽在凹槽的中部具有指向晶体管沟道区域的凸出的尖端。Optionally, the groove is a Sigma-shaped groove, and the Sigma-shaped groove has a protruding tip pointing to the channel region of the transistor in the middle of the groove.

可选的,形成所述Sigma形凹槽的工艺包括:Optionally, the process for forming the Sigma-shaped groove includes:

先进行等离子体刻蚀,所述等离子体刻蚀的参数包括:刻蚀气体包括HBr、O2、He、Cl2和NF3,所述HBr流量为100~1000sccm,O2流量为2~20sccm,He流量为100~1000sccm,Cl2流量为2~200sccm,NF3流量为2~200sccm,刻蚀气压为10~200mTorr,偏压为0~400V,时间为5~60秒;Plasma etching is performed first, and the parameters of the plasma etching include: the etching gas includes HBr, O 2 , He, Cl 2 and NF 3 , the HBr flow rate is 100-1000 sccm, and the O 2 flow rate is 2-20 sccm , the flow rate of He is 100-1000 sccm, the flow rate of Cl 2 is 2-200 sccm, the flow rate of NF 3 is 2-200 sccm, the etching pressure is 10-200 mTorr, the bias voltage is 0-400 V, and the time is 5-60 seconds;

再进行湿法刻蚀,所述湿法刻蚀工艺采用TMAH(四甲基氢氧化铵)溶液,TMAH溶液的温度为15~70摄氏度,时间为20~500秒。Then perform wet etching, the wet etching process uses TMAH (tetramethylammonium hydroxide) solution, the temperature of the TMAH solution is 15-70 degrees Celsius, and the time is 20-500 seconds.

可选的,所述的隔离结构为浅沟槽隔离结构。Optionally, the isolation structure is a shallow trench isolation structure.

可选的,所述栅极结构包括栅介质层和位于栅介质层上的栅电极层。Optionally, the gate structure includes a gate dielectric layer and a gate electrode layer on the gate dielectric layer.

可选的,在形成所述栅极结构之后,还包括在所述半导体衬底内进行轻掺杂源漏注入(LDD:Lightly Doped Drain)和晕环(Halo Implant)掺杂的步骤。Optionally, after forming the gate structure, a step of performing lightly doped source-drain implantation (LDD: Lightly Doped Drain) and halo implant (Halo Implant) doping in the semiconductor substrate is also included.

可选的,所述氧化物层的材料为氧化硅,所述氮化物层的材料为氮化硅。Optionally, the material of the oxide layer is silicon oxide, and the material of the nitride layer is silicon nitride.

可选的,所述第一阻挡层和第二阻挡层为光刻胶层。Optionally, the first barrier layer and the second barrier layer are photoresist layers.

可选的,所述PMOS侧墙的宽度为5nm至50nm。Optionally, the width of the PMOS sidewall is 5nm to 50nm.

可选的,所述NMOS侧墙的宽度为5nm至50nm。Optionally, the width of the NMOS sidewall is 5nm to 50nm.

与现有技术相比,本发明具有以下优点:Compared with the prior art, the present invention has the following advantages:

本发明的实施例提供的CMOS的形成方法,以PMOS区域的栅极结构和PMOS侧墙为掩膜,在所述PMOS区域的半导体衬底中待形成源区和漏区的区域形成凹槽,在所述凹槽内外延填充硅锗材料。由于所述PMOS侧墙的材料为氮化硅,且所述的氮化硅材料覆盖NMOS区域,而氮化硅在硅锗材料的选择性外延过程中的选择窗口(Selectivity Window)比现有技术采用氧化硅外延选择层更大,即在氮化硅材料上更不容易生长硅锗材料,确保了在硅锗外延过程中仅在所述凹槽内生长硅锗材料,不会在PMOS区域的栅极结构区域和NMOS区域生长硅锗材料。后续形成源/漏区域硅化物的步骤中,硅化物仅在PMOS源/漏区域形成,不存在源/漏极和栅极之间的导电通道,防止了漏电流。The method for forming a CMOS provided by an embodiment of the present invention uses the gate structure of the PMOS region and the PMOS sidewall as a mask to form grooves in the semiconductor substrate of the PMOS region where the source region and the drain region are to be formed, Silicon germanium material is epitaxially filled in the groove. Since the material of the PMOS sidewall is silicon nitride, and the silicon nitride material covers the NMOS region, the selectivity window (Selectivity Window) of silicon nitride in the selective epitaxy process of silicon germanium material is larger than that of the prior art The silicon oxide epitaxy selection layer is larger, that is, it is less likely to grow silicon germanium material on the silicon nitride material, which ensures that the silicon germanium material is only grown in the groove during the silicon germanium epitaxy process, and will not grow in the PMOS area. Silicon germanium material is grown in the gate structure region and the NMOS region. In the subsequent step of forming the silicide in the source/drain region, the silicide is only formed in the PMOS source/drain region, and there is no conductive channel between the source/drain and the gate, which prevents leakage current.

进一步的,在本发明的实施例提供的CMOS的形成方法中,形成覆盖NMOS区域的第一阻挡层,刻蚀PMOS区域的氮化物层和氧化物层形成PMOS侧墙;形成覆盖PMOS区域的第二阻挡层,刻蚀NMOS区域的氮化物层和氧化物层形成NMOS侧墙。所述PMOS侧墙和NMOS侧墙在不同步骤通过刻蚀工艺形成,根据工艺需求,可以通过调整刻蚀参数获得不同宽度的PMOS侧墙和NMOS侧墙,进一步的可以通过不同宽度的PMOS侧墙和NMOS侧墙获得不同宽度的PMOS和NMOS源/漏,提高CMOS的器件性能。Further, in the CMOS forming method provided in the embodiment of the present invention, the first barrier layer covering the NMOS region is formed, the nitride layer and the oxide layer in the PMOS region are etched to form PMOS sidewalls; the first barrier layer covering the PMOS region is formed. The second barrier layer etches the nitride layer and oxide layer in the NMOS area to form NMOS sidewalls. The PMOS sidewalls and NMOS sidewalls are formed by etching processes in different steps. According to process requirements, PMOS sidewalls and NMOS sidewalls of different widths can be obtained by adjusting the etching parameters, and further PMOS sidewalls of different widths can be obtained. PMOS and NMOS source/drains of different widths are obtained from NMOS sidewalls to improve CMOS device performance.

