[go: up one dir, main page]

CN103715956B - A kind of two level three-phase space vector pulse-width modulation and SVPWM optimization method thereof - Google Patents

A kind of two level three-phase space vector pulse-width modulation and SVPWM optimization method thereof Download PDF

Info

Publication number
CN103715956B
CN103715956B CN201310695822.1A CN201310695822A CN103715956B CN 103715956 B CN103715956 B CN 103715956B CN 201310695822 A CN201310695822 A CN 201310695822A CN 103715956 B CN103715956 B CN 103715956B
Authority
CN
China
Prior art keywords
msub
mrow
lim
voltage
mtd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310695822.1A
Other languages
Chinese (zh)
Other versions
CN103715956A (en
Inventor
黄招彬
文小琴
游林儒
汪兆栋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201310695822.1A priority Critical patent/CN103715956B/en
Publication of CN103715956A publication Critical patent/CN103715956A/en
Application granted granted Critical
Publication of CN103715956B publication Critical patent/CN103715956B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Inverter Devices (AREA)

Abstract

本发明公开了一种二电平三相空间矢量脉冲宽度调制器及其SVPWM优化方法,针对死区时间和窄脉冲宽度限制的影响,扩展了实际线性调制区,优化了过调制算法,并简便地实现了过调制区的线性化处理。所述的二电平三相空间矢量脉冲宽度调制器,包括有给定参考电压修正模块、电压坐标变换模块、电压区间计算模块、矢量时间计算模块、调制算法优化模块、PWM比较点时间计算模块六个模块。本发明以最为简便的算法,实现了母线电压的最充分利用,提高了输出基波电压的线性度,降低了输出电压的总谐波畸变。

The invention discloses a two-level three-phase space vector pulse width modulator and its SVPWM optimization method. Aiming at the influence of dead time and narrow pulse width limitation, the actual linear modulation area is expanded, the overmodulation algorithm is optimized, and the method is simple and convenient. The linearization process of the overmodulation region is realized effectively. The two-level three-phase space vector pulse width modulator includes a given reference voltage correction module, a voltage coordinate transformation module, a voltage interval calculation module, a vector time calculation module, a modulation algorithm optimization module, and a PWM comparison point time calculation module Six modules. The invention realizes the full utilization of the busbar voltage with the most convenient algorithm, improves the linearity of the output fundamental wave voltage, and reduces the total harmonic distortion of the output voltage.

Description

一种二电平三相空间矢量脉冲宽度调制器及其SVPWM优化方法A two-level three-phase space vector pulse width modulator and its SVPWM optimization method

技术领域technical field

本发明涉及交流电机控制的技术领域,尤其是指一种考虑死区与窄脉宽限制的二电平三相空间矢量脉冲宽度调制器及其SVPWM优化方法。The invention relates to the technical field of AC motor control, in particular to a two-level three-phase space vector pulse width modulator and its SVPWM optimization method considering dead zone and narrow pulse width limitation.

背景技术Background technique

脉冲宽度调制(PWM,pulsewidthmodulation)是电机控制系统的重要组成部分。由于矢量脉冲宽度调制(SVPWM,spacevectorPWM)技术的高电压利用率、低电压谐波和易数字实现等特性,其在电机矢量控制中得到广泛应用。Pulse width modulation (PWM, pulsewidthmodulation) is an important part of the motor control system. Due to the characteristics of high voltage utilization, low voltage harmonics and easy digital implementation of vector pulse width modulation (SVPWM, spacevectorPWM) technology, it is widely used in motor vector control.

在二电平三相逆变系统中,开关管的8种状态能够产生6个基本电压矢量v1/v2/…/v6和2个零矢量v0/v7,基本电压矢量构成的正六边形区域(包括边界)为输出电压能够到达的范围(电压空间)。电压空间内的任意电压矢量都可以通过相邻两个基本矢量和零矢量合成,即为SVPWM技术。In the two-level three-phase inverter system, the 8 states of the switching tube can generate 6 basic voltage vectors v 1 /v 2 /…/v 6 and 2 zero vectors v 0 /v 7 , the basic voltage vectors constitute The regular hexagonal area (including the boundary) is the range (voltage space) that the output voltage can reach. Any voltage vector in the voltage space can be synthesized by two adjacent basic vectors and a zero vector, which is the SVPWM technology.

设给定参考电压Ur(Ur∠θ)以最大相电压(基本电压矢量构成的正六边形内接圆半径)为基准标幺化,标幺化结果ur(ur∠θ)(θ∈[0,2π)),ur记为调制度,即那么,最大输出电压为基本电压矢量(幅值为),调制度为当ur≤1时,输出电压矢量ur轨迹都在正六边形内(不超出内接圆),可以正常输出圆形磁链,即为线性调制区;当时,输出电压矢量ur有部分轨迹超出正六边形范围(超出内接圆),不能正常输出圆形磁链,为过调制区。Set the given reference voltage U r (U r ∠θ) to the maximum phase voltage (the radius of the inscribed circle of the regular hexagon formed by the basic voltage vector) is the standard per unitization, and the per unitization result u r (u r ∠θ)(θ∈[0,2π)), u r is recorded as the modulation degree, that is Then, the maximum output voltage is the basic voltage vector (amplitude is ), the modulation degree is When u r ≤ 1, the trajectory of the output voltage vector u r is within the regular hexagon (not exceeding the inscribed circle), and the circular flux linkage can be output normally, which is the linear modulation area; when , the output voltage vector u r has part of the trajectory beyond the regular hexagonal range (beyond the inscribed circle), and the circular flux linkage cannot be output normally, which is an over-modulation area.

目前已经提出多种过调制方法,以求减小过调制区的谐波,减少过调制运算量,提高过调制区线性度。A variety of over-modulation methods have been proposed so far in order to reduce the harmonics in the over-modulation area, reduce the amount of over-modulation calculations, and improve the linearity of the over-modulation area.

如图5a所示,电压空间可以基本矢量为边界将矢量空间分为S1/S2/S3/S4/S5/S6六个区域,每个区域中电压矢量ur可以通过前向相邻基本电压矢量vk、后向相邻基本电压矢量vk+1和零矢量vz(v0或者v7)合成,即As shown in Figure 5a, the voltage space can be divided into six regions S1/S2/S3/S4/S5/S6 by the basic vector as the boundary, and the voltage vector u r in each region can pass through the forward adjacent basic voltage vector v k , backward adjacent basic voltage vector v k+1 and zero vector v z (v 0 or v 7 ), namely

uu rr == tt 11 vv kk ++ tt 22 vv kk ++ 11 11 == tt 11 ++ tt 22 ++ tt 00

其中Ts、T1、T2和T0分别为PWM周期、前向相邻基本矢量时间、后向相邻基本矢量时间和零矢量时间,t1=T1/Ts,t2=T2/Ts,t0=T0/Ts。SVPWM实现一般采用七段式的对称调制方式,如图5b所示,其中Ta、Tb和Tc分别为A相、B相和C相上桥臂PWM比较点时间(高电平导通)。Where T s , T 1 , T 2 and T 0 are PWM period, forward adjacent basic vector time, backward adjacent basic vector time and zero vector time respectively, t 1 =T 1 /T s , t 2 =T 2 /T s , t 0 =T 0 /T s . The implementation of SVPWM generally adopts a seven-segment symmetrical modulation method, as shown in Figure 5b. Among them, T a , T b and T c are the PWM comparison point time (high level conduction) of phase A, phase B and phase C of the upper bridge arm respectively.

