CN103712634B - The measuring method of optical fibre gyro vibration-magnetic field degree of cross-linking - Google Patents
The measuring method of optical fibre gyro vibration-magnetic field degree of cross-linking Download PDFInfo
- Publication number
- CN103712634B CN103712634B CN201310721542.3A CN201310721542A CN103712634B CN 103712634 B CN103712634 B CN 103712634B CN 201310721542 A CN201310721542 A CN 201310721542A CN 103712634 B CN103712634 B CN 103712634B
- Authority
- CN
- China
- Prior art keywords
- magnetic field
- fiber optic
- vibration
- optic gyroscope
- under
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 18
- 239000013307 optical fiber Substances 0.000 title abstract description 3
- 238000004132 cross linking Methods 0.000 title 1
- 239000000835 fiber Substances 0.000 claims abstract description 99
- 238000006880 cross-coupling reaction Methods 0.000 claims abstract description 16
- 230000035945 sensitivity Effects 0.000 claims abstract description 16
- 230000001133 acceleration Effects 0.000 claims description 30
- 238000005259 measurement Methods 0.000 claims description 8
- 230000008878 coupling Effects 0.000 claims description 3
- 238000010168 coupling process Methods 0.000 claims description 3
- 238000005859 coupling reaction Methods 0.000 claims description 3
- 230000003068 static effect Effects 0.000 claims description 3
- 238000000691 measurement method Methods 0.000 abstract description 5
- 238000012360 testing method Methods 0.000 abstract description 5
- 238000011160 research Methods 0.000 abstract description 3
- 230000007613 environmental effect Effects 0.000 abstract description 2
- 230000000694 effects Effects 0.000 description 3
- 238000010998 test method Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000012858 packaging process Methods 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C25/00—Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
- G01C25/005—Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass initial alignment, calibration or starting-up of inertial devices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C19/00—Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
- G01C19/58—Turn-sensitive devices without moving masses
- G01C19/64—Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Manufacturing & Machinery (AREA)
- Electromagnetism (AREA)
- Power Engineering (AREA)
- Gyroscopes (AREA)
Abstract
本发明公开了一种光纤陀螺振动-磁场交叉耦合度的测量方法。本发明公开的测量方法的主要测试步骤是将光纤陀螺放置于振动平台上,并施加磁场,分别测量径向磁场作用下光纤陀螺的输出,以及振动-磁场交叉作用下光纤陀螺的输出,得到径向磁场作用下光纤陀螺的零偏以及振动-磁场交叉作用下光纤陀螺的零偏,从而计算光纤陀螺磁场灵敏度、振动-磁场交叉耦合度,评价在振动-磁场交叉作用下光纤陀螺的零偏稳定性,为进一步提高光纤陀螺的振动-磁场环境适应性提供研究基础。本发明能用于测试光纤陀螺磁场灵敏度以及在振动条件下的磁场灵敏度;可用于测量光纤陀螺在振动-磁场交叉作用下的输出特性,评价在振动-磁场交叉作用下的光纤陀螺零偏稳定性。
The invention discloses a method for measuring the vibration-magnetic field cross coupling degree of an optical fiber gyroscope. The main test steps of the measurement method disclosed in the present invention are to place the fiber optic gyroscope on a vibrating platform, apply a magnetic field, and measure the output of the fiber optic gyroscope under the action of the radial magnetic field and the output of the fiber optic gyroscope under the cross action of the vibration-magnetic field, respectively, to obtain the diameter The zero bias of the fiber optic gyroscope under the action of the magnetic field and the zero bias of the fiber optic gyroscope under the action of the vibration-magnetic field cross, so as to calculate the magnetic field sensitivity of the fiber optic gyroscope, the vibration-magnetic field cross coupling degree, and evaluate the zero bias stability of the fiber optic gyroscope under the vibration-magnetic field cross action It provides a research basis for further improving the vibration-magnetic field environmental adaptability of fiber optic gyroscopes. The invention can be used to test the magnetic field sensitivity of the fiber optic gyroscope and the magnetic field sensitivity under vibration conditions; it can be used to measure the output characteristics of the fiber optic gyroscope under the cross action of vibration and magnetic field, and evaluate the zero bias stability of the fiber optic gyroscope under the cross action of vibration and magnetic field .