附图说明 Description of drawings

图1是现有技术CMOS的形成方法的流程示意图;Fig. 1 is the schematic flow sheet of the formation method of prior art CMOS;

图2至图9是本发明实施例的CMOS形成方法中不同制备阶段的剖面结构示意图。2 to 9 are schematic cross-sectional structure diagrams of different preparation stages in the CMOS formation method of the embodiment of the present invention.

具体实施方式 Detailed ways

由背景技术可知,现有技术形成嵌入式硅锗源/漏CMOS的方法,PMOS源/漏极和栅极之间存在漏电流。It can be seen from the background art that in the prior art method of forming an embedded silicon germanium source/drain CMOS, leakage current exists between the source/drain and the gate of the PMOS.

本发明的发明人通过研究现有技术形成嵌入式硅锗源/漏CMOS的方法,发现现有技术使用氧化硅作为外延选择层(Epitaxy Selectivity Film),氧化硅的选择窗口(Selectivity Window)有限,在硅锗材料的外延过程中依然会在选择外延层上生长硅锗材料,形成覆盖PMOS区域的栅极结构区域的硅锗层,即蕈型缺陷(Mushroom Defect),同时也会在NMOS区域无需外延硅锗层的区域生长硅锗材料。后续在去除氧化硅外延选择层时,由于氧化硅层上覆盖有硅锗材料,增加了去除难度,导致不能完全去除。而残留的硅锗材料,在后续CMOS制备过程形成源/漏区域硅化物的步骤中,容易与金属材料反应形成硅化物,作为源/漏极和栅极之间的导电通道,造成漏电流。The inventors of the present invention have studied the method of forming embedded silicon germanium source/drain CMOS in the prior art, and found that the prior art uses silicon oxide as the epitaxial selectivity film (Epitaxy Selectivity Film), and the selectivity window (Selectivity Window) of silicon oxide is limited. In the epitaxy process of silicon germanium materials, silicon germanium materials will still be grown on the selective epitaxial layer to form a silicon germanium layer covering the gate structure area of the PMOS area, that is, mushroom defects (Mushroom Defect), and there will be no need in the NMOS area. The region of the epitaxial silicon germanium layer grows silicon germanium material. When the silicon oxide epitaxial selection layer is subsequently removed, since the silicon oxide layer is covered with silicon germanium material, the removal difficulty is increased, resulting in incomplete removal. The remaining silicon germanium material, in the step of forming the source/drain region silicide in the subsequent CMOS preparation process, is easy to react with the metal material to form a silicide, which acts as a conductive channel between the source/drain and the gate, causing leakage current.

本发明的发明人还分别在热氧化形成的氧化硅衬底、化学气相沉积形成的氧化硅衬底和氮化硅衬底上采用选择性外延工艺生长硅锗材料,发现在热氧化形成的氧化硅衬底的边缘会生长出硅锗,在化学气相沉积形成的氧化硅衬底的表面会生长出硅锗,而在氮化硅衬底上没有生长出硅锗。所以氮化硅作为硅锗选择性外延时的外延选择层具有更大的选择窗口。The inventors of the present invention also used selective epitaxy to grow silicon germanium materials on silicon oxide substrates formed by thermal oxidation, silicon oxide substrates formed by chemical vapor deposition, and silicon nitride substrates, and found that the oxides formed by thermal oxidation Silicon germanium will grow on the edge of the silicon substrate, and silicon germanium will grow on the surface of the silicon oxide substrate formed by chemical vapor deposition, but no silicon germanium will grow on the silicon nitride substrate. Therefore, when silicon nitride is used as an epitaxial selective layer for silicon germanium selective epitaxy, it has a larger selection window.

基于以上研究,本发明的发明人提出一种CMOS的形成方法,包括:提供半导体衬底,所述半导体衬底具有PMOS区域和NMOS区域,所述PMOS区域和NMOS区域之间具有隔离结构;在所述PMOS区域和NOMS区域形成栅极结构;形成覆盖所述栅极结构和半导体衬底的氧化物层,形成覆盖所述氧化物层的氮化物层;形成覆盖NMOS区域的第一阻挡层;刻蚀PMOS区域的氮化物层和氧化物层形成PMOS侧墙;以PMOS区域的栅极结构和PMOS侧墙为掩膜,在所述PMOS区域的半导体衬底中待形成源区和漏区的区域形成凹槽;去除所述第一阻挡层,以所述PMOS侧墙和覆盖NMOS区域的氮化物层为外延选择层,在所述凹槽内外延填充硅锗材料;形成覆盖PMOS区域的第二阻挡层;刻蚀NMOS区域的氮化物层和氧化物层形成NMOS侧墙,去除所述第二阻挡层。Based on the above studies, the inventors of the present invention propose a method for forming a CMOS, including: providing a semiconductor substrate, the semiconductor substrate has a PMOS region and an NMOS region, and an isolation structure is provided between the PMOS region and the NMOS region; The PMOS region and the NOMS region form a gate structure; forming an oxide layer covering the gate structure and the semiconductor substrate, forming a nitride layer covering the oxide layer; forming a first barrier layer covering the NMOS region; Etching the nitride layer and oxide layer in the PMOS region to form a PMOS sidewall; using the gate structure and the PMOS sidewall in the PMOS region as a mask, the source region and the drain region are to be formed in the semiconductor substrate of the PMOS region A groove is formed in the region; the first barrier layer is removed, the PMOS sidewall and the nitride layer covering the NMOS region are used as an epitaxial selection layer, and silicon germanium material is epitaxially filled in the groove; a second layer covering the PMOS region is formed. The second barrier layer: etching the nitride layer and oxide layer in the NMOS area to form NMOS side walls, and removing the second barrier layer.

下面结合附图详细地描述具体实施例,上述的目的和本发明的优点将更加清楚。需要说明的是,提供这些附图的目的是有助于理解本发明的实施例,而不应解释为对本发明的不当的限制。为了更清楚起见,图中所示尺寸并未按比例绘制,可能会做放大、缩小或其他改变。下面的描述中阐述了很多具体细节以便充分理解本发明。但是本发明能够以很多不同于在此描述的其他方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似推广,因此本发明不受下面公开的具体实施例的限制。The specific embodiments will be described in detail below in conjunction with the accompanying drawings, and the above-mentioned purpose and advantages of the present invention will be more clear. It should be noted that the purpose of providing these drawings is to facilitate the understanding of the embodiments of the present invention, and should not be interpreted as undue limitations on the present invention. For clarity, the dimensions shown in the figures are not drawn to scale and may be enlarged, reduced or otherwise changed. In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. However, the present invention can be implemented in many other ways different from those described here, and those skilled in the art can make similar extensions without violating the connotation of the present invention, so the present invention is not limited by the specific embodiments disclosed below.

