CN103716013B - Variable element ratio sef-adapting filter - Google Patents
Variable element ratio sef-adapting filter Download PDFInfo
- Publication number
- CN103716013B CN103716013B CN201410015022.5A CN201410015022A CN103716013B CN 103716013 B CN103716013 B CN 103716013B CN 201410015022 A CN201410015022 A CN 201410015022A CN 103716013 B CN103716013 B CN 103716013B
- Authority
- CN
- China
- Prior art keywords
- power
- adaptive filter
- time
- error signal
- coefficient
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 claims abstract description 16
- 230000003044 adaptive effect Effects 0.000 claims description 110
- 239000011159 matrix material Substances 0.000 claims description 31
- 239000013598 vector Substances 0.000 claims description 24
- 238000009499 grossing Methods 0.000 claims description 10
- 238000012935 Averaging Methods 0.000 claims description 5
- 238000010276 construction Methods 0.000 claims description 5
- 230000003068 static effect Effects 0.000 claims description 5
- 238000013461 design Methods 0.000 abstract description 3
- 238000001914 filtration Methods 0.000 abstract description 3
- 230000006870 function Effects 0.000 description 17
- 230000007423 decrease Effects 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 238000013519 translation Methods 0.000 description 2
- GNFTZDOKVXKIBK-UHFFFAOYSA-N 3-(2-methoxyethoxy)benzohydrazide Chemical compound COCCOC1=CC=CC(C(=O)NN)=C1 GNFTZDOKVXKIBK-UHFFFAOYSA-N 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Landscapes
- Filters That Use Time-Delay Elements (AREA)
Abstract
Description
技术领域technical field
本发明属于数字滤波器设计领域,涉及一种自适应滤波器的系数更新方法,具体涉及一种参数自动调整的比例自适应滤波器。The invention belongs to the field of digital filter design, and relates to a coefficient update method of an adaptive filter, in particular to a proportional adaptive filter whose parameters are automatically adjusted.
背景技术Background technique
传统的数字滤波器的系数向量是固定的。传统的数字滤波器的主要任务是滤除输入信号中无用的频谱分量,而保留需要的频谱分量,因而其运行的方式是根据输入信号和滤波器的系数向量获得输出信号。与传统的系数向量固定的滤波器不同,自适应滤波器能够根据未知系统的输入、输出信号,来逼近该未知系统。由于解决系统辨识、回声消除、主动噪声控制、信道均衡、干扰抵消等问题的实质,是根据未知系统的输入和输出信号来求得该未知系统,因而自适应滤波器在免提电话、视频会议、助听器、信道均衡器、电子手术刀等设备中获得了广泛应用。The coefficient vector of traditional digital filter is fixed. The main task of the traditional digital filter is to filter out the useless spectral components in the input signal, while retaining the required spectral components, so its operation mode is to obtain the output signal according to the input signal and the coefficient vector of the filter. Different from traditional filters with fixed coefficient vectors, adaptive filters can approach the unknown system according to the input and output signals of the unknown system. Since the essence of solving problems such as system identification, echo cancellation, active noise control, channel equalization, and interference cancellation is to obtain the unknown system based on the input and output signals of the unknown system, adaptive filters are used in hands-free telephones, video conferencing, etc. , hearing aids, channel equalizers, electronic scalpels and other equipment have been widely used.
衡量自适应滤波器性能的主要指标有收敛速度和稳态失调。收敛速度决定了自适应滤波器逼近未知系统需要的时间,而稳态失调决定了逼近未知系统所能达到的精度。影响自适应滤波器的收敛速度的一个主要因素是未知系统的稀疏度。一个未知系统,其接近或等于0的系数越多,则其稀疏度越高;反之,其系数度越低。当未知系统的稀疏度很高时,传统的LMS和NLMS自适应滤波器的收敛速度非常缓慢。免提电话、视频会议、助听器中需要逼近的未知系统稀疏度较高,为了获得更快的收敛速度,需要设计更有效的自适应滤波器。The main indicators to measure the performance of adaptive filter are convergence speed and steady-state misadjustment. The convergence speed determines the time required for the adaptive filter to approximate the unknown system, and the steady-state misadjustment determines the accuracy that the unknown system can achieve. A major factor affecting the convergence speed of the adaptive filter is the sparsity of the unknown system. For an unknown system, the more coefficients close to or equal to 0, the higher the sparsity; otherwise, the lower the coefficient. Traditional LMS and NLMS adaptive filters converge very slowly when the sparsity of the unknown system is high. The unknown systems that need to be approximated in hands-free phones, video conferencing, and hearing aids have a high degree of sparsity. In order to obtain faster convergence speed, more effective adaptive filters need to be designed.
DonaldL.Duttweiler于2000年提出了一种比例自适应滤波器,即著名的PNLMS自适应滤波器。与传统的NLMS自适应滤波器不同,PNLMS自适应滤波器为每个系数分配了不同的增益,该增益与其对应的自适应滤波器系数成正比例关系。该自适应滤波器在逼近高稀疏度的未知系统时收敛速度很快,但是随着系统系数度的下降,收敛性能也随之下将。为了提高估计稀疏的未知系统的性能,JacobBenesty和StevenL.Gay提出了一种改进的比例自适应滤波器,即IPNLMS自适应滤波器。由于其性能优越、结构简单,该比例自适应滤波器得到了广泛应用。DonaldL.Duttweiler proposed a proportional adaptive filter in 2000, namely the famous PNLMS adaptive filter. Different from the traditional NLMS adaptive filter, the PNLMS adaptive filter assigns a different gain to each coefficient, and the gain is proportional to its corresponding adaptive filter coefficient. The adaptive filter converges quickly when approaching the unknown system with high sparsity, but the convergence performance will decrease as the coefficient degree of the system decreases. In order to improve the performance of estimating sparse unknown systems, Jacob Benesty and Steven L. Gay proposed an improved scale adaptive filter, namely IPNLMS adaptive filter. Due to its superior performance and simple structure, the proportional adaptive filter has been widely used.