但是,在实际二电平三相逆变系统应用中,一般采取上下桥臂互补PWM输出方式,为了保证上下管不会直通,必须插入适当的死区时间;同时,为了降低开关损耗,通常会限制最小输出脉冲宽度。由于死区时间和窄脉宽限制的影响,PWM的输出占空比受到限制,只能工作在[tlim,1-tlim]∪(0)∪(1)范围,即在[tlim,1-tlim]之间连续可调或者恒定高电平或者恒定低电平,而不能在(0,tlim)与(1-tlim,1)之间调节,其中tlim为死区时间和窄脉宽限制时间之和。死区时间与窄脉冲宽度限制缩小了实际可以到达的电压空间范围,使得实际线性调制区缩小、目前提出的过调制算法性能大为降低。However, in the actual application of the two-level three-phase inverter system, the upper and lower bridge arm complementary PWM output mode is generally adopted. In order to ensure that the upper and lower tubes will not be directly connected, an appropriate dead time must be inserted; at the same time, in order to reduce switching losses, usually Limits the minimum output pulse width. Due to the influence of dead time and narrow pulse width limitation, the PWM output duty cycle is limited and can only work in the range of [t lim ,1-t lim ]∪(0)∪(1), that is, in [t lim , 1-t lim ] is continuously adjustable or constant high level or constant low level, but cannot be adjusted between (0,t lim ) and (1-t lim ,1), where t lim is the dead time and the sum of the narrow pulse width limit time. The limitation of dead time and narrow pulse width narrows the actual voltage space range that can be reached, which makes the actual linear modulation area narrow, and the performance of the currently proposed overmodulation algorithm is greatly reduced.

发明内容Contents of the invention

本发明的目的在于克服现有技术的不足,提供一种考虑死区与窄脉宽限制的二电平三相空间矢量脉冲宽度调制器及其SVPWM优化方法,扩展了实际线性调制区,优化了过调制算法,并简便地实现了过调制区的线性化处理。The purpose of the present invention is to overcome the deficiencies in the prior art, provide a kind of two-level three-phase space vector pulse width modulator and its SVPWM optimization method considering dead zone and narrow pulse width limitation, expand the actual linear modulation area, optimize The overmodulation algorithm is adopted, and the linearization processing of the overmodulation area is easily realized.

为实现上述目的,本发明所提供的技术方案其二电平三相空间矢量脉冲宽度调制器,包括:In order to achieve the above object, the two-level three-phase space vector pulse width modulator of the technical solution provided by the present invention includes:

给定参考电压修正模块,根据给定参考电压ur(ur∠θ),不改变电压相角,当ur>1时,按照修正电压幅值,得到修正后的参考电压um(um∠θ);The given reference voltage correction module does not change the voltage phase angle according to the given reference voltage u r (u r ∠θ), when ur>1, according to Correct the voltage amplitude to obtain the corrected reference voltage u m (u m ∠θ);

电压坐标变换模块,用于将修正后的参考电压um(um∠θ)由极坐标表示方式变换到两相静止坐标系um(ua,uβ),即uα=umcosθ与uβ=umsinθ;The voltage coordinate transformation module is used to transform the corrected reference voltage u m (u m ∠θ) from the polar coordinate representation to the two-phase stationary coordinate system u m (u a ,u β ), that is, u α =u m cosθ and u β = u m sin θ;

电压区间计算模块,用于计算出两相静止坐标系中um对应于电压空间中的区间位置,即电压区间号sector;The voltage interval calculation module is used to calculate the interval position in the voltage space corresponding to u m in the two-phase stationary coordinate system, that is, the voltage interval number sector;

矢量时间计算模块,根据所述两相静止坐标系um(ua,uβ)和相应电压区间号sector得到相邻基本矢量时间t1、t2和零矢量时间t0=1-t1-t2The vector time calculation module obtains the adjacent basic vector time t 1 , t 2 and the zero vector time t 0 =1-t 1 according to the two-phase stationary coordinate system u m (u a , u β ) and the corresponding voltage interval number sector -t 2 ;

调制算法优化模块,根据所述相邻基本矢量时间t1、t2和零矢量时间t0,按照优化的调制算法,计算出优化后的相邻基本矢量时间t1′、t2′和零矢量时间t0′,以及最先触发PWM比较点时间τ0Modulation algorithm optimization module, according to the adjacent basic vector time t 1 , t 2 and zero vector time t 0 , according to the optimized modulation algorithm, calculate the optimized adjacent basic vector time t 1 ', t 2 ' and zero vector time Vector time t 0 ′, and the first trigger PWM comparison point time τ 0 ;

PWM比较点时间计算模块,根据所述t1′、t2′、τ0和相应电压区间号sector得到A相、B相、C相各相上桥臂高电平导通下PWM比较点时间Ta、Tb、TcPWM comparison point time calculation module, according to the t 1 ′, t 2 ′, τ 0 and the corresponding voltage interval number sector to obtain the PWM comparison point time under the high level conduction of the upper bridge arm of each phase of A phase, B phase and C phase T a , T b , T c .

所述优化的调制算法包括以下步骤:The optimized modulation algorithm comprises the following steps:

1)若t0≥2tlim,t1′=t1,t2′=t2,t0′=t0 1) If t 0 ≥ 2t lim , t 1 ′=t 1 , t 2 ′=t 2 , t 0 ′=t 0 ;

2)若tlim≤t0<2tlim,t1′=t1,t2′=t2,t0′=t0;当t1>t2时,τ0=0,否则τ0=t0′;2) If t lim ≤t 0 <2t lim , t 1 ′=t 1 , t 2 ′=t 2 , t 0 ′=t 0 ; when t 1 >t 2 , τ 0 =0, otherwise τ 0 = t 0 ';

3)当tlim/2≤t0<tlim时,采用等比例压缩方法, t0′=tlim;当t1>t2时,τ0=0,否则τ0=t0′;3) When t lim /2≤t 0 <t lim , use the proportional compression method, t 0 ′=t lim ; when t 1 >t 2 , τ 0 =0, otherwise τ 0 =t 0 ′;

4)当t0<tlim/2时,输出电压工作在电压空间正六边形边界上,即t0′=0,τ0=0,此时t1′、t2′的计算方法如下:4) When t 0 <t lim /2, the output voltage works on the boundary of the regular hexagon in the voltage space, that is, t 0 ′=0, τ 0 =0. At this time, the calculation methods of t 1 ′ and t 2 ′ are as follows:

4.1)当0≤t0<tlim/2时或者当t0<0∩t1+t2/2<1∩t1/2+t2<1时,采用等比例缩放方法,即当t1′<tlim时,t1′=0,t2′=1;当t2′<tlim时,t1′=1,t2′=0;4.1) When 0≤t 0 <t lim /2 or when t 0 <0∩t 1 +t 2 /2<1∩t 1 /2+t 2 <1, the proportional scaling method is adopted, namely When t 1 ′<t lim , t 1 ′=0, t 2 ′=1; when t 2 ′<t lim , t 1 ′=1, t 2 ′=0;

4.2)当t1≥t2∩t1+t2/2≥1时,输出前向基本矢量vk,即t1′=1,t2′=0;4.2) When t 1 ≥t 2 ∩t 1 +t 2 /2≥1, output the forward basic vector v k , that is, t 1 ′=1, t 2 ′=0;

4.3)当t1<t2∩t1/2+t2≥1时,输出后向基本矢量vk+1,即t1′=0,t2′=1;4.3) When t 1 <t 2 ∩t 1 /2+t 2 ≥1, output the backward basic vector v k+1 , that is, t 1 ′=0, t 2 ′=1;

其中,所述tlim为死区时间和窄脉宽限制时间之和。Wherein, the t lim is the sum of the dead time and the narrow pulse width limit time.

