CN1037234A - color picture tube device - Google Patents
color picture tube device Download PDFInfo
- Publication number
- CN1037234A CN1037234A CN89102569A CN89102569A CN1037234A CN 1037234 A CN1037234 A CN 1037234A CN 89102569 A CN89102569 A CN 89102569A CN 89102569 A CN89102569 A CN 89102569A CN 1037234 A CN1037234 A CN 1037234A
- Authority
- CN
- China
- Prior art keywords
- electron
- lens
- electron beam
- grid
- mentioned
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000010894 electron beam technology Methods 0.000 claims abstract description 201
- 230000000694 effects Effects 0.000 claims abstract description 13
- 239000012141 concentrate Substances 0.000 abstract description 7
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 15
- 238000010586 diagram Methods 0.000 description 7
- 230000004075 alteration Effects 0.000 description 5
- 230000005684 electric field Effects 0.000 description 5
- 238000000034 method Methods 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 206010010071 Coma Diseases 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 241000226585 Antennaria plantaginifolia Species 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 239000002023 wood Substances 0.000 description 2
- 230000006378 damage Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000005405 multipole Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Images
Landscapes
- Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)
Abstract
彩色显像管装置具备一列型电子枪部、偏转部及 荧光屏部,该电子枪部具备发生相互平行的三个电子 束并对其进行控制、加速的电子束形成部和使三个电 子束聚焦并集中的主电子透镜部。此主电子透镜部 具有对三个电子束共同作用的大口径非对称电子透 镜及对各电子束赋予垂直方向比水平方向强的发散 作用且使三个电子束在相互平行的状态下入射到非 对称电子透镜的电子束形成手段。电子束形成手段 设在非对称电子透镜的电子束形成部一侧。
A color picture tube device is provided with an in-line electron gun unit, a deflection unit, and a fluorescent screen unit. The electron gun unit includes an electron beam forming unit that generates, controls, and accelerates three parallel electron beams, and a main unit that focuses and concentrates the three electron beams. Electronic Lens Department. The main electron lens part has a large-aperture asymmetric electron lens that works together on the three electron beams, and gives each electron beam a divergence effect that is stronger in the vertical direction than in the horizontal direction, and makes the three electron beams incident on the non-symmetrical electron beams in a parallel state. Electron beam forming means of symmetrical electron lens. The electron beam forming means is provided on the side of the electron beam forming part of the asymmetric electron lens.
Description
本发明为彩色显像管装置,特别涉及具有使排列成一列式的三个电子束通过对这些电子束共用的大口径电子透镜进行聚焦及集中的电子枪的彩色显像管装置。The present invention relates to a color picture tube device, and more particularly to a color picture tube device having an electron gun for focusing and concentrating three electron beams arranged in a row through a large-diameter electron lens common to the electron beams.
图12为表示一般的彩色显像管装置的水平断面的图。Fig. 12 is a diagram showing a horizontal cross-section of a general color picture tube device.
在图12中,彩色显像管装置1具备具有荧光屏面2的面板3,经漏斗部4连到该面板3的侧壁部3a的管颈5,装在该管颈5内部的电子枪6,从漏斗部4直到管颈在其外壁上装着的偏转装置7,设在上述荧光屏面2的对面并保持预定间隔且具有多个孔8的荫罩9,从上述漏斗部4的内壁到上述管颈5的一部分上均匀涂敷的内部导电膜10和涂敷在漏斗部4的外部上的外部导电膜11,及设在漏斗部4的一部分上的阳极端子(未图示)。In Fig. 12, the color picture tube device 1 is equipped with a
且,在荧光屏面2上涂敷有许多成条状或点状的红色发光荧光体、绿色发光荧光体及蓝色发光荧光体,从电子枪6射出来的三个电子束BR、BG和BB由荫罩9进行选择并轰击各自的荧光体而使其发光。And, on the phosphor screen surface 2 coated with a lot of red light-emitting phosphors, green light-emitting phosphors and blue light-emitting phosphors in stripes or dots, the three electron beams B R , B G and B B is selected by the
又,电子枪6具有用以发生作一列式排列的平行的三个电子束BR、BG及BB,使其加速并对其进行控制的电子束形成部GE和用以使这些电子束聚焦并集中的主电子透镜ML。且,通过由上述偏转装置使三个电子束BR、BG及BB在整个荧光屏面上偏转扫描而形成光栅。In addition, the
使三个电子束集中的方法如例如美国专利2957106号的说明书所示,其技术为使从阴极发射出来的电子束从一开始就倾斜并进行集中,又如美国专利3772554号说明书所示,其技术为使从阴极发射出来的电子束从一开始就倾斜并进行集中,又如美国专利3772554号说明书所示,其技术为通过使设在电子枪电极上的通过三个电子束用的开口中的一部分即电极的两侧的开口从电子枪的中心轴稍向外侧偏心,使电子束进行集中,以上任何一种都已广泛被采用。偏转装置基本上具有用以发生使电子束在水平方向上偏转的水平偏转线圈和使电子束在垂直方向上偏转的垂直偏转线圈。在实际的彩色显像管装置中使电子束偏转时由于三个电子束点的在面板处的集中会逐渐被破坏,故需在防止此集中的破坏上面下功夫。这被称为会聚自由系统,通过使水平偏转磁场为枕形及使垂直偏转磁场为桶形,作为三电子束能在自集中型磁场荧光面整个范围内集中。The method for concentrating the three electron beams is shown in, for example, US Patent No. 2,957,106. The technique is to tilt and concentrate the electron beams emitted from the cathode from the beginning, and as shown in US Patent No. 3,772,554. The technology is to make the electron beam emitted from the cathode tilted and concentrated from the beginning, and as shown in the US Patent No. 3,772,554 specification, its technology is to pass through the openings of the three electron beams on the electrode of the electron gun. A part, that is, openings on both sides of the electrodes are slightly off-centered outward from the center axis of the electron gun to concentrate the electron beams, any of which has been widely used. The deflection device basically has a horizontal deflection coil for deflecting the electron beams in the horizontal direction and a vertical deflection coil for deflecting the electron beams in the vertical direction. When deflecting the electron beams in an actual color picture tube device, since the concentration of the three electron beam spots on the panel is gradually destroyed, efforts must be made to prevent the destruction of the concentration. This is called a convergence free system, and by making the horizontal deflection magnetic field a pincushion shape and the vertical deflection magnetic field a barrel shape, three electron beams can be concentrated over the entire range of the self-concentrating magnetic field phosphor surface.
如上所述,彩色显像管通过采用多种开发技术,使质量提高,但随着管子的大型化和高质量化的普及,正在产生很多新的问题。As mentioned above, color picture tubes have been improved in quality by adopting various development technologies, but many new problems are arising as the tubes become larger and higher in quality.
即存在的问题是:1.在电子束的在荧光屏上的点的直径的问题,2.偏转时的荧光屏周边部分上的电子束点的畸变问题,3.在整个荧光屏面上的会聚问题。That is, the existing problems are: 1. the diameter of the spot of the electron beam on the phosphor screen, 2. the distortion of the electron beam spot on the peripheral part of the phosphor screen during deflection, and 3. the convergence problem on the entire phosphor screen.