请参考图2,提供半导体衬底200,所述半导体衬底200具有PMOS区域和NMOS区域,所述PMOS区域和NMOS区域之间具有隔离结构201。Referring to FIG. 2 , a semiconductor substrate 200 is provided, the semiconductor substrate 200 has a PMOS region and an NMOS region, and an isolation structure 201 is provided between the PMOS region and the NMOS region.

所述半导体衬底200用于作为后续工艺的工作平台。所述半导体衬底200可以是单晶硅或单晶锗;所述半导体衬底200也可以是硅锗、砷化镓或绝缘体上硅衬底(SOI衬底)。在本实施例中,所述半导体衬底200为单晶硅。所述半导体衬底200具有PMOS区域和NMOS区域,所述PMOS区域具有N型阱区,所述NMOS区域具有P型阱区,所述PMOS区域和NMOS区域之间通过隔离结构201隔离。在本实施例中,所述隔离结构201为浅沟槽隔离结构,以将半导体衬底200中的有源区域隔离起来,所述浅沟槽隔离结构的形成方法可参考现有工艺,在此不再赘述。The semiconductor substrate 200 is used as a working platform for subsequent processes. The semiconductor substrate 200 may be single crystal silicon or single crystal germanium; the semiconductor substrate 200 may also be silicon germanium, gallium arsenide or a silicon-on-insulator substrate (SOI substrate). In this embodiment, the semiconductor substrate 200 is single crystal silicon. The semiconductor substrate 200 has a PMOS region and an NMOS region, the PMOS region has an N-type well region, the NMOS region has a P-type well region, and the PMOS region and the NMOS region are isolated by an isolation structure 201 . In this embodiment, the isolation structure 201 is a shallow trench isolation structure to isolate the active region in the semiconductor substrate 200, the formation method of the shallow trench isolation structure can refer to the existing process, here No longer.

请参考图3,在所述PMOS区域和NOMS区域形成栅极结构213,所述栅极结构213包括栅介质层212和位于栅介质层212上的栅电极层211。Referring to FIG. 3 , a gate structure 213 is formed in the PMOS region and the NOMS region, and the gate structure 213 includes a gate dielectric layer 212 and a gate electrode layer 211 on the gate dielectric layer 212 .

所述栅介质层212的材料为氧化硅或高K(高介电常数)材料,所述的高K材料包括HfO2,HfSiO,HfSiON,HfTaO,HfZrO,Al2O3和ZrO2,所述栅电极层211的材料为多晶硅或金属,所述金属包括Al,Cu,Ti,Ta,TaN,NiSi,CoSi,TiN,TiAl和TaSiN。The material of the gate dielectric layer 212 is silicon oxide or a high K (high dielectric constant) material, and the high K material includes HfO 2 , HfSiO, HfSiON, HfTaO, HfZrO, Al 2 O 3 and ZrO 2 , the The material of the gate electrode layer 211 is polysilicon or metal, and the metal includes Al, Cu, Ti, Ta, TaN, NiSi, CoSi, TiN, TiAl and TaSiN.

在一实施例中,所述栅极结构213的形成方法为,在半导体衬底200表面热氧化生长氧化硅层,再在氧化硅表面使用化学气相沉积方法形成多晶硅层,在多晶硅层表面形成图形化的光刻胶层,以图形化的光刻胶层为掩膜刻蚀多晶硅层和氧化硅层,直至暴露出半导体衬底200表面,去除光刻胶层,形成栅极结构213。In one embodiment, the gate structure 213 is formed by thermally oxidizing and growing a silicon oxide layer on the surface of the semiconductor substrate 200, then forming a polysilicon layer on the surface of the silicon oxide by chemical vapor deposition, and forming a pattern on the surface of the polysilicon layer. The patterned photoresist layer is used as a mask to etch the polysilicon layer and the silicon oxide layer until the surface of the semiconductor substrate 200 is exposed, and the photoresist layer is removed to form the gate structure 213 .

需要说明的是,通常在形成栅电极层后,还会在栅电极层表面形成硬掩膜层,所述硬掩膜层的材料可以为氮化硅,所述硬掩膜层在后续的工艺中起到刻蚀停止层和保护栅电极层的作用。根据工艺条件,若所述的栅电极层为多晶硅,所述硬掩膜层会在形成栅极结构的硅化物接触层前去除;若所述的栅电极层为金属材料,则所述硬掩膜层无需去除。It should be noted that, usually after forming the gate electrode layer, a hard mask layer will be formed on the surface of the gate electrode layer. The material of the hard mask layer can be silicon nitride. It plays the role of etching stop layer and protective gate electrode layer. According to process conditions, if the gate electrode layer is polysilicon, the hard mask layer will be removed before forming the silicide contact layer of the gate structure; if the gate electrode layer is a metal material, the hard mask layer The film does not need to be removed.

还需要说明的是,在形成所述栅极结构213之后,还包括在所述半导体衬底内进行轻掺杂源漏注入(LDD:Lightly Doped Drain)和晕环掺杂(HaloImplant)的步骤。所述LDD掺杂通过分散沿漏极夹断区指向LDD区域的强电场,抑制阈值电压漂移,减小漏电流并缓解热电子效应;所述Halo掺杂可以抑制阈值低压降低,较小漏电流并增强抗热载流子的能力。所述形成LDD和Halo掺杂的工艺为本领域技术人员所熟知,在此不再赘述。It should also be noted that after the gate structure 213 is formed, the steps of lightly doped source-drain implantation (LDD: Lightly Doped Drain) and halo implantation (HaloImplant) are also included in the semiconductor substrate. The LDD doping suppresses the threshold voltage drift by dispersing the strong electric field pointing to the LDD region along the drain pinch-off region, reduces the leakage current and alleviates the thermal electron effect; the Halo doping can suppress the lowering of the threshold low voltage and reduce the leakage current And enhance the ability to resist hot carriers. The process of forming LDD and Halo doping is well known to those skilled in the art, and will not be repeated here.

请参考图4,形成覆盖所述栅极结构213和半导体衬底200的氧化物层(未示出),形成覆盖所述氧化物层的氮化物层214。Referring to FIG. 4 , an oxide layer (not shown) is formed covering the gate structure 213 and the semiconductor substrate 200 , and a nitride layer 214 is formed covering the oxide layer.