Description
技术领域 technical field
本发明涉及一种光纤陀螺振动‐磁场交叉耦合度的测量方法。 The invention relates to a method for measuring the vibration-magnetic field cross-coupling degree of an optical fiber gyroscope.
背景技术 Background technique
光纤陀螺是一种基于Sagnac效应的光纤角速度传感器。振动和磁场是影响光纤陀螺输出精度的两个重要因素。光纤陀螺中,光纤环作为重要的角速度敏感元件,本应该对线加速度不敏感。但在实际应用中,当受到来自外界的振动影响时,因受其自身结构、绕环工艺以及封装工艺的限制,光纤环的几何尺寸可能会发生形变并引起光纤应力分布的变化,进而导致光纤陀螺中产生一个非互易相移,造成光纤陀螺的相位误差,因此影响了陀螺输出的精度。由于磁光效应,光纤陀螺产生与磁场有关的附加非互易相位差,此相位差随着外界磁场大小及方向的变化而变化,降低了光纤陀螺的零偏稳定性,直接影响了陀螺的精度。 Fiber optic gyroscope is a kind of fiber optic angular velocity sensor based on Sagnac effect. Vibration and magnetic field are two important factors affecting the output accuracy of fiber optic gyroscope. In the fiber optic gyroscope, the fiber optic ring is an important angular velocity sensitive element, which should not be sensitive to linear acceleration. However, in practical applications, when affected by external vibrations, due to the limitations of its own structure, ring-wrapping process, and packaging process, the geometry of the fiber ring may be deformed and cause changes in the stress distribution of the fiber, which in turn leads to A non-reciprocal phase shift occurs in the gyroscope, which causes a phase error in the FOG and thus affects the accuracy of the gyroscope output. Due to the magneto-optic effect, the fiber optic gyroscope produces an additional non-reciprocal phase difference related to the magnetic field. This phase difference changes with the magnitude and direction of the external magnetic field, which reduces the bias stability of the fiber optic gyroscope and directly affects the accuracy of the gyroscope. .
目前在研究光纤陀螺振动‐磁场交叉耦合度方面,没有专用的测试方法和设备,给实验和研究带来了极大的不便。 At present, there is no special test method and equipment for the study of fiber optic gyroscope vibration-magnetic field cross-coupling, which brings great inconvenience to experiments and research.
发明内容 Contents of the invention
本发明的目的是克服现有技术的不足,提供一种光纤陀螺振动‐磁场交叉耦合度的测量方法。 The purpose of the present invention is to overcome the deficiencies of the prior art and provide a method for measuring the vibration-magnetic field cross-coupling degree of the fiber optic gyroscope.
光纤陀螺振动‐磁场交叉耦合度的测量方法,通过测量光纤陀螺分别在静态条件下、径向磁场作用下、振动作用下以及振动‐磁场交叉作用下的输出,得到振动‐磁场交叉作用下光纤陀螺的振动‐磁场交叉耦合度,评价在振动‐磁场交叉作用下光纤陀螺的零偏稳定性。 The measurement method of the vibration-magnetic field cross-coupling degree of the fiber optic gyroscope, by measuring the output of the fiber optic gyroscope under static conditions, radial magnetic field, vibration, and vibration-magnetic field cross-action, the fiber optic gyroscope under the vibration-magnetic field cross-action is obtained. The vibration-magnetic field cross-coupling degree is used to evaluate the bias stability of the fiber optic gyroscope under the vibration-magnetic field cross-action.