如管子成为大型化,则从电子枪到荧光屏面上的距离变长,电子透镜的电子光学上的倍数变大,在荧光屏上的点径变大,而使析象度变坏。要使点径变小,就必须使电子枪的电子透镜的性能提高。If the size of the tube increases, the distance from the electron gun to the phosphor screen becomes longer, the electron optical magnification of the electron lens becomes larger, the spot diameter on the phosphor screen becomes larger, and the resolution deteriorates. To reduce the spot diameter, it is necessary to improve the performance of the electron lens of the electron gun.
一般主电子透镜是通过将具有开口的多个电极同轴地进行配置并各自加上预定的电位而形成的。这样的静电透镜因电极结构的不同而具有若干种,但基本上是通过使之形成电极开口直径作得很大的大口径透镜,或使电极间的距离增大并使电位的变化减缓而形成长焦距透镜,可使透镜性能提高。Generally, a main electron lens is formed by arranging a plurality of electrodes having openings coaxially and applying a predetermined potential to each. There are several types of such electrostatic lenses due to different electrode structures, but basically they are formed by forming a large-diameter lens with a large electrode opening diameter, or increasing the distance between electrodes and slowing down the change in potential. The long focal length lens can improve the performance of the lens.
但,因彩色显像管的电子枪一般封入在由很细的玻璃圆筒所作成的管颈内,故首先电极的开口即透镜口径在物理上受到制约。且在电极间所形成的聚焦电场为了作成不致受到管颈内的其他不希望的电场的影响,而使电极间的距离受到限制。However, since the electron gun of a color picture tube is generally enclosed in a tube neck made of a very thin glass cylinder, firstly, the opening of the electrode, that is, the aperture of the lens, is physically restricted. In addition, the distance between the electrodes is limited in order to prevent the focusing electric field formed between the electrodes from being affected by other undesired electric fields in the neck.
特别是,在如荫罩型彩色显像管那样使三个电子枪作三角形配置或一列式配置而成为一体化时,由于存在的优点是如上所述,电子束间隔(Sg)越小,则越容易使三个电子束在整个荧光屏面的附近集中于一点上,且偏转功率小,故为了使电子枪的间隔缩小,而电极的开口不得不做得更小。In particular, when three electron guns are integrated in a triangular arrangement or in-line arrangement like a shadow mask type color picture tube, there is an advantage that the smaller the electron beam interval (Sg), the easier it is to use The three electron beams are concentrated at one point near the entire fluorescent screen, and the deflection power is small, so in order to narrow the distance between the electron guns, the openings of the electrodes have to be made smaller.
因此,想出的方法为使并列在同一平面上的三个电子透镜完全重合而成为1个大电子透镜,通过此大口径电子透镜,可使电子透镜的性能得到最大限度的发挥。图13为在光学上对此进行图示的图。如图所示,放映出的电子束的核心变小,但如从整个电子束角度看,其结果尚不十分令人满意。即电子束间隔为Sg的三个电子束BR、BG、BB如通过1个共用的大口径电子透镜LEL,则如图13所示在中央的电子束BG正好聚焦的状态下,两侧的电子束BR、BB呈过聚焦状态,且一旦成为过集中状态,则均会伴随较大的慧形像差,在荧光屏101上三个电子束点SPR、SPG、SPB的距离大大拉开,而两侧的电子束发生畸变。Therefore, the method conceived is to completely overlap the three electronic lenses paralleled on the same plane to form a large electronic lens. Through this large-diameter electronic lens, the performance of the electronic lens can be maximized. FIG. 13 is a diagram optically illustrating this. As shown in the figure, the core of the projected electron beam becomes smaller, but the result is not very satisfactory when viewed from the perspective of the entire electron beam. That is, if the three electron beams B R , B G , and B B with an electron beam interval of Sg pass through a shared large-diameter electron lens LEL, then as shown in Figure 13, when the central electron beam B G is just focused, The electron beams B R and B B on both sides are in an over-focused state, and once they become over-focused, they will be accompanied by relatively large coma aberrations. The distances between the three electron beam spots SPR, SPG, and SPB on the
调合这三个电子束的聚焦状态而要想使彗形象差部分减小的话,如使三个电子束的间隔Sg相对于电子透镜LEL的透镜口径D有某种程度减小,则实用上就会变成没有问题,而关于三个电子束在荧光屏上的集中状态,必须使Sg极小,但在电子束发生部的机械上的配置方面是有限度的。In order to partially reduce coma aberration by adjusting the focus states of these three electron beams, if the interval Sg of the three electron beams is reduced to some extent relative to the lens aperture D of the electron lens LEL, then practically There will be no problem, but regarding the concentration state of the three electron beams on the phosphor screen, Sg must be made extremely small, but there is a limit in terms of the mechanical arrangement of the electron beam generating part.
因此,在特公昭49-5591号公报(美国专利3,448,316号说明书)及美国专利4,528,476号说明书中如图14所示,预选使要入射到电子透镜LEL上的三个电子束具有倾角θ,并作成使三个电子束能同时通过电子透镜LEL的中央部,以调合三个电子束的聚焦状态,其后通过第2透镜LEL2使发射着的两侧的电子束在相反方向上作很大的偏转(φ°),从而使三个电子束集中在荧光屏上。其结果是三电子束的聚焦和集中得到改善。但留下的问题是对两侧的电子束来说,发生很大的偏转像差或彗形像差。Therefore, in Japanese Patent Publication No. 49-5591 (U.S. Patent No. 3,448,316 specification) and U.S. Patent No. 4,528,476 specification, as shown in FIG. The electron beam has an inclination angle θ, and it is made so that the three electron beams can pass through the central part of the electron lens LEL at the same time to adjust the focusing state of the three electron beams, and then pass through the second lens LEL2 to make the electron beams on both sides of the emission A large deflection (φ°) is made in the opposite direction, so that the three electron beams are concentrated on the phosphor screen. The result is improved focusing and concentration of the three electron beams. But there remains a problem that a large deflection aberration or coma aberration occurs for the electron beams on both sides.
如上所述利用对三个电子束共同作用的大口径电子透镜是困难的,且不能最大限度地发挥大口径电子透镜的性能。As mentioned above, it is difficult to use a large-diameter electron lens that acts on three electron beams, and the performance of the large-diameter electron lens cannot be maximized.
这样,为使彩色显像管装置的图像性能进一步提高,通过采用对三个电子束共用的大口径电子透镜,可提高电子枪的性能,并可有效地使荧光屏面上的束点直径减小,而在现有技术中则不能充分地发挥大口径电子透镜的性能,存在的问题是难以进一步提高彩色显像管装置的图象性能。因此为了进一步提高彩色显像管装置的图象性能,可望得到备有能充分发挥大口径电子透镜的性能的电子枪的彩色显像管。In this way, in order to further improve the image performance of the color picture tube device, the performance of the electron gun can be improved by using a large-diameter electron lens shared by the three electron beams, and the beam spot diameter on the fluorescent screen can be effectively reduced. In the prior art, the performance of the large-aperture electronic lens cannot be fully utilized, and the existing problem is that it is difficult to further improve the image performance of the color picture tube device. Therefore, in order to further improve the image performance of the color picture tube device, it is expected to obtain a color picture tube equipped with an electron gun that can fully exert the performance of the large-diameter electron lens.
