CN103686237A - Method and system for recommending video resources - Google Patents
Method and system for recommending video resources Download PDFInfo
- Publication number
- CN103686237A CN103686237A CN201310578787.5A CN201310578787A CN103686237A CN 103686237 A CN103686237 A CN 103686237A CN 201310578787 A CN201310578787 A CN 201310578787A CN 103686237 A CN103686237 A CN 103686237A
- Authority
- CN
- China
- Prior art keywords
- user
- group
- video
- users
- videos
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 33
- 230000008569 process Effects 0.000 claims abstract description 11
- 230000000694 effects Effects 0.000 abstract description 2
- 230000009471 action Effects 0.000 description 21
- 230000008901 benefit Effects 0.000 description 3
- 238000010606 normalization Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Images
Landscapes
- Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)
Abstract
本发明公开了推荐视频资源的方法及系统,包括:收集各用户观看视频过程中的历史记录;对收集到的各用户的历史记录进行统计,根据每一用户观看的各类型视频的数量计算其观看各类型视频的数量占比,生成各特定视频类型对应的包括典型用户的用户组;分别获取各特定类型的用户组内典型用户在其他维度上的数据特征,确定各特定类型的用户在其他维度上的组特征;判断典型用户外的其他用户在其他维度上的数据特征,是否满足某特定类型组的组特征,如果是,则将该用户加入该特定类型的用户组;根据各用户组所对应的特定类型信息,向用户组内的用户推荐对应的视频资源。通过本发明,在用户观看视频时可以有针对性的进行内容推荐,提高推荐效果。
The invention discloses a method and system for recommending video resources, including: collecting historical records in the process of watching videos by each user; making statistics on the collected historical records of each user, and calculating the number of videos of various types watched by each user. View the proportion of the number of videos of each type, and generate user groups including typical users corresponding to each specific type of video; respectively obtain the data characteristics of typical users in other dimensions in each specific type of user group, and determine the specific types of users in other dimensions. Group characteristics on the dimension; determine whether the data characteristics of other users other than typical users on other dimensions meet the group characteristics of a specific type of group, and if so, add the user to the specific type of user group; according to each user group The corresponding specific type information is used to recommend corresponding video resources to the users in the user group. Through the present invention, when a user watches a video, content recommendation can be carried out in a targeted manner, and the recommendation effect can be improved.
Description
技术领域 technical field
本发明涉及智能电视技术领域,特别是涉及推荐视频资源的方法及系统。 The present invention relates to the field of smart TV technology, in particular to a method and system for recommending video resources.
背景技术 Background technique
随着手机和平板电脑的大面积智能化,智能电视也正逐步进入我们的生活。智能电视像智能手机一样,具有全开放式平台,搭载了操作系统,可以由用户自行安装和卸载软件、游戏等程序,这类程序可能是智能电视生产商提供的,还可能是第三方服务商提供的,通过此类程序可以不断对智能电视的功能进行扩充。另外,还可以通过网线、无线网络来实现上网冲浪等。即,真正的智能电视能从网络、AV设备、PC等多种渠道获得节目内容,通过简单易用的整合式操作界面,简易操作即可将消费者最需要的内容在大屏幕上清晰地展现。 With the widespread intelligence of mobile phones and tablet computers, smart TVs are gradually entering our lives. Smart TVs, like smart phones, have a fully open platform and are equipped with an operating system. Users can install and uninstall software, games and other programs by themselves. Such programs may be provided by smart TV manufacturers or third-party service providers. Provided, through such programs, the functions of smart TVs can be continuously expanded. In addition, it is also possible to surf the Internet through a network cable or a wireless network. That is, a real smart TV can obtain program content from various channels such as the Internet, AV equipment, and PC, and through an easy-to-use integrated operation interface, the content most needed by consumers can be clearly displayed on the large screen through simple operations .
目前,用户从智能电视获取资源的方式一般只有两种。一种是最传统的方式,也即用户自己通过智能电视界面中提供的各种访问入口,主动选择信息源之后进行点击观看。例如,用户可以选择观看传统的电视信号源,或者智能电视服务器提供的轮播频道中的节目,等等。另一种是服务器向用户推送一些推荐信息,例如将最近的热门视频推送给用户,用户进行被动的接收。 At present, there are generally only two ways for users to obtain resources from smart TVs. One is the most traditional way, that is, the user actively selects the information source through various access portals provided in the smart TV interface, and then clicks to watch. For example, a user may choose to watch a traditional TV signal source, or a program in a carousel channel provided by a smart TV server, and so on. The other is that the server pushes some recommended information to the user, such as pushing the latest popular videos to the user, and the user receives it passively.