本发明所述二电平三相空间矢量脉冲宽度调制器的SVPWM优化方法为:若t0≥2tlim,采用七段式SVPWM;若tlim≤t0<2tlim,采用DPWM1方式,即一种五段式PWM;若t0<tlim,将电压矢量转换到DPWM1、三段式PWM或一段式PWM电压空间;其中,The SVPWM optimization method of the two-level three-phase space vector pulse width modulator in the present invention is as follows: if t 0 2t lim , adopt the seven-segment SVPWM ; five-segment PWM; if t 0 <t lim , convert the voltage vector to DPWM1, three-segment PWM or one-segment PWM voltage space; among them,

所述tlim为死区时间和窄脉宽限制时间之和;在所述七段式SVPWM中没有恒定电平,有τ0和τ7两个占空比限制;在所述DPWM1中, &tau; 0 = 0 , &tau; 7 = t 0 , t 1 &GreaterEqual; t 2 &tau; 0 = t 0 , &tau; 7 = 0 , e l s e , 即某一相为恒定电平,只有τ0或者τ7一个占空比限制;在所述三段式PWM中,某两相为恒定电平,只有另外一相电压可以调节,实际电压空间只有正六边形的非连续边界;所述一段式PWM即为三相均为恒定电平,实际电压只能工作在基本矢量和零矢量上;The t lim is the sum of the dead time and the narrow pulse width limit time; there is no constant level in the seven-segment SVPWM, and there are two duty cycle limits of τ 0 and τ 7 ; in the DPWM1, &tau; 0 = 0 , &tau; 7 = t 0 , t 1 &Greater Equal; t 2 &tau; 0 = t 0 , &tau; 7 = 0 , e l the s e , That is, a certain phase is at a constant level, and there is only a duty ratio limit of τ0 or τ7 ; in the three - stage PWM, a certain two phases are at a constant level, and only the voltage of the other phase can be adjusted, and the actual voltage space is only The non-continuous boundary of the regular hexagon; the one-stage PWM means that the three phases are all at a constant level, and the actual voltage can only work on the basic vector and zero vector;

由于死区时间与窄脉冲宽度限制,在实际过调制区,一些区域实际不能直接到达,因而需要采用优化的过调制方法进行处理,包括以下步骤:Due to the limitation of dead time and narrow pulse width, in the actual overmodulation area, some areas cannot be directly reached, so an optimized overmodulation method needs to be used for processing, including the following steps:

1)修正给定参考电压,使得原给定参考电压范围与修正后的给定参考电压范围对应,即ur与um之间建立映射关系:相角保持不变;当(1-tlim)<ur≤1时,幅值不变,即um=ur;当时,幅值作线性修正,即 u m = ( 2 3 + 1 ) ( u r - 1 ) + 1 &Element; ( 1 , 4 / 3 &rsqb; ; 1) Modify the given reference voltage so that the original given reference voltage range with the corrected given reference voltage range Correspondence, that is, the mapping relationship between u r and u m is established: the phase angle remains unchanged; when (1-t lim )<u r ≤1, the amplitude remains unchanged, that is, u m = u r ; when When , the amplitude is corrected linearly, that is, u m = ( 2 3 + 1 ) ( u r - 1 ) + 1 &Element; ( 1 , 4 / 3 &rsqb; ;

2)修正后的给定参考电压um按照所述优化的调制算法进行调制,得到实际输出电压up,包括以下步骤:2) The modified given reference voltage u m is modulated according to the optimized modulation algorithm to obtain the actual output voltage u p , including the following steps:

2.1)当t0≥tlim时,直接输出um,即up=um2.1) When t 0 ≥t lim , directly output u m , that is, u p = um ;

2.2)当tlim/2≤t0<tlim时,按等比例压缩方法处理um得到up,即 t 1 &prime; = t 1 t 1 + t 2 &CenterDot; ( 1 - t lim ) , t 2 &prime; = t 2 t 1 + t 2 &CenterDot; ( 1 - t lim ) , t0′=tlim2.2) When t lim /2≤t 0 <t lim , process u m according to the proportional compression method to get u p , namely t 1 &prime; = t 1 t 1 + t 2 &Center Dot; ( 1 - t lim ) , t 2 &prime; = t 2 t 1 + t 2 &CenterDot; ( 1 - t lim ) , t 0 ′=t lim ;

2.3)当t0<tlim/2时,如下:2.3) When t 0 <t lim /2, as follows:

2.3.1)当0≤t0<tlim/2时,按等比例拉伸方法处理um得到up,即 t 2 &prime; = t 2 t 1 + t 2 , t0′=0;2.3.1) When 0≤t 0 <t lim /2, process u m according to the proportional stretching method to get u p , namely t 2 &prime; = t 2 t 1 + t 2 , t 0 '=0;

2.3.2)当t0<0∩t1+t2/2<1∩t1/2+t2<1时,按等比例压缩方法处理um得到up,即 t 1 &prime; = t 1 t 1 + t 2 , t 2 &prime; = t 2 t 1 + t 2 , t0′=0;2.3.2) When t 0 <0∩t 1 +t 2 /2<1∩t 1 /2+t 2 <1, process u m according to the proportional compression method to get u p , namely t 1 &prime; = t 1 t 1 + t 2 , t 2 &prime; = t 2 t 1 + t 2 , t 0 '=0;

2.3.3)当t1≥t2∩t1+t2/2≥1时,输出前向基本矢量vk2.3.3) When t 1 ≥t 2 ∩t 1 +t 2 /2≥1, output the forward basic vector v k ;

2.3.4)当t1<t2∩t1/2+t2≥1时,输出后向基本矢量vk+12.3.4) When t 1 <t 2 ∩t 1 /2+t 2 ≥1, output the backward basic vector v k+1 ;

2.3.5)将等比例拉伸和等比例压缩后落在电压空间正六边形边界上不能达到的工作点,用临近的基本电压矢量vk或者vk+1替代。2.3.5) The operating point that cannot be reached on the boundary of the regular hexagon in the voltage space after the proportional stretching and compression is replaced by the adjacent basic voltage vector v k or v k+1 .

本发明与现有技术相比,具有如下优点与有益效果:Compared with the prior art, the present invention has the following advantages and beneficial effects:

1、扩展了实际线性调制区,由于死区时间与窄脉冲宽度限制,七段式SVPWM的线性调制区损失了2tlim,即实际的线性调制区为ur∈[0,(1-2tlim)],而采用本发明后,可以将实际线性调制区扩展到ur∈[0,(1-tlim)];1. The actual linear modulation area is expanded. Due to the limitation of dead time and narrow pulse width, the linear modulation area of the seven-segment SVPWM loses 2t lim , that is, the actual linear modulation area is u r ∈ [0,(1-2t lim )], and after adopting the present invention, the actual linear modulation area can be extended to u r ∈ [0,(1-t lim )];

2、采用线性映射方式,简便地实现了过调制区的线性化处理;2. Using the linear mapping method, the linearization processing of the overmodulation area is easily realized;

3、优化了过调制算法,将新实际线性调制区和过调制区的调制算法综合处理,简化了调制运算,便于工程实现;3. The over-modulation algorithm is optimized, and the modulation algorithms of the new actual linear modulation area and the over-modulation area are comprehensively processed, which simplifies the modulation operation and is convenient for engineering implementation;

4、实现了母线电压的最充分利用,减小了输出电压与参考电压的差值,降低了输出电压的谐波,提高了输出基波电压相对于参考电压的线性度。4. Realize the full utilization of the bus voltage, reduce the difference between the output voltage and the reference voltage, reduce the harmonics of the output voltage, and improve the linearity of the output fundamental voltage relative to the reference voltage.