本发明就是为解决这种已有技术的课题而进行的,其目的在于提供备有可通过三个电子束共用的大口径电子透镜,同时很容易地进行对各电子束的聚焦和集中,且能充分发挥此大口径电子透镜的性能的电子枪的彩色显像管。The present invention is made to solve the problem of the prior art, and its object is to provide a large-diameter electron lens that can pass through three electron beams in common, and at the same time, it is easy to focus and concentrate each electron beam, and The color picture tube of the electron gun that can fully exert the performance of this large-diameter electron lens.
即本发明的彩色显像管装置是在备有一列式电子枪部、偏转部及荧光屏部,且通过偏转部使从上述电子枪发射出来的电子束在垂直方向和水平方向进行偏转扫描的彩色显像管装置中,其特征在于上述电子枪部具有发生三个电子束、并对其进行加速和控制的电子束形成部,及使该电子束进行聚焦和集中的主电子透镜部,在该主透镜部上有对三个电子束共同作用的大口径非对称电子透镜,该非对称电子透镜对三个电子束分别作用的水平方向的会聚力比垂直方向的会聚力弱,入射到该非对称电子透镜的三个电子束的轴相互是平行的,且各电子束为它的发散强度在垂直方向上比在水平方向上强的电子束。That is, the color picture tube device of the present invention is equipped with a column type electron gun part, a deflection part and a fluorescent screen part, and the electron beam emitted from the above-mentioned electron gun is deflected and scanned in the vertical direction and the horizontal direction by the deflection part, It is characterized in that the above-mentioned electron gun part has an electron beam forming part that generates three electron beams, accelerates and controls them, and a main electron lens part that focuses and concentrates the electron beams, and has a pair of three electron beams on the main lens part. A large-aperture asymmetric electron lens with two electron beams acting together. The convergence force in the horizontal direction of the asymmetric electron beams acting on the three electron beams is weaker than the convergence force in the vertical direction. The three electron beams incident on the asymmetric electron lens The axes of the beams are parallel to each other, and each electron beam is an electron beam whose divergence intensity is stronger in the vertical direction than in the horizontal direction.
向上述非对称电子透镜入射的各电子束并不意味着是对水平方向有发散性的电子束。也含有下列场合即为对水平方向有聚焦性的电子束。The electron beams incident on the above-mentioned asymmetric electron lens do not mean that they diverge in the horizontal direction. The following cases are also included, that is, electron beams that are focused in the horizontal direction.
又本发明为在具备一列式电子枪部、偏转部及荧光屏部、且通过转部使从上述电子枪发射出来的电子束在垂直方向和水平方向上讲行偏转扫描的彩色显像管装置中,其特征在于上述电子枪部具备发生三个电子束并对其进行加速和控制的电子束形成部和使该电子束聚焦并集中的主电子束透镜部,在该主电子透镜部上有对三个电子束共同作用的大口径非对称电子透镜,该非对称电子透镜具有对三个电子束共用的圆筒电子透镜和在该圆筒电子透镜的透镜区域内使三电子束共同通过的非圆形电子束通过孔并在非对称电子透镜的前段上具有射入该非对称电子透镜的三个电子束的轴相互成平行状、且使电子束成为其发散强度在垂直方向上比水平方向上强的电子束的电子束形成手段。In addition, the present invention is in a color picture tube device equipped with an in-line electron gun part, a deflection part, and a fluorescent screen part, and the electron beam emitted from the above-mentioned electron gun is deflected and scanned vertically and horizontally through the transfer part, and is characterized in that The electron gun part includes an electron beam forming part that generates three electron beams, accelerates and controls them, and a main electron beam lens part that focuses and concentrates the electron beams. A large-aperture asymmetric electron lens with large diameter, the asymmetric electron lens has a cylindrical electron lens shared by three electron beams and a non-circular electron beam that allows three electron beams to pass through the lens area of the cylindrical electron lens The axes of the three electron beams that enter the asymmetric electron lens are parallel to each other, and the electron beams become electron beams whose divergence intensity is stronger in the vertical direction than in the horizontal direction. electron beam forming means.
在本发明中向电子枪的主电子透镜入射的电子束的束轴相互是平行的,各电子束设计成在垂直方向上的发散比水平方向强。In the present invention, the beam axes of the electron beams incident on the main electron lens of the electron gun are parallel to each other, and each electron beam is designed to diverge stronger in the vertical direction than in the horizontal direction.
另一方面在主电子透镜部上具有对三个电子束共同作用的罂诰斗嵌猿频缱油妇担梅嵌猿频缱油妇瞪杓瞥啥缘缱邮鹱饔玫乃椒较蛏系木劢沽Ρ却怪狈较蛏系木劢沽θ酢?On the other hand, on the main electron lens part, there are three electron beams that act together on the three electron beams. Is it more razor-sharp than wood-based Ρ, but it is more strange than razor-like wood-based θ?
在这样的大口径非对称电子透镜部上一旦射入上述的特定的电子束,则入射的电子束受到大口径非对称电子透镜的透镜作用,放映在荧光屏上的三电子束成为有良好的集中、且各电子束的直径小又不畸变。且三电子束因通过大口径透镜,故能最大限度地得到作为大口径的优点。Once the above-mentioned specific electron beam is injected into such a large-diameter asymmetric electron lens part, the incident electron beam is subjected to the lens action of the large-diameter asymmetric electron lens, and the three electron beams projected on the fluorescent screen become well-concentrated. , and the diameter of each electron beam is small without distortion. In addition, since the three electron beams pass through the large-diameter lens, the advantage of being a large-diameter lens can be obtained to the maximum.
在本发明中在入射到主电子透镜上的各电子束不向水平方向进行扩散,即大致平行时,可得到最佳的集中和聚焦特性。In the present invention, when the electron beams incident on the main electron lens do not spread in the horizontal direction, that is, they are roughly parallel, the best concentration and focusing characteristics can be obtained.
又为了与本发明进行对比,使入射到主电子透镜的各电子束作成在水平方向上及垂直方向上都大致平行,而其他各条件按本发明者,其聚焦特性差。In order to compare with the present invention, the electron beams incident on the main electron lens are made approximately parallel in the horizontal direction and the vertical direction, and other conditions are in accordance with the present invention, and the focusing characteristics are poor.
以下继续参照附图对本发明作详细说明。The present invention will be described in detail below with reference to the accompanying drawings.
图1表示在实施本发明的彩色显像管装置的管颈部附近的荧光屏部的一部分的X-Z面的断面图,图2仅仅表示电子枪部的Y-Z面的断面图。Fig. 1 shows a cross-sectional view of a part of the phosphor screen part near the tube neck of a color picture tube device according to the present invention, on the X-Z plane, and Fig. 2 shows a cross-sectional view on the Y-Z plane of only the electron gun part.