光纤陀螺振动‐磁场交叉耦合度的测量方法,包括以下步骤: A method for measuring the degree of vibration-magnetic field cross-coupling of a fiber optic gyroscope, comprising the following steps:
1)光纤陀螺的敏感轴垂直于振动台面,固定于振动台,光纤陀螺位于Helmholtz线圈的中央,Helmholtz线圈产生的径向磁场方向垂直于光纤陀螺的敏感轴,霍尔传感器固定于振动台,霍尔传感器的敏感方向与Helmholtz线圈产生的径向磁场方向平行; 1) The sensitive axis of the fiber optic gyroscope is perpendicular to the vibration table and fixed on the vibration table. The fiber optic gyroscope is located in the center of the Helmholtz coil. The direction of the radial magnetic field generated by the Helmholtz coil is perpendicular to the sensitive axis of the fiber optic gyroscope. The Hall sensor is fixed on the vibration table. The sensitive direction of the Helmholtz sensor is parallel to the direction of the radial magnetic field generated by the Helmholtz coil;
2)所述的振动台静止,不施加径向磁场,测量光纤陀螺的输出,得到光纤陀螺的零偏A0; 2) The vibrating table is stationary, no radial magnetic field is applied, and the output of the fiber optic gyroscope is measured to obtain the zero bias A 0 of the fiber optic gyroscope;
3)施加径向磁场,通过霍尔传感器测量径向磁场B,测量光纤陀螺的输出,得到光纤陀螺的零偏A0'; 3) Apply a radial magnetic field, measure the radial magnetic field B through the Hall sensor, measure the output of the fiber optic gyroscope, and obtain the zero bias A 0 ' of the fiber optic gyroscope;
4)计算光纤陀螺的磁场灵敏度 4) Calculate the magnetic field sensitivity of the fiber optic gyroscope
5)去掉径向磁场B; 5) Remove the radial magnetic field B;
6)控制振动台在频率为10Hz‐2KHz,振动最大加速度为一个重力加速度(g)的条件下振动,测量光纤陀螺的输出,直到振动停止,得到振动最大加速度为一个重力加速度时的光纤陀螺的零偏A1; 6) Control the vibrating table to vibrate under the condition that the frequency is 10Hz-2KHz and the maximum vibration acceleration is a gravitational acceleration (g), measure the output of the fiber optic gyroscope until the vibration stops, and obtain the fiber optic gyroscope when the vibration maximum acceleration is a gravitational acceleration Zero bias A 1 ;
7)施加径向磁场B,重复步骤6)的操作,得到振动最大加速度为一个重力加速度时的光纤陀螺的零偏A1'; 7) Apply the radial magnetic field B, repeat the operation of step 6), and obtain the zero bias A 1 ' of the fiber optic gyroscope when the maximum vibration acceleration is one gravitational acceleration;
8)去掉径向磁场B; 8) Remove the radial magnetic field B;
9)计算振动频率为10Hz‐2KHz,振动最大加速度为一个重力加速度条件下的光纤陀螺的磁场灵敏度
10)控制振动台的频率为10Hz‐2KHz,振动最大加速度分别为2g、3g、4g、5g、6g、7g、8g、9g、10g,重复步骤5)到步骤9),分别得到振动频率为10Hz‐2KHz,振动最大加速度分别为2g、3g、4g、5g、6g、7g、8g、9g、10g条件下光纤陀螺的磁场灵敏度S2、S3、S4、S5、S6、S7、S8、S9、S10; 10) Control the frequency of the vibrating table to 10Hz‐2KHz, and the maximum acceleration of vibration is 2g, 3g, 4g, 5g, 6g, 7g, 8g, 9g, 10g, repeat steps 5) to 9) to obtain a vibration frequency of 10Hz ‐2KHz, the magnetic field sensitivity S 2 , S 3 , S 4 , S 5 , S 6 , S 7 , S 8 , S 9 , S 10 ;
11)将步骤4)中的S0和步骤9)、步骤10)中的Si(i=1,,,,10)分别代入分别得到振动频率为10Hz‐2KHz,振动最大加速度分别为1g、2g、3g、4g、5g、6g、7g、8g、9g、10g,径向磁场强度大小为B条件下光纤陀螺的振动‐磁场耦合度K1、K2、K3、K4、K5、K6、K7、K8、K9、K10。 11) Substitute S 0 in step 4) and S i (i=1,,,,10) in step 9) and step 10) into The vibration frequency is 10Hz-2KHz, the vibration maximum acceleration is 1g, 2g, 3g, 4g, 5g, 6g, 7g, 8g, 9g, 10g respectively, and the vibration-magnetic field coupling of the fiber optic gyroscope under the condition that the radial magnetic field strength is B Degrees K 1 , K 2 , K 3 , K 4 , K 5 , K 6 , K 7 , K 8 , K 9 , K 10 .