通过向用户推送一些视频的方式,使得用户可以通过智能电视获得更丰富的信息。但是,现有技术在进行视频信息的推送时,主要考虑的是视频的热门程度等信息,推送给用户之后,多数用户可能对其并不感兴趣,进而被用户忽略,浪费了推送过程所耗费的系统及网络资源。 By pushing some videos to the user, the user can obtain richer information through the smart TV. However, when the existing technology pushes video information, it mainly considers information such as the popularity of the video. After pushing to users, most users may not be interested in it, and then they are ignored by users, wasting the time spent in the push process. system and network resources.
因此,迫切需要本领域技术人员解决的技术问题就在于,在向用户推送视频信息的过程中,如何使得推荐的有效性得到提高。 Therefore, a technical problem that urgently needs to be solved by those skilled in the art is how to improve the effectiveness of recommendation during the process of pushing video information to users.
发明内容 Contents of the invention
针对现有技术中存在的缺陷,本发明提供一种推荐视频资源的方法及系统。 Aiming at the defects in the prior art, the present invention provides a method and system for recommending video resources.
一种推荐视频资源的方法,包括: A method for recommending video resources, comprising:
收集各用户观看视频过程中的历史记录;所述历史记录包括观看过的各视频类型,以及至少一种其他维度上的数据; Collect historical records of each user watching videos; the historical records include the types of videos watched and data on at least one other dimension;
对收集到的各用户的历史记录进行统计,根据每一用户观看的各类型视频的数量计算其观看各类型视频的数量占比,并将该用户归入数量占比大于组阈值的特定类型视频所对应的用户组,该用户定义为典型用户,生成各特定视频类型对应的包括典型用户的用户组; Make statistics on the collected historical records of each user, calculate the proportion of the number of videos watched by each user according to the number of videos of each type watched by each user, and classify the user into a specific type of video whose quantity ratio is greater than the group threshold The corresponding user group, the user is defined as a typical user, and a user group including typical users corresponding to each specific video type is generated;
分别获取各特定类型的用户组内典型用户在其他维度上的数据特征,确定各特定类型的用户在其他维度上的组特征; Obtain the data characteristics of typical users in other dimensions in each specific type of user group respectively, and determine the group characteristics of each specific type of user in other dimensions;
判断典型用户外的其他用户在其他维度上的数据特征,是否满足某特定类型的用户组的组特征,如果是,则将该用户加入该特定类型的用户组; Determine whether the data characteristics of users other than typical users in other dimensions meet the group characteristics of a specific type of user group, and if so, add the user to the specific type of user group;
根据各用户组所对应的特定类型信息,向用户组内的用户推荐对应的视频资源。 According to the specific type information corresponding to each user group, corresponding video resources are recommended to users in the user group.
可选地:所述至少一种其他维度上的数据包括,用户观看各类型视频的观看时长、用户观看视频的时间段分布、用户观看同一视频的次数、用户进行搜索的次数和搜索内容、用户使用应用的次数、和用户对推荐类的消息的点击次数。 Optionally: the data on the at least one other dimension includes, the viewing duration of users watching various types of videos, the time period distribution of users watching videos, the number of times users watch the same video, the number of times users search and search content, user The number of times the application is used, and the number of times the user clicks on the recommended message.
可选地:所述收集各用户观看视频过程中的历史记录包括:当用户观看视频的时长大于第一下限值时,记录其历史记录。 Optionally: the collecting the history records of each user during watching the video includes: recording the history records of the users when the duration of watching the video is longer than the first lower limit.
可选地:所述收集各用户观看视频过程中的历史记录包括,对收集到的历史记录进行归一化处理,删除重复数据。 Optionally: the collecting the historical records of each user during watching the video includes performing normalization processing on the collected historical records and deleting duplicate data.
可选地:所述组阈值为用户观看的各类型视频的数量占比的第二下限值。 Optionally: the group threshold is the second lower limit value of the proportion of the number of videos of various types watched by the user.
可选地,还包括:计算典型用户外的其他用户观看的各类型视频的数量计算各类型的数量占比,判断该数量占比是否大于等于对应组的组阈值,若大于等于组阈值则将其划入该组;若占比小于各分组的组阈值,则获得该用户在其他维度上的数据特征。 Optionally, it also includes: calculating the number of videos of each type watched by other users other than the typical user, calculating the number ratio of each type, and judging whether the number ratio is greater than or equal to the group threshold of the corresponding group, and if it is greater than or equal to the group threshold, the It is classified into this group; if the proportion is less than the group threshold of each group, the data characteristics of the user in other dimensions are obtained.
可选地,还包括:对于历史记录条数大于第三下限值的用户进行统计分组,对于分组后的用户在每增加一定条数的记录后重新对该用户进行统计分组。 Optionally, the method further includes: statistically grouping the users whose history records are greater than the third lower limit, and re-grouping the grouped users after adding a certain number of records.
可选地:所述向用户组内的用户推荐对应视频包括对同一视频进行跨组推荐。 Optionally: the recommending corresponding videos to users in the user group includes recommending the same video across groups.