在图1、图2中配置在管颈5内的电子枪部100由阴极K、第一栅极G1、第二栅极G2、第三栅极G3、第四栅极G4、第五栅极G5、第六栅极G6、第七栅极G7和支持这些电极的绝缘支持体BG及管壳间隔器112所组成,电子枪100被固定在管颈下部的心柱杆113上。In Fig. 1, Fig. 2, the
上述阴极K在内部各自具有灯丝,并发生三个电子束BR、BG、BB。The above-mentioned cathodes K each have a filament inside, and generate three electron beams B R , B G , and B B .
又第一栅极G1、第二栅极G2具有与上述三个阴极K相对应的三个较小的电子束通过孔,在此部分上对从阴极K射出的电子束进行控制和加速,形成所谓的电子束形成部。下面,第三栅极G3、第四栅极G4、第五栅极G5同样地具有与三个阴极K相对应的三个较大的电子束通过孔。The first grid G1 and the second grid G2 have three smaller electron beam passing holes corresponding to the above three cathodes K, and the electron beams emitted from the cathode K are controlled and accelerated in this part to form The so-called electron beam forming section. Next, the third grid G3, the fourth grid G4, and the fifth grid G5 also have three relatively large electron beam passage holes corresponding to the three cathodes K.
在第五栅极G5的靠近第六栅极一侧上在与一列式排列方向(X-Z面)相垂直的方向上四个电极20、21、22、23配置成夹有三个电子束通过孔52R、52G、52B,在第六栅极G6的靠近第五栅极G5一侧上与一列式排列方向相平行,并在三个电子束通过孔61R、61G、61B的上下两部分上配置2个电极24、25,第五栅极G5侧的四个电极20、21、22、23和第六栅极G6侧的2个电极24、25相互重叠配置,如在第五栅极G5和第六栅极G6之间加上电压,则在第五栅极G5的四个电极板和第六栅极G6的二个电极板之间分别形成四极子透镜。On the side of the fifth grid G5 close to the sixth grid, the four
又第六栅极G6实质上为圆筒状电极在其靠近第五栅极G5一侧上,设有和第五栅极G5的电子束通过孔52R、52G、52B有同样大小的三个电子束通过孔61R、61G、61B,而在其靠近第七栅极G7一侧上,则设有一个大的圆形的电子束通过孔62。并且在此圆筒电极 部,在其长度方向的中间部上配置电极60,该电极上具有长圆形的电子束通过孔63,且其形状为在一列式排列方向(X方向)上的直径长。And the sixth grid G6 is substantially a cylindrical electrode, and on its side close to the fifth grid G5, there are three electron beams with the same size as the electron beam passage holes 52R, 52G, and 52B of the fifth grid G5. The
此电子束通过孔63位于距第六栅极G6的靠近第七栅极一侧的端部仅为预定距离a的地方,对于大圆形电子束通过孔62的直径D6来说,有着a<D6的关系。This electron
第七栅极G7和第六栅极G6的一部分相重叠,且第七栅极是包含圆筒形电极式的第六栅极G6的实质上为圆筒形的电极,在第七栅极和第六栅极G6的大圆形电子束通过孔62之间实质上形成大口径圆筒透镜。The seventh grid G7 and a part of the sixth grid G6 overlap, and the seventh grid is a substantially cylindrical electrode including the sixth grid G6 of cylindrical electrode type, and the seventh grid and the sixth grid G6 are substantially cylindrical electrodes. The large circular electron
在第七栅极G7的圆筒形电极的内部,在从第六栅极端部起向荧光屏部2一侧仅离开预定距离b之处,设置具有在一列式排列方向(X方向)上直径短的长圆形电子束通过孔73的电极70,对第七栅极G7的圆筒直径D7来说,有着b<D7的关系。In the inside of the cylindrical electrode of the seventh grid G7, at a place separated only by a predetermined distance b from the end of the sixth grid toward the phosphor screen portion 2 side, a wire with a diameter short in the in-line arrangement direction (X direction) is provided. The
又在本实施例中设a>b。在图1中表示电极60和70。Also in this embodiment, a>b is set.
在第七栅极G7的前端外周上装有管壳间隔器112,与从漏斗4的内壁涂敷到管颈5内壁上的导电膜10相接触,并作成从设置在漏斗上的阳极端子上供给阳极高压。在第七栅极G7的前端上也可放置对由偏转线圈产生的磁场进行较正的磁场校正元件。以上的阴极K,及从第一栅极G1到第七栅极G7都用绝缘支持体进行固定和支持。A
又,从管颈5到漏斗4装有偏转线圈,该偏转线圈7由用以使从电子枪射出娜龅缱邮鳥R、BG、BB在水平和垂直方向上进行偏转的水平偏转线圈和垂直偏转线圈组成。并配置用以对电子束的轨迹进行调整的多极磁铁51。Also, a deflection coil is installed from the
上述电子枪作成除第7栅极G7外所有电极都经心柱杆113从外部加预定电压。In the above-mentioned electron gun, all electrodes except the seventh grid G7 are externally applied with a predetermined voltage through the stem 113 .
在上述电极的构成中,例如令阴极K加上约150V的截止电压,并在其上加图像信号,令第一栅极G1为接地电位,第二栅极G2加500V-1KV,第三栅极G3加5-10KV,第四栅极G4加500-3KV,第五栅极G5加5-10KV,第六栅极G6加上比第五栅极G5略高的5-10KV,第七栅极G7加阳极高压25-35KV。In the composition of the above electrodes, for example, the cathode K is applied with a cut-off voltage of about 150V, and an image signal is applied to it, the first grid G1 is grounded, the second grid G2 is 500V-1KV, and the third grid G2 is at ground potential. Add 5-10KV to the pole G3, add 500-3KV to the fourth grid G4, add 5-10KV to the fifth grid G5, add 5-10KV slightly higher than the fifth grid G5 to the sixth grid G6, and add 5-10KV to the seventh grid Pole G7 plus anode high voltage 25-35KV.
由于加上这样的电位,故从各阴极K根据其调制信号而发生的电子束通过阴极K、第一栅极G1、第二栅极G2,如图3、图4所示形成相交区最小截面CO,并通过由第二栅极G2及第三栅极G3所形成的预聚焦透镜PL进行少量聚焦,形成假想的交叉点VCO,且边发散边进入第三栅极G3。进入第三栅极G3的各电子束BR、BG、BB在由第三栅极到第七栅极所形成的主电子透镜部ML1中受到聚焦作用且两侧的电子束受到集中作用,而聚焦和集中到荧光屏2上。图3、图4分别为对应于图1、图2的等效的光学上的模型。Due to the addition of such a potential, the electron beams generated from each cathode K according to its modulation signal pass through the cathode K, the first grid G1, and the second grid G2, forming the minimum cross section of the intersection area as shown in Figure 3 and Figure 4 CO, and a small amount of focusing is performed by the pre-focus lens PL formed by the second grid G2 and the third grid G3 to form a virtual cross point VCO, and enter the third grid G3 while diverging. The electron beams B R , B G , and B B entering the third grid G3 are focused in the main electron lens portion ML1 formed from the third grid to the seventh grid, and the electron beams on both sides are concentrated. , while focusing and concentrating on the fluorescent screen 2. Fig. 3 and Fig. 4 are equivalent optical models corresponding to Fig. 1 and Fig. 2 respectively.