附图说明Description of drawings

图1为本发明所述二电平三相空间矢量脉冲宽度调制器的结构框图。Fig. 1 is a structural block diagram of the two-level three-phase space vector pulse width modulator of the present invention.

图2为本发明所述优化的调制算法流程图。Fig. 2 is a flow chart of the optimized modulation algorithm of the present invention.

图3a为七段式SVPWM的实际电压空间图。Figure 3a is the actual voltage space diagram of the seven-segment SVPWM.

图3b为本发明的实际电压空间图。Fig. 3b is the actual voltage space diagram of the present invention.

图4a为本发明所述的过调制方法中当tlim/2≤t0<tlim时输出电压的轨迹示意图。Fig. 4a is a schematic diagram of the trajectory of the output voltage when t lim /2≤t 0 <t lim in the overmodulation method of the present invention.

图4b为本发明所述的过调制方法中当0≤t0<tlim/2时输出电压的轨迹示意图。Fig. 4b is a schematic diagram of the trajectory of the output voltage when 0≤t 0 <t lim /2 in the overmodulation method of the present invention.

图4c为本发明所述的过调制方法中当t0<0∩t1+t2/2<1∩t1/2+t2<1时输出电压的轨迹示意图。FIG. 4c is a schematic diagram of the trajectory of the output voltage when t 0 <0∩t 1 +t 2 /2<1∩t 1 /2+t 2 <1 in the overmodulation method of the present invention.

图4d为本发明所述的过调制方法中当t1≥t2∩t1+t2/2≥1时或者t1<t2∩t1/2+t2≥1时输出电压的轨迹示意图。Figure 4d is the trajectory of the output voltage when t 1 ≥ t 2 ∩ t 1 + t 2 /2 ≥ 1 or t 1 < t 2 ∩ t 1 /2 + t 2 ≥ 1 in the overmodulation method of the present invention schematic diagram.

图5a为背景技术中的电压空间分区图。Fig. 5a is a voltage space partition diagram in the background technology.

图5b为七段式SVPWM的PWM占空比输出图。Fig. 5b is the output diagram of the PWM duty cycle of the seven-segment SVPWM.

具体实施方式detailed description

下面结合具体实施例对本发明作进一步说明。The present invention will be further described below in conjunction with specific examples.

本实施例公开一种考虑死区与窄脉宽限制的二电平三相空间矢量脉冲宽度调制器及其SVPWM优化方法,将死区时间和窄脉冲宽度限制的影响考虑在内,以最简便的方法,实现了母线电压的最充分利用,提高了输出基波电压相对于参考电压的线性度,降低了输出电压的总谐波畸变。This embodiment discloses a two-level three-phase space vector pulse width modulator and its SVPWM optimization method considering dead zone and narrow pulse width limitation, taking into account the influence of dead zone time and narrow pulse width limitation, the most convenient The method realizes the full utilization of the bus voltage, improves the linearity of the output fundamental voltage relative to the reference voltage, and reduces the total harmonic distortion of the output voltage.

如图1所示,本实施例所述的二电平三相空间矢量脉冲宽度调制器,包括有给定参考电压修正模块1、电压坐标变换模块2、电压区间计算模块3、矢量时间计算模块4、调制算法优化模块5、PWM比较点时间计算模块6,其中,As shown in Figure 1, the two-level three-phase space vector pulse width modulator described in this embodiment includes a given reference voltage correction module 1, a voltage coordinate transformation module 2, a voltage interval calculation module 3, and a vector time calculation module 4. Modulation algorithm optimization module 5. PWM comparison point time calculation module 6, wherein,

所述给定参考电压修正模块1,根据给定参考电压ur(ur∠θ),不改变电压相角,按照下式(1)修正电压幅值,得到修正后的参考电压um(um∠θ);The given reference voltage correction module 1, according to the given reference voltage u r (u r ∠θ), does not change the voltage phase angle, corrects the voltage amplitude according to the following formula (1), and obtains the corrected reference voltage u m ( u m ∠θ);

uu mm == uu rr ,, uu rr &le;&le; 11 (( 22 33 ++ 11 )) (( uu rr -- 11 )) ++ 11 ,, uu rr >> 11 -- -- -- (( 11 ))

所述电压坐标变换模块2,将修正后的参考电压um(um∠θ)由极坐标表示方式变换到两相静止坐标系um(ua,uβ),如下式(2)所示:The voltage coordinate transformation module 2 transforms the corrected reference voltage u m (u m ∠θ) from a polar coordinate representation to a two-phase stationary coordinate system u m (u a , u β ), as shown in the following formula (2): Show:

uu &alpha;&alpha; == uu mm coscos &theta;&theta; uu &beta;&beta; == uu mm sinsin &theta;&theta; -- -- -- (( 22 ))

所述电压区间计算模块3,根据两相静止坐标系中um(ua,uβ),计算出um对应于电压空间中的区间位置,即区间号sector,所述区间号sector=4c+2b+a;定义中间变量Vref1、Vref2、Vref3如下式(3)所示:The voltage interval calculation module 3, according to u m (u a , u β ) in the two-phase stationary coordinate system, calculates that u m corresponds to the interval position in the voltage space, that is, the interval number sector, and the interval number sector=4c +2b+a; define intermediate variables V ref1 , V ref2 , and V ref3 as shown in formula (3):

Vref1=uβ V ref1 =u β

VV rr ee ff 22 == 11 22 (( 33 uu &alpha;&alpha; -- uu &beta;&beta; )) -- -- -- (( 33 ))

VV rr ee ff 33 == 11 22 (( -- 33 uu &alpha;&alpha; -- uu &beta;&beta; ))

若Vref1>0,则a=1,否则,a=0;若Vref2>0,则b=1,否则,b=0;若Vref3>0,则c=1,否则,c=0;If V ref1 >0, then a=1, otherwise, a=0; if V ref2 >0, then b=1, otherwise, b=0; if V ref3 >0, then c=1, otherwise, c=0 ;

所述矢量时间计算模块4,根据两相静止坐标系中um(ua,uβ),按照下式(4)计算出X、Y、Z,然后按相应电压区间号sector从下查询表1中查得相邻基本矢量时间t1、t2,那么零矢量时间即为t0=1-t1-t2The vector time calculation module 4, according to u m (u a , u β ) in the two-phase stationary coordinate system, calculates X, Y, Z according to the following formula (4), and then presses the corresponding voltage interval number sector from the following look-up table The adjacent basic vector times t 1 and t 2 are found in 1, then the zero vector time is t 0 =1-t 1 -t 2 ;

X=uβ X=u β

YY == 11 22 (( 33 uu &alpha;&alpha; ++ uu &beta;&beta; )) -- -- -- (( 44 ))

ZZ == 11 22 (( -- 33 uu &alpha;&alpha; ++ uu &beta;&beta; ))

电压区间号sector查询表1Voltage interval number sector query table 1

sectorsector S1S1 S2S2 S3S3 S4S4 S5S5 S6S6 t1 t 1 YY -X-X -Z-Z ZZ Xx -Y-Y t2 t 2 ZZ YY Xx -X-X -Y-Y -Z-Z vk/vk+1 v k /v k+1 v2/v3 v 2 /v 3 v6/v1 v 6 /v 1 v1/v2 v 1 /v 2 v4/v5 v 4 /v 5 v3/v4 v3 / v4 v5/v6 v5 / v6 Ta/(Ts/2)T a /(T s /2) τ0+t2τ 0 +t 2 τ0 τ 0 τ0 τ 0 τ0+t1′+t2τ 0 +t 1 ′+t 2 τ0+t1τ 0 +t 1 τ0+t1′+t2τ 0 +t 1 ′+t 2 Tb/(Ts/2)T b /(T s /2) τ0 τ 0 τ0+t1′+t2τ 0 +t 1 ′+t 2 τ0+t1τ 0 +t 1 τ0+t2τ 0 +t 2 τ0+t1′+t2τ 0 +t 1 ′+t 2 τ0 τ 0 Tc/(Ts/2)T c /(T s /2) τ0+t1′+t2τ 0 +t 1 ′+t 2 τ0+t2τ 0 +t 2 τ0+t1′+t2τ 0 +t 1 ′+t 2 τ0 τ 0 τ0 τ 0 τ0+t1τ 0 +t 1