自适应滤波器的两个重要的性能指标是收敛速度和稳态失调。虽然IPNLMS自适应滤波器用于估计稀疏的未知系统时,其收敛速度很快,但其稳态失调的性能被削弱,即稳态失调具有很大的波动性。稳态失调的波动性大,说明在很多时间点稳态失调非常大,而在另外的很多时间点稳态失调非常小。稳态失调非常大的时间点,其精度非常差。因此,为了获得高的精度,需要寻找一个有效的解决方法。Two important performance indicators of adaptive filters are convergence speed and steady-state misadjustment. Although the IPNLMS adaptive filter is used to estimate the sparse unknown system, its convergence speed is very fast, but the performance of its steady-state misadjustment is weakened, that is, the steady-state misadjustment has great volatility. The large fluctuation of the steady-state dissonance indicates that the steady-state dissonance is very large at many time points and very small at many other time points. Points in time where the steady-state misalignment is very large have very poor accuracy. Therefore, in order to obtain high precision, it is necessary to find an effective solution.
发明内容Contents of the invention
本发明目的是提供一种变参数比例自适应滤波器,解决了IPNLMS自适应滤波器由于收敛速度很快造成很多时间点稳态失调的波动性非常大的问题。The purpose of the present invention is to provide a variable parameter proportional adaptive filter, which solves the problem that the IPNLMS adaptive filter has very large fluctuations in steady-state imbalance at many time points due to its fast convergence speed.
为了解决现有技术中的这些问题,本发明提供的技术方案如下:In order to solve these problems in the prior art, the technical scheme provided by the invention is as follows:
一种变参数比例自适应滤波器,其特征在于所述滤波器包括:A variable parameter proportional adaptive filter is characterized in that the filter comprises:
噪声功率估计模块,用于当自适应滤波器处于静态的时候估计系统噪声的功率;A noise power estimation module, used to estimate the power of the system noise when the adaptive filter is static;
误差功率估计模块,用于对自适应滤波器的输出误差信号进行时间平滑估计误差信号的功率;An error power estimation module is used to perform time smoothing on the output error signal of the adaptive filter to estimate the power of the error signal;
中间变量生成模块,用于由误差信号的功率与系统噪声的功率产生中间变量,所述中间变量由误差信号的功率与系统噪声的功率比值,经求对数获得;The intermediate variable generating module is used to generate an intermediate variable by the power of the error signal and the power of the system noise, and the intermediate variable is obtained by calculating the logarithm of the power ratio of the power of the error signal to the system noise;
时变参数生成模块,用于将中间变量通过Sigmoid函数进行转换,得到针对比例自适应滤波器的时变参数;A time-varying parameter generation module is used to convert the intermediate variable through a Sigmoid function to obtain a time-varying parameter for the proportional adaptive filter;
比例矩阵构建模块,用于由获得的时变参数求取每个系数的增益,再由系数增益构建比例矩阵;A proportional matrix construction module is used to obtain the gain of each coefficient from the obtained time-varying parameters, and then construct a proportional matrix by the coefficient gain;
滤波器系数更新模块,用于根据构建的比例矩阵来进行自适应滤波器的系数更新,并且计算新的误差信号值。The filter coefficient update module is configured to update the coefficients of the adaptive filter according to the constructed scale matrix, and calculate a new error signal value.
优选的技术方案是:所述噪声功率估计模块进行估计系统噪声的功率先令输入信号u(n)=0,则输出误差e(n)即为系统噪声v(n);通过时间平均的方法,求得系统噪声的功率 The preferred technical solution is: the noise power estimation module estimates the power of the system noise Shilling the input signal u(n)=0, then the output error e(n) is the system noise v(n); through the method of time averaging, the power of the system noise is obtained
优选的技术方案是:所述误差功率估计模块进行误差功率估计按照如下步骤进行:The preferred technical solution is: the error power estimation module performs error power estimation according to the following steps:
1)通过输入信号u(n)和期望信号d(n)按照e(n)=d(n)-wT(n)u(n)计算误差信号的值,其中w(n)=[w1(n),w2(n),…,wM(n)]为自适应滤波器在n时刻的系数向量;u(n)=[u(n),u(n-1),…,u(n-M+1)]T为自适应滤波器在n时刻的输入信号向量,该向量由输入信号当前的样值与其之前的M-1个取样值构成;1) Calculate the value of the error signal through the input signal u(n) and the expected signal d(n) according to e(n)=d(n)-w T (n)u(n), where w(n)=[w 1 (n),w 2 (n),...,w M (n)] is the coefficient vector of the adaptive filter at time n; u(n)=[u(n),u(n-1),... ,u(n-M+1)] T is the input signal vector of the adaptive filter at time n, which is composed of the current sample value of the input signal and its previous M-1 sample values;
2)按照估计输出误差信号的功率其中λ为平滑因子。2) According to Estimate the power of the output error signal where λ is the smoothing factor.