用图3、图4的光学模型对从第三栅极G3到第七栅极G7所形成的主电子透镜部的透镜作用详细进行说明。The lens action of the main electron lens portion formed from the third grid G3 to the seventh grid G7 will be described in detail using the optical models shown in FIGS. 3 and 4 .
形成假想交叉点VCO并进入到第三电极G3的各电子束通过由第三栅极G3、第四栅极G4、第五栅极G5所形成的各个弱的单电位透镜EL2(第二电子透镜)分别少量聚焦。Each electron beam that forms the imaginary intersection VCO and enters the third electrode G3 passes through each weak single-potential lens EL2 (second electron lens EL2) formed by the third grid G3, the fourth grid G4, and the fifth grid G5. ) are focused by a small amount respectively.
又,在第五栅极G5上,如上所述,由于在垂直于一列式排列方向(X-Z平面)的方向上,配置4个电极20、21、22、23,并在第六栅极G6上在平行于一列式排列方向的方向上配置二个电极24、25,故如在第五栅极G5和第六栅极G6之间加上电压,即在这些电极之间形成四极子透镜QEL。因而入射到此处的电子束受到透镜作用,并向着大口径电子透镜LEL前进,且使垂直方向上的发散比水平方向强。由四极子透镜QEL产生的上述发散力的强度应根据在荧光屏上放映出的电子束的扁圆情况或集中度进行加减、因此要适当地选择上述六个电极20、21、22、23、24、25的各自的尺寸或相对间隔等。在本发明中,最好将四极子透镜QEL作成从四极子透镜QEL中出来的电子束为在垂直方向上发散,而在水平方向上则大致成平行的电子束。Also, on the fifth grid G5, as mentioned above, since four
通过这样的四极子透镜QEL的电子束如射入到大口径透镜LEL上,则受到大口径透镜的透镜作用,最终在荧光屏上放映出的电子束表示有良好的集中和聚焦特性。If the electron beam passing through such a quadrupole lens QEL is incident on the large-aperture lens LEL, it will be subjected to the lens effect of the large-aperture lens, and the electron beam finally projected on the fluorescent screen has good concentration and focusing characteristics.
用图1、图5对此点进行详细说明。This point will be described in detail using FIG. 1 and FIG. 5 .
大口径透镜部LEL具有前段部的透镜CL和后段部的透镜DL,并从整体上可将其视为一个大口径电子透镜LEL。The large-diameter lens unit LEL has a front-stage lens CL and a rear-stage lens DL, and can be regarded as one large-diameter electronic lens LEL as a whole.
即,在第六栅极G6的圆筒电极内部上由于存在在水平方向上为细长的电子束通过口63,故等于从第七栅极渗透来的高压电场经电子束通过口63产生畸变并产生在水平方向(X方向)上有弱的聚焦力作用和在垂直方向(Y方向)上有强的聚焦力作用的前段的聚焦透镜CL。另一方向在第七栅极G7的圆筒电极内部存在在垂直方向上细长的电子束通过口73,故等于从第六栅极渗透来的低压电场经电子束通过口73产生畸变并产生在水平方向(X方向)上有强的发散力作用及在垂直方向(Y方向)上有弱的发散力作用的后段的发散透镜DL。且,作为整个大口径电子透镜LEL来说作成在水平方向(X方向)上有弱聚焦作用,而在垂直方向(Y方向)上有强聚焦作用。That is, because there is an electron beam passage opening 63 elongated in the horizontal direction inside the cylindrical electrode of the sixth grid G6, the high-voltage electric field penetrating from the seventh grid is distorted through the electron
即,形成共用的大口径非对称透镜。在此处就在实施例中的集中和聚焦特性进行说明。That is, a common large-aperture asymmetric lens is formed. Concentration and focusing properties in the embodiments are described here.
入射到共用的大口径透镜LEL上的三个电子束,因其轴相互平行,故受到大口径透镜LEL的水平方向上的弱的聚焦力的作用,在荧光屏上能良好地进行集中。The three electron beams incident on the common large-aperture lens LEL have their axes parallel to each other, so they are well focused on the fluorescent screen by the weak focusing force in the horizontal direction of the large-aperture lens LEL.
在图13所示的共用的大口径透镜LEL的水平方向的聚焦力强时,这可与在荧光屏上三电子束进行过集中的情况相对照。When the horizontal focusing power of the common large-aperture lens LEL shown in FIG. 13 is strong, this can be compared with the case where the three electron beams are over-concentrated on the fluorescent screen.
现就电子束的聚焦特性进行说明。The focusing characteristic of the electron beam will now be described.
通过四极子透镜QEL的电子束在通过此处期间虽然作用不大,但在水平方向上受到聚棺饔茫诖怪狈较蛏鲜艿椒⑸⒆饔谩G以诖罂诰锻妇礚EL处在水平方向上受到弱聚焦作用,且在垂直方向上受到强聚焦作用,故在荧光屏上成为聚焦良好的电子束。Although the electron beam passing through the quadrupole lens QEL has little effect during passing through here, it is compressed in the horizontal direction. It is subject to weak focusing in the horizontal direction and strong focusing in the vertical direction, so it becomes a well-focused electron beam on the fluorescent screen.
在本实施例所示的G3、G4、G5之间所形成的各个弱的单电位透镜EL2(第二电子透镜)是用于调整向大口径电子透镜LEL入射的电子束的直径大小或整个主电子透镜部ML1的聚焦状态,在本发明中可在此透镜EL2部上设置位于大口径电子透镜的透镜区域之外的非对称透镜。Each weak single-potential lens EL2 (second electron lens) formed between G3, G4, and G5 shown in this embodiment is used to adjust the diameter of the electron beam incident on the large-aperture electron lens LEL or the entire main lens. Regarding the focusing state of the electronic lens part ML1, in the present invention, an asymmetric lens located outside the lens area of the large-aperture electronic lens can be provided on the lens EL2 part.
为使说明简化,如不考虑加给弱聚焦作用的第2电子透镜EL2,则从位于轴上的假想的交叉点VCO出来的电子束在非对称透镜QEL部上在水平方向上聚焦成对各电子束的轴几乎大致成平行状态,故水平方向的假想交叉点VCOH远到从阴极起向后方无限远处。In order to simplify the description, if the second electron lens EL2 which is added to the weak focusing effect is not considered, then the electron beams coming out from the imaginary cross point VCO located on the axis are focused on the asymmetric lens QEL part in the horizontal direction to form pairs of electrons. Since the axes of the electron beams are almost parallel, the imaginary intersection point VCOH in the horizontal direction is as far as infinity behind the cathode.