所述调制算法优化模块5,根据相邻基本矢量时间t1、t2和零矢量时间t0,按照优化的调制算法,计算出优化后的相邻基本矢量时间t1′、t2′和零矢量时间t0′,以及最先触发PWM比较点时间τ0;如图2所示,所述优化的调制算法具体情况如下: The modulation algorithm optimization module 5 calculates the optimized adjacent basic vector times t 1 , t 2 ′ and Zero vector time t 0 ′, and the first trigger PWM comparison point time τ 0 ; as shown in Figure 2, the details of the optimized modulation algorithm are as follows:

1)若t0≥2tlim,t1′=t1,t2′=t2,t0′=t0 1) If t 0 ≥ 2t lim , t 1 ′=t 1 , t 2 ′=t 2 , t 0 ′=t 0 ;

2)若tlim≤t0<2tlim,t1′=t1,t2′=t2,t0′=t0;当t1>t2时,τ0=0,否则τ0=t0′;2) If t lim ≤t 0 <2t lim , t 1 ′=t 1 , t 2 ′=t 2 , t 0 ′=t 0 ; when t 1 >t 2 , τ 0 =0, otherwise τ 0 = t 0 ';

3)当tlim/2≤t0<tlim时,采用等比例压缩方法, t0′=tlim;当t1>t2时,τ0=0,否则τ0=t0′;3) When t lim /2≤t 0 <t lim , use the proportional compression method, t 0 ′=t lim ; when t 1 >t 2 , τ 0 =0, otherwise τ 0 =t 0 ′;

4)当t0<tlim/2时,输出电压工作在电压空间正六边形边界上,即t0′=0,τ0=0,此时t1′、t2′的计算方法如下:4) When t 0 <t lim /2, the output voltage works on the boundary of the regular hexagon in the voltage space, that is, t 0 ′=0, τ 0 =0. At this time, the calculation methods of t 1 ′ and t 2 ′ are as follows:

4.1)当0≤t0<tlim/2时或者当t0<0∩t1+t2/2<1∩t1/2+t2<1时,采用等比例缩放方法,即当t1′<tlim时,t1′=0,t2′=1;当t2′<tlim时,t1′=1,t2′=0;4.1) When 0≤t 0 <t lim /2 or when t 0 <0∩t 1 +t 2 /2<1∩t 1 /2+t 2 <1, the proportional scaling method is adopted, namely When t 1 ′<t lim , t 1 ′=0, t 2 ′=1; when t 2 ′<t lim , t 1 ′=1, t 2 ′=0;

4.2)当t1≥t2∩t1+t2/2≥1时,输出前向基本矢量vk,即t1′=1,t2′=0;4.2) When t 1 ≥t 2 ∩t 1 +t 2 /2≥1, output the forward basic vector v k , that is, t 1 ′=1, t 2 ′=0;

4.3)当t1<t2∩t1/2+t2≥1时,输出后向基本矢量vk+1,即t1′=0,t2′=1;4.3) When t 1 <t 2 ∩t 1 /2+t 2 ≥1, output the backward basic vector v k+1 , that is, t 1 ′=0, t 2 ′=1;

上述tlim为死区时间和窄脉宽限制时间之和;The above t lim is the sum of dead time and narrow pulse width limit time;

所述PWM比较点时间计算模块6,根据t1′、t2′、τ0按电压区间号sector从上查询表1中查得A相、B相、C相各相上桥臂高电平导通下PWM比较点时间Ta、Tb、TcThe PWM comparison point time calculation module 6, according to t 1 ′, t 2 ′, τ 0 , finds the high level of the upper bridge arm of each phase of the A phase, B phase, and C phase according to the voltage interval number sector from the upper look-up table 1 PWM comparison point time T a , T b , T c under conduction.

此外,本实施例所述的SVPWM优化方法,是将传统的七段式SVPWM改进为综合式非连续PWM(GDPWM,GeneralizedDiscontinuousPWM),实际电压空间从图3a深色部分所示区域扩展为图3b深色部分所示区域,其具体情况如下:In addition, the SVPWM optimization method described in this embodiment is to improve the traditional seven-segment SVPWM into a comprehensive discontinuous PWM (GDPWM, Generalized DiscontinuousPWM), and the actual voltage space is expanded from the area shown in the dark part of Figure 3a to the deep area of Figure 3b The area shown in the colored part is as follows:

若t0≥2tlim,采用七段式SVPWM;若tlim≤t0<2tlim,采用DPWM1方式,即一种五段式PWM;若t0<tlim,采用一定的调制规则将电压矢量转换到DPWM1、三段式PWM或一段式PWM电压空间。If t 0 ≥ 2t lim , use seven-segment SVPWM; if t lim ≤t 0 <2t lim , use DPWM1, that is, a five-segment PWM; if t 0 <t lim , use a certain modulation rule to convert the voltage vector Convert to DPWM1, 3-segment PWM or 1-segment PWM voltage space.

所述tlim为死区时间和窄脉宽限制时间之和;在所述七段式SVPWM中没有恒定电平,有τ0和τ7两个占空比限制(即零矢量时间t0≥2tlim);在所述DPWM1中, &tau; 0 = 0 , &tau; 7 = t 0 , t 1 &GreaterEqual; t 2 &tau; 0 = t 0 , &tau; 7 = 0 , e l s e , 即某一相为恒定电平,只有τ0或者τ7一个占空比限制(即零矢量时间t0≥tlim);在所述三段式PWM中,某两相为恒定电平,只有另外一相电压可以调节,实际电压空间只有正六边形的非连续边界;所述一段式PWM即为三相均为恒定电平,实际电压只能工作在基本矢量和零矢量上。The t lim is the sum of the dead time and the narrow pulse width limit time; there is no constant level in the seven-segment SVPWM, and there are two duty cycle limits of τ 0 and τ 7 (that is, the zero vector time t 0 ≥ 2t lim ); in the DPWM1, &tau; 0 = 0 , &tau; 7 = t 0 , t 1 &Greater Equal; t 2 &tau; 0 = t 0 , &tau; 7 = 0 , e l the s e , That is, a certain phase is at a constant level, and there is only one duty ratio limit of τ 0 or τ 7 (that is, the zero vector time t 0 ≥ t lim ); in the three-stage PWM, a certain two phases are at a constant level, and only The voltage of another phase can be adjusted, and the actual voltage space has only the discontinuous boundary of the regular hexagon; the one-stage PWM means that the three phases are all at a constant level, and the actual voltage can only work on the basic vector and zero vector.