在一实施例中,所述氧化物层的材料为氧化硅,形成工艺为化学气相沉积;所述氮化物层214的材料为氮化硅,形成工艺为化学气相沉积。所述氧化物层和氮化物层后续通过刻蚀形成栅极侧墙,起到保护栅极和隔离源/漏与栅极的作用,另外,在本发明中,所述氮化物层在后续外延硅锗材料时作为外延选择层。In one embodiment, the material of the oxide layer is silicon oxide, and the formation process is chemical vapor deposition; the material of the nitride layer 214 is silicon nitride, and the formation process is chemical vapor deposition. The oxide layer and the nitride layer are subsequently etched to form gate spacers to protect the gate and isolate the source/drain from the gate. In addition, in the present invention, the nitride layer is subsequently epitaxy The silicon germanium material is used as an epitaxial selective layer.

请参考图5,形成覆盖NMOS区域的第一阻挡层227,刻蚀PMOS区域的氮化物层214和氧化物层(未示出)形成PMOS侧墙。Referring to FIG. 5 , the first barrier layer 227 covering the NMOS region is formed, and the nitride layer 214 and the oxide layer (not shown) in the PMOS region are etched to form PMOS sidewalls.

在一实施例中,在半导体衬底200表面涂覆光刻胶层,经过烘干、曝光、显影等步骤形成覆盖NMOS区域的第一阻挡层227。以所述第一阻挡层227为掩膜,刻蚀PMOS区域的氮化物层214和氧化物层。刻蚀氮化物层214的工艺为等离子体刻蚀,刻蚀参数包括:刻蚀气体为CF4(或CHF3)、O2和He,所述CF4(或CHF3)的流量为2~200sccm,所述O2流量为2~500sccm,所述He流量为10~1000sccm,刻蚀气压为1~200mTorr,偏压为50~400V,时间为2~60秒。刻蚀氧化物层的工艺为等离子体刻蚀,刻蚀参数包括:刻蚀气体为CF4、O2和He,所述CF4的流量为2~200sccm,所述O2流量为2~20sccm,所述He流量为10~500sccm,刻蚀气压为1~200mTorr,偏压为50~400V,时间为2~60秒。由于等离子体刻蚀具有很好各向异性,刻蚀完成后,位于PMOS区域半导体衬底200表面和栅极结构213表面的氮化物层214和氧化物层被去除,而位于栅极结构213两侧的氮化物层214和氧化物层得以保留,形成PMOS侧墙。所述PMOS侧墙的宽度为5nm至50nm,可以根据氧化物层和氮化物层214的沉积厚度以及刻蚀的工艺参数调整调整PMOS侧墙的宽度。In one embodiment, a photoresist layer is coated on the surface of the semiconductor substrate 200, and the first barrier layer 227 covering the NMOS region is formed through steps such as drying, exposure, and development. Using the first barrier layer 227 as a mask, etch the nitride layer 214 and the oxide layer in the PMOS region. The process of etching the nitride layer 214 is plasma etching, and the etching parameters include: the etching gas is CF 4 (or CHF 3 ), O 2 and He, and the flow rate of the CF 4 (or CHF 3 ) is 2- 200 sccm, the O 2 flow rate is 2-500 sccm, the He flow rate is 10-1000 sccm, the etching pressure is 1-200 mTorr, the bias voltage is 50-400 V, and the time is 2-60 seconds. The process of etching the oxide layer is plasma etching, and the etching parameters include: the etching gas is CF 4 , O 2 and He, the flow rate of the CF 4 is 2-200 sccm, and the flow rate of the O 2 is 2-20 sccm , the He flow rate is 10-500 sccm, the etching gas pressure is 1-200 mTorr, the bias voltage is 50-400 V, and the etching time is 2-60 seconds. Since the plasma etching has very good anisotropy, after the etching is completed, the nitride layer 214 and the oxide layer located on the surface of the semiconductor substrate 200 in the PMOS region and the surface of the gate structure 213 are removed, and the oxide layer located on the surface of the gate structure 213 is removed. The nitride layer 214 and the oxide layer on the side are retained to form a PMOS spacer. The width of the PMOS sidewall is 5nm to 50nm, and the width of the PMOS sidewall can be adjusted according to the deposition thickness of the oxide layer and the nitride layer 214 and the etching process parameters.

请参考图6,以PMOS区域的栅极结构213和PMOS侧墙为掩膜,在所述PMOS区域的半导体衬底200中待形成源区和漏区的区域形成凹槽215。Referring to FIG. 6 , using the gate structure 213 and the PMOS sidewall of the PMOS region as a mask, a groove 215 is formed in the semiconductor substrate 200 of the PMOS region where the source region and the drain region are to be formed.

在一实施例中,所述凹槽215的形状为Sigma形,所述Sigma形凹槽在凹槽的中部具有指向晶体管沟道区域的凸出的尖端。请参考图6,Sigma形凹槽在水平方向上具有凸出的尖端,后续在Sigma形凹槽内外延填充硅锗材料时,硅锗材料填充满整个凹槽,在所述凹槽凸出的尖端处硅锗材料更靠近PMOS晶体管的沟道区域,将在沟道区域引入更大的压应力。In one embodiment, the shape of the groove 215 is a Sigma shape, and the Sigma-shaped groove has a protruding tip pointing to the channel region of the transistor in the middle of the groove. Please refer to FIG. 6, the Sigma-shaped groove has a protruding tip in the horizontal direction, and when the silicon-germanium material is subsequently filled in the Sigma-shaped groove, the silicon-germanium material fills the entire groove, and the protruding tip of the groove The silicon germanium material at the tip is closer to the channel region of the PMOS transistor, which will introduce greater compressive stress in the channel region.

形成所述Sigma形凹槽的工艺为,首先进行等离子体刻蚀,所述等离子体刻蚀的参数包括:刻蚀气体包括HBr、O2、He、Cl2和NF3,所述HBr流量为100~1000sccm,O2流量为2~20sccm,He流量为100~1000sccm,Cl2流量为2~200sccm,NF3流量为2~200sccm,刻蚀气压为10~200mTorr,偏压为0~400V,时间为5~60秒;在等离子体刻蚀后进行湿法刻蚀,所述湿法刻蚀工艺采用TMAH(四甲基氢氧化铵)溶液,TMAH的温度为15~70摄氏度,时间为20~500秒。在本发明的其他实施例中,所述湿法刻蚀工艺还可以采用氢氧化钾溶液或者氨水溶液。The process of forming the Sigma-shaped groove is to perform plasma etching first, and the parameters of the plasma etching include: the etching gas includes HBr, O 2 , He, Cl 2 and NF 3 , and the HBr flow rate is 100-1000sccm, O 2 flow of 2-20sccm, He flow of 100-1000sccm, Cl 2 flow of 2-200sccm, NF 3 flow of 2-200sccm, etching pressure of 10-200mTorr, bias voltage of 0-400V, The time is 5-60 seconds; wet etching is performed after plasma etching, the wet etching process uses TMAH (tetramethylammonium hydroxide) solution, the temperature of TMAH is 15-70 degrees Celsius, and the time is 20 ~500 seconds. In other embodiments of the present invention, the wet etching process may also use potassium hydroxide solution or ammonia solution.