所述的径向磁场B由Helmholtz线圈产生,Helmholtz线圈由电流源驱动。 The radial magnetic field B is generated by a Helmholtz coil, and the Helmholtz coil is driven by a current source.
所述的霍尔传感器位于Helmholtz线圈中央位置处。 The Hall sensor is located at the center of the Helmholtz coil.
所述的测量过程,时间应大于1分钟,以减小测量过程中的随机误差。 The measurement process should take more than 1 minute to reduce random errors in the measurement process.
所述的光纤陀螺的零偏是光纤陀螺的输出数据在每次测量时间内的平均值。 The zero bias of the fiber optic gyroscope is the average value of the output data of the fiber optic gyroscope within each measurement time.
本发明与现有技术相比具有的有益效果: The present invention has the beneficial effect compared with prior art:
1)能用于测试光纤陀螺磁场灵敏度以及在振动条件下的磁场灵敏度; 1) It can be used to test the magnetic field sensitivity of fiber optic gyro and the magnetic field sensitivity under vibration conditions;
2)可用于测量光纤陀螺在振动‐磁场交叉作用下的输出特性,评价在振动‐磁场交叉作用下的光纤陀螺零偏稳定性。 2) It can be used to measure the output characteristics of the fiber optic gyroscope under the cross action of vibration-magnetic field, and evaluate the zero bias stability of the fiber optic gyroscope under the cross action of vibration-magnetic field.
附图说明 Description of drawings
图1为光纤陀螺振动‐磁场交叉耦合度测量方法原理俯视示意图; Figure 1 is a schematic top view of the principle of the fiber optic gyro vibration-magnetic field cross-coupling measurement method;
图2为光纤陀螺振动‐磁场交叉耦合度测量方法原理主视示意图; Figure 2 is a schematic front view of the principle of the fiber optic gyroscope vibration-magnetic field cross-coupling degree measurement method;
图中:Helmholtz线圈1、振动台2、工装与光纤陀螺3、霍尔传感器4。 In the figure: Helmholtz coil 1, vibration table 2, tooling and fiber optic gyroscope 3, Hall sensor 4.
具体实施方式 detailed description
本发明提供了一种光纤陀螺振动‐磁场交叉耦合度的测量方法,能非常方便地测试振动‐磁场交叉作用对光纤陀螺输出的影响,从而加速了光纤陀螺振动‐磁场性能的研究及评测,为以后研究光纤陀螺的振动‐磁场交叉耦合作用,提高光纤陀螺的振动‐磁场环境适应性,奠定了良好坚实的基础。 The invention provides a method for measuring the vibration-magnetic field cross-coupling degree of a fiber optic gyroscope, which can easily test the influence of the vibration-magnetic field cross action on the output of a fiber optic gyroscope, thereby accelerating the research and evaluation of the fiber optic gyroscope's vibration-magnetic field performance. In the future, the vibration-magnetic field cross-coupling effect of the fiber optic gyroscope will be studied to improve the vibration-magnetic field environmental adaptability of the fiber optic gyroscope, which will lay a good and solid foundation.
下面将结合附图对本发明作进一步的说明。 The present invention will be further described below in conjunction with the accompanying drawings.