由于死区时间与窄脉冲宽度限制,七段式SVPWM的线性调制区损失了2tlim,即实际的线性调制区为ur∈[0,(1-2tlim)]。采用本发明的综合式非连续PWM后,可以将实际线性调制区扩展到ur∈[0,(1-tlim)]。如图3b所示,内接圆内为新线性调制区(0≤ur≤(1-tlim)),内接圆外为实际过调制区()。在新线性调制区,采用七段式SVPWM到DPWM1的平滑切换即可;在实际过调制区,由于一些区域实际不能直接到达,因而需要采用优化的过调制方法进行处理。Due to the limitation of dead time and narrow pulse width, the linear modulation area of seven-segment SVPWM loses 2t lim , that is, the actual linear modulation area is u r ∈ [0,(1-2t lim )]. After adopting the integrated discontinuous PWM of the present invention, the actual linear modulation area can be extended to u r ∈ [0,(1-t lim )]. As shown in Figure 3b, the inside of the inscribed circle is the new linear modulation region (0≤u r ≤(1-t lim )), and the outside of the inscribed circle is the actual overmodulation region ( ). In the new linear modulation area, the smooth switching from seven-segment SVPWM to DPWM1 is sufficient; in the actual over-modulation area, since some areas cannot be directly reached, an optimized over-modulation method needs to be used for processing.

在实际过调制区,记ur为原给定参考电压(referencevoltage),um为修正后的给定参考电压(modifiedreferencevoltage),up为过调制处理后的实际输出电压(practicalvoltage)。上述过调制处理包括以下两个步骤:In the actual overmodulation region, Note that u r is the original given reference voltage (reference voltage), u m is the revised given reference voltage (modifiedreference voltage), up is the actual output voltage (practicalvoltage) after overmodulation processing. The above-mentioned overmodulation process includes the following two steps:

1)修正给定参考电压,使得原给定参考电压范围与修正后的给定参考电压范围对应,即ur与um之间建立映射关系:相角保持不变;当(1-tlim)<ur≤1时,幅值不变,即um=ur;当时,幅值作线性修正,即 u m = ( 2 3 + 1 ) ( u r - 1 ) + 1 &Element; ( 1 , 4 / 3 &rsqb; . 1) Modify the given reference voltage so that the original given reference voltage range with the corrected given reference voltage range Correspondence, that is, the mapping relationship between u r and u m is established: the phase angle remains unchanged; when (1-t lim )<u r ≤1, the amplitude remains unchanged, that is, u m = u r ; when When , the amplitude is corrected linearly, that is, u m = ( 2 3 + 1 ) ( u r - 1 ) + 1 &Element; ( 1 , 4 / 3 &rsqb; .

2)修正后的给定参考电压um按照所述优化的调制算法进行调制,得到实际输出电压up2) The modified given reference voltage u m is modulated according to the optimized modulation algorithm to obtain the actual output voltage u p :

2.1)当t0≥tlim时,直接输出um,即up=um2.1) When t 0 ≥t lim , directly output u m , that is, u p = um ;

2.2)当tlim/2≤t0<tlim时,按图4a所示等比例压缩方法处理um得到up,即 t 1 &prime; = t 1 t 1 + t 2 &CenterDot; ( 1 - t lim ) , t 2 &prime; = t 2 t 1 + t 2 &CenterDot; ( 1 - t lim ) , t0′=tlim2.2) When t lim /2≤t 0 <t lim , process u m according to the proportional compression method shown in Figure 4a to get up p , namely t 1 &prime; = t 1 t 1 + t 2 &Center Dot; ( 1 - t lim ) , t 2 &prime; = t 2 t 1 + t 2 &Center Dot; ( 1 - t lim ) , t 0 ′=t lim ;

2.3)当t0<tlim/2时,如下:2.3) When t 0 <t lim /2, as follows:

2.3.1)当0≤t0<tlim/2时,按图4b所示等比例拉伸方法处理um得到up,即 t 1 &prime; = t 1 t 1 + t 2 , t 2 &prime; = t 2 t 1 + t 2 , t0′=0;2.3.1) When 0≤t 0 <t lim /2, process u m according to the proportional stretching method shown in Figure 4b to obtain up p , namely t 1 &prime; = t 1 t 1 + t 2 , t 2 &prime; = t 2 t 1 + t 2 , t 0 '=0;

2.3.2)当um∈BCD时,即t0<0∩t1+t2/2<1∩t1/2+t2<1时,按图4c所示等比例压缩方法处理um得到up,即t0′=0;2.3.2) When u m ∈ BCD, that is, t 0 <0∩t 1 +t 2 /2<1∩t 1 /2+t 2 <1, process u m according to the proportional compression method shown in Figure 4c get u p , ie t 0 '=0;

2.3.3)当um∈BDF时,即t1≥t2∩t1+t2/2≥1时,按图4d所示输出前向基本矢量vk2.3.3) When u m ∈ BDF, that is, when t 1 ≥ t 2 ∩ t 1 + t 2 /2 ≥ 1, output the forward basic vector v k as shown in Figure 4d;

2.3.4)当um∈CDE时,即t1<t2∩t1/2+t2≥1时,按图4d所示输出后向基本矢量vk+12.3.4) When u m ∈ CDE, that is, when t 1 <t 2 ∩t 1 /2+t 2 ≥ 1, output the backward basic vector v k+1 as shown in Figure 4d;

2.3.5)对图4b等比例拉伸和图4c等比例压缩后落在电压空间正六边形边界上不能达到的工作点,用临近的基本电压矢量vk或者vk+1替代。2.3.5) For the operating points that cannot be reached on the boundary of the regular hexagon in the voltage space after the equal-proportional stretching in Figure 4b and the equal-proportional compression in Figure 4c, replace them with the adjacent basic voltage vector v k or v k+1 .

以上所述之实施例子只为本发明之较佳实施例,并非以此限制本发明的实施范围,故凡依本发明之形状、原理所作的变化,均应涵盖在本发明的保护范围内。The implementation examples described above are only preferred embodiments of the present invention, and are not intended to limit the scope of the present invention. Therefore, all changes made according to the shape and principle of the present invention should be covered within the scope of protection of the present invention.

Claims (3)