为此,作一列式排列的平行的三个电子束通过大口径电子透镜LEL集中到荧光屏上,同时各电子束成为在荧光屏上进行聚焦。如换句话说,这是指关于水平方向上的大口径电子透镜的象点侧的焦点位于荧光屏上。但在实际上为了透镜的球面象差或从阴极射出来的电子束的发射(emittance)而有必要调整QEL的强度和LEL的强度。另一方面,在垂直方向上由于是在非对称透镜QEL部上被发散(或弱聚焦),垂直方向的假想交叉点VCOV与水平方向的VCOH相比位于靠荧光屏侧相当近之外,并通过大口径电子透镜LEL受到强聚焦作用,使各电子束在荧光屏上聚焦。For this reason, the three parallel electron beams arranged in a row are concentrated on the fluorescent screen through the large-diameter electron lens LEL, and each electron beam becomes focused on the fluorescent screen at the same time. As in other words, this means that the focal point on the image point side of the large-aperture electronic lens in the horizontal direction is located on the fluorescent screen. However, in practice, it is necessary to adjust the intensity of the QEL and the intensity of the LEL for the spherical aberration of the lens or the emission of the electron beam emitted from the cathode. On the other hand, since it is diverged (or weakly focused) on the asymmetric lens QEL part in the vertical direction, the imaginary cross point VCOV in the vertical direction is located farther away from the phosphor screen side than VCOH in the horizontal direction, and passes through The large-aperture electron lens LEL is subjected to a strong focusing effect, so that each electron beam is focused on the fluorescent screen.
因此,在一列式排列的三个电子束集中的同时,各电子束在荧光屏上作圆形聚焦。Therefore, while the three electron beams arranged in a row are concentrated, each electron beam is circularly focused on the fluorescent screen.
上述实施例的详细说明举例如下:The detailed description of the above-mentioned embodiment is given as an example as follows:
阴极间隔Sg=4.92mmCathode interval Sg=4.92mm
各电极的开孔直径G1 φ,G2 φ=0.62mmThe opening diameter of each electrode G1 φ, G2 φ=0.62mm
G3 φ,G4 φ,G5 φ,G6 Bφ=4.52mm.G3 φ, G4 φ, G5 φ, G6 Bφ=4.52mm.
G6 Tφ=D6=25.0mmG6 Tφ=D6=25.0mm
G7 φ=D7=28.0mmG7 φ=D7=28.0mm
电极26= 电极27=
各电极的长度G3=6.2mm,G4=2.0mmThe length of each electrode G3=6.2mm, G4=2.0mm
G5=35.4mm G6=30.0mmG5=35.4mm G6=30.0mm
电极20-23=4mm,电极24,25=4mmElectrode 20-23=4mm,
各电极的间隔Interval of each electrode
G1/G2=0.35mm,G2=G3=1.2mmG1/G2=0.35mm, G2=G3=1.2mm
G3/G4,G4/G5=0.6mmG3/G4, G4/G5=0.6mm
a=11.0mm,b=6.0mma=11.0mm, b=6.0mm
在上述实施例中,由于作成在大口径电子透镜LEL的后段部上可得到在水平方向上有强的发散力的透镜状态,故如图6所示,从该大口径电子透镜中出来集中到荧光屏上的三个电子束在偏转中心面上的间隔SD与单纯地进行集中时(图中虚线)的间隔SO′相比变得相当小,因而可将三个电子束在整个荧光屏面上进行偏转时的集中误差抑制得很小或可使偏转功率减小,故可提供高析象度且高质量的彩色显像管。In the above-mentioned embodiment, because can obtain the lens state that there is strong diverging force in the horizontal direction on the back stage portion of large-aperture electronic lens LEL, so as shown in Figure 6, come out from this large-aperture electronic lens and concentrate The interval SD between the three electron beams on the phosphor screen on the deflection center plane becomes quite small compared with the interval S O ' when simply concentrating (the dotted line in the figure), so that the three electron beams can be placed on the entire phosphor screen surface Concentration errors during deflection are suppressed to be small or the deflection power can be reduced, so a high-resolution and high-quality color picture tube can be provided.
又在上述实施例中令偏转线圈成为会聚自由(convergeuce free)磁场时由于因偏转磁场而引起的电子束畸变很严重,故如作成使第五栅极G5的电压与水平及垂直偏转同步变化,则也可使上述非对称透镜QEL的透镜力改变,以抵消上述偏转畸变,或都也可令偏转磁场为齐一磁场,去掉因偏转磁场引起的电子束畸变,并通过调整图象信号与偏转电流的相互关系而进行会聚。In the above embodiment, when the deflection yoke becomes a convergent free (convergeuce free) magnetic field, the distortion of the electron beam due to the deflection magnetic field is very serious, so if the voltage of the fifth grid G5 is changed synchronously with the horizontal and vertical deflection, Then also can make the lens power of above-mentioned asymmetrical lens QEL change, to offset above-mentioned deflection distortion, or all also can make deflection magnetic field be homogeneous magnetic field, remove the electron beam distortion caused by deflection magnetic field, and by adjusting image signal and deflection Convergence due to the mutual relationship of currents.
在上述实施例中作为共用的大口径非对称透镜,令双电位型的圆筒透镜为基本型,通过在前段部分a的距离上配置横长的电子束通过孔48,在后段部b的距离上则配置纵长的电子束通过孔50,并设a>b,则由后段部所产生的水平方向的发散作用强,但本发明并不限于此种情况,a=b时也好,a<b时也好都能形成共用的大口径非对称透镜,又例如去掉前段部的横长的电子束通过孔亦可。当然,如其非圆形的电子束通过孔也可起到具有在垂直方向上比水平方向强的聚焦力的大口径非对称透镜,也可给与适当变化。In the above-mentioned embodiment, as the common large-aperture asymmetric lens, the bipotential type cylindrical lens is the basic type, and by disposing the horizontally long electron
又,不用说,除双电位型圆筒透镜外也可使用单电位型透镜或扩大电场型透镜等。Also, it goes without saying that a single potential type lens, an electric field expansion type lens, etc. may be used other than the bipotential type cylindrical lens.
又在上述实施例中为了使向共用的大口径非对称透镜LEL入射的独立的三个电子束中的各电子束在水平方向断面上大致平行,而在垂直平行断面上则成为发散系统,故在第五栅极G5和第六栅极G6之间设有非对称透镜QEL,而本发明并不限于此种情况,如上所述既可在第四栅极G4部分上作非对称透镜,或也可在电子束形成部上作非对称透镜,并使各电子束的水平方向断面为大致平行的电子束。In the above embodiment, in order to make each of the three independent electron beams incident on the shared large-aperture asymmetric lens LEL approximately parallel on the horizontal cross-section, and become a divergent system on the vertical parallel cross-section, so An asymmetric lens QEL is arranged between the fifth grid G5 and the sixth grid G6, but the present invention is not limited to this case, as mentioned above, an asymmetric lens can be made on the fourth grid G4, or An asymmetric lens may also be provided on the electron beam forming part, and the horizontal section of each electron beam may be substantially parallel to the electron beam.