优选的技术方案是:所述中间变量生成模块根据系统噪声功率和误差信号功率按照得到中间变量x(n)。The preferred technical solution is: the intermediate variable generating module according to the system noise power and the error signal power according to Get the intermediate variable x(n).
优选的技术方案是:所述时变参数生成模块根据中间变量x(n)按照α(n)=(2α+2)/{1+exp[-βx(n)]}-(α+2)获得时变参数α(n)的值,其中α为折中参数;β为Sigmoid函数的形状参数。The preferred technical solution is: the time-varying parameter generating module according to the intermediate variable x(n) according to α(n)=(2α+2)/{1+exp[-βx(n)]}-(α+2) Obtain the value of the time-varying parameter α(n), where α is the compromise parameter; β is the shape parameter of the Sigmoid function.
优选的技术方案是:所述比例矩阵构建模块先根据时变参数按照gm(n)=[1-α(n)]/2M+[1+α(n)]|wm(n)|/[2||w(n)||1+ε]获取比例矩阵的元素,其中m=1,2,…,M-1,wm(n)为自适应滤波器的第m个系数在n时刻的值,||·||1表示L1范数,ε为引入的小正数;然后将得到的M个比例矩阵的元素形成对角矩阵G(n)=diag[g1(n),g2(n),…,gM(n)],其中G(n)中每个对角元素对应于每个滤波器系数的增益gm(n)。The preferred technical solution is: the proportional matrix construction module first according to the time-varying parameters according to g m (n)=[1-α(n)]/2M+[1+α(n)]|w m (n)|/ [2||w(n)|| 1 +ε]Get the elements of the scale matrix, where m=1,2,..., M-1, w m (n) is the mth coefficient of the adaptive filter at n The value at the moment, ||·|| 1 represents the L 1 norm, and ε is the small positive number introduced; then the elements of the obtained M proportional matrices form a diagonal matrix G(n)=diag[g 1 (n) ,g 2 (n),...,g M (n)], where each diagonal element in G(n) corresponds to the gain g m (n) of each filter coefficient.
优选的技术方案是:所述滤波器系数更新模块根据生成的比例矩阵按照更新公式w(n+1)=w(n)+μG(n)u(n)e(n)/[uT(n)G(n)u(n)+δ]更新自适应滤波器的系数向量,其中δ为用来解决数值计算困难的正则化参数。The preferred technical solution is: the filter coefficient updating module according to the generated proportional matrix according to the updating formula w(n+1)=w(n)+μG(n)u(n)e(n)/[u T ( n) G(n)u(n)+δ] to update the coefficient vector of the adaptive filter, where δ is a regularization parameter used to solve numerical calculation difficulties.
本发明的另一目的在于提供一种变参数比例自适应滤波器系数向量更新方法,其特征在于所述方法包括以下步骤:Another object of the present invention is to provide a method for updating coefficient vectors of adaptive filter with variable parameter scale, characterized in that said method comprises the following steps:
(1)当自适应滤波器处于静态的时候估计系统噪声的功率;(1) Estimate the power of the system noise when the adaptive filter is static;
(2)对自适应滤波器的输出误差信号进行时间平滑估计误差信号的功率;(2) Perform time smoothing on the output error signal of the adaptive filter to estimate the power of the error signal;
(3)由误差信号的功率与系统噪声的功率产生中间变量,所述中间变量由误差信号的功率与系统噪声的功率比值,经求对数获得;(3) An intermediate variable is generated from the power of the error signal and the power of the system noise, and the intermediate variable is obtained by calculating the logarithm of the ratio of the power of the error signal to the power of the system noise;
(4)将中间变量通过Sigmoid函数进行转换,得到针对比例自适应滤波器的时变参数;(4) Convert the intermediate variable through the Sigmoid function to obtain the time-varying parameters for the proportional adaptive filter;
(5)由获得的时变参数求取每个系数的增益,再由系数增益构建比例矩阵;(5) Calculate the gain of each coefficient from the obtained time-varying parameters, and then construct a proportional matrix from the coefficient gain;
(6)根据构建的比例矩阵来进行自适应滤波器的系数更新,并且计算新的误差信号值。(6) Update the coefficients of the adaptive filter according to the constructed scale matrix, and calculate a new error signal value.