1. A two-level three-phase space vector pulse width modulator, comprising:
a given reference voltage modification module (1) for modifying the given reference voltage u according to the given reference voltage ur(urAngle theta), without changing the voltage phase angle, when urWhen > 1, according toCorrecting the voltage amplitude to obtain a corrected reference voltage um(um∠θ);
A voltage coordinate transformation module (2) for transforming the modified reference voltage um(umAngle theta) is transformed to a two-phase stationary coordinate system u by a polar coordinate representation modem(ua,uβ) I.e. uα=umcos θ and uβ=umsinθ;
A voltage interval calculation module (3) for calculating u in the two-phase static coordinate systemm(ua,uβ) Corresponding to the interval position in the voltage space, namely the voltage interval number sector;
a vector time calculation module (4) for calculating a vector time from the two-phase stationary coordinate system um(ua,uβ) Obtaining adjacent basic vector time t by using the corresponding voltage interval number sector1、t2And zero vector time t0=1-t1-t2
A modulation algorithm optimization module (5) for optimizing said time t of said adjacent basis vectors1、t2And zero vector time t0Calculating the optimized adjacent basic vector time t 'according to the optimized modulation algorithm'1、t′2And zero vector time t'0And first trigger PWM compare point time tau0
A PWM comparison point time calculation module (6) according to the t'1、t′2、τ0Obtaining the PWM comparison point time T under the high-level conduction of the upper bridge arm of each phase of A phase, B phase and C phase by the corresponding voltage interval number sectora、Tb、Tc
2. A two-level three-phase space vector pulse width modulator according to claim 1 wherein said optimized modulation algorithm comprises the steps of:
1) if t0≥2tlim,t′1=t1,t′2=t2,t′0=t0
2) If tlim≤t0<2tlim,t′1=t1,t′2=t2,t′0=t0(ii) a When t is1>t2Time, τ00, otherwise τ0=t′0
3) When t islim/2≤t0<tlimWhen in use, the equal proportion compression method is adopted, t′0=tlim(ii) a When t is1>t2Time, τ00, otherwise τ0=t′0
4) When t is0<tlimAt/2, the output voltage operates on the regular hexagonal boundary of the voltage space, i.e. t'0=0,τ0T 'at this time'1、t′2The calculation method of (2) is as follows:
4.1) when t is more than or equal to 00<tlimAt/2 or when t0<0∩t1+t2/2<1∩t1/2+t2When < 1, the scaling method is adopted, i.e.When t'1<tlimOf is t'1=0,t′21 is ═ 1; when t'2<tlimOf is t'1=1,t′2=0;
4.2) when t is1≥t2∩t1+t2When/2 is more than or equal to 1, outputting the forward basic vector vkI.e. t'1=1,t′2=0;
4.3) when t1<t2∩t1/2+t2When the vector is more than or equal to 1, outputting a backward basic vector vk+1I.e. t'1=0,t′2=1;
Wherein, thetlimIs the sum of the dead time and the narrow pulse width limit time.
3. A SVPWM optimization method of the two-level three-phase space vector pulse width modulator according to claim 1, wherein: if t0≥2tlimAdopting seven-segment SVPWM; if tlim≤t0<2tlimA DPWM1 mode, namely a five-segment PWM mode is adopted; if t0<tlimConverting the voltage vector to a DPWM1, three-segment PWM or one-segment PWM voltage space; wherein,
said t islimIs the sum of the dead time and the narrow pulse width limit time; there is no constant level and τ in the seven-segment SVPWM0And τ7Two duty cycle limits; in the DPWM1, the DPWM is, <math> <mrow> <mfenced open = '{' close = ''> <mtable> <mtr> <mtd> <mrow> <msub> <mi>&tau;</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0</mn> <mo>,</mo> <msub> <mi>&tau;</mi> <mn>7</mn> </msub> <mo>=</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <msub> <mi>t</mi> <mn>1</mn> </msub> <mo>&GreaterEqual;</mo> <msub> <mi>t</mi> <mn>2</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>&tau;</mi> <mn>0</mn> </msub> <mo>=</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>,</mo> <msub> <mi>&tau;</mi> <mn>7</mn> </msub> <mo>=</mo> <mn>0</mn> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mi>e</mi> <mi>l</mi> <mi>s</mi> <mi>e</mi> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> </mrow> </math> i.e. a certain phase is a constant level, only tau0Or τ7A duty cycle limit; in the three-stage PWM, a certain two phases are constant levels, only the other phase voltage can be regulated, and the actual voltage space only has a discontinuous boundary of a regular hexagon; the one-stage PWM is that three phases are all constant levels, and the actual voltage can only work on a basic vector and a zero vector;
due to the dead time and narrow pulse width limitations, some regions cannot actually be reached directly in the actual overmodulation region, and therefore an optimized overmodulation method is required for processing, which comprises the following steps:
1) correcting the given reference voltage so that the range of the given reference voltage is withinAnd the corrected given reference voltage rangeCorrespond to, i.e. urAnd umThe mapping relation is established between the following steps: the phase angle remains unchanged; when (1-t)lim)<urWhen the amplitude is less than or equal to 1, the amplitude is unchanged, i.e. um=ur(ii) a When in useThe amplitude being linearly modified, i.e. <math> <mrow> <msub> <mi>u</mi> <mi>m</mi> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mfrac> <mn>2</mn> <msqrt> <mn>3</mn> </msqrt> </mfrac> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <msub> <mi>u</mi> <mi>r</mi> </msub> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>+</mo> <mn>1</mn> <mo>&Element;</mo> <mo>(</mo> <mn>1</mn> <mo>,</mo> <mn>4</mn> <mo>/</mo> <mn>3</mn> <mo>&rsqb;</mo> <mo>;</mo> </mrow> </math>
2) Corrected given reference voltage umModulating according to the optimized modulation algorithm to obtain the actual output voltage upThe method comprises the following steps:
2.1) when t0≥tlimThen directly output umI.e. up=um
2.2) when t islim/2≤t0<tlimThen, processing u according to an equal proportion compression methodmTo obtain upI.e. by <math> <mrow> <mtable> <mtr> <mtd> <mrow> <msubsup> <mi>t</mi> <mn>1</mn> <mo>&prime;</mo> </msubsup> <mo>=</mo> <mfrac> <msub> <mi>t</mi> <mn>1</mn> </msub> <mrow> <msub> <mi>t</mi> <mn>1</mn> </msub> <mi>+</mi> <msub> <mi>t</mi> <mi>2</mi> </msub> </mrow> </mfrac> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>t</mi> <mi>lim</mi> </msub> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <msubsup> <mi>t</mi> <mn>2</mn> <mo>&prime;</mo> </msubsup> <mo>=</mo> <mfrac> <msub> <mi>t</mi> <mn>2</mn> </msub> <mrow> <msub> <mi>t</mi> <mn>1</mn> </msub> <mi>+</mi> <msub> <mi>t</mi> <mi>2</mi> </msub> </mrow> </mfrac> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>t</mi> <mi>lim</mi> </msub> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <msubsup> <mi>t</mi> <mn>0</mn> <mo>&prime;</mo> </msubsup> <mo>=</mo> <msub> <mi>t</mi> <mrow> <mi>l</mi> <mi>i</mi> <mi>m</mi> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> <mo>;</mo> </mrow> </math>
2.3) when t0<tlimAt/2, the following:
2.3.1) when t is more than or equal to 00<tlimAt 2, treating u by stretching in equal proportionmTo obtain upI.e. by <math> <mrow> <msubsup> <mi>t</mi> <mn>2</mn> <mo>&prime;</mo> </msubsup> <mo>=</mo> <mfrac> <msub> <mi>t</mi> <mn>2</mn> </msub> <mrow> <msub> <mi>t</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>t</mi> <mn>2</mn> </msub> </mrow> </mfrac> <mo>,</mo> </mrow> </math> t′0=0;
2.3.2) when t0<0∩t1+t2/2<1∩t1/2+t2When the rate is less than 1, processing u according to an equal proportion compression methodmTo obtain upI.e. by <math> <mrow> <mtable> <mtr> <mtd> <mrow> <msubsup> <mi>t</mi> <mn>1</mn> <mo>&prime;</mo> </msubsup> <mo>=</mo> <mfrac> <msub> <mi>t</mi> <mn>1</mn> </msub> <mrow> <msub> <mi>t</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>t</mi> <mn>2</mn> </msub> </mrow> </mfrac> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <msubsup> <mi>t</mi> <mn>2</mn> <mo>&prime;</mo> </msubsup> <mo>=</mo> <mfrac> <msub> <mi>t</mi> <mn>2</mn> </msub> <mrow> <msub> <mi>t</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>t</mi> <mn>2</mn> </msub> </mrow> </mfrac> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <msubsup> <mi>t</mi> <mn>0</mn> <mo>&prime;</mo> </msubsup> <mo>=</mo> <mn>0</mn> </mrow> </mtd> </mtr> </mtable> <mo>;</mo> </mrow> </math>
2.3.3) when t1≥t2∩t1+t2When/2 is more than or equal to 1, outputting the forward basic vector vk
2.3.4) when t1<t2∩t1/2+t2When the vector is more than or equal to 1, outputting a backward basic vector vk+1
2.3.5) dropping the working point which can not be reached on the regular hexagon boundary of the voltage space after the equal proportion stretching and the equal proportion compression, and using the adjacent basic voltage vector vkOr vk+1And (4) replacing.
CN201310695822.1A 2013-12-16 2013-12-16 A kind of two level three-phase space vector pulse-width modulation and SVPWM optimization method thereof Expired - Fee Related CN103715956B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310695822.1A CN103715956B (en) 2013-12-16 2013-12-16 A kind of two level three-phase space vector pulse-width modulation and SVPWM optimization method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310695822.1A CN103715956B (en) 2013-12-16 2013-12-16 A kind of two level three-phase space vector pulse-width modulation and SVPWM optimization method thereof