一种推荐视频资源的系统,包括: A system for recommending video resources, comprising:
历史记录获取模块,用于收集各用户观看视频过程中的历史记录,所述历史记录包括观看过的各视频类型,以及至少一种其他维度上的数据; A historical record acquisition module, configured to collect historical records of each user watching a video, the historical records including the types of videos watched, and at least one other dimension of data;
典型用户选取划分模块,对收集到的各用户的历史记录进行统计,根据每一用户观看的各类型视频的数量计算其观看各类型视频的数量占比,并将该用户归入数量占比大于组阈值的特定类型视频所对应的用户组,该用户定义为典型用户,生成各特定视频类型对应的包括典型用户的用户组; A typical user selects the division module, collects statistics on the historical records of each user, calculates the proportion of each type of video watched by each user according to the number of videos watched by each user, and classifies the user as a number whose proportion is greater than The user group corresponding to the specific type of video of the group threshold, the user is defined as a typical user, and a user group including typical users corresponding to each specific video type is generated;
模型训练模块,用于分别获取各特定类型的用户组内典型用户在其他维度上的数据特征,确定该组在其他维度上的组特征; The model training module is used to respectively obtain the data characteristics of typical users in other dimensions in each specific type of user group, and determine the group characteristics of the group in other dimensions;
用户分组模块,用于判断典型用户外的其他用户在其他维度上的数据特征,是否满足某特定类型的用户组的组特征,如果是,则将该用户加入该特定类型的用户组; The user grouping module is used to determine whether the data characteristics of other users other than typical users in other dimensions meet the group characteristics of a specific type of user group, and if so, add the user to the specific type of user group;
视频推荐模块,用于根据各用户组所对应的特定类型信息,向用户组内的用户推荐对应的视频资源。 The video recommendation module is configured to recommend corresponding video resources to users in the user group according to the specific type information corresponding to each user group.
可选地:所述至少一种其他维度上的数据包括,用户观看各类型视频的观看时长、用户观看视频的时间段分布、用户观看同一视频的次数、用户进行搜索的次数和搜索内容、用户使用应用的次数、和用户对推荐类的消息的点击次数。 Optionally: the data on the at least one other dimension includes, the viewing duration of users watching various types of videos, the time period distribution of users watching videos, the number of times users watch the same video, the number of times users search and search content, user The number of times the application is used, and the number of times the user clicks on the recommended message.
与现有技术相比,上述技术方案中的一个技术方案具有以下优点或有益效果: Compared with the prior art, one of the above technical solutions has the following advantages or beneficial effects:
通过统计用户观看视频的历史数据,可以判定该用户属于何种观影分类类型,通过统计用户数据在不同角度上的数据分布,能够较为准确的实现对用户所属类别的分组,这样在用户观看视频时就可以有针对性的进行内容推荐,提高了推荐效果。 By counting the historical data of users watching videos, it is possible to determine which viewing category the user belongs to. By counting the data distribution of user data at different angles, it is possible to more accurately group users into categories. In this way, when users watch videos It is possible to carry out targeted content recommendation and improve the recommendation effect.
the
附图说明 Description of drawings
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中: Various other advantages and benefits will become apparent to those of ordinary skill in the art upon reading the following detailed description of the preferred embodiment. The drawings are only for the purpose of illustrating a preferred embodiment and are not to be considered as limiting the invention. Also throughout the drawings, the same reference numerals are used to designate the same components. In the attached picture:
图1 是本发明实施例提供的推荐视频资源的方法流程图; Fig. 1 is the method flowchart of the recommended video resource provided by the embodiment of the present invention;
图2 是本发明实施例提供的推荐视频资源的装置结构示意图。 FIG. 2 is a schematic structural diagram of a device for recommending video resources provided by an embodiment of the present invention.
the
具体实施方式 Detailed ways
下面结合附图,进一步阐述本发明。应理解,这些实施例仅用 于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授 的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式 同样落于本申请所附权利要求书所限定的范围。 Below in conjunction with accompanying drawing, further elaborate the present invention. It should be understood that these examples are only used to illustrate the present invention and are not intended to limit the scope of the present invention. In addition, it should be understood that after reading the content taught by the present invention, those skilled in the art can make various changes or modifications to the present invention, and these equivalent forms also fall within the scope defined by the appended claims of the present application. the
本发明的智能电视系统包括客户端和服务器,用户通过客户端登陆特定账号后可以访问服务器上的各种视频资源,客户端可以是运行在智能电视终端的应用程序,通过终端设备用户可以收看服务器上的视频资源。服务器保存有各账号的观看历史记录,通过对观看历史记录的分析向不同用户推荐其感兴趣的视频资源。下面通过具体的实施例对本发明做进一步介绍。 The smart TV system of the present invention includes a client and a server, and users can access various video resources on the server after logging in to a specific account through the client. video resources on . The server saves the viewing history records of each account, and recommends video resources of interest to different users by analyzing the viewing history records. The present invention will be further introduced below through specific embodiments.