请参考图7,去除所述第一阻挡层,以所述PMOS侧墙和覆盖NMOS区域的氮化物层为外延选择层,在所述凹槽内外延填充硅锗材料,形成嵌入式硅锗源/漏216。所述硅锗材料的形成工艺为选择性外延。Please refer to FIG. 7, remove the first barrier layer, use the PMOS sidewall and the nitride layer covering the NMOS region as the epitaxial selection layer, and epitaxially fill the groove with silicon germanium material to form an embedded silicon germanium source /drain 216. The formation process of the silicon germanium material is selective epitaxy.

在所述PMOS区域的半导体衬底200中待形成源区和漏区的区域形成凹槽之后,去除覆盖NMOS区域的第一阻挡层,采用选择性外延工艺在所述凹槽内填充硅锗材料。所述选择性外延工艺的参数为:反应气体包括硅源气体和锗源气体,所述硅源气体为SiH4或SiH2Cl2,流量为1sccm~1000sccm;所述锗源气体为GeH4,流量为1sccm~1000sccm;反应温度为500~800摄氏度;反应气压为1~100Torr。After forming a groove in the semiconductor substrate 200 in the PMOS region where the source region and the drain region are to be formed, remove the first barrier layer covering the NMOS region, and fill the groove with silicon germanium material using a selective epitaxial process . The parameters of the selective epitaxy process are: the reaction gas includes silicon source gas and germanium source gas, the silicon source gas is SiH 4 or SiH 2 Cl 2 , and the flow rate is 1 sccm-1000 sccm; the germanium source gas is GeH 4 , The flow rate is 1 sccm-1000 sccm; the reaction temperature is 500-800 degrees Celsius; the reaction pressure is 1-100 Torr.

在本发明的另一实施例中,所述选择性外延工艺的参数为:硅源气体,所述硅源气体为SiH4或SiH2Cl2,流量为1sccm~1000sccm;锗源气体,所述锗源气体为GeH4,流量为1sccm~1000sccm;HCl气体,流量为1sccm~1000sccm;H2气体,流量为0.1slm~50slm;反应温度为500~800摄氏度;反应气压为1~100Torr。In another embodiment of the present invention, the parameters of the selective epitaxy process are: silicon source gas, the silicon source gas is SiH 4 or SiH 2 Cl 2 , and the flow rate is 1 sccm-1000 sccm; germanium source gas, the The germanium source gas is GeH 4 , with a flow rate of 1 sccm-1000 sccm; HCl gas, with a flow rate of 1 sccm-1000 sccm; H 2 gas, with a flow rate of 0.1 slm-50 slm; the reaction temperature is 500-800 degrees Celsius; and the reaction pressure is 1-100 Torr.

在所述凹槽内填充硅锗材料形成嵌入式硅锗源/漏216,由于硅锗材料的晶格常数大于PMOS沟道区域硅材料的晶格常数,嵌入式硅锗源/漏216可以在PMOS的沟道区域引入压应力,提高PMOS的载流子迁移率。Filling the silicon germanium material in the groove forms the embedded silicon germanium source/drain 216, because the lattice constant of the silicon germanium material is greater than the lattice constant of the silicon material in the PMOS channel region, the embedded silicon germanium source/drain 216 can be in The channel region of the PMOS introduces compressive stress to improve the carrier mobility of the PMOS.

本发明的实施例采用PMOS的侧墙氮化硅作为选择性外延硅锗材料的外延选择层,与现有技术相比,无需额外形成氧化硅外延选择层,节省了工艺步骤。另外,氮化硅与氧化硅相比,在选择性外延硅锗材料过程中具有更大的选择窗口,即在氮化硅材料上更不容易生长硅锗材料,确保了在硅锗外延过程中仅在所述凹槽内生长硅锗材料,不会在PMOS区域的栅极结构和NMOS区域生长硅锗材料。后续形成源/漏区域硅化物的步骤中,硅化物仅在PMOS源/漏区域形成,不存在源/漏极和栅极之间的导电通道,防止了漏电流。The embodiment of the present invention adopts PMOS sidewall silicon nitride as the epitaxial selection layer of the selective epitaxial silicon germanium material. Compared with the prior art, no additional silicon oxide epitaxial selection layer needs to be formed, which saves process steps. In addition, compared with silicon oxide, silicon nitride has a larger selection window in the process of selective epitaxy of silicon germanium materials, that is, it is less easy to grow silicon germanium materials on silicon nitride materials, ensuring The silicon germanium material is only grown in the groove, and the silicon germanium material is not grown in the gate structure of the PMOS region and the NMOS region. In the subsequent step of forming the silicide in the source/drain region, the silicide is only formed in the PMOS source/drain region, and there is no conductive channel between the source/drain and the gate, which prevents leakage current.

请参考图8,形成覆盖PMOS区域的第二阻挡层217;刻蚀NMOS区域的氮化物层214和氧化物层(未示出)形成NMOS侧墙。Referring to FIG. 8 , the second barrier layer 217 covering the PMOS region is formed; the nitride layer 214 and the oxide layer (not shown) in the NMOS region are etched to form NMOS sidewalls.