优选的技术方案是:所述方法具体按照如下步骤进行:The preferred technical solution is: the method is specifically carried out according to the following steps:
(1)令输入信号u(n)=0,则输出误差e(n)即为系统噪声v(n);通过时间平均的方法,求得系统噪声的功率 (1) Let the input signal u(n)=0, then the output error e(n) is the system noise v(n); through the method of time averaging, the power of the system noise is obtained
(2)进行误差功率估计按照如下步骤进行:(2) The error power estimation is carried out according to the following steps:
1)通过输入信号u(n)和期望信号d(n)按照e(n)=d(n)-wT(n)u(n)计算误差信号的值,其中w(n)=[w1(n),w2(n),…,wM(n)]为自适应滤波器在n时刻的系数向量;u(n)=[u(n),u(n-1),…,u(n-M+1)]T为自适应滤波器在n时刻的输入信号向量,该向量由输入信号当前的样值与其之前的M-1个取样值构成;1) Calculate the value of the error signal through the input signal u(n) and the expected signal d(n) according to e(n)=d(n)-w T (n)u(n), where w(n)=[w 1 (n),w 2 (n),...,w M (n)] is the coefficient vector of the adaptive filter at time n; u(n)=[u(n),u(n-1),... ,u(n-M+1)] T is the input signal vector of the adaptive filter at time n, which is composed of the current sample value of the input signal and its previous M-1 sample values;
2)按照估计输出误差信号的功率其中λ为平滑因子;2) According to Estimate the power of the output error signal where λ is the smoothing factor;
(3)根据系统噪声功率和误差信号功率按照得到中间变量x(n);(3) According to the system noise power and error signal power according to Get the intermediate variable x(n);
(4)根据中间变量x(n)按照α(n)=(2α+2)/{1+exp[-βx(n)]}-(α+2)获得时变参数α(n)的值,其中α为折中参数;β为Sigmoid函数的形状参数;(4) Obtain the value of the time-varying parameter α(n) according to the intermediate variable x(n) according to α(n)=(2α+2)/{1+exp[-βx(n)]}-(α+2) , where α is a compromise parameter; β is the shape parameter of the Sigmoid function;
(5)先根据时变参数按照gm(n)=[1-α(n)]/2M+[1+α(n)]|wm(n)|/[2||w(n)||1+ε]获取比例矩阵的元素,其中m=1,2,…,M-1,wm(n)为自适应滤波器的第m个系数在n时刻的值,||·||1表示L1范数,ε为引入的小正数;然后将得到的M个比例矩阵的元素形成对角矩阵G(n)=diag[g1(n),g2(n),…,gM(n)],其中G(n)中每个对角元素对应于每个滤波器系数的增益gm(n);(5) First according to the time-varying parameters according to g m (n)=[1-α(n)]/2M+[1+α(n)]|w m (n)|/[2||w(n)| | 1 +ε] to obtain the elements of the scale matrix, where m=1,2,...,M-1, w m (n) is the value of the mth coefficient of the adaptive filter at time n, ||·|| 1 represents the L 1 norm, and ε is a small positive number introduced; then the elements of the obtained M proportional matrices form a diagonal matrix G(n)=diag[g 1 (n),g 2 (n),…, g M (n)], where each diagonal element in G(n) corresponds to the gain g m (n) of each filter coefficient;
(6)根据生成的比例矩阵按照更新公式w(n+1)=w(n)+μG(n)u(n)e(n)/[uT(n)G(n)u(n)+δ]更新自适应滤波器的系数向量,其中δ为用来解决数值计算困难的正则化参数。(6) According to the generated proportional matrix, follow the update formula w(n+1)=w(n)+μG(n)u(n)e(n)/[u T (n)G(n)u(n) +δ] to update the coefficient vector of the adaptive filter, where δ is a regularization parameter used to solve numerical calculation difficulties.
本发明技术方案的原理在于:The principle of technical solution of the present invention is:
本发明采用变参数比例方法进行自适应滤波器系数向量的调整,即使用一个时变参数来调整自适应滤波器的系数增益的值,该时变参数可表示为误差信号功率与系统噪声功率比值的单调递增函数。The present invention adopts the variable parameter ratio method to adjust the coefficient vector of the adaptive filter, that is, a time-varying parameter is used to adjust the value of the coefficient gain of the adaptive filter, and the time-varying parameter can be expressed as the ratio of error signal power to system noise power A monotonically increasing function of .
在自适应滤波器运行的初始阶段,由于误差信号功率与系统噪声功率比值较大,因而自适应滤波器自动为大的系数分配较大的增益值,从而保持快的收敛速度;在自适应滤波器的收敛阶段,由于误差信号功率与系统噪声功率比值较小,因而自适应滤波器自动为大的系数分配较小的增益值,从而降低稳态失调的波动性。In the initial stage of the adaptive filter operation, due to the large ratio of the error signal power to the system noise power, the adaptive filter automatically assigns a larger gain value to the large coefficient, so as to maintain a fast convergence speed; in the adaptive filter In the convergence stage of the filter, since the ratio of the error signal power to the system noise power is small, the adaptive filter automatically assigns a small gain value to the large coefficient, thereby reducing the fluctuation of the steady-state imbalance.
相对于现有技术中的方案,本发明的优点是:Compared with the scheme in the prior art, the advantages of the present invention are:
本发明技术方案变参数比例自适应滤波器,属于数字滤波器设计领域,采用变参数方法即使用一个时变参数来调整自适应滤波器的系数增益的值,既能保持比例自适应滤波器快的收敛速度,又能获得比例自适应滤波器低的稳态失调波动性。本发明可以应用于免提电话、视频会议、助听器、信道均衡器、电子手术刀等设备中。The technical solution of the present invention is a variable parameter proportional adaptive filter, which belongs to the field of digital filter design. The variable parameter method is used to adjust the value of the coefficient gain of the adaptive filter by using a time-varying parameter, which can keep the proportional adaptive filter fast. The convergence speed of the proportional adaptive filter can be obtained, and the low steady-state misalignment volatility of the proportional adaptive filter can be obtained. The invention can be applied in equipments such as hands-free telephone, video conferencing, hearing aid, channel equalizer, electronic scalpel and the like.