以下表示本发明的另一实施例。Another embodiment of the present invention is shown below.
图8、图9分别为与图1、图2相对应的X-Z断面、Y-Z断面,相同的部分以同一号码表示。Fig. 8 and Fig. 9 are X-Z section and Y-Z section corresponding to Fig. 1 and Fig. 2 respectively, and the same parts are indicated by the same numbers.
在图8、图9中在第五栅极G5的前端上在三个电子束通过口52R-52B的上方和下方有两个电极板53、54,在第51栅极G51的靠近第五栅极侧上同样地在三个电子束通过口511R-511B的上下方上有两个电极板511、512,在第51栅极G51的靠近第六栅极G6侧上在垂直方向上有4个电极板513、514、515、516,同样地在第六栅极G6的靠近第51栅极一侧上也有4个电极板612、613、614、615并作成在垂直方向上夹住三个电子束通过口61R-61G。In Fig. 8 and Fig. 9, there are two electrode plates 53, 54 above and below the three electron
第六栅极G6及第七栅极G7和上述实施例时相同,以大口径圆筒透镜为基本型,且其内部包含非圆形的电子束通过口63、73。The sixth grid G6 and the seventh grid G7 are the same as those of the above-mentioned embodiments, and are based on a large-diameter cylindrical lens, and include non-circular electron
如按第五栅极G5、第51栅极G51、第六栅极G6、第七栅极G7次序逐渐加高电位,则在第五栅极G5和第51栅极G51的相对的电极板之间,形成仅在垂直方向上具有聚焦作用的平行平板透镜FLV(在水平方向没有任何力的作用)、在第51栅极G51和第六栅极G6相对的电极板间,形成仅在水平方向上具有聚焦作用的平行平板透镜FLH(在垂直方向上没有任何力的作用)。If the potential is gradually increased in the order of the fifth grid G5, the 51st grid G51, the sixth grid G6, and the seventh grid G7, then between the opposite electrode plates of the fifth grid G5 and the 51st grid G51 Between the parallel plate lens FLV that only has a focusing effect in the vertical direction (without any force in the horizontal direction), between the electrode plates opposite to the 51st grid G51 and the sixth grid G6, a Parallel plate lens FLH with focusing effect on it (without any force in the vertical direction).
此时,作成透镜FLH比透镜FLV聚焦强,因此来自电子束形成部的电子束分别在水平方向上进行强聚焦,并成为大致平行的电子束,在垂直方向上少量聚焦,并使仍然在发散的电子束直接向共用的大口径非对称透镜部LEL入射,和上述实施例相同,用大口径透镜部使三个电子束聚焦和集中到荧光屏上。At this time, the focus of the lens FLH is stronger than that of the lens FLV. Therefore, the electron beams from the electron beam forming part are strongly focused in the horizontal direction, and become roughly parallel electron beams, which are slightly focused in the vertical direction and still diverge. The electron beams are directly incident on the common large-aperture asymmetric lens part LEL, and the same as the above-mentioned embodiment, the three electron beams are focused and concentrated on the fluorescent screen by the large-aperture lens part.
在此实例中供给第五栅极G5的电压为了作成可和流入偏转线圈7的水平及垂直偏转电流H,V同步地向抛物线形状变化,而在外部与动态校正电路72相连。In this example, the voltage supplied to the fifth grid G5 is externally connected to a dynamic correction circuit 72 so that it can change in a parabolic shape in synchronization with the horizontal and vertical deflection currents H and V flowing into the deflection yoke 7.
因此在偏转线圈所产生的水平偏转磁场为强的枕形磁场时,如图11所示在电子束向荧光屏的周边部上偏转时通过枕形磁场在垂直方向上成为强过聚焦状态,而与此同步、电子透镜FLV的聚焦变弱,并使之在垂直断面方向上逐渐成为欠聚焦状态,故可对上述偏转畸变进行校正而成为圆形的电子束。Therefore, when the horizontal deflection magnetic field generated by the deflection yoke is a strong pincushion magnetic field, when the electron beam is deflected to the peripheral portion of the fluorescent screen as shown in FIG. This synchronous electron lens FLV becomes weaker in focus and gradually becomes under-focused in the vertical cross-sectional direction, so that the above-mentioned deflection distortion can be corrected to form a circular electron beam.
在此处进一步对其他实施例进行说明。即如图10所示,关于配置在第六栅极G6上的二个电极24、25,其在中央的电子束通过孔部分上的两个电极之间的距离VG由于比在两侧的电子束通过孔部分上的两片电极间的距离VRB小(VG<VRB),故相对于中央的电子束形成的四极子透镜QEL(G)成为比相对于两侧的电子束而形成的四极子透镜QEL(R)及QEL(B)强的四极子透镜。为此,中央的电子束比两侧的电子束更强地聚焦在水平方向上,而渐渐入射到大口径电子透镜LEL上。Other embodiments are described further herein. That is, as shown in FIG. 10, regarding the two
通过这样的四极子透镜QEL的电子束和上述的实施例相同如入射到大口径电子透镜上,则受到大口径透镜的透镜作用,而最终映到荧光屏上的电子束表示有更良好的集中及聚焦特性。The electron beam passing through such a quadrupole lens QEL is the same as the above-mentioned embodiment, if it is incident on the large-aperture electron lens, then it is subjected to the lens effect of the large-aperture lens, and the electron beam that is finally reflected on the fluorescent screen shows that there is better concentration and focusing properties.
本发明是想通过在主电子透镜部配置对独立的三个电子束共用的大口径电子透镜,使透镜性能提高,但此时为了同时满足三个电子束的聚焦和集中,令上述共用的大口径电子透镜为聚焦力在水平方向上比垂直方向弱的非对称透镜,向此共用大口径非对称电子透镜入射的独立的三个电子束分别在水平方向上成为大致平行的电子束,而在垂直方向上成为发散电子束,上述共用大口径非对称电子束透镜是例如通过设置对从电子束形成部发射出来的独立的三个电子束共用的圆筒电子透镜及在该圆筒电子透镜的透镜区域内、在阴极侧或荧光屏部侧的至少一侧上使三电子束共同通过的非圆形电子束通过孔而形成的,且在此圆筒电子透镜的透镜区域之外,在阴极侧上配置对三个电子束独立的非对称电子透镜,通过用此电子透镜使水平方向比垂直方向聚焦强,在水平方向上作出大致平行的电子束。The present invention intends to improve the performance of the lens by disposing a large-diameter electron lens shared by the three independent electron beams in the main electron lens part, but at this time, in order to satisfy the focusing and concentration of the three electron beams at the same time, the above-mentioned shared large-diameter The aperture electronic lens is an asymmetric lens whose focusing power is weaker in the horizontal direction than in the vertical direction. The three independent electron beams that are incident on the common large-aperture asymmetric electron lens become roughly parallel electron beams in the horizontal direction. In the vertical direction, it becomes a diverging electron beam, and the above-mentioned shared large-aperture asymmetric electron beam lens is, for example, by setting a cylindrical electron lens shared by the independent three electron beams emitted from the electron beam forming part and at the center of the cylindrical electron lens. In the lens area, on at least one side of the cathode side or the fluorescent screen part side, a non-circular electron beam passage hole for three electron beams to pass through is formed, and outside the lens area of this cylindrical electron lens, on the cathode side An asymmetric electron lens independent of the three electron beams is arranged on the top, and by using this electron lens, the horizontal direction is focused more strongly than the vertical direction, and electron beams that are substantially parallel in the horizontal direction are formed.