在一实施例中,在半导体衬底200表面涂覆光刻胶层,经过烘干、曝光、显影等步骤形成覆盖PMOS区域的第二阻挡层217。以所述第二阻挡层217为掩膜,刻蚀NMOS区域的氮化物层214和氧化物层。刻蚀氮化物层214的工艺为等离子体刻蚀,刻蚀参数包括:刻蚀气体为CF4(或CHF3)、O2和He,所述CF4(或CHF3)的流量为2~200sccm,所述O2流量为2~500sccm,所述He流量为10~1000sccm,刻蚀气压为1~200mTorr,偏压为50~400V,时间为2~60秒。刻蚀氧化物层的工艺为等离子体刻蚀,刻蚀参数包括:刻蚀气体为CF4、O2和He,所述CF4的流量为2~200sccm,所述O2流量为2~20sccm,所述He流量为10~500sccm,刻蚀气压为1~200mTorr,偏压为50~400V,时间为2~60秒。由于等离子体刻蚀具有很好的各向异性,刻蚀完成后,位于NMOS区域半导体衬底200表面和栅极结构213表面的氮化物层214和氧化物层被去除,而位于栅极结构213两侧的氮化物层214和氧化物层得以保留,形成NMOS侧墙。所述NMOS侧墙的宽度为5nm至50nm。In one embodiment, a photoresist layer is coated on the surface of the semiconductor substrate 200, and the second barrier layer 217 covering the PMOS region is formed through steps such as drying, exposure, and development. Using the second barrier layer 217 as a mask, etch the nitride layer 214 and the oxide layer in the NMOS region. The process of etching the nitride layer 214 is plasma etching, and the etching parameters include: the etching gas is CF 4 (or CHF 3 ), O 2 and He, and the flow rate of the CF 4 (or CHF 3 ) is 2- 200 sccm, the O 2 flow rate is 2-500 sccm, the He flow rate is 10-1000 sccm, the etching pressure is 1-200 mTorr, the bias voltage is 50-400 V, and the time is 2-60 seconds. The process of etching the oxide layer is plasma etching, and the etching parameters include: the etching gas is CF 4 , O 2 and He, the flow rate of the CF 4 is 2-200 sccm, and the flow rate of the O 2 is 2-20 sccm , the He flow rate is 10-500 sccm, the etching gas pressure is 1-200 mTorr, the bias voltage is 50-400 V, and the etching time is 2-60 seconds. Due to the good anisotropy of plasma etching, after the etching is completed, the nitride layer 214 and oxide layer located on the surface of the NMOS region semiconductor substrate 200 and the surface of the gate structure 213 are removed, while the oxide layer located on the surface of the gate structure 213 The nitride layer 214 and the oxide layer on both sides are preserved to form NMOS sidewalls. The width of the NMOS sidewall is 5nm to 50nm.

需要说明的是,在本发明的实施例中,NMOS侧墙和PMOS侧墙在不同步骤通过刻蚀工艺形成,可以通过控制刻蚀过程,获得不同宽度的NMOS侧墙和PMOS侧墙,进一步的可以通过不同宽度的PMOS侧墙和NMOS侧墙获得不同宽度的PMOS和NMOS源/漏,满足不同工艺的要求。It should be noted that, in the embodiment of the present invention, the NMOS sidewalls and PMOS sidewalls are formed by etching processes in different steps, and NMOS sidewalls and PMOS sidewalls of different widths can be obtained by controlling the etching process, further PMOS and NMOS source/drains of different widths can be obtained through PMOS sidewalls and NMOS sidewalls of different widths to meet the requirements of different processes.

请参考图9,去除所述第二阻挡层。Referring to FIG. 9 , the second barrier layer is removed.

在CMOS的后续制作工艺中,需要进行NMOS和PMOS的源/漏区域的注入,源/漏区域硅化物的形成,还会形成覆盖半导体衬底200、栅极结构213和侧墙的层间介质层(未示出)及导电插塞(未示出),以形成金属互连结构。上述的工艺方法可参考现有工艺,在此不再赘述。In the subsequent manufacturing process of CMOS, it is necessary to implant the source/drain regions of NMOS and PMOS, form the silicide of the source/drain regions, and also form an interlayer dielectric covering the semiconductor substrate 200, the gate structure 213 and the spacers. layers (not shown) and conductive plugs (not shown) to form metal interconnect structures. The above-mentioned process method can refer to the existing process, and will not be repeated here.

综上所述,与现有技术相比,本发明具有以下优点:In summary, compared with the prior art, the present invention has the following advantages:

本发明的实施例提供的CMOS的形成方法,以PMOS区域的栅极结构和PMOS侧墙为掩膜,在所述PMOS区域的半导体衬底中待形成源区和漏区的区域形成凹槽,在所述凹槽内填充硅锗材料。由于所述侧墙的材料为氮化硅,而氮化硅在硅锗材料的选择性外延过程中选择窗口(Selectivity Window)比现有技术的氧化硅外延选择层更大,即在氮化硅材料上更不容易生长硅锗材料,确保了在硅锗外延过程中仅在所述凹槽内生长硅锗材料,不会在PMOS区域的栅极结构区域和NMOS区域生长硅锗材料。后续形成源/漏区域硅化物的步骤中,硅化物仅在PMOS源/漏区域形成,不存在源/漏极和栅极之间的导电通道,防止了漏电流。The method for forming a CMOS provided by an embodiment of the present invention uses the gate structure of the PMOS region and the PMOS sidewall as a mask to form grooves in the semiconductor substrate of the PMOS region where the source region and the drain region are to be formed, SiGe material is filled in the groove. Since the material of the sidewall is silicon nitride, the selectivity window (Selectivity Window) of silicon nitride in the selective epitaxy process of silicon germanium material is larger than that of the silicon oxide epitaxial selective layer in the prior art, that is, in silicon nitride It is less easy to grow silicon germanium material in terms of material, which ensures that silicon germanium material is only grown in the groove during the silicon germanium epitaxy process, and silicon germanium material is not grown in the gate structure area and NMOS area of the PMOS area. In the subsequent step of forming the silicide in the source/drain region, the silicide is only formed in the PMOS source/drain region, and there is no conductive channel between the source/drain and the gate, which prevents leakage current.

在本发明的实施例提供的CMOS的形成方法中,形成覆盖NMOS区域的第一阻挡层,刻蚀PMOS区域的氮化物层和氧化物层形成PMOS侧墙;形成覆盖PMOS区域的第二阻挡层,刻蚀NMOS区域的氮化物层和氧化物层形成NMOS侧墙。所述PMOS侧墙和NMOS侧墙在不同步骤通过刻蚀工艺形成,根据工艺需求,可以通过调整刻蚀参数获得不同宽度的PMOS侧墙和NMOS侧墙,进一步的可以通过不同宽度的PMOS侧墙和NMOS侧墙获得不同宽度的PMOS和NMOS源/漏,提高晶体管性能。In the CMOS forming method provided in the embodiment of the present invention, a first barrier layer covering the NMOS region is formed, a nitride layer and an oxide layer in the PMOS region are etched to form PMOS sidewalls; a second barrier layer covering the PMOS region is formed , etch the nitride layer and oxide layer in the NMOS region to form NMOS sidewalls. The PMOS sidewalls and NMOS sidewalls are formed by etching processes in different steps. According to process requirements, PMOS sidewalls and NMOS sidewalls of different widths can be obtained by adjusting the etching parameters, and further PMOS sidewalls of different widths can be obtained. PMOS and NMOS source/drains of different widths are obtained with NMOS sidewalls to improve transistor performance.