附图说明Description of drawings
图1为变参数比例自适应滤波器结构原理图;Fig. 1 is the schematic diagram of the variable parameter proportional adaptive filter structure;
图2为包含100个系数的未知系统脉冲响应;Figure 2 is the impulse response of an unknown system containing 100 coefficients;
图3为包含512个系数的未知系统脉冲响应;Figure 3 is the impulse response of an unknown system containing 512 coefficients;
图4为自适应滤波器在20dB信噪比条件下估计图2所示的未知系统时的归一化失调曲线比较,其参数的取值为μ=0.3,β=3;Fig. 4 is a comparison of normalized offset curves when the adaptive filter estimates the unknown system shown in Fig. 2 under the condition of 20dB SNR, and the values of its parameters are μ = 0.3, β = 3;
图5为自适应滤波器在30dB信噪比条件下估计图2所示的未知系统时的归一化失调曲线比较,其参数的取值为μ=0.5,β=1.5;Figure 5 is a comparison of the normalized offset curves when the adaptive filter estimates the unknown system shown in Figure 2 under the condition of 30dB SNR, and the values of its parameters are μ=0.5, β=1.5;
图6为自适应滤波器在40dB信噪比条件下估计图2所示的未知系统时的归一化失调曲线比较,其参数的取值为μ=0.7,β=1;Figure 6 is a comparison of the normalized offset curves when the adaptive filter estimates the unknown system shown in Figure 2 under the condition of 40dB SNR, and the values of its parameters are μ=0.7, β=1;
图7为自适应滤波器在20dB信噪比条件下估计图3所示的未知系统时的归一化失调曲线比较,其参数的取值为μ=0.3,β=7;Figure 7 is a comparison of the normalized offset curves when the adaptive filter estimates the unknown system shown in Figure 3 under the condition of 20dB SNR, and the values of its parameters are μ=0.3, β=7;
图8为自适应滤波器在30dB信噪比条件下估计图3所示的未知系统时的归一化失调曲线比较,其参数的取值为μ=0.5,β=5;Figure 8 is a comparison of the normalized offset curves when the adaptive filter estimates the unknown system shown in Figure 3 under the condition of 30dB SNR, and the values of its parameters are μ=0.5, β=5;
图9为自适应滤波器在40dB信噪比条件下估计图3所示的未知系统时的归一化失调曲线比较,其参数的取值为μ=0.7,β=3。Fig. 9 is a comparison of normalized offset curves when the adaptive filter estimates the unknown system shown in Fig. 3 under the condition of 40dB SNR, and the values of its parameters are μ=0.7, β=3.
具体实施方式detailed description
以下结合具体实施例对上述方案做进一步说明。应理解,这些实施例是用于说明本发明而不限制本发明的范围。实施例中采用的实施条件可以根据具体系统的条件做进一步调整,未注明的实施条件通常为常规实验中的条件。The above solution will be further described below in conjunction with specific embodiments. It should be understood that these examples are used to illustrate the present invention and not to limit the scope of the present invention. The implementation conditions used in the examples can be further adjusted according to the conditions of the specific system, and the unspecified implementation conditions are usually the conditions in routine experiments.
实施例变参数比例自适应滤波器示例Example of Variable Parameter Scale Adaptive Filter
如图1所示,该变参数比例自适应滤波器,包括:As shown in Figure 1, the variable parameter proportional adaptive filter includes:
噪声功率估计模块:该模块的作用是当自适应滤波器处于静态的时候来估计系统噪声的功率;Noise power estimation module: the function of this module is to estimate the power of system noise when the adaptive filter is static;
误差功率估计模块:该模块的作用是通对自适应滤波器的输出误差信号进行时间平滑来估计误差信号的功率;Error power estimation module: the function of this module is to estimate the power of the error signal by time smoothing the output error signal of the adaptive filter;
中间变量生成模块:该模块的作用是产生一个中间变量,该中间变量由误差功率与系统噪声的功率比值,再求对数获得;Intermediate variable generation module: the function of this module is to generate an intermediate variable, which is obtained by calculating the logarithm of the power ratio of the error power to the system noise;
时变参数生成模块:该模块的作用是将中间变量通过Sigmoid函数进行转换,得到具有良好滤波效果的比例自适应滤波要求的变参数;Time-varying parameter generation module: the function of this module is to convert the intermediate variable through the Sigmoid function to obtain the variable parameter required by the proportional adaptive filter with good filtering effect;
比例矩阵构建模块:该模块的作用是先由获得的变参数求取每个系数的增益,再由所以系数增益构建比例矩阵;Proportional matrix construction module: the function of this module is to first obtain the gain of each coefficient from the obtained variable parameters, and then construct a proportional matrix from the gains of all coefficients;
滤波器系数更新模块:该模块的作用是根据分成的比例矩阵来进行自适应滤波器的系数更新,并且计算新的误差信号值。Filter coefficient update module: the function of this module is to update the coefficient of the adaptive filter according to the divided ratio matrix, and calculate the new error signal value.
变参数比例自适应滤波器各个模块具体运行按照如下步骤:The specific operation of each module of the variable parameter proportional adaptive filter is as follows:
步骤1.在自适应滤波器迭代更新之前,“噪声功率估计模块”估计系统噪声的方差。估计该方差时,令输入信号u(n)=0,则输出误差e(n)即为系统噪声v(n)。通过时间平均的方法,求得系统噪声的功率之后进入自适应滤波器自适应阶段。Step 1. The "Noise Power Estimation Module" estimates the variance of the system noise before the adaptive filter is iteratively updated. When estimating the variance, let the input signal u(n)=0, then the output error e(n) is the system noise v(n). The power of the system noise is obtained by the method of time averaging Then enter the adaptive filter adaptation stage.
步骤2.“自适应滤波器”通过输入信号u(n)和期望信号d(n)计算误差信号的值,其计算公式为e(n)=d(n)-wT(n)u(n),其中w(n)=[w1(n),w2(n),…,wM(n)]为自适应滤波器在n时刻的系数向量;u(n)=[u(n),u(n-1),…,u(n-M+1)]T为自适应滤波器在n时刻的输入信号向量,该向量由输入信号当前的样值与其之前的M-1个取样值构成。Step 2. "Adaptive filter" calculates the value of the error signal through the input signal u(n) and the desired signal d(n), and its calculation formula is e(n)=d(n)-w T (n)u( n), where w(n)=[w 1 (n), w 2 (n),..., w M (n)] is the coefficient vector of the adaptive filter at time n; u(n)=[u( n),u(n-1),...,u(n-M+1)] T is the input signal vector of the adaptive filter at time n, which is composed of the current sample value of the input signal and its previous M-1 composed of sampled values.
步骤3.“误差功率估计模块”估计输出误差信号的功率其估计方法是使用如下的计算公式:其中λ为平滑因子,一般在0.9至0.999之间取值,未知系统长度越长,λ取值越大;反之,λ取值越小。Step 3. The "Error Power Estimation Module" estimates the power of the output error signal It is estimated by using the following calculation formula: Among them, λ is a smoothing factor, which generally takes a value between 0.9 and 0.999. The longer the length of the unknown system, the larger the value of λ; otherwise, the smaller the value of λ.
步骤4.“中间变量生成模块”,通过步骤1和步骤2中得到的系统噪声功率和误差信号功率计算得到中间变量,其计算公式为 Step 4. "Intermediate variable generation module", calculate the intermediate variable through the system noise power and error signal power obtained in step 1 and step 2, and its calculation formula is
步骤5.“时变参数生成模块”使用步骤3中得到的中间变量计算时变参数α(n)的值。该模块选择单调递增Sigmoid函数,并进行了平移和缩放。经过平移和缩放之后的函数表达式为:α(n)=(2α+2)/{1+exp[-βx(n)]}-(α+2),其中α为折中参数,其较好的取值为0或-0.5;β为Sigmoid函数的形状参数,该参数确定了Sigmoid函数波形的斜率,其较好的取值范围在1至10之间。当信噪比较低,或者未知系统的系数向量较长,或者信号相关性较高时,β应取较大值;反之,β应取较小值。Step 5. "Time-varying parameter generation module" uses the intermediate variable obtained in step 3 to calculate the value of the time-varying parameter α(n). The module chooses a monotonically increasing Sigmoid function, and performs translation and scaling. The function expression after translation and scaling is: α(n)=(2α+2)/{1+exp[-βx(n)]}-(α+2), where α is a compromise parameter, which is relatively A good value is 0 or -0.5; β is a shape parameter of the Sigmoid function, which determines the slope of the Sigmoid function waveform, and a good value range is between 1 and 10. When the signal-to-noise ratio is low, or the coefficient vector of the unknown system is long, or the signal correlation is high, β should take a larger value; otherwise, β should take a smaller value.
步骤6.“比例矩阵构建模块”首先使用步骤4中得到的时变参数计算比例矩阵的元素,即gm(n)=[1-α(n)]/2M+[1+α(n)]|wm(n)|/[2||w(n)||1+ε],m=1,2,…,M-1,其中wm(n)为自适应滤波器的第m个系数在n时刻的值,||·||1表示L1范数,ε为用来克服数值计算困难而引入的小正数。然后,该模块将由上述计算公式计算得到的M个元素形成对角矩阵G(n)=diag[g1(n),g2(n),…,gM(n)],其中G(n)中每个对角元素对应于每个滤波器系数的比例步长gm(n)。Step 6. The "scale matrix building block" first calculates the elements of the scale matrix using the time-varying parameters obtained in step 4, namely g m (n) = [1-α(n)]/2M+[1+α(n)] |w m (n)|/[2||w(n)|| 1 +ε], m=1, 2,..., M-1, where w m (n) is the mth adaptive filter The value of the coefficient at time n, ||·|| 1 represents the L1 norm, and ε is a small positive number introduced to overcome the difficulty of numerical calculation. Then, the module forms a diagonal matrix G(n)=diag[g 1 (n),g 2 (n),…,g M (n)] with the M elements calculated by the above calculation formula, where G(n Each diagonal element in ) corresponds to a scaling step g m (n) for each filter coefficient.
步骤7.“滤波器系数更新模块”通过步骤6中生成的比例矩阵来更新自适应滤波器的系数向量,其更新公式为w(n+1)=w(n)+μG(n)u(n)e(n)/[uT(n)G(n)u(n)+δ],其中δ为用来解决数值计算困难的正则化参数。Step 7. "filter coefficient update module" updates the coefficient vector of the adaptive filter by the scale matrix generated in step 6, and its updating formula is w(n+1)=w(n)+μG(n)u( n)e(n)/[u T (n)G(n)u(n)+δ], where δ is a regularization parameter used to solve numerical calculation difficulties.
应用例采用变参数比例自适应滤波器进行系统辨识应用Application example Using variable parameter proportional adaptive filter for system identification application
使用实施例公开的变参数比例自适应滤波器(本发明的变参数比例自适应滤波器简称为VIPNLMS)自适应滤波器分别辨别两个稀疏的未知系统,并将其性能与NLMS和IPNLMS自适应滤波器的性能进行比较。Use the variable parameter proportional adaptive filter disclosed in the embodiment (the variable parameter proportional adaptive filter of the present invention is referred to as VIPNLMS for short) adaptive filter to distinguish two sparse unknown systems respectively, and compare its performance with NLMS and IPNLMS adaptive filter performance for comparison.
第一个未知系统如图2所示,其系数向量长度为100;第二个未知系统如图3所示,其系数向量长度为512。在辨识图2所示的未知系统时,本实施例采用2阶的自回归模型作为输入,即该输入由u(n)=0.40u(n-1)-0.40u(n-2)+θ(n)获得,其中θ(n)为高斯白噪声序列;The first unknown system is shown in Figure 2, and its coefficient vector length is 100; the second unknown system is shown in Figure 3, and its coefficient vector length is 512. When identifying the unknown system shown in Figure 2, this embodiment uses a 2-order autoregressive model as input, that is, the input is determined by u(n)=0.40u(n-1)-0.40u(n-2)+θ (n) obtain, wherein θ (n) is Gaussian white noise sequence;
在辨识图3所示的未知系统时,采用1阶的自回归模型作为输入,即该输入由u(n)=0.9u(n-1)+η(n)获得,其中η(n)为高斯白噪声序列。将一个与输入信号不相关的高斯白噪声加到自适应滤波器系统的输入端,作为系统噪声,从而形成20dB、30dB或40dB的信噪比。NLMS自适应滤波器的正则化参数取为而IPNLMS和VIPNLMS自适应滤波器的正则化参数取为使用归一化失调(NormalizedMisalignment)相对于迭代次数(IterationNumber)的函数来比较三种自适应滤波器的性能,其定义式为20log10||w0-w(n)||/||w0||,单位为分贝(dB)。When identifying the unknown system shown in Figure 3, the first-order autoregressive model is used as input, that is, the input is obtained by u(n)=0.9u(n-1)+η(n), where η(n) is Gaussian white noise sequence. A Gaussian white noise uncorrelated with the input signal is added to the input of the adaptive filter system as system noise, thereby forming a signal-to-noise ratio of 20dB, 30dB or 40dB. The regularization parameter of the NLMS adaptive filter is taken as And the regularization parameters of IPNLMS and VIPNLMS adaptive filters are taken as Use the normalized misalignment (NormalizedMisalignment) relative to the iteration number (IterationNumber) function to compare the performance of the three adaptive filters, which is defined as 20log 10 ||w 0 -w(n)||/||w 0 ||, the unit is decibel (dB).
实验结果如图4至图9所示,图4至图6为自适应滤波器分别在20dB、30dB、40dB信噪比条件下估计图2所示的未知系统时的失调曲线比较;图7至图9为自适应滤波器分别在20dB、30dB、40dB信噪比条件下估计图3所示的未知系统时的失调曲线比较。The experimental results are shown in Fig. 4 to Fig. 9, and Fig. 4 to Fig. 6 are comparisons of offset curves when the adaptive filter estimates the unknown system shown in Fig. 2 under the conditions of 20dB, 30dB, and 40dB SNR respectively; Figure 9 is a comparison of the offset curves when the adaptive filter estimates the unknown system shown in Figure 3 under the conditions of 20dB, 30dB, and 40dB SNR respectively.
由实验结果可知:It can be seen from the experimental results that:
1)本发明公开的变参数比例自适应滤波器的收敛速度快于NLMS自适应滤波器,而稳态失调的波动性和NLMS自适应滤波器相当。1) The convergence speed of the variable parameter proportional adaptive filter disclosed in the present invention is faster than that of the NLMS adaptive filter, and the fluctuation of steady-state misalignment is comparable to that of the NLMS adaptive filter.
2)本发明公开的变参数比例自适应滤波器的收敛速度和IPNLMS自适应滤波器的收敛速度相当,而稳态失调的波动性远低于IPNLMS自适应滤波器稳态失调的波动性。因此变参数比例自适应滤波器的性能优于NLMS和IPNLMS自适应滤波器。2) The convergence speed of the variable parameter proportional adaptive filter disclosed in the present invention is equivalent to that of the IPNLMS adaptive filter, while the fluctuation of steady-state imbalance is much lower than that of the IPNLMS adaptive filter. Therefore, the performance of variable parameter proportional adaptive filter is better than that of NLMS and IPNLMS adaptive filter.
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人是能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所做的等效变换或修饰,都应涵盖在本发明的保护范围之内。The above-mentioned embodiments are only to illustrate the technical conception and characteristics of the present invention. The purpose is to enable those familiar with this technology to understand the content of the present invention and implement it accordingly, and cannot limit the protection scope of the present invention. All equivalent changes or modifications made according to the spirit of the present invention shall fall within the protection scope of the present invention.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410015022.5A CN103716013B (en) | 2014-01-14 | 2014-01-14 | Variable element ratio sef-adapting filter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410015022.5A CN103716013B (en) | 2014-01-14 | 2014-01-14 | Variable element ratio sef-adapting filter |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103716013A CN103716013A (en) | 2014-04-09 |
CN103716013B true CN103716013B (en) | 2016-05-04 |
Family
ID=50408674
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410015022.5A Expired - Fee Related CN103716013B (en) | 2014-01-14 | 2014-01-14 | Variable element ratio sef-adapting filter |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103716013B (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104202018B (en) * | 2014-08-22 | 2017-11-28 | 华为技术有限公司 | The method and apparatus for determining the stable factor of sef-adapting filter |
CN104363003A (en) * | 2014-10-27 | 2015-02-18 | 常州听觉工坊智能科技有限公司 | Filtering method and device |
JP6554188B2 (en) * | 2015-06-19 | 2019-07-31 | ヴェーデクス・アクティーセルスカプ | Hearing aid system operating method and hearing aid system |
CN105871762B (en) * | 2016-05-23 | 2018-10-12 | 苏州大学 | A kind of adaptive network for the estimation of Sparse parameter vector |
CN108200522B (en) * | 2017-11-24 | 2020-02-18 | 华侨大学 | A Variable Regularization Scale-Normalized Subband Adaptive Filtering Method |
CN111313865A (en) * | 2018-12-12 | 2020-06-19 | 哈尔滨工业大学 | Step length regularization method for random Fourier feature kernel LMS algorithm |
CN110459197B (en) * | 2019-07-10 | 2021-09-24 | 哈尔滨工业大学(深圳) | Signal booster and method for weak blind signal denoising and extraction |
CN110767245B (en) * | 2019-10-30 | 2022-03-25 | 西南交通大学 | Voice communication self-adaptive echo cancellation method based on S-shaped function |
TWI761148B (en) * | 2021-03-23 | 2022-04-11 | 禾瑞亞科技股份有限公司 | Touch sensitive processing apparatus, touch system for receiving signal value and method thereof |
CN118041726B (en) * | 2024-03-07 | 2024-12-13 | 上海星思半导体有限责任公司 | A filtering method, device, electronic equipment and storage medium |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101283514A (en) * | 2005-08-15 | 2008-10-08 | 捷讯研究有限公司 | Joint space-time optimum filters (ISTOF) for interference cancellation |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2524719B2 (en) * | 1986-11-12 | 1996-08-14 | 富士通株式会社 | Space-time adaptive filter |
-
2014
- 2014-01-14 CN CN201410015022.5A patent/CN103716013B/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101283514A (en) * | 2005-08-15 | 2008-10-08 | 捷讯研究有限公司 | Joint space-time optimum filters (ISTOF) for interference cancellation |
Non-Patent Citations (1)
Title |
---|
变设计参数子带自适应滤波器研究;倪锦根;《中国博士学位论文全文数据库》;20111215;第77页-第86页 * |
Also Published As
Publication number | Publication date |
---|---|
CN103716013A (en) | 2014-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103716013B (en) | Variable element ratio sef-adapting filter | |
CN108200522B (en) | A Variable Regularization Scale-Normalized Subband Adaptive Filtering Method | |
CN111445917B (en) | Echo cancellation method, device and computer storage medium | |
CN106788337B (en) | Robust affine projection sign adaptive filtering algorithm | |
CN104683614B (en) | Based on the proportional illumination-imitation projection self-adoptive echo cancel method of memory that M estimates | |
CN103680515B (en) | Proportional adaptive filter coefficient vector updating method using coefficient reusing | |
CN105891810B (en) | A kind of quick self-adapted joint delay time estimation method | |
CN103561185A (en) | Method for eliminating echoes of sparse path | |
Albu | Improved variable forgetting factor recursive least square algorithm | |
CN104506746B (en) | A kind of proportional adaptive echo cancellation method of convex combination decorrelation of improvement | |
CN107105111B (en) | A kind of proportional affine projection echo cancel method of combination step-length | |
CN114400017A (en) | Acoustic echo cancellation method based on nonlinear filtering | |
CN108630216A (en) | A kind of MPNLMS acoustic feedback suppressing methods based on dual microphone model | |
CN115278465B (en) | Howling suppression method, device, sound system and sound amplification system | |
CN107342751A (en) | A kind of variable step SA adaptive filter algorithms based on cross-correlation entropy | |
CN110572525B (en) | An adaptive communication echo cancellation method for voice communication | |
CN113541733A (en) | Equalization and echo cancellation device, method, computer device and storage medium | |
CN105491256A (en) | Robust step size adjustment method in initialization phase of acoustic echo cancellation | |
CN106059531A (en) | A Non-Negative Adaptive Filter | |
Yang et al. | Efficient μ-law improved proportionate affine projection algorithm for echo cancellation | |
CN103929704B (en) | The method and system that a kind of adaptive acoustic feedback based on transform domain is eliminated | |
CN105070295A (en) | Adaptive method, applied to echo cancellation, of active factor proportional sub band | |
CN107610714A (en) | An Echo Cancellation Method Based on the Absolute Value of Least Mean Cubic Power of One Norm Zero Attraction | |
CN106128471A (en) | A kind of contraction variable step subband acoustic echo removing method | |
CN106409307B (en) | An Affine Projection Method with Selectively Evolved Affine Projection Order |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160504 Termination date: 20190114 |
|
CF01 | Termination of patent right due to non-payment of annual fee |