如附图1、2所示,振动台水平放置,通过工装将光纤陀螺固定于振动台上,光纤陀螺敏感轴垂直于振动台面向上。整个测试系统处于由Helmholtz线圈产生的径向匀强磁场中。振动台以扫频形式输出,频率变化从10Hz到20KHz,振动最大加速度依次从1g(重力加速度)增加到10g。因此,此测试方法可以分别测量光纤陀螺在径向匀强磁场以及在振动‐磁场交叉作用下的输出,通过计算机采集并记录数据,得到在各种情况下光纤陀螺的零偏,从而计算光纤陀螺磁场灵敏度、振动条件下的磁场灵敏度和振动‐磁场交叉耦合度。 As shown in Figures 1 and 2, the vibration table is placed horizontally, and the fiber optic gyroscope is fixed on the vibration table through tooling, and the sensitive axis of the fiber optic gyroscope is perpendicular to the surface of the vibration table and upwards. The whole test system is in the radial uniform magnetic field generated by the Helmholtz coil. The vibrating table outputs in the form of frequency sweep, the frequency changes from 10Hz to 20KHz, and the maximum acceleration of vibration increases from 1g (acceleration of gravity) to 10g in turn. Therefore, this test method can respectively measure the output of the fiber optic gyroscope in the radial uniform magnetic field and the output of the vibration-magnetic field cross action, collect and record the data through the computer, and obtain the zero bias of the fiber optic gyroscope in various situations, so as to calculate the output of the fiber optic gyroscope. Magnetic field sensitivity, magnetic field sensitivity under vibration conditions, and vibration-magnetic field cross-coupling.
光纤陀螺振动‐磁场交叉耦合度的测量方法包括以下步骤: The measurement method of fiber optic gyroscope vibration-magnetic field cross-coupling degree includes the following steps:
1)光纤陀螺敏感轴垂直于振动台面,通过工装将光纤陀螺固定在振动台上,光纤陀螺的位于Helmholtz线圈的中央。加电流源后,Helmholtz线圈产生匀强磁场,磁场方向沿光纤陀螺的径向,即垂直于光纤陀螺敏感轴。霍尔传感器通过工装固定在振动台上,霍尔传感器的敏感方向与Helmholtz线圈产生的径向磁场方向平行; 1) The sensitive axis of the fiber optic gyroscope is perpendicular to the vibration table, and the fiber optic gyroscope is fixed on the vibration table by tooling, and the fiber optic gyroscope is located in the center of the Helmholtz coil. After the current source is applied, the Helmholtz coil generates a uniform magnetic field, and the direction of the magnetic field is along the radial direction of the fiber optic gyroscope, that is, perpendicular to the sensitive axis of the fiber optic gyroscope. The Hall sensor is fixed on the vibrating table through tooling, and the sensitive direction of the Hall sensor is parallel to the direction of the radial magnetic field generated by the Helmholtz coil;
2)振动台静止,不施加径向磁场,测量光纤陀螺的输出大于1分钟(如果小于1分钟会引入较大的随机误差,但是时间过长会影响测量效率),通过计算机采集并记录数据,得到光纤陀螺的零偏A0; 2) The vibrating table is stationary, no radial magnetic field is applied, and the output of the fiber optic gyro is measured for more than 1 minute (if it is less than 1 minute, a large random error will be introduced, but if the time is too long, it will affect the measurement efficiency), and the data is collected and recorded by the computer. Obtain the zero bias A 0 of the fiber optic gyroscope;
3)打开给Helmholtz线圈供电的电流源,施加径向磁场,通过霍尔传感器测量径向磁场强度的大小B,测量光纤陀螺的输出大于1分钟,通过计算机采集并记录数据,得到径向匀强磁场作用下光纤陀螺的零偏A0'; 3) Turn on the current source that supplies power to the Helmholtz coil, apply a radial magnetic field, measure the size B of the radial magnetic field strength through the Hall sensor, measure the output of the fiber optic gyroscope for more than 1 minute, collect and record the data through the computer, and obtain the radial uniform strength The zero bias A 0 ' of the fiber optic gyro under the action of a magnetic field;
4)计算光纤陀螺的磁场灵敏度 4) Calculate the magnetic field sensitivity of the fiber optic gyroscope
5)关闭给Helmholtz线圈供电的电流源,去掉径向磁场B; 5) Turn off the current source that supplies power to the Helmholtz coil, and remove the radial magnetic field B;
6)通过计算机控制振动台在频率为10Hz‐2KHz,振动最大加速度为1g的条件下振动,振动时间设定为大于1分钟,测量光纤陀螺的输出,同时通过计算机采集并记录数据,直到振动停止,得到振动最大加速度为1g时光纤陀螺的零偏A1; 6) The vibrating table is controlled by a computer to vibrate under the condition of a frequency of 10Hz-2KHz and a maximum vibration acceleration of 1g. The vibration time is set to be greater than 1 minute, and the output of the fiber optic gyroscope is measured. At the same time, the data is collected and recorded by the computer until the vibration stops , get the zero bias A 1 of the fiber optic gyroscope when the maximum vibration acceleration is 1g;
7)打开给Helmholtz线圈供电的电流源,施加与步骤3)中相同大小的径向磁场B,重复步骤6)的操作,得到径向磁场强度为B,振动最大加速度为1g时光纤陀螺的零偏A1'; 7) Turn on the current source that supplies power to the Helmholtz coil, apply a radial magnetic field B of the same magnitude as in step 3), repeat the operation in step 6), and obtain the zero of the fiber optic gyroscope when the radial magnetic field strength is B and the maximum vibration acceleration is 1g Offset A 1 ';
8)关闭给Helmholtz线圈供电的电流源,去掉径向磁场B; 8) Turn off the current source that supplies power to the Helmholtz coil, and remove the radial magnetic field B;
9)计算振动频率为10Hz‐2KHz,振动最大加速度为1g的条件下的光纤陀螺的磁场灵敏度
10)通过计算机控制振动台的频率为10Hz‐2KHz,振动最大加速度分别为2g、3g、4g、5g、6g、7g、8g、9g、10g,重复步骤5)到步骤9),测量振动频率为10Hz‐2KHz,振动最大加速度分别为2g、3g、4g、5g、6g、7g、8g、9g、10g条件下光纤陀螺的输出,通过计算机采集并记录数据,得到光纤陀螺的零偏,带入公式(i=2,...,10),计算得到不同振动条件下光纤陀螺的磁场灵敏度S2、S3、S4、S5、S6、S7、S8、S9、S10; 10) The frequency of the vibrating table is controlled by the computer to be 10Hz‐2KHz, and the maximum vibration acceleration is 2g, 3g, 4g, 5g, 6g, 7g, 8g, 9g, 10g, repeat steps 5) to 9), and measure the vibration frequency as 10Hz‐2KHz, the maximum vibration acceleration is 2g, 3g, 4g, 5g, 6g, 7g, 8g, 9g, and 10g respectively. The output of the fiber optic gyroscope is collected and recorded by the computer to obtain the zero bias of the fiber optic gyroscope, which is brought into the formula (i=2,...,10), calculate the magnetic field sensitivity S 2 , S 3 , S 4 , S 5 , S 6 , S 7 , S 8 , S 9 , S 10 of the fiber optic gyroscope under different vibration conditions;
11)将步骤4)中的S0和步骤9)、步骤10)中的Si(i=1,...,10)分别带入得到振动频率为10Hz‐2KHz,振动最大加速度分别为1g、2g、3g、4g、5g、6g、7g、8g、9g、10g,径向磁场强度大小为B条件下光纤陀螺的振动‐磁场耦合度K1、K2、K3、K4、K5、K6、K7、K8、K9、K10。 11) Bring S 0 in step 4) and S i (i=1,...,10) in step 9) and step 10) into The vibration frequency is 10Hz-2KHz, the vibration maximum acceleration is 1g, 2g, 3g, 4g, 5g, 6g, 7g, 8g, 9g, 10g, and the radial magnetic field strength is B. The vibration-magnetic field coupling degree of the fiber optic gyroscope K 1 , K 2 , K 3 , K 4 , K 5 , K 6 , K 7 , K 8 , K 9 , K 10 .
12)最终得到的实验结果为K1、K2、K3、K4、K5、K6、K7、K8、K9、K10分别是:0.45%,0.98%,1.56%,2.03%,2.61%,3.06%,3.48%,3.97%,4.41%,4.96%。 12 ) The final experimental results obtained are: 0.45 % , 0.98 % , 1.56 % , 2.03 %, 2.61%, 3.06%, 3.48%, 3.97%, 4.41%, 4.96%.