本发明虽然已以较佳实施例公开如上,但其并不是用来限定本发明,任何本领域技术人员在不脱离本发明的精神和范围内,都可以利用上述揭示的方法和技术对本发明技术方案做出可能的变动和修改,因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化及修饰,均属于本发明技术方案的保护范围。Although the present invention has been disclosed as above with preferred embodiments, it is not intended to limit the present invention, and any person skilled in the art can utilize the methods and techniques disclosed above to analyze the technical aspects of the present invention without departing from the spirit and scope of the present invention. Therefore, any simple modifications, equivalent changes and modifications made to the above embodiments according to the technical essence of the present invention, which do not depart from the content of the technical solution of the present invention, all belong to the protection of the technical solution of the present invention. scope.

Claims (13)

1.一种CMOS的形成方法,其特征在于,包括:1. A method for forming CMOS, characterized in that, comprising: 提供半导体衬底,所述半导体衬底具有PMOS区域和NMOS区域,所述PMOS区域和NMOS区域之间具有隔离结构;A semiconductor substrate is provided, the semiconductor substrate has a PMOS region and an NMOS region, and an isolation structure is provided between the PMOS region and the NMOS region; 在所述PMOS区域和NOMS区域形成栅极结构;forming a gate structure in the PMOS region and the NOMS region; 形成覆盖所述栅极结构和半导体衬底的氧化物层,形成覆盖所述氧化物层的氮化物层;forming an oxide layer covering the gate structure and the semiconductor substrate, and forming a nitride layer covering the oxide layer; 形成覆盖NMOS区域的第一阻挡层;forming a first barrier layer covering the NMOS region; 刻蚀PMOS区域的氮化物层和氧化物层形成PMOS侧墙;Etching the nitride layer and oxide layer in the PMOS region to form PMOS sidewalls; 以PMOS区域的栅极结构和PMOS侧墙为掩膜,在所述PMOS区域的半导体衬底中待形成源区和漏区的区域形成凹槽;Using the gate structure and the PMOS sidewall of the PMOS region as a mask, forming grooves in the semiconductor substrate of the PMOS region where the source region and the drain region are to be formed; 去除所述第一阻挡层,以所述PMOS侧墙和覆盖NMOS区域的氮化物层为外延选择层,在所述凹槽内外延填充硅锗材料;removing the first barrier layer, using the PMOS sidewall and the nitride layer covering the NMOS region as an epitaxial selection layer, and epitaxially filling the groove with a silicon germanium material; 形成覆盖PMOS区域的第二阻挡层;forming a second barrier layer covering the PMOS region; 刻蚀NMOS区域的氮化物层和氧化物层形成NMOS侧墙,去除所述第二阻挡层。The nitride layer and the oxide layer in the NMOS region are etched to form NMOS side walls, and the second barrier layer is removed. 2.如权利要求1所述的CMOS的形成方法,其特征在于,所述硅锗材料的形成工艺为选择性外延。2 . The method for forming CMOS according to claim 1 , wherein the formation process of the silicon germanium material is selective epitaxy. 3 . 3.如权利要求2所述的CMOS的形成方法,其特征在于,所述选择性外延工艺的参数包括:反应气体包括硅源气体和锗源气体,所述硅源气体为SiH4或SiH2Cl2,流量为1sccm~1000sccm;所述锗源气体为GeH4,流量为1sccm~1000sccm;反应温度为500~800摄氏度;反应气压为1~100Torr。3. The formation method of CMOS as claimed in claim 2, is characterized in that, the parameter of described selective epitaxy process comprises: reaction gas comprises silicon source gas and germanium source gas, and described silicon source gas is SiH 4 or SiH 2 Cl 2 , the flow rate is 1 sccm-1000 sccm; the germanium source gas is GeH 4 , the flow rate is 1 sccm-1000 sccm; the reaction temperature is 500-800 degrees Celsius; the reaction pressure is 1-100 Torr. 4.如权利要求3所述的CMOS的形成方法,其特征在于,所述选择性外延工艺的反应气体还包括HCl和H2,所述HCl的流量为1sccm~1000sccm,所述H2的流量为0.1slm~50slm。4. The method for forming CMOS according to claim 3, wherein the reaction gas of the selective epitaxy process further comprises HCl and H 2 , the flow rate of the HCl is 1 sccm to 1000 sccm, and the flow rate of the H 2 0.1slm ~ 50slm. 5.如权利要求1所述的CMOS的形成方法,其特征在于,所述凹槽为Sigma形凹槽,所述Sigma形凹槽在凹槽的中部具有指向晶体管沟道区域的凸出的尖端。5. The forming method of CMOS as claimed in claim 1, characterized in that, the groove is a Sigma-shaped groove, and the Sigma-shaped groove has a protruding tip pointing to the transistor channel region in the middle of the groove . 6.如权利要求5所述的CMOS的形成方法,其特征在于,形成所述Sigma形凹槽的工艺包括:6. The forming method of CMOS as claimed in claim 5, is characterized in that, the process of forming described Sigma-shaped groove comprises: 先进行等离子体刻蚀,所述等离子体刻蚀的参数包括:刻蚀气体包括HBr、O2、He、Cl2和NF3,所述HBr流量为100~1000sccm,O2流量为2~20sccm,He流量为100~1000sccm,Cl2流量为2~200sccm,NF3流量为2~200sccm,刻蚀气压为10~200mTorr,偏压为0~400V,时间为5~60秒;Plasma etching is performed first, and the parameters of the plasma etching include: the etching gas includes HBr, O 2 , He, Cl 2 and NF 3 , the HBr flow rate is 100-1000 sccm, and the O 2 flow rate is 2-20 sccm , the flow rate of He is 100-1000 sccm, the flow rate of Cl 2 is 2-200 sccm, the flow rate of NF 3 is 2-200 sccm, the etching pressure is 10-200 mTorr, the bias voltage is 0-400 V, and the time is 5-60 seconds; 再进行湿法刻蚀,所述湿法刻蚀工艺采用TMAH溶液,TMAH溶液的温度为15~70摄氏度,时间为20~500秒。Then perform wet etching, the wet etching process uses TMAH solution, the temperature of the TMAH solution is 15-70 degrees Celsius, and the time is 20-500 seconds. 7.如权利要求1所述的CMOS的形成方法,其特征在于,所述的隔离结构为浅沟槽隔离结构。7. The method for forming a CMOS according to claim 1, wherein the isolation structure is a shallow trench isolation structure. 8.如权利要求1所述的CMOS的形成方法,其特征在于,所述栅极结构包括栅介质层和位于栅介质层上的栅电极层。8. The method for forming a CMOS according to claim 1, wherein the gate structure comprises a gate dielectric layer and a gate electrode layer on the gate dielectric layer. 9.如权利要求1所述的CMOS的形成方法,其特征在于,在形成所述栅极结构之后,还包括在所述半导体衬底内进行轻掺杂源漏注入和晕环掺杂的步骤。9. The method for forming CMOS according to claim 1, further comprising the steps of lightly doped source and drain implantation and halo doping in the semiconductor substrate after forming the gate structure . 10.如权利要求1所述的CMOS的形成方法,其特征在于,所述氧化物层的材料为氧化硅,所述氮化物层的材料为氮化硅。10. The method for forming a CMOS according to claim 1, wherein the material of the oxide layer is silicon oxide, and the material of the nitride layer is silicon nitride. 11.如权利要求1所述的CMOS的形成方法,其特征在于,所述第一阻挡层和第二阻挡层为光刻胶层。11. The method for forming a CMOS according to claim 1, wherein the first barrier layer and the second barrier layer are photoresist layers. 12.如权利要求1所述的CMOS的形成方法,其特征在于,所述PMOS侧墙的宽度为5nm至50nm。12 . The method for forming a CMOS according to claim 1 , wherein the width of the PMOS sidewall is 5 nm to 50 nm. 13 . 13.如权利要求1所述的CMOS的形成方法,其特征在于,所述NMOS侧墙的宽度为5nm至50nm。13 . The method for forming CMOS according to claim 1 , wherein the width of the NMOS sidewall is 5 nm to 50 nm. 14 .
CN201210393612.2A 2012-10-16 2012-10-16 Formation method of CMOS Pending CN103730421A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210393612.2A CN103730421A (en) 2012-10-16 2012-10-16 Formation method of CMOS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210393612.2A CN103730421A (en) 2012-10-16 2012-10-16 Formation method of CMOS