又,换句话说,在上述圆筒电子透镜的透镜区域内,配置在阴极侧上的非圆形电子束通过孔的水平方向实质上比垂直方向要长,而配置在荧光屏侧的非圆形电子束通过孔的水平方向实质上比垂直方向要短。Also, in other words, in the lens area of the above-mentioned cylindrical electron lens, the horizontal direction of the non-circular electron beam passage holes disposed on the cathode side is substantially longer than the vertical direction, and the non-circular electron beam passage holes disposed on the phosphor screen side The horizontal direction of the electron beam passage hole is substantially shorter than the vertical direction.
又,在上述圆筒电子透镜区域之外,配置在阴极侧的对三个电子透镜组成独立的非对称电子透镜也可设有能根据由偏转部分引起的偏转量使该电子透镜的强度可变的手段。Also, outside the above-mentioned cylindrical electron lens area, the three electron lenses arranged on the cathode side constitute an independent asymmetrical electron lens. It is also possible to have a variable intensity of the electron lens according to the amount of deflection caused by the deflection part. s method.
如上所述,如根据本发明的彩色显像管装置,则通过充分地发挥共用大口径电子透镜的性能,能使用此大口径电子透镜从阴极发生的平行的三个电子束分别在最佳聚焦状态和最佳集中状态下聚焦在荧光屏面上。As mentioned above, according to the color picture tube device of the present invention, by fully exerting the performance of the shared large-aperture electron lens, the parallel three electron beams generated from the cathode using this large-aperture electron lens can be respectively in the optimal focus state and Focus on the fluorescent screen in the best concentration state.
因而,可在荧光屏面上实现非常小的束点,并可得到提高了图像性能的彩色显像管装置。Therefore, a very small beam spot can be realized on the fluorescent screen surface, and a color picture tube device with improved image performance can be obtained.
图1为实施本发明的彩色显像管装置的主要部分的X-Z断面图,Fig. 1 is the X-Z sectional view of the main part of implementing the color picture tube device of the present invention,
图2为实施本发明的彩色显像管装置的主要部分的Y-Z断面图,Fig. 2 is the Y-Z sectional view of the main part of implementing the color picture tube device of the present invention,
图3及图4为与图1及图2对应的等效光学图,Fig. 3 and Fig. 4 are equivalent optical diagrams corresponding to Fig. 1 and Fig. 2,
图5及图6为说明本发明的大口径电子透镜的图,5 and 6 are diagrams illustrating the large-aperture electron lens of the present invention,
图7为表示用以形成本发明的大口径非对称透镜的电极的图,Fig. 7 is a diagram showing electrodes for forming the large-aperture asymmetric lens of the present invention,
图8、图9及图10为本发明的另一实施例的主要部分的断面图,Fig. 8, Fig. 9 and Fig. 10 are the sectional view of the main part of another embodiment of the present invention,
图11为表示本发明及已有例的电子束形状的图,Fig. 11 is a diagram showing electron beam shapes of the present invention and conventional examples,
图12为一般的彩色显像管装置的概略断面图,Fig. 12 is a schematic sectional view of a general color picture tube device,
图13及图14为已有技术的说明图。13 and 14 are explanatory diagrams of the prior art.
1……彩色显像管装置 100……电子枪部1...Color
7……偏转装置 2……荧光屏7...Deflection device 2...Fluorescent screen
GE……电子束形成部GE...Electron beam forming department
ML1……主电子透镜部ML1...Main electron lens unit
QEL……非对称透镜QEL...asymmetric lens
LEL……共用大口径透镜LEL...shared large-aperture lens
Claims (3)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9541188A JP2645071B2 (en) | 1988-04-20 | 1988-04-20 | Color picture tube equipment |
JP95411/88 | 1988-04-20 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1037234A true CN1037234A (en) | 1989-11-15 |
CN1020139C CN1020139C (en) | 1993-03-17 |
Family
ID=14136938
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 89102569 Expired - Fee Related CN1020139C (en) | 1988-04-20 | 1989-04-22 | color picture tube device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2645071B2 (en) |
CN (1) | CN1020139C (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1071936C (en) * | 1994-07-13 | 2001-09-26 | 株式会社日立制作所 | Color cathode ray tube |
-
1988
- 1988-04-20 JP JP9541188A patent/JP2645071B2/en not_active Expired - Lifetime
-
1989
- 1989-04-22 CN CN 89102569 patent/CN1020139C/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1071936C (en) * | 1994-07-13 | 2001-09-26 | 株式会社日立制作所 | Color cathode ray tube |
Also Published As
Publication number | Publication date |
---|---|
JPH01267939A (en) | 1989-10-25 |
CN1020139C (en) | 1993-03-17 |
JP2645071B2 (en) | 1997-08-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1052560C (en) | Color kinescope | |
CN1108429A (en) | Color braun tube apparatus | |
CN1107967C (en) | Small-neck-diameter colour cathode-ray tube | |
CN1216854A (en) | color picture tube device | |
CN1264186C (en) | CRT unit | |
CN1123043C (en) | Colour kinescope device | |
CN1243332A (en) | Colour cathode-ray tube device | |
CN1040925C (en) | color picture tube device | |
CN1202550C (en) | Cathode ray tube device | |
CN1114783A (en) | Color cathode ray tube having improved focus | |
CN1037234A (en) | color picture tube device | |
CN1320591C (en) | Color cathode ray tube apparatus | |
CN1130302A (en) | Colour display system by using quadrupole lens | |
CN1153249C (en) | color cathode ray tube | |
CN1084927C (en) | Electronic gun for color cathode ray tube | |
CN1233015C (en) | Crt | |
CN1359134A (en) | Crt | |
CN1227708C (en) | Coloured cathode ray tube equipment | |
CN1177197A (en) | Color cathode ray tube with coma reduced | |
CN1437215A (en) | Colour television picture tube apparatus obtaining high-image resolution ratio on whole fluorescent screen and electronic gun | |
CN1344008A (en) | Color CRT having multiple electrostatic four-electrode lens | |
CN1215220A (en) | Cathode ray tube | |
CN1017483B (en) | Color picture tube and deflection device | |
CN1267958C (en) | Electron gun of cathode ray tube | |
CN1118932A (en) | Electron gun for color cathode ray tube |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C06 | Publication | ||
PB01 | Publication | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C15 | Extension of patent right duration from 15 to 20 years for appl. with date before 31.12.1992 and still valid on 11.12.2001 (patent law change 1993) | ||
OR01 | Other related matters | ||
C19 | Lapse of patent right due to non-payment of the annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |