[go: up one dir, main page]

CN103695442B - A kind of NFSAI gene coming from Lactobacterium acidophilum and its preparation method and application - Google Patents

A kind of NFSAI gene coming from Lactobacterium acidophilum and its preparation method and application Download PDF

Info

Publication number
CN103695442B
CN103695442B CN201310684941.7A CN201310684941A CN103695442B CN 103695442 B CN103695442 B CN 103695442B CN 201310684941 A CN201310684941 A CN 201310684941A CN 103695442 B CN103695442 B CN 103695442B
Authority
CN
China
Prior art keywords
nfsai
gene
tnt
plant
plants
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310684941.7A
Other languages
Chinese (zh)
Other versions
CN103695442A (en
Inventor
朱波
姚泉洪
彭日荷
韩红娟
付晓燕
赵伟
田永生
许晶
薛永
高建杰
韩静
王波
王丽娟
李振军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Academy of Agricultural Sciences
Original Assignee
Shanghai Academy of Agricultural Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Academy of Agricultural Sciences filed Critical Shanghai Academy of Agricultural Sciences
Priority to CN201310684941.7A priority Critical patent/CN103695442B/en
Publication of CN103695442A publication Critical patent/CN103695442A/en
Application granted granted Critical
Publication of CN103695442B publication Critical patent/CN103695442B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

本发明公开了一种源于嗜酸乳杆菌的NFSAI基因及其制备方法和应用,所述NFSAI基因的核苷酸序列如SEQ?ID?NO:1所示,其编码的氨基酸序列如SEQ?ID?NO:2所示;所述NFSAI基因是利用基因合成方法制备而成,将该NFSAI基因转化植物,可提高转基因植物降解TNT的能力,因此,本发明的NFSAI基因可促使植物参与TNT的降解,为植物修复TNT污染提供有益的帮助。

The invention discloses a NFSAI gene derived from Lactobacillus acidophilus and its preparation method and application. The nucleotide sequence of the NFSAI gene is as SEQ? ID? As shown in NO: 1, its coded amino acid sequence is shown as SEQ? ID? NO: shown in 2; the NFSAI gene is prepared by a gene synthesis method, and the NFSAI gene is transformed into a plant, which can improve the ability of the transgenic plant to degrade TNT. Therefore, the NFSAI gene of the present invention can promote the plant to participate in the degradation of TNT, Provide useful help for phytoremediation of TNT pollution.

Description

一种源于嗜酸乳杆菌的NFSAI基因及其制备方法和应用A kind of NFSAI gene derived from Lactobacillus acidophilus and its preparation method and application

技术领域technical field

本发明属于作物遗传育种领域,具体涉及一种来源于嗜酸乳杆菌的NFSAI基因及其制备方法和应用。The invention belongs to the field of crop genetics and breeding, and specifically relates to an NFSAI gene derived from Lactobacillus acidophilus, a preparation method and application thereof.

背景技术Background technique

2,4,6-三硝基甲苯(TNT)是一种广泛应用的炸药,具有高毒性和致变性,它可通过呼吸系统、消化系统及皮肤而进人生物体内,导致血相改变、紫绀、白内障、正铁血红蛋白血症和中毒性肝炎等。由于土壤对TNT有很强的吸附作用,因而如果废水中的TNT不经过处理直接排放,TNT就会很快渗入地下,积存于土壤中,将严重危害环境。TNT对水体和土壤环境的污染早已受到重视。当水中TNT的含量达1mg/L时,鱼类就会死亡;TNT进入土壤,会与土壤中的几种主要化合物作用,使土壤中有机质的浓度增高,因此,它对环境造成深远危害。2,4,6-Trinitrotoluene (TNT) is a widely used explosive with high toxicity and mutagenicity. It can enter the human body through the respiratory system, digestive system and skin, causing blood phase changes, cyanosis, Cataracts, methaemoglobinemia and toxic hepatitis. Because the soil has a strong adsorption effect on TNT, if the TNT in the wastewater is discharged directly without treatment, the TNT will quickly seep into the ground and accumulate in the soil, which will seriously endanger the environment. The pollution of water body and soil environment by TNT has long been paid attention to. When the content of TNT in the water reaches 1mg/L, the fish will die; TNT enters the soil and will interact with several main compounds in the soil to increase the concentration of organic matter in the soil. Therefore, it will cause far-reaching harm to the environment.

由Rodgers提出用于TNT生物整治的物理化学处理方法是焚烧,是当前最有效的方法,但是用于土壤污染的治理是昂贵的,因为焚烧要挖掘土壤、运输和耗能,耗资较大。对液体污染物中的TNT的治理已提出几项技术,如生化法与物化法组合而发展起来的一类相关技术,首先在处理炸药废水方面取得了良好的效果,这些工艺包括碱水解后用生化处理、含粒状活性炭的厌氧流化床、臭氧氧化再加生化法、温热腐烂、光催化法、光催化与厌氧的结合、颗粒铁法等。同时,用于处理TNT污染的土壤的几种以生物为基础的技术也发展起来。The physical and chemical treatment method proposed by Rodgers for TNT biological remediation is incineration, which is the most effective method at present, but it is expensive for soil pollution control, because incineration needs to excavate soil, transport and consume energy, which costs a lot. Several technologies have been proposed for the treatment of TNT in liquid pollutants, such as a class of related technologies developed by combining biochemical and physical chemical methods. First, good results have been achieved in the treatment of explosive wastewater. Biochemical treatment, anaerobic fluidized bed containing granular activated carbon, ozone oxidation plus biochemical method, warm decay, photocatalytic method, combination of photocatalytic and anaerobic, granular iron method, etc. Meanwhile, several bio-based technologies for treating TNT-contaminated soils have also been developed.

生物修复的基础是自然界中微生物对污染物的生物代谢作用,因此早期的生物修复主要指微生物修复,微生物修复已经发展出一系列技术:如现场处理、就地处理和生物反应器。生物法降解NTT废水的研究主要集中在TNT的降解细菌种类,降解途径及降解工艺三方面。目前已发现的、能降解TNT废水的细菌主要是白腐真菌(phaneorhcaeetchyrsosporium)。张景来,常冠钦等人就时间、温度、pH值、木质素用量等因素研究了白腐真菌降解TNT炸药废水的影响。结果表明,当反应时间为48h,生化温度为15℃,HP值为5,木质素投加量为3g时,TNT废水的CODcr去除率为99%【张景来等,中国矿业大学学报,2001,30(2):161-164】。何德文,肖羽堂等利用白腐真菌生化降解两种生物难降解的有机废水,实验结果表明,白腐真菌对生物难降解的TNT炸药废水和分散染料废水有着良好的降解性能,显示出广阔的应用前景【何德文等,工业水处理,2000,20(3):16-18】。The basis of bioremediation is the biological metabolism of pollutants by microorganisms in nature, so early bioremediation mainly refers to microbial remediation, and a series of technologies have been developed for microbial remediation: such as on-site treatment, in-situ treatment and bioreactors. The research on biological degradation of NTT wastewater mainly focuses on three aspects of TNT degrading bacteria species, degradation pathway and degradation process. The bacteria that have been found to degrade TNT wastewater are mainly white rot fungi (phaneorhcaeetchyrsosporium). Zhang Jinglai, Chang Guanqin and others studied the influence of white rot fungi on the degradation of TNT explosive wastewater based on factors such as time, temperature, pH value, and lignin dosage. The results show that when the reaction time is 48h, the biochemical temperature is 15°C, the HP value is 5, and the lignin dosage is 3g, the CODcr removal rate of TNT wastewater is 99% [Zhang Jinglai et al., Journal of China University of Mining and Technology, 2001, 30 (2): 161-164]. He Dewen, Xiao Yutang et al. used white rot fungi to biochemically degrade two kinds of biodegradable organic wastewater. The experimental results showed that white rot fungi had good degradation performance on biodegradable TNT explosive wastewater and disperse dye wastewater, showing broad application prospects. [He Dewen et al., Industrial Water Treatment, 2000,20(3):16-18].

对TNT的降解途径,其中一种说法是硝基先被还原成氨基,然后转变成氨基二硝基甲苯和二氨基硝基甲苯,并缩合成四硝基偶氮甲苯等产物。Kaplan提出了模拟堆肥系统中TNT生化转移的途径【Kaplanetal.,EnvironMicrobio,1982,44(3):757-760】。而Spanggord提出了TNT生化降解中间产物为2-氨基4,6-二硝基苯甲酸,他提出的降解途径认为苯环未被打开,并在实验中检测到了Kaplan未提到的二硝基苯酚和二硝基苯胺等化合物【Spanggord,AD-A138550,1983】。与此同时,MCormick等人还提出了2,4-DNT的生化降解途径:2,4-二硝基甲苯的一个硝基还原为亚硝基,进而还原成肪,然后缩合成二硝基氧化偶氮甲苯之类的化合物或还原成氨基硝基甲苯,后者再进一步降解为2,4-二氨基甲苯,如果再降解,则得氨基苯衍生物【McCormick,EnvironMicrobiol,1978,35(5):945-948】。Regarding the degradation pathway of TNT, one of the sayings is that the nitro group is first reduced to an amino group, then converted into aminodinitrotoluene and diaminonitrotoluene, and condensed into tetranitroazotoluene and other products. Kaplan proposed a way to simulate the biochemical transfer of TNT in composting systems [Kaplanetal., EnvironMicrobio, 1982,44(3):757-760]. However, Spanggord proposed that the intermediate product of TNT biochemical degradation is 2-amino 4,6-dinitrobenzoic acid. The degradation pathway he proposed believed that the benzene ring was not opened, and detected dinitrophenol not mentioned by Kaplan in the experiment. And dinitroaniline and other compounds [Spanggord, AD-A138550, 1983]. At the same time, MCormick et al. also proposed a biochemical degradation pathway for 2,4-DNT: a nitro group of 2,4-dinitrotoluene is reduced to a nitroso group, which is then reduced to a fat, and then condensed into a dinitro group to be oxidized Compounds such as azotoluene may be reduced to aminonitrotoluene, and the latter is further degraded to 2,4-diaminotoluene. If degraded again, aminobenzene derivatives are obtained [McCormick, EnvironMicrobiol, 1978, 35 (5) :945-948].

利用植物治理土壤污染是一类节能且对环境相对安全的方法。和微生物修复相比,植物修复更适应原地修复,它具有修复面积大、投资少、不破环场地结构、不引起地下水二次污染等优点,在对重金属和有机污染物的处理中已显示出明显的有效性,有的已经达到野外应用的水平。The use of plants to control soil pollution is a kind of energy-saving and relatively safe method for the environment. Compared with microbial remediation, phytoremediation is more suitable for in-situ remediation. It has the advantages of large remediation area, less investment, no damage to the site structure, and no secondary pollution of groundwater. It has been shown in the treatment of heavy metals and organic pollutants Obvious effectiveness, some have reached the level of field application.

发明内容Contents of the invention

本发明所要解决的技术问题在于提供一种源于嗜酸乳杆菌的NFSAI基因及其制备方法和应用,将该NFSAI基因转化植物,进而提高转基因植物降解TNT的能力。The technical problem to be solved by the present invention is to provide a NFSAI gene derived from Lactobacillus acidophilus and its preparation method and application, transform the NFSAI gene into plants, and then improve the ability of the transgenic plants to degrade TNT.

因此,本发明所要解决的技术问题之一,在于提供一种源于嗜酸乳杆菌的NFSAI基因。Therefore, one of the technical problems to be solved by the present invention is to provide an NFSAI gene derived from Lactobacillus acidophilus.

本发明所要解决的技术问题之二,在于提供所述源于嗜酸乳杆菌的NFSAI基因的制备方法。The second technical problem to be solved by the present invention is to provide a method for preparing the NFSAI gene derived from Lactobacillus acidophilus.

本发明所要解决的技术问题之三,在于提供所述源于嗜酸乳杆菌的NFSAI基因在提高植物降解TNT中的应用,及在培育提高植物降解有机物污染中的应用。即将所述来自嗜酸乳杆菌的NFSAI基因转化到植物中,并对该转基因植物进行功能验证,证明它具有提高植物对TNT的修复能力,进而可应用于培育提高植物降解有机物污染的技术领域。The third technical problem to be solved by the present invention is to provide the application of the NFSAI gene derived from Lactobacillus acidophilus in improving plant degradation of TNT, and in cultivating and improving plant degradation organic pollution. That is, the NFSAI gene from Lactobacillus acidophilus is transformed into plants, and the function verification of the transgenic plants is carried out to prove that it has the ability to improve the plant's ability to repair TNT, and then can be applied to the technical field of cultivating and improving plant degradation of organic pollution.

为了达到上述目的,本发明是通过如下技术方案实现的:In order to achieve the above object, the present invention is achieved through the following technical solutions:

一种源于嗜酸乳杆菌的NFSAI基因,其核苷酸序列如SEQIDNo:1所示,其编码的氨基酸序列如SEQIDNO:2所示。An NFSAI gene derived from Lactobacillus acidophilus, its nucleotide sequence is shown in SEQ ID No: 1, and its encoded amino acid sequence is shown in SEQ ID NO: 2.

一种源于嗜酸乳杆菌的NFSAI基因的制备方法,利用基因合成法【Xiongetal.,NuclAcidsRes,2004,32:e98】制备而成,即依照基因合成法克隆来源于嗜酸乳杆菌的尼克酰胺腺嘌呤二核苷酸磷酸黄素氧化还原酶(NADPH-flavinoxidoreductase,NFSA)基因即NFSA基因,在保持NFSA基因的氨基酸序列不变的基础上,设计引物合成本发明的源于嗜酸乳杆菌的尼克酰胺腺嘌呤二核苷酸磷酸黄素氧化还原酶基因NFSAI即NFSAI基因。具体设计的引物如下:A preparation method of NFSAI gene derived from Lactobacillus acidophilus, which is prepared by gene synthesis method [Xiongetal., NuclAcidsRes, 2004, 32:e98], that is, the nicotinamide derived from Lactobacillus acidophilus is cloned according to the gene synthesis method Adenine dinucleotide phosphoflavin oxidoreductase (NADPH-flavinoxidoreductase, NFSA) gene is the NFSA gene. On the basis of keeping the amino acid sequence of the NFSA gene unchanged, design primers to synthesize the present invention derived from Lactobacillus acidophilus Nicotinamide adenine dinucleotide phosphoflavin oxidoreductase gene NFSAI is the NFSAI gene. The specifically designed primers are as follows:

NFSAI-1NFSAI-1

GGAGGATCCTCCATGATCCACAACAAGACTATTGATGCTCAACTCAATCACAGATCCATCGGAGGATCCTCCATGATCCACAACAAGACTATTGATGCTCAACTCAATCACAGATCCATC

NFSAI-2NFSAI-2

CAAGTTGTTCTTTGTTCAAGGTGATGTCCTTGAACTTTCTGATGGATCTGTGATTGAGTTCAAGTTGTTCTTTGTTCAAGGTGATGTCCTTGAACTTTCTGATGGATCTGTGATTGAGTT

NFSAI-3NFSAI-3

CTTGAACAAAGAACAACTTGAGACCTTGTACTCTGTCTTCGCTCAGACTCCAACCTCTATCTTGAACAAAGAACAACTTGAGACCTTGTACTCTGTCTTCGCTCAGACTCCAACCTCTAT

NFSAI-4NFSAI-4

TGGATCGATGATGTGAACCAAGGAAGCGTTCTGCATGAACATAGAGGTTGGAGTCTGAGCTGGATCGATGATGTGAACCAAGGAAGCGTTCTGCATGAACATAGAGGTTGGAGTCTGAGC

NFSAI-5NFSAI-5

TGGTTCACATCATCGATCCAGAGCAGAAGAAGAAGATCAGAGAACTCTGCAACCAGAAGTTGGTTCACATCATCGATCCAGAGCAGAAGAAGAAGATCAGAGAACTCTGCAACCAGAGAGT