径向磁场B由Helmholtz线圈产生,Helmholtz线圈由电流源驱动,光纤陀螺位于Helmholtz线圈中央位置处,即保证给Helmholtz线圈供电的电流源打开时,陀螺处于匀强径向磁场B中。 The radial magnetic field B is generated by the Helmholtz coil, and the Helmholtz coil is driven by a current source. The fiber optic gyroscope is located at the center of the Helmholtz coil, which means that the gyroscope is in a uniform radial magnetic field B when the current source that supplies power to the Helmholtz coil is turned on.
霍尔传感器位于Helmholtz线圈中央位置处,并通过工装固定于振动台上,霍尔传感器敏感方向与磁场方向平行。 The Hall sensor is located at the center of the Helmholtz coil, and is fixed on the vibrating table through tooling. The sensitive direction of the Hall sensor is parallel to the direction of the magnetic field.
数据的测量及采集时间应大于1分钟,以减小测量过程中的随机误差。 The measurement and collection time of data should be longer than 1 minute to reduce random errors in the measurement process.
光纤陀螺的零偏是光纤陀螺的输出数据在每次测量时间内的平均值。 The zero bias of the fiber optic gyroscope is the average value of the output data of the fiber optic gyroscope in each measurement time.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310721542.3A CN103712634B (en) | 2013-12-24 | 2013-12-24 | The measuring method of optical fibre gyro vibration-magnetic field degree of cross-linking |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310721542.3A CN103712634B (en) | 2013-12-24 | 2013-12-24 | The measuring method of optical fibre gyro vibration-magnetic field degree of cross-linking |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103712634A CN103712634A (en) | 2014-04-09 |
CN103712634B true CN103712634B (en) | 2016-04-13 |
Family
ID=50405796
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310721542.3A Expired - Fee Related CN103712634B (en) | 2013-12-24 | 2013-12-24 | The measuring method of optical fibre gyro vibration-magnetic field degree of cross-linking |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103712634B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106032992A (en) * | 2015-03-19 | 2016-10-19 | 北京自动化控制设备研究所 | Measuring device and method for measuring the magnetic field sensitivity of fiber optic gyroscope in the whole temperature range |
CN108919152B (en) * | 2018-04-20 | 2024-02-06 | 福建省计量科学研究院(福建省眼镜质量检验站) | Magnetic sensitivity three-dimensional verification system and method for vibration and impact sensor |
CN118010069B (en) * | 2024-04-10 | 2024-06-11 | 四川图林科技有限责任公司 | Vibration error compensation method of hemispherical resonator gyroscope |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0402565A1 (en) * | 1989-06-10 | 1990-12-19 | Messerschmitt-Bölkow-Blohm Gesellschaft mit beschränkter Haftung | Method of autocorrecting a fiber optic gyroscope using a 3x3-coupler |
CN1888822A (en) * | 2006-07-28 | 2007-01-03 | 北京航空航天大学 | Optical fiber gyro assembling test platform adapted to space application |
CN101034179A (en) * | 2007-03-29 | 2007-09-12 | 浙江大学 | Estimation method for performance of depolarized optical fiber gyro depolarizer |
CN101285690A (en) * | 2008-05-26 | 2008-10-15 | 浙江大学 | Magnetic Field-Temperature Sensitivity Test Method of Fiber Optic Gyroscope |
CN101769761A (en) * | 2010-01-29 | 2010-07-07 | 浙江大学 | Device for testing radial magnetic field sensitivity of fiber optic gyro |
CN102353387A (en) * | 2011-08-25 | 2012-02-15 | 西安电子科技大学 | Automated testing system and method for index parameters of fiber optic gyro |
-
2013
- 2013-12-24 CN CN201310721542.3A patent/CN103712634B/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0402565A1 (en) * | 1989-06-10 | 1990-12-19 | Messerschmitt-Bölkow-Blohm Gesellschaft mit beschränkter Haftung | Method of autocorrecting a fiber optic gyroscope using a 3x3-coupler |
CN1888822A (en) * | 2006-07-28 | 2007-01-03 | 北京航空航天大学 | Optical fiber gyro assembling test platform adapted to space application |
CN101034179A (en) * | 2007-03-29 | 2007-09-12 | 浙江大学 | Estimation method for performance of depolarized optical fiber gyro depolarizer |