Publications (2)

Publication Number Publication Date
CN103715956A CN103715956A (en) 2014-04-09
CN103715956B true CN103715956B (en) 2015-12-02

Family

ID=50408631

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310695822.1A Expired - Fee Related CN103715956B (en) 2013-12-16 2013-12-16 A kind of two level three-phase space vector pulse-width modulation and SVPWM optimization method thereof

Country Status (1)

Country Link
CN (1) CN103715956B (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104578879B (en) * 2015-01-13 2017-04-05 河北大学 A kind of SVPWM method
CN104682827B (en) * 2015-02-28 2017-05-10 广东美的制冷设备有限公司 Motor control system and dead-zone insertion method of SVPWM (space vector pulse width modulation)
CN104702139B (en) * 2015-03-11 2017-03-22 上海电力学院 SVPWAM control method for three-phase Z-source inverter
CN104953911A (en) * 2015-06-29 2015-09-30 焦作市明株自动化工程有限责任公司 SVPWM (space vector pulse width modulation) method of cell-series multi-level frequency converter
WO2017005906A1 (en) * 2015-07-09 2017-01-12 Abb Schweiz Ag Control of electrical converter based on optimized pulse patterns
CN106571736B (en) * 2016-08-17 2019-09-03 上海交通大学 Modulation Method of Minimum DC Ripple in Current Source Converter
CN106169860B (en) * 2016-08-24 2019-08-23 上海交通大学 The optimal DC ripple mixed type modulator approach of current source type converter
CN107453641A (en) * 2017-08-30 2017-12-08 汪明生 A kind of two level two-phase space vector pulse width modulation devices and its SVPWM methods
CN108683386B (en) * 2018-06-20 2020-11-06 安徽美芝精密制造有限公司 PWM waveform correction method and device and motor control system
CN110557040B (en) * 2019-09-06 2021-07-06 武汉理工通宇新源动力有限公司 Method, device and system for eliminating narrow pulse in two-level SVPWM (space vector pulse width modulation) and inverter
CN110784143B (en) * 2019-11-04 2021-03-09 哈尔滨工业大学 Voltage boundary optimization overmodulation method for permanent magnet synchronous motor without electrolytic capacitor driver
CN113497576B (en) * 2020-04-01 2023-03-21 广东威灵电机制造有限公司 Weak magnetic control method, weak magnetic control device, vector control system and storage medium
CN113270996B (en) * 2021-04-07 2022-11-11 中国第一汽车股份有限公司 PWM modulation method for restraining narrow pulse

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1858150A2 (en) * 2006-05-17 2007-11-21 Rockwell Automation Technologies, Inc. Modulation methods and apparatus for reducing common mode noise
CN102611346A (en) * 2012-04-19 2012-07-25 南车株洲电力机车研究所有限公司 Three-level double-mode space vector overmodulation method and system thereof
CN102629850A (en) * 2012-04-06 2012-08-08 株洲南车时代电气股份有限公司 Two-level SVPWM (Space Vector Pulse Width Modulation) overmodulation method
CN103051230A (en) * 2012-12-26 2013-04-17 上海大学 Improved overmodulation method for diode clamped three-level inverter

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8907611B2 (en) * 2011-07-14 2014-12-09 Texas Instruments Incorporated Method and apparatus for space vector pulse width modulation of a three-phase current construction with single DC-link shunt
KR101268585B1 (en) * 2011-10-05 2013-06-04 주식회사 오토파워 Compensation method of dwad-time for three-phase inverter of SVPWM

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1858150A2 (en) * 2006-05-17 2007-11-21 Rockwell Automation Technologies, Inc. Modulation methods and apparatus for reducing common mode noise
CN102629850A (en) * 2012-04-06 2012-08-08 株洲南车时代电气股份有限公司 Two-level SVPWM (Space Vector Pulse Width Modulation) overmodulation method
CN102611346A (en) * 2012-04-19 2012-07-25 南车株洲电力机车研究所有限公司 Three-level double-mode space vector overmodulation method and system thereof
CN103051230A (en) * 2012-12-26 2013-04-17 上海大学 Improved overmodulation method for diode clamped three-level inverter

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
A Novel Fundamental Voltage Amplitude Linear Output Control Strategy of SVPWM Inverter in the Overmodulation Region;Zhang liwei;《Industrial Electronics Society,2005.IECON 2005.31st Annual Conference of IEEE》;20051231;第1656-1659页 *
An Approach of Unified Voltage Correcting Algorithm for SVPWM Overmodularion;Vasilios C.Ilioudis;《15th International Power Electronics and Motion Control Conference》;20121231;DS2c.19-1-DS2c.19-8 *
一种扩展SVPWM线性调制区及过调制算法实现;梁伟华等;《电力电子技术》;20130531;第47卷(第5期);第10-12页 *
过调制区内两电平SVPWM与CBPWM算法的内在联系研究;方辉 等;《中国电机工程学报》;20120625;第32卷(第18期);第23-30页 *

Also Published As

Publication number Publication date
CN103715956A (en) 2014-04-09

Similar Documents

Publication Publication Date Title
CN103715956B (en) A kind of two level three-phase space vector pulse-width modulation and SVPWM optimization method thereof
CN101674046B (en) Electric current reconstructing and over-modulating device of air conditioning frequency converter and method thereof
CN106685232B (en) High Efficiency Modulation Method in the Full Power Range of Dual Active Full-Bridge Converters
CN102739100B (en) Three-level three-phase four-bridge arm converter
CN102684542A (en) Method for generating three-phase pulse width modulation (PWM) by adopting quasi-sinusoidal flat modulating wave
CN102377360A (en) Trisync removing system and method for narrow pulse of SVPWM (space vector pulse width modulation) system
CN104333245B (en) Overmodulation method implemented based on carrier
CN101505111A (en) Over modulation method and system for three level space vector
CN108155820B (en) A method for optimizing the operating energy of a hybrid rectifier
CN102013825B (en) Loss analysis method for diode clamping type three-level voltage source converter (VSC)
CN104218860A (en) Table look-up and interpolation method based over-modulation control method for motor control system
CN115864798B (en) A Carrier DPWM Modulation Method for Three-level Converter
CN104660077A (en) Three-level modulation method
CN109921672A (en) Three-phase inverter minimum switch losses method based on dual carrier and synthesis modulating wave
CN102361407B (en) Voltage space vector pulse width modulation method
CN104660082A (en) Method for analyzing output voltage harmonics of three-level converter
CN104253550B (en) Dead-time compensation method for NPC-based three-level SVPMW (space vector pulse width modulation) rectifier
CN104638952B (en) Three-phase power supply rectifier, control method thereof and three-phase power supply frequency converter
CN105450062A (en) Method for calculating three-level inverter circuit losses of SiC MOSFETs
CN104753355A (en) Circulation power minimum optimization control method for bidirectional half-bridge tri-level DC (Direct Current)-DC converter
CN104796019A (en) Z-source three-level PWM (pulse width modulation) rectifier and method for controlling same
CN104300817A (en) T-type three-level SVPWM control method in power conversion system
CN104485865B (en) Control method based on output voltage linear control for linear zone
CN101272104A (en) A Space Vector Modulation Method
CN105375808A (en) Five-phase inverter space vector modulation system and method with optimal switching loss

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20151202

Termination date: 20211216