NFSAI-6NFSAI-6

TCAACGACGAAGATGAAGAGATCACCTTCAGCACCGACATACTTCTGGTTGCAGAGTTCTTCAACGACGAAGATGAAGAGATCACCTTCAGCACCGACATACTTCTGGTTGCAGAGTTCT

NFSAI-7NFSAI-7

CTCTTCATCTTCGTCGTTGACTTGTACAGAAACCAACAGATCAGAAAGCAACTTGGTAAGCTCTTCATCTTCGTCGTTGACTTGTACAGAAACCAACAGATCAGAAAGCAACTTGGTAAG

NFSAI-8NFSAI-8

CTTGGAAGAAGATGTCGATGGTGTGAACTCTGCCATCATCCTTACCAAGTTGCTTTCTGACTTGGAAGAAGATGTCGATGGTGTGAACTCTGCCATCATCCTTACCAAGTTGCTTTCTGA

NFSAI-9NFSAI-9

CATCGACATCTTCTTCCAAGCTATGGAAGACACCCTGCTTGCTTACCAGAACGTTGCCAACATCGACATCTTCTTCCAAGCTATGGAAGACACCCTGCTTGCTTACCAGAACGTTGCCAA

NFSAI-10NFSAI-10

ACCAAGTGGAACGTAACCCAGATCCATAGATTCGACAGCATTGGCAACGTTCTGGTAAGCACCAAGTGGAACGTAACCCAGATCCATAGATTCGACAGCATTGGCAACGTTCTGGTAAGC

NFSAI-11NFSAI-11

TGGGTTACGTTCCACTTGGTACTGTCAACGATCATCCACTTGAGATGCTCAAGACCCTTGTGGGTTACGTTCCACTTGGTACTGTCAACGATCATCCACTTGAGATGCTCAAGACCCTTG

NFSAI-12NFSAI-12

ACTTGCATACCAAGGACTGGAAAGGTCAGTTCTGGCAGGTCAAGGGTCTTGAGCATCTCAACTTGCATACCAAGGACTGGAAAGGTCAGTTCTGGCAGGTCAAGGGTCTTGAGCATCTCA

NFSAI-13NFSAI-13

CCAGTCCTTGGTATGCAAGTTGGTGTTCCAGACCAGAAACCACAACTGAAGCCAAGACTTCCAGTCCTTGGTATGCAAGTTGGTGTTCCAGACCAGAAACCACAACTGAAGCCAAGACTT

NFSAI-14NFSAI-14

CCTTGTCATACTTACCTTCAAAGCAGATGAACTTGAGTGGAAGTCTTGGCTTCAGTTGTGCCTTGTCATACTTACCTTCAAAGCAGATGAACTTGAGTGGAAGTCTTGGCTTCAGTTGTG

NFSAI-15NFSAI-15

TGAAGGTAAGTATGACAAGGACTTCAACGTCAAGGACCTGAAGGACTACGATCAAGTCGTTGAAGGTAAGTATGACAAGGACTTCAACGTCAAGGACCTGAAGGACTACGATCAAGTCGT

NFSAI-16NFSAI-16

GATTCTTCTGTTGGAGTCTCTCAGGTCGTAGTAGGTGGTGACGACTTGATCGTAGTCCTTGATTCTTCTGTTGGAGTCTCTCAGGTCGTAGTAGGTGGTGACGACTTGATCGTAGTCCTT

NFSAI-17NFSAI-17

GAGACTCCAACAGAAGAATCGACTCCTTCACCAAGCAGATCACTGGTGCTAAGCTCGACAGAGACTCCAACAGAAGAATCGACTCCTTCACCAAGCAGATCACTGGTGCTAAGCTCGACA

NFSAI-18NFSAI-18

TGAAGTTCCTCTGGAAGTTCGTCTCTGTCAGTCTCATGGTTGTCGAGCTTAGCACCAGTGTGAAGTTCCCTCTGGAAGTTCGTCTCTGTCAGTCTCATGGTTGTCGAGCTTAGCACCAGTG

NFSAI-19NFSAI-19

GAACTTCCAGAGGAACTTCACAAGCAAGGCTTGTGCTTGGACTGGAAATAAGAGCTCGAGCTCGAACTTCCAGAGGAACTTCACAAGCAAGGCTTGTGCTTGGACTGGAAATAAGAGCTCGAGCTC

将本发明合成的NFSAI基因转入植物中,可应用于提高植物降解TNT的能力,进而可用于培育提高植物降解有机物污染的技术领域。具体包括如下步骤:The NFSAI gene synthesized by the invention is transferred into plants, which can be applied to improve the ability of plants to degrade TNT, and further can be used in the technical field of cultivating and improving plants to degrade organic matter pollution. Specifically include the following steps:

1)重组质粒AH608的构建1) Construction of recombinant plasmid AH608

利用BamHI和SacI进行双酶切后,通过T4DNA连接酶将本发明合成的NFSAI基因与含有双35S启动子的植物表达载体pCAMBIA-1301连接,酶切鉴定和序列测定获得了含有目的基因NFSAI的重组质粒AH608。After double digestion with BamHI and SacI, the NFSAI gene synthesized by the present invention was connected to the plant expression vector pCAMBIA-1301 containing double 35S promoters by T4 DNA ligase, and the recombinant protein containing the target gene NFSAI was obtained through enzyme digestion identification and sequence determination Plasmid AH608.

2)电击法转化农杆菌2) Transformation of Agrobacterium by electric shock method

利用电击法将构建好的重组质粒AH608导入根癌农杆菌中,所述根癌农杆菌菌株为EHA105,LBA4404,GV3101或AGL-1。The constructed recombinant plasmid AH608 was introduced into Agrobacterium tumefaciens by electric shock method, and the strain of Agrobacterium tumefaciens was EHA105, LBA4404, GV3101 or AGL-1.

3)农杆菌粘花法转化植物3) Transformation of plants by Agrobacterium sticky flower method

利用农杆菌粘花法转化将导入NFSAI基因的根癌农杆菌转化到拟南芥、烟草、番茄、水稻中【Cloughetal.,Theplantjournal,1998,16(6):735-743】,进而验证了这些转基因植物能显著提高植物对TNT的降解能力。Transformation of Agrobacterium tumefaciens with NFSAI gene into Arabidopsis, tobacco, tomato and rice [Cloughetal., Theplantjournal, 1998, 16(6):735-743] by using Agrobacterium sticky flower method, and then verified these Transgenic plants can significantly improve the plant's ability to degrade TNT.

本发明有益效果Beneficial effect of the present invention

1、本发明利用基因合成法将来自嗜酸乳杆菌的NFSA基因重新按照植物偏爱密码进行人工合成,在保持NFSA基因的氨基酸序列不变的基础上,设计引物改造合成了本发明的NFSAI基因。该NFSAI基因能够在植物中持续表达,并促使植物参与TNT的降解,从而提高了植物修复TNT污染的能力。1. The present invention utilizes the gene synthesis method to artificially synthesize the NFSA gene from Lactobacillus acidophilus according to the plant preference code. On the basis of keeping the amino acid sequence of the NFSA gene unchanged, primers are designed to transform and synthesize the NFSAI gene of the present invention. The NFSAI gene can be continuously expressed in plants, and promotes plants to participate in the degradation of TNT, thereby improving the ability of plants to repair TNT pollution.

2、含有本发明NFSAI基因的植物安全稳定,对植物生长没有不良影响,对环境污染很小。2. The plant containing the NFSAI gene of the present invention is safe and stable, has no adverse effect on plant growth, and has little environmental pollution.

附图说明Description of drawings

图1为本发明含有NFSAI基因的重组质粒AH608构建示意图;Fig. 1 is the construction schematic diagram of the recombinant plasmid AH608 containing NFSAI gene of the present invention;

图2为本发明实施例4转基因拟南芥苗期的PCR电泳图,其中,M为DNAmarker,WT为野生型植株,1-7分别为转基因拟南芥的不同株系;Fig. 2 is the PCR electrophoresis figure of the seedling stage of transgenic Arabidopsis thaliana in Example 4 of the present invention, wherein, M is DNAmarker, WT is wild-type plant, and 1-7 are different strains of transgenic Arabidopsis respectively;

图3为本发明实施例5转基因烟草苗期的PCR电泳图,其中,M为DNAmarker,WT为野生型植株,1-7分别为转基因烟草的不同株系;Fig. 3 is the PCR electrophoresis figure of the transgenic tobacco seedling stage of Example 5 of the present invention, wherein, M is DNAmarker, WT is wild-type plant, and 1-7 are respectively the different strains of transgenic tobacco;

图4为本发明实施例5转基因番茄苗期的PCR电泳图,其中,M为DNAmarker,WT为野生型植株,1-6分别为转基因番茄的不同株系;Fig. 4 is the PCR electrophoresis figure of the transgenic tomato seedling stage of Example 5 of the present invention, wherein, M is a DNAmarker, WT is a wild-type plant, and 1-6 are respectively different strains of the transgenic tomato;

图5为本发明实施例6转基因水稻苗期的PCR电泳图,其中,M为DNAmarker,WT为野生型植株,1-6分别为转基因水稻的不同株系;Fig. 5 is the PCR electrophoresis figure of the transgenic rice seedling stage of Example 6 of the present invention, wherein, M is DNAmarker, WT is wild-type plant, and 1-6 are respectively the different strains of transgenic rice;

图6为本发明转NFSAI基因拟南芥表现出TNT的耐受能力图,其中,CK为野生型植株,其他为转NFSAI基因拟南芥的不同株系。Fig. 6 is a graph showing TNT tolerance of NFSAI-transferred Arabidopsis of the present invention, wherein CK is a wild-type plant, and others are different strains of NFSAI-transferred Arabidopsis.

具体实施方式detailed description

实施例1:基因合成法合成源于嗜酸乳杆菌的NFSAI酶基因Embodiment 1: Synthesis of NFSAI enzyme gene derived from Lactobacillus acidophilus by gene synthesis

利用基因合成法【Xiongetal.,NuclAcidsRes,2004,32:e98】克隆源于嗜酸乳杆菌的NFSA基因,进行化学合成,在保持NFSA基因的氨基酸序列不变的基础上,按照植物偏爱密码并设计引物重新合成编码嗜酸乳杆菌NFSAI酶基因。设计的引物具体如下:Using the gene synthesis method [Xiongetal., NuclAcidsRes, 2004, 32:e98] to clone the NFSA gene derived from Lactobacillus acidophilus, carry out chemical synthesis, and design according to the plant preference code on the basis of keeping the amino acid sequence of the NFSA gene unchanged Primers were de novo synthesized from the gene encoding the Lactobacillus acidophilus NFSAI enzyme. The designed primers are as follows:

NFSAI-1NFSAI-1

GGAGGATCCTCCATGATCCACAACAAGACTATTGATGCTCAACTCAATCACAGATCCATCGGAGGATCCTCCATGATCCACAACAAGACTATTGATGCTCAACTCAATCACAGATCCATC

NFSAI-2NFSAI-2

CAAGTTGTTCTTTGTTCAAGGTGATGTCCTTGAACTTTCTGATGGATCTGTGATTGAGTTCAAGTTGTTCTTTGTTCAAGGTGATGTCCTTGAACTTTCTGATGGATCTGTGATTGAGTT

NFSAI-3NFSAI-3

CTTGAACAAAGAACAACTTGAGACCTTGTACTCTGTCTTCGCTCAGACTCCAACCTCTATCTTGAACAAAGAACAACTTGAGACCTTGTACTCTGTCTTCGCTCAGACTCCAACCTCTAT

NFSAI-4NFSAI-4

TGGATCGATGATGTGAACCAAGGAAGCGTTCTGCATGAACATAGAGGTTGGAGTCTGAGCTGGATCGATGATGTGAACCAAGGAAGCGTTCTGCATGAACATAGAGGTTGGAGTCTGAGC

NFSAI-5NFSAI-5

TGGTTCACATCATCGATCCAGAGCAGAAGAAGAAGATCAGAGAACTCTGCAACCAGAAGTTGGTTCACATCATCGATCCAGAGCAGAAGAAGAAGATCAGAGAACTCTGCAACCAGAGAGT

NFSAI-6NFSAI-6

TCAACGACGAAGATGAAGAGATCACCTTCAGCACCGACATACTTCTGGTTGCAGAGTTCTTCAACGACGAAGATGAAGAGATCACCTTCAGCACCGACATACTTCTGGTTGCAGAGTTCT

NFSAI-7NFSAI-7

CTCTTCATCTTCGTCGTTGACTTGTACAGAAACCAACAGATCAGAAAGCAACTTGGTAAGCTCTTCATCTTCGTCGTTGACTTGTACAGAAACCAACAGATCAGAAAGCAACTTGGTAAG

NFSAI-8NFSAI-8

CTTGGAAGAAGATGTCGATGGTGTGAACTCTGCCATCATCCTTACCAAGTTGCTTTCTGACTTGGAAGAAGATGTCGATGGTGTGAACTCTGCCATCATCCTTACCAAGTTGCTTTCTGA

NFSAI-9NFSAI-9

CATCGACATCTTCTTCCAAGCTATGGAAGACACCCTGCTTGCTTACCAGAACGTTGCCAACATCGACATCTTCTTCCAAGCTATGGAAGACACCCTGCTTGCTTACCAGAACGTTGCCAA

NFSAI-10NFSAI-10

ACCAAGTGGAACGTAACCCAGATCCATAGATTCGACAGCATTGGCAACGTTCTGGTAAGCACCAAGTGGAACGTAACCCAGATCCATAGATTCGACAGCATTGGCAACGTTCTGGTAAGC

NFSAI-11NFSAI-11

TGGGTTACGTTCCACTTGGTACTGTCAACGATCATCCACTTGAGATGCTCAAGACCCTTGTGGGTTACGTTCCACTTGGTACTGTCAACGATCATCCACTTGAGATGCTCAAGACCCTTG

NFSAI-12NFSAI-12

ACTTGCATACCAAGGACTGGAAAGGTCAGTTCTGGCAGGTCAAGGGTCTTGAGCATCTCAACTTGCATACCAAGGACTGGAAAGGTCAGTTCTGGCAGGTCAAGGGTCTTGAGCATCTCA

NFSAI-13NFSAI-13

CCAGTCCTTGGTATGCAAGTTGGTGTTCCAGACCAGAAACCACAACTGAAGCCAAGACTTCCAGTCCTTGGTATGCAAGTTGGTGTTCCAGACCAGAAACCACAACTGAAGCCAAGACTT

NFSAI-14NFSAI-14

CCTTGTCATACTTACCTTCAAAGCAGATGAACTTGAGTGGAAGTCTTGGCTTCAGTTGTGCCTTGTCATACTTACCTTCAAAGCAGATGAACTTGAGTGGAAGTCTTGGCTTCAGTTGTG

NFSAI-15NFSAI-15

TGAAGGTAAGTATGACAAGGACTTCAACGTCAAGGACCTGAAGGACTACGATCAAGTCGTTGAAGGTAAGTATGACAAGGACTTCAACGTCAAGGACCTGAAGGACTACGATCAAGTCGT

NFSAI-16NFSAI-16

GATTCTTCTGTTGGAGTCTCTCAGGTCGTAGTAGGTGGTGACGACTTGATCGTAGTCCTTGATTCTTCTGTTGGAGTCTCTCAGGTCGTAGTAGGTGGTGACGACTTGATCGTAGTCCTT

NFSAI-17NFSAI-17

GAGACTCCAACAGAAGAATCGACTCCTTCACCAAGCAGATCACTGGTGCTAAGCTCGACAGAGACTCCAACAGAAGAATCGACTCCTTCACCAAGCAGATCACTGGTGCTAAGCTCGACA

NFSAI-18NFSAI-18

TGAAGTTCCTCTGGAAGTTCGTCTCTGTCAGTCTCATGGTTGTCGAGCTTAGCACCAGTGTGAAGTTCCCTCTGGAAGTTCGTCTCTGTCAGTCTCATGGTTGTCGAGCTTAGCACCAGTG

NFSAI-19NFSAI-19

GAACTTCCAGAGGAACTTCACAAGCAAGGCTTGTGCTTGGACTGGAAATAAGAGCTCGAGCTCGAACTTCCAGAGGAACTTCACAAGCAAGGCTTGTGCTTGGACTGGAAATAAGAGCTCGAGCTC

以NFSAI-1、NFSAI-19为外侧引物,NFSAI-2~NFSAI-18为内侧引物,利用PCR进行NFSA基因片段扩增,在50μl反应体系中,内侧的引物浓度分别为1.5pmol,外侧的两个引物浓度分别为30pmol。扩增条件为:94℃预热1min;94℃,30s,50℃,30s,72℃,1min。共25个循环。PCR结束后,用1%琼脂糖凝胶回收,取10μl回收产物直接与T/A克隆载体相连,4℃连接过夜,得到DNA连接产物,高效转化到DH5α感受态细胞中。Using NFSAI-1 and NFSAI-19 as outer primers, and NFSAI-2~NFSAI-18 as inner primers, PCR was used to amplify NFSA gene fragments. In a 50 μl reaction system, the inner primer concentrations were 1.5 pmol, and the outer two The concentration of each primer was 30 pmol. The amplification conditions are: preheating at 94°C for 1min; 94°C for 30s, 50°C for 30s, 72°C for 1min. A total of 25 cycles. After PCR, 1% agarose gel was used to recover, and 10 μl of the recovered product was directly connected to the T/A cloning vector, and ligated overnight at 4°C to obtain DNA ligation products, which were efficiently transformed into DH5α competent cells.

PCR反应得到了一个771的片段,产物经回收,克隆和测序、分析,所得序列即为本发明的NFSAI基因,其核苷酸序列如SEQIDNo:1,其编码的氨基酸序列如SEQIDNO:2。A 771 fragment was obtained by PCR reaction, and the product was recovered, cloned, sequenced and analyzed, and the obtained sequence was the NFSAI gene of the present invention, its nucleotide sequence was shown as SEQ ID No: 1, and its encoded amino acid sequence was shown as SEQ ID NO: 2.

实施例2:NFSAI基因植物表达载体的构建Embodiment 2: Construction of NFSAI gene plant expression vector

分别用BamHI和SacI进行双酶切,回收DNA片段,通过T4DNA连接酶将NFSAI酶基因与含有双35S启动子的pCAMBIA-1301载体连接,酶切鉴定和序列测定获得了含有NFSAI酶基因的重组质粒AH608,如图1所示。该表达载体还包含GUS报告基因和带内含子卡那霉素抗性标记基因。Double enzyme digestion was performed with BamHI and SacI respectively, and the DNA fragments were recovered, and the NFSAI enzyme gene was connected to the pCAMBIA-1301 vector containing double 35S promoters by T4 DNA ligase, and the recombinant plasmid containing the NFSAI enzyme gene was obtained through enzyme digestion identification and sequence determination AH608, as shown in Figure 1. The expression vector also contains a GUS reporter gene and a kanamycin resistance marker gene with an intron.

实施例3:农杆菌培养和植物转化Example 3: Agrobacterium cultivation and plant transformation

农杆菌菌株为根癌农杆菌LBA4404菌株。上述得到的重组质粒AH608经电击法导入农杆菌LBA4404中。挑取单菌到25mlYEB培养基(50mg/l利福平)培养过夜,取5ml菌液转接到100mlYEB培养基(50mg/l利福平),培养至OD600=0.7-0.8,菌液冰上放置10分钟,5000rpm离心10min,4℃,收集菌体,加入100ml无菌双蒸水清洗两次。加入4ml10%甘油悬浮菌体,转到50ml离心管。5500rpm离心10min,4℃。收集菌体,加入500μl10%甘油悬浮菌体,转到1.5ml离心管,得到农杆菌感受态细胞。取70μl感受态细胞,加入1μl重组质粒AH608,用去头的黄枪头混匀,转到0.1cm电击杯中。电击参数:200Ω,1.7KV,2.5F,电击后立即加入800μlSOC培养液。培养1小时后,取100μl涂抗性板28℃培养过夜,以筛选出成功导入重组质粒AH608的菌株。The Agrobacterium strain was Agrobacterium tumefaciens LBA4404 strain. The recombinant plasmid AH608 obtained above was introduced into Agrobacterium LBA4404 by electroporation. Pick a single bacterium into 25ml YEB medium (50mg/l rifampicin) for overnight culture, transfer 5ml of the bacterial liquid to 100ml of YEB medium (50mg/l rifampicin), cultivate to OD600=0.7-0.8, put the bacterial liquid on ice Leave it for 10 minutes, centrifuge at 5000rpm for 10min at 4°C, collect the bacteria, add 100ml sterile double distilled water to wash twice. Add 4ml of 10% glycerol to suspend the bacteria and transfer to a 50ml centrifuge tube. Centrifuge at 5500rpm for 10min at 4°C. Collect the bacteria, add 500 μl of 10% glycerol to suspend the bacteria, transfer to a 1.5ml centrifuge tube, and obtain Agrobacterium competent cells. Take 70 μl of competent cells, add 1 μl of recombinant plasmid AH608, mix well with a yellow pipette tip with the head removed, and transfer to a 0.1 cm electric shock cup. Electric shock parameters: 200Ω, 1.7KV, 2.5F, add 800μl SOC culture solution immediately after electric shock. After culturing for 1 hour, take 100 μl of the resistant plate and incubate overnight at 28°C to screen for strains successfully introduced with the recombinant plasmid AH608.

实施例4:拟南芥粘花法转化Embodiment 4: Arabidopsis thaliana transformation by sticking flower method

将筛选出的含目的质粒的农杆菌菌株单菌落接菌在5毫升含对应抗生素的LB培养基中28℃培养2天。将5毫升菌液转到500毫升的液体LB培养基中28℃培养16-24小时(OD=1.5-2.0),液体可以在4℃保存30天。室温下离心收集菌体,4000g离心10分钟。用等体积5%的新鲜蔗糖溶液悬浮。加入0.02%的Silwet-77混匀后转移到烧杯中,得到转化菌液。每个菌株用300毫升转化,转2-3钵。隔7天后再转化1次。将拟南芥(种子哥伦比亚型,ecotypecolumbia倒置后浸入转化菌液中10秒钟,莲座和花序都要侵染。侵染后将转化植株菌液空干3-5秒。用保鲜膜将转化植株圈好,平放16-24小时。转化后不要放置在高温和强光下。揭开保鲜膜,保持一定湿度,再生长1个月后收种子。利用50μg/mL潮霉素进行转化植株筛选,在潮霉素板上生长正常的小苗进行移苗,收种,进行阳性苗鉴定。Inoculate a single colony of the screened Agrobacterium strain containing the target plasmid in 5 ml of LB medium containing the corresponding antibiotic and culture it at 28°C for 2 days. Transfer 5 ml of bacterial liquid to 500 ml of liquid LB medium and incubate at 28°C for 16-24 hours (OD=1.5-2.0), and the liquid can be stored at 4°C for 30 days. The bacterial cells were collected by centrifugation at room temperature, and centrifuged at 4000g for 10 minutes. Suspend with an equal volume of 5% fresh sucrose solution. Add 0.02% Silwet-77 and mix well, then transfer to a beaker to obtain the transformed bacteria liquid. Transform each strain with 300 ml and turn 2-3 bowls. Transform once every 7 days. Put Arabidopsis thaliana (ecotype columbia ) upside down and immerse in the transformation solution for 10 seconds to infect both rosettes and inflorescences. Air-dry the transformed plant bacterial liquid for 3-5 seconds after infection. Circle the transformed plants with plastic wrap and lay them flat for 16-24 hours. Do not place under high temperature and strong light after transformation. Remove the plastic wrap, keep a certain humidity, and harvest the seeds after another month of growth. Use 50 μg/mL hygromycin to screen the transformed plants, transplant seedlings that grow normally on the hygromycin plate, harvest the seeds, and identify positive seedlings.

实施例5:烟草和番茄转化Example 5: Tobacco and Tomato Transformation

分别挑选较饱满的烟草种子K326和番茄种子沪番1429,用75%的酒精清洗1分钟,次氯酸钠加1滴土温灭菌10分钟,种子铺在MS0培养基上,28℃培养待发芽。将烟草幼叶、番茄子叶或下胚轴剪成1cm2,放入MS0+NAA1(1ug/ml)+BA2(4ug/ml)的培养基中,22℃培养1天。含目的质粒的农杆菌培养OD0.8-1.0后离心5000g离心8分钟,无菌水清洗一次,等体积MS培养液悬浮侵染8分钟后,吸干放置在MS0+NAA1(1ug/ml)+BA2(4ug/ml)的培养基中,22℃共培养3天。然后转入筛选培养基MSO+IAA1(0.1ug/ml)+ZT(2ug/ml)+Cb(500ug/ml)+Km(50ug/ml)培养2-3周,再转入分化培养基MS0+IAA1(0.1ug/ml)+ZT(2ug/ml)+Cb(500ug/ml)+Km(100ug/ml)培养2-3周,最后转入生根培养基1/2MS+IAA1(0.1ug/ml)培养。Select plump tobacco seeds K326 and tomato seeds Hupan 1429 respectively, wash with 75% alcohol for 1 minute, add 1 drop of sodium hypochlorite to sterilize with soil temperature for 10 minutes, spread the seeds on MS0 medium, and cultivate them at 28°C until they germinate. Young tobacco leaves, tomato cotyledons or hypocotyls were cut into 1 cm 2 , placed in MS0+NAA1 (1ug/ml)+BA2 (4ug/ml) medium, and cultured at 22°C for 1 day. Agrobacterium containing the target plasmid was cultured at OD0.8-1.0, centrifuged at 5000g for 8 minutes, washed once with sterile water, suspended and infected with an equal volume of MS culture medium for 8 minutes, blotted and placed in MS0+NAA1(1ug/ml)+ In BA2 (4ug/ml) medium, co-cultivate at 22°C for 3 days. Then transfer to screening medium MSO+IAA1(0.1ug/ml)+ZT(2ug/ml)+Cb(500ug/ml)+Km(50ug/ml) for 2-3 weeks, then transfer to differentiation medium MS0+ IAA1(0.1ug/ml)+ZT(2ug/ml)+Cb(500ug/ml)+Km(100ug/ml) was cultured for 2-3 weeks, and finally transferred to rooting medium 1/2MS+IAA1(0.1ug/ml )to cultivate.

实施例6:水稻转化Embodiment 6: rice transformation

N6培养基为基本培养基,去壳的水稻品种为中花的种子,授粉后12-15天的幼胚,经表面消毒后接种到N6D2培养基中诱导愈伤组织(N6培养基,水解乳蛋白500mg/L,蔗糖30g/L,2,4-D2mg/L,植物凝胶2.5g/L,pH5.8);培养4-7天后取愈伤组织进行转化。含目的质粒的农杆菌培养OD0.8-1.0后离心5000g离心8分钟,DDH2O清洗一次,等体积MS培养液悬浮侵染8分钟后,吸干放置在MS0+NAA1(1ug/ml)+BA2(4ug/ml)的培养基中,22℃共培养3天。然后转入筛选培养基MS0+NAA1(1ug/ml)+BA2(4ug/ml)+Cb(500ug/ml)+HAT(50ug/ml)(加入头孢Cb(500ug/ml)和潮霉素HAT(50ug/ml)),转化后的愈伤在抗性培养基MS0+Cb(500ug/ml)+HAT(50ug/ml)上培养3~4代,转入分化培养基MS0+NAA1(1ug/ml)+BA2(4ug/ml)+KT(2ug/ml)+Cb(500ug/ml)+HAT(50ug/ml)(2mg/LKT)中;幼芽长至2mm转移到生根培养基(1/2MS+0.5mg/LIBA)。以上培养基中分别加入500mg/L酶水解乳蛋白(CH),0~700mg/L谷氨酰胺或精氨酸,蔗糖30~80g/L,琼脂6g,pH5.8。继代周期为25d。将淡黄色的胚性愈伤组织转入分化培养基中,30d左右分化出芽。光照强度1500~2000lx,12~14h/d。N6 medium is the basic medium, and the hulled rice varieties are the seeds of Zhonghua. The immature embryos 12-15 days after pollination are surface-sterilized and inoculated into N6D2 medium to induce callus (N6 medium, hydrolyzed milk Protein 500mg/L, sucrose 30g/L, 2,4-D2mg/L, plant gel 2.5g/L, pH5.8); after 4-7 days of culture, callus was taken for transformation. Agrobacterium containing the target plasmid was cultured at OD0.8-1.0, centrifuged at 5000g for 8 minutes, washed once with DDH 2 O, suspended and infected with an equal volume of MS culture medium for 8 minutes, blotted and placed in MS0+NAA1(1ug/ml)+ In BA2 (4ug/ml) medium, co-cultivate at 22°C for 3 days. Then change to selection medium MSO+NAA1 (1ug/ml)+BA2 (4ug/ml)+Cb (500ug/ml)+HAT (50ug/ml) (add cephalosporin Cb (500ug/ml) and hygromycin HAT ( 50ug/ml)), the transformed callus was cultured on the resistant medium MS0+Cb (500ug/ml)+HAT (50ug/ml) for 3 to 4 generations, and transferred to the differentiation medium MS0+NAA1 (1ug/ml )+BA2(4ug/ml)+KT(2ug/ml)+Cb(500ug/ml)+HAT(50ug/ml) (2mg/LKT); the young shoots grow to 2mm and transferred to the rooting medium (1/2MS +0.5mg/LIBA). Add 500mg/L enzyme-hydrolyzed milk protein (CH), 0-700mg/L glutamine or arginine, 30-80g/L sucrose, 6g agar, pH 5.8 to the above medium respectively. The subculture period is 25d. The light yellow embryogenic callus was transferred to the differentiation medium, and it differentiated and sprouted in about 30 days. The light intensity is 1500~2000lx, 12~14h/d.

从实施例4-6获得的拟南芥、烟草、番茄、水稻的转化植株中取一部分叶子,侵入含有X-GLUC的染色液中,筛选叶片变蓝的转基因植株进行分子检测。提取叶片总DNA,参照《分子克隆》的方法,以NFSAI-1和NFSAI-19为引物对转化植株进行PCR检测,扩增条件为:94℃预热1min;94℃,30s,60℃,30s,72℃,4min。共25个循环,结果如图2,3,4,5所示。从图中可以看到野生型植株中都没有检测到目的条带,而转基因植物中都有很亮的的目的条带,证明这些株系都是阳性苗,从分子水平上证明了目的基因已经成功导入。Part of the leaves were taken from the transformed plants of Arabidopsis thaliana, tobacco, tomato and rice obtained in Examples 4-6, and invaded into the staining solution containing X-GLUC, and the transgenic plants whose leaves turned blue were screened for molecular detection. Extract the total DNA of the leaves, refer to the method of "Molecular Cloning", and use NFSAI-1 and NFSAI-19 as primers to perform PCR detection on the transformed plants. The amplification conditions are: 94°C preheating for 1min; 94°C for 30s, 60°C for 30s , 72°C, 4min. A total of 25 cycles, the results are shown in Figures 2, 3, 4, and 5. It can be seen from the figure that the target bands were not detected in the wild-type plants, but there were very bright target bands in the transgenic plants, which proved that these lines were all positive seedlings, and proved that the target gene had been detected at the molecular level. Imported successfully.

实施例7:合成的NFSAI基因转化植物后对TNT的降解能力检测Example 7: Detection of the degradation ability of TNT after the synthetic NFSAI gene transforms the plant

将上述已成功转入目的基因的转基因植物自交纯合3代,获得纯合转化株,收取种子。播种到含有0.15mMTNT的MS培养基中培养,同时培养非转基因植物作为对照实验。观察植物的发芽和生长及鲜重情况。具体实验结果如下:The above-mentioned transgenic plants that have been successfully transferred into the target gene are selfed and homozygous for three generations to obtain homozygous transformants, and the seeds are harvested. Seeds were cultured in MS medium containing 0.15mMTNT, and non-transgenic plants were cultivated at the same time as a control experiment. Observe the germination, growth and fresh weight of the plants. The specific experimental results are as follows:

转基因植物在含有TNT的三角瓶上,种子的发芽率比非转基因植物提高2倍。转基因植物在含有0.15mM的TNT的三角瓶培养基中,鲜重比非转基因植物提高65%倍,如图6所示。The germination rate of transgenic plants in the triangular flask containing TNT is 2 times higher than that of non-transgenic plants. In the Erlenmeyer flask medium containing 0.15mM TNT, the fresh weight of the transgenic plants was 65% higher than that of the non-transgenic plants, as shown in FIG. 6 .

转基因烟草在含有TNT的平板上,其种子的发芽率比非转基因植物提高3.5倍,根长比非转基因植物提高60%倍,鲜重比非转基因植物提高45%倍。On the TNT-containing plate, the germination rate of transgenic tobacco seeds is 3.5 times higher than that of non-transgenic plants, the root length is 60% higher than that of non-transgenic plants, and the fresh weight is 45% higher than that of non-transgenic plants.

转基因番茄在含有TNT的平板上,其种子的发芽率比非转基因植物提高2.5倍,根长比非转基因植物提高50%倍,鲜重比非转基因植物提高50%倍On the plate containing TNT, the germination rate of transgenic tomato seeds is 2.5 times higher than that of non-transgenic plants, the root length is 50% higher than that of non-transgenic plants, and the fresh weight is 50% higher than that of non-transgenic plants

转基因水稻在含有TNT的平板上,其种子的发芽率比非转基因植物提高3倍,根长比非转基因植物提高55%倍,鲜重比非转基因植物提高40%。On the plate containing TNT, the germination rate of transgenic rice seeds is 3 times higher than that of non-transgenic plants, the root length is 55% higher than that of non-transgenic plants, and the fresh weight is 40% higher than that of non-transgenic plants.

综上所述,本发明通过设计19条引物并利用基因合成法将源于嗜酸乳杆菌的NFSA基因进行了重新改造,得到了其核苷酸序列如SEQIDNo1所示的NFSAI基因。同时并将该NFSAI基因成功导入拟南芥、烟草、番茄和水稻中,检测发现得到的转基因植株都具有很强的抗TNT的能力,表明本发明改造合成的NFSAI基因具有提高植物抗TNT的能力,可用于培育提高植物降解有机物污染的技术领域。In summary, the present invention remodeled the NFSA gene derived from Lactobacillus acidophilus by designing 19 primers and using gene synthesis method, and obtained the NFSAI gene whose nucleotide sequence is shown in SEQIDNo1. At the same time, the NFSAI gene was successfully introduced into Arabidopsis thaliana, tobacco, tomato and rice, and the obtained transgenic plants were found to have strong TNT resistance ability, indicating that the NFSAI gene transformed and synthesized by the present invention has the ability to improve plant resistance to TNT , can be used to cultivate and improve the technical field of plant degrading organic matter pollution.

Claims (1)

1.一种用于合成源于嗜酸乳杆菌的NFSAI基因的引物,所述NFSAI基因的核苷酸序列如SEQIDNO:1所示,其编码的氨基酸序列如SEQIDNO:2所示,其特征在于,所述引物包括NFSAI-1~NFSAI-19,具体引物序列如下:1. A primer for synthesizing the NFSAI gene derived from Lactobacillus acidophilus, the nucleotide sequence of the NFSAI gene is as shown in SEQ ID NO: 1, and its encoded amino acid sequence is as shown in SEQ ID NO: 2, characterized in that , the primers include NFSAI-1~NFSAI-19, and the specific primer sequences are as follows: NFSAI-1NFSAI-1 GGAGGATCCTCCATGATCCACAACAAGACTATTGATGCTCAACTCAATCACAGATCCATCGGAGGATCCTCCATGATCCACAACAAGACTATTGATGCTCAACTCAATCACAGATCCATC NFSAI-2NFSAI-2 CAAGTTGTTCTTTGTTCAAGGTGATGTCCTTGAACTTTCTGATGGATCTGTGATTGAGTTCAAGTTGTTCTTTGTTCAAGGTGATGTCCTTGAACTTTCTGATGGATCTGTGATTGAGTT NFSAI-3NFSAI-3 CTTGAACAAAGAACAACTTGAGACCTTGTACTCTGTCTTCGCTCAGACTCCAACCTCTATCTTGAACAAAGAACAACTTGAGACCTTGTACTCTGTCTTCGCTCAGACTCCAACCTCTAT NFSAI-4NFSAI-4 TGGATCGATGATGTGAACCAAGGAAGCGTTCTGCATGAACATAGAGGTTGGAGTCTGAGCTGGATCGATGATGTGAACCAAGGAAGCGTTCTGCATGAACATAGAGGTTGGAGTCTGAGC NFSAI-5NFSAI-5 TGGTTCACATCATCGATCCAGAGCAGAAGAAGAAGATCAGAGAACTCTGCAACCAGAAGTTGGTTCACATCATCGATCCAGAGCAGAAGAAGAAGATCAGAGAACTCTGCAACCAGAGAGT NFSAI-6NFSAI-6 TCAACGACGAAGATGAAGAGATCACCTTCAGCACCGACATACTTCTGGTTGCAGAGTTCTTCAACGACGAAGATGAAGAGATCACCTTCAGCACCGACATACTTCTGGTTGCAGAGTTCT NFSAI-7NFSAI-7 CTCTTCATCTTCGTCGTTGACTTGTACAGAAACCAACAGATCAGAAAGCAACTTGGTAAGCTCTTCATCTTCGTCGTTGACTTGTACAGAAACCAACAGATCAGAAAGCAACTTGGTAAG NFSAI-8NFSAI-8 CTTGGAAGAAGATGTCGATGGTGTGAACTCTGCCATCATCCTTACCAAGTTGCTTTCTGACTTGGAAGAAGATGTCGATGGTGTGAACTCTGCCATCATCCTTACCAAGTTGCTTTCTGA NFSAI-9NFSAI-9 CATCGACATCTTCTTCCAAGCTATGGAAGACACCCTGCTTGCTTACCAGAACGTTGCCAACATCGACATCTTCTTCCAAGCTATGGAAGACACCCTGCTTGCTTACCAGAACGTTGCCAA NFSAI-10NFSAI-10 ACCAAGTGGAACGTAACCCAGATCCATAGATTCGACAGCATTGGCAACGTTCTGGTAAGCACCAAGTGGAACGTAACCCAGATCCATAGATTCGACAGCATTGGCAACGTTCTGGTAAGC NFSAI-11NFSAI-11 TGGGTTACGTTCCACTTGGTACTGTCAACGATCATCCACTTGAGATGCTCAAGACCCTTGTGGGTTACGTTCCACTTGGTACTGTCAACGATCATCCACTTGAGATGCTCAAGACCCTTG NFSAI-12NFSAI-12 ACTTGCATACCAAGGACTGGAAAGGTCAGTTCTGGCAGGTCAAGGGTCTTGAGCATCTCAACTTGCATACCAAGGACTGGAAAGGTCAGTTCTGGCAGGTCAAGGGTCTTGAGCATCTCA NFSAI-13NFSAI-13 CCAGTCCTTGGTATGCAAGTTGGTGTTCCAGACCAGAAACCACAACTGAAGCCAAGACTTCCAGTCCTTGGTATGCAAGTTGGTGTTCCAGACCAGAAACCACAACTGAAGCCAAGACTT NFSAI-14NFSAI-14 CCTTGTCATACTTACCTTCAAAGCAGATGAACTTGAGTGGAAGTCTTGGCTTCAGTTGTGCCTTGTCATACTTACCTTCAAAGCAGATGAACTTGAGTGGAAGTCTTGGCTTCAGTTGTG NFSAI-15NFSAI-15 TGAAGGTAAGTATGACAAGGACTTCAACGTCAAGGACCTGAAGGACTACGATCAAGTCGTTGAAGGTAAGTATGACAAGGACTTCAACGTCAAGGACCTGAAGGACTACGATCAAGTCGT NFSAI-16NFSAI-16 GATTCTTCTGTTGGAGTCTCTCAGGTCGTAGTAGGTGGTGACGACTTGATCGTAGTCCTTGATTCTTCTGTTGGAGTCTCTCAGGTCGTAGTAGGTGGTGACGACTTGATCGTAGTCCTT NFSAI-17NFSAI-17 GAGACTCCAACAGAAGAATCGACTCCTTCACCAAGCAGATCACTGGTGCTAAGCTCGACAGAGACTCCAACAGAAGAATCGACTCCTTCACCAAGCAGATCACTGGTGCTAAGCTCGACA NFSAI-18NFSAI-18 TGAAGTTCCTCTGGAAGTTCGTCTCTGTCAGTCTCATGGTTGTCGAGCTTAGCACCAGTGTGAAGTTCCCTCTGGAAGTTCGTCTCTGTCAGTCTCATGGTTGTCGAGCTTAGCACCAGTG NFSAI-19NFSAI-19 GAACTTCCAGAGGAACTTCACAAGCAAGGCTTGTGCTTGGACTGGAAATAAGAGCTCGAGCTC。GAACTTCCAGAGGAACTTCACAAGCAAGGCTTGTGCTTGGACTGGAAATAAGAGCTCGAGCTC.
CN201310684941.7A 2013-12-13 2013-12-13 A kind of NFSAI gene coming from Lactobacterium acidophilum and its preparation method and application Expired - Fee Related CN103695442B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310684941.7A CN103695442B (en) 2013-12-13 2013-12-13 A kind of NFSAI gene coming from Lactobacterium acidophilum and its preparation method and application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310684941.7A CN103695442B (en) 2013-12-13 2013-12-13 A kind of NFSAI gene coming from Lactobacterium acidophilum and its preparation method and application

Publications (2)

Publication Number Publication Date
CN103695442A CN103695442A (en) 2014-04-02
CN103695442B true CN103695442B (en) 2016-01-20

Family

ID=50357106

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310684941.7A Expired - Fee Related CN103695442B (en) 2013-12-13 2013-12-13 A kind of NFSAI gene coming from Lactobacterium acidophilum and its preparation method and application

Country Status (1)

Country Link
CN (1) CN103695442B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1345589A (en) * 2000-09-28 2002-04-24 上海信谊药业有限公司 Medicinal preparation containing lactobacillus acidophilus and preparation method thereof
CN1641014A (en) * 2004-01-18 2005-07-20 北京三元食品股份有限公司 Acidophilic lactobacillus and its use

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1345589A (en) * 2000-09-28 2002-04-24 上海信谊药业有限公司 Medicinal preparation containing lactobacillus acidophilus and preparation method thereof
CN1641014A (en) * 2004-01-18 2005-07-20 北京三元食品股份有限公司 Acidophilic lactobacillus and its use

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NADPH-flavin oxidoreductase[Lactobacillus acidophilus];RefSeq;《GenBank:WP_003546159.1》;20130524 *

Also Published As

Publication number Publication date
CN103695442A (en) 2014-04-02

Similar Documents

Publication Publication Date Title
CN104263730B (en) miRNA of rice and precursor gene of miRNA, and applications of miRNA in breeding of cadmium sensitive transgenic rice
CN101955521A (en) Plant stress tolerance associated protein, and coded genes and application thereof
CN104342442B (en) A kind of No. 9 GmNAC4 gene Salt treatment promoteres of Semen sojae atricolor sage's bean
Feng et al. Development and drought tolerance assay of marker-free transgenic rice with OsAPX2 using biolistic particle-mediated co-transformation
CN111593058A (en) Bna-miR169n gene and application thereof in controlling drought resistance of brassica napus
CN110358776B (en) A pathogenicity-related gene of Rhizoctonia solani and its application
CN108977445A (en) Application of the arabidopsis microRNA400 in regulation cadmium-resistant vegetable
CN101333541B (en) Naphthalene dioxygenase plant expression vector and its construction method and application
CN112322648A (en) A kind of ABC transporter gene MRP1S and its preparation method and application
CN104404043B (en) Promoter of gene Me094 related to bacterial-blight resistance of Oryza meyeriana
CN103468738B (en) A kind ofly transgenic plant are utilized to improve method to degrading polycyclic aromatic hydrocarbons ability
CN101280289B (en) Method for improving resistance of rice plant to cnaphalocrocis medinalis by transgenic technology
CN102010864B (en) Maize Pollen Tissue-Specific Promoter and Its Expression Vector
CN103172718B (en) Plant low nitrogen stress resistant related protein GmDUF-CBS and encoding gene and application thereof
CN108384792B (en) Tomato SlCYP724B2 gene and its application
CN111778226A (en) A Plasma Membrane H+-ATPase Protein Related to Alkali Tolerance in Rice and Its Application
CN103695442B (en) A kind of NFSAI gene coming from Lactobacterium acidophilum and its preparation method and application
CN110904106A (en) Application of Chunlan miR159b in enhancing plant cold sensitivity
CN104140462B (en) Plant salt endurance associated protein GhSnRK2-6 and encoding gene thereof and application
CN100348613C (en) Plant adversity resistance related protein and its coding gene and uses
CN113372425A (en) Application of arabidopsis gene in improvement of cadmium tolerance of plant
CN111826380A (en) Application of a gene derived from Klebsiella pneumoniae
CN106518992B (en) Sclerotinia sclerotiorum heterokaryon-incompatible YD-7 protein and its encoding gene and application
CN102533789A (en) OYE 3 gene deriving from saccharomyces cerevisiae and preparation method and application thereof
CN117247949B (en) Notoginseng disease course related protein 1 gene PnPR1-8 and its application

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160120