CN101285690A (en) * | 2008-05-26 | 2008-10-15 | 浙江大学 | Magnetic Field-Temperature Sensitivity Test Method of Fiber Optic Gyroscope |
CN101769761A (en) * | 2010-01-29 | 2010-07-07 | 浙江大学 | Device for testing radial magnetic field sensitivity of fiber optic gyro |
CN102353387A (en) * | 2011-08-25 | 2012-02-15 | 西安电子科技大学 | Automated testing system and method for index parameters of fiber optic gyro |
Also Published As
Publication number | Publication date |
---|---|
CN103712634A (en) | 2014-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104215553B (en) | Integrated measurement device for atomic density and polarizability of alkali metal vapor | |
CN102538822B (en) | Method for fast testing and calibrating dynamic characteristic of fiber optic gyroscope | |
CN100559123C (en) | A MEMS gyroscope differential measurement method | |
CN103115628B (en) | A kind of resonant mode optical gyroscope scale factor method of testing | |
CN102147422B (en) | Servo-type fiber bragg grating (FBG) acceleration sensor | |
CN102721827B (en) | A fiber optic accelerometer | |
CN102353384B (en) | METHOD AND SYSTEM FOR MEASURING BANDWIDTH AND SCALE FACTOR OF MEMS GYRO | |
CN103256941A (en) | Practical method of high order temperature compensation for MEMS (Micro Electro Mechanical Systems) gyroscope | |
CN106441368A (en) | Measurement method and device for temperature variation characteristics of fiber-optic ring of fiber-optic gyroscope | |
CN103712634B (en) | The measuring method of optical fibre gyro vibration-magnetic field degree of cross-linking | |
CN103323625A (en) | Error calibration compensation method of accelerometers in MEMS-IMU under dynamic environment | |
Kou et al. | Investigation, modeling, and experiment of an MEMS S-springs vibrating ring gyroscope | |
KR101658473B1 (en) | Compensation method of acceleration sensitivity of mems gyroscope | |
CN110146109A (en) | A Two-Dimensional Compensation Method for Magnetic-Temperature Cross-linking Coupling Error of Fiber Optic Gyroscope | |
CN101581221B (en) | Measurement-while-drilling system | |
CN1967146A (en) | Measurement for eigenfrequency of interferometric type fiber-optic gyroscope by using asymmetrical square wave modulation method | |
Hou et al. | A quadrature compensation method to improve the performance of the butterfly vibratory gyroscope | |
CN102901596B (en) | Method for testing photoelectric reflection type dynamic torque of equal-diameter rotary shaft | |
CN107291988B (en) | Method for acquiring equivalent excitation force of momentum wheel mounting interface | |
CN103791917B (en) | The method of testing of the optical fibre gyro vibration-temperature crosslink degree of coupling | |
CN1808074A (en) | Optical fiber gyro frequency character tester based on magneto-optical Farady effect | |
CN104457792A (en) | Method for measuring scale factor of fiber-optic gyroscope without mechanical rotation condition | |
CN103674066B (en) | A kind of method of testing of resolution of fiber-optic gyroscope | |
CN113310483B (en) | A digital closed-loop fiber optic gyroscope eigenfrequency real-time tracking device and method | |
CN101256078A (en) | The Method of Eliminating the Acceleration Effect of Scale Factor of Fiber Optic Gyroscope |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CB03 | Change of inventor or designer information | ||
CB03 | Change of inventor or designer information |
Inventor after: Wang Lei Inventor after: Zhang Dengwei Inventor after: Zhou Yanru Inventor after: Shu Xiaowu Inventor after: Che Shuangliang Inventor after: Liu Cheng Inventor before: Zhang Dengwei Inventor before: Zhou Yanru Inventor before: Shu Xiaowu Inventor before: Che Shuangliang Inventor before: Liu Cheng |
|
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160413 Termination date: 20211224 |