Publications (1)

Publication Number Publication Date
CN103730421A true CN103730421A (en) 2014-04-16

Family

ID=50454440

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210393612.2A Pending CN103730421A (en) 2012-10-16 2012-10-16 Formation method of CMOS

Country Status (1)

Country Link
CN (1) CN103730421A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109390367A (en) * 2018-12-07 2019-02-26 德淮半导体有限公司 Pixel circuit and its manufacturing method
CN117577643A (en) * 2024-01-19 2024-02-20 安徽大学 Semiconductor structure and manufacturing method thereof
CN117613007A (en) * 2024-01-23 2024-02-27 湖北江城芯片中试服务有限公司 A method for preparing a semiconductor structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060086987A1 (en) * 2004-10-26 2006-04-27 Taiwan Semiconductor Manufacturing Company, Ltd. Method for manufacturing a semiconductor device with reduced floating body effect
CN1830092A (en) * 2003-08-04 2006-09-06 国际商业机器公司 Fabrication structure and method of strained semiconductor CMOS transistor
CN1941329A (en) * 2005-09-29 2007-04-04 中芯国际集成电路制造(上海)有限公司 Nano-device with enhanced strain inductive transferring rate for CMOS technology and its process
CN100461456C (en) * 2005-05-26 2009-02-11 株式会社东芝 Semiconductor device and its manufacturing method
US20110042729A1 (en) * 2009-08-21 2011-02-24 Taiwan Semiconductor Manufacturing Company, Ltd. Method for improving selectivity of epi process

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1830092A (en) * 2003-08-04 2006-09-06 国际商业机器公司 Fabrication structure and method of strained semiconductor CMOS transistor
US20060086987A1 (en) * 2004-10-26 2006-04-27 Taiwan Semiconductor Manufacturing Company, Ltd. Method for manufacturing a semiconductor device with reduced floating body effect
CN100461456C (en) * 2005-05-26 2009-02-11 株式会社东芝 Semiconductor device and its manufacturing method
CN1941329A (en) * 2005-09-29 2007-04-04 中芯国际集成电路制造(上海)有限公司 Nano-device with enhanced strain inductive transferring rate for CMOS technology and its process
US20110042729A1 (en) * 2009-08-21 2011-02-24 Taiwan Semiconductor Manufacturing Company, Ltd. Method for improving selectivity of epi process

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109390367A (en) * 2018-12-07 2019-02-26 德淮半导体有限公司 Pixel circuit and its manufacturing method
CN117577643A (en) * 2024-01-19 2024-02-20 安徽大学 Semiconductor structure and manufacturing method thereof
CN117577643B (en) * 2024-01-19 2024-04-09 安徽大学 Semiconductor structure and manufacturing method thereof
CN117613007A (en) * 2024-01-23 2024-02-27 湖北江城芯片中试服务有限公司 A method for preparing a semiconductor structure

Similar Documents

Publication Publication Date Title
CN105470132B (en) The forming method of fin field effect pipe
CN103560150B (en) Metal gate transistors with epitaxial source and drain regions
CN103295904B (en) There is the FinFET design that LDD extends
CN103545213B (en) Semiconductor device and method for manufacturing the same
US8530316B2 (en) Method for fabricating a semiconductor device
US20130187207A1 (en) Replacement source/drain finfet fabrication
CN104900521B (en) Fin formula field effect transistor and forming method thereof
US9570589B2 (en) FINFET semiconductor device and fabrication method
CN104299971A (en) MOS devices with non-uniform p-type impurity profile
US20140110793A1 (en) Cmos transistor and fabrication method
CN106856170B (en) The forming method of fin formula field effect transistor
CN104752216B (en) The forming method of transistor
CN104103505B (en) The forming method of grid
CN103730421A (en) Formation method of CMOS
CN106960789B (en) Semiconductor device and method for improving performance of semiconductor device
CN104183500A (en) Method for forming ion-implantation side wall protection layer on FinFET device
US10460996B2 (en) Fin field effect transistor and fabrication method thereof
CN104253090B (en) The forming method of CMOS transistor
CN104064467B (en) The forming method of fin formula field effect transistor
US7745296B2 (en) Raised source and drain process with disposable spacers
CN107591327B (en) Method for forming fin field effect transistor
CN104465377B (en) Pmos transistor and forming method thereof
CN106328706B (en) The forming method of fin formula field effect transistor
CN108074868B (en) Semiconductor structure and method of forming the same
CN104167363A (en) Method for forming ion injection side wall protecting layer on FinFET device

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20140416