实施例1 Example 1
如图1所示,本发明首先提供一种推荐视频资源的方法。视频资源按其类型可以划分为动作片、文艺片、记录片、动漫片等,在视频观看过程中由于每个人的观看习惯、个人喜好不同,每个用户观看各类型视频的数量占比是不同的,如果用户的历史观看记录中能够明显的体现出,用户对某种类型视频的观看数量占比显著高于其他类型,则可以据此将该用户划分到该类型的用户组中。例如用户可以分为动作组、文艺组、记录片组、动漫组等。当然,还有一些用户的观看记录中可能无法直接从观看的视频类型数量占比方面,体现出某一类型的显著性,此时,如何确定这些用户所属的用户组,则成为重点需要解决的问题。下面具体介绍用户划分的过程。 As shown in FIG. 1 , the present invention firstly provides a method for recommending video resources. Video resources can be divided into action films, literary films, documentaries, animation films, etc. according to their types. During the video viewing process, due to the different viewing habits and personal preferences of each person, the proportion of the number of videos watched by each user is different. , if the user's historical viewing records can clearly reflect that the user's viewing ratio of a certain type of video is significantly higher than that of other types, then the user can be classified into the user group of this type. For example, users can be divided into action group, art group, documentary group, animation group and so on. Of course, the viewing records of some users may not be able to reflect the significance of a certain type directly from the proportion of the number of video types watched. At this time, how to determine the user group to which these users belong has become a key problem to be solved. question. The process of user division is described in detail below.
S101:收集各用户观看视频过程中的历史记录;所述历史记录包括观看过的各视频类型,以及至少一种其他维度上的数据; S101: Collect historical records of each user watching videos; the historical records include the types of videos watched and data in at least one other dimension;
为了能对众多用户进行划分,首先需要记录用户的观看历史记录。具体实现时,在用户使用其帐号登录到服务器之后,服务器可以接收账号信息,判断账号信息的合法性,当账号信息合法时收集该账号所对应的用户观看视频过程中观看过的各视频类型的历史记录。其中,具体实现时,用户可以通过扫描二维码,输入用户ID、密码,等方式登陆服务器。关于用户的观看历史记录,可以是由客户端进行收集,然后上传到服务器,这样,服务器就可以获取到各个客户端的历史观看记录。其中,客户端可以采用实时上传的方式,或者采用定期上传(例如,每周上传一次),或者定量上传(例如,每记录10M的数据上传一次),等等。 In order to classify many users, it is first necessary to record the viewing history of the users. In specific implementation, after the user logs in to the server using his account, the server can receive the account information, judge the legitimacy of the account information, and when the account information is legal, collect the data of each video type that the user corresponding to the account has watched while watching the video. history record. Wherein, during specific implementation, the user may log in to the server by scanning a two-dimensional code, inputting a user ID and password, and other methods. The viewing history of the user may be collected by the client, and then uploaded to the server, so that the server can obtain the historical viewing records of each client. Among them, the client can upload in real time, or upload periodically (for example, upload once a week), or upload quantitatively (for example, upload once every recorded 10M data), and so on.
其中,历史记录可以包括用户观看的各类型视频的数量,各类型视频的观看时长,用户观看视频的时间段分布;用户观看同一视频的次数;用户进行搜索的次数和搜索内容的类型分布;用户使用应用的次数和应用的类型分布;用户对推荐类的消息的点击次数和比例等。 Among them, the historical records may include the number of various types of videos watched by the user, the viewing duration of each type of video, the time period distribution of the user watching the video; the number of times the user watches the same video; the number of times the user searches and the type distribution of the search content; The number of times the application is used and the type distribution of the application; the number and proportion of user clicks on recommended messages, etc.
服务器可以根据用户观看视频的时长来来判断是否需要记录该次观看行为,具体而言可以是:服务器以分为单位记录用户观看时间,当用户在某视频停留时间低于阈值时,例如1分钟,则此次行为无效,不予记录。这样既减小了数据记录量,记录的内容也更准确。 The server can judge whether it is necessary to record the viewing behavior according to the length of time the user watches the video. Specifically, the server can record the user's viewing time in minutes. , the action is invalid and will not be recorded. This not only reduces the amount of data recording, but also records more accurately.
服务器接收到各用户观看历史记录后,首先可以对数据进行归一化处理,删除重复数据。然后就可以根据处理完后的历史记录,计算用户观看各类型视频的占比。例如,历史记录中存在100条观看记录,在这100条观看记录中用户观看动作片的记录是70条,观看文艺片的记录是10条等,则计算得到用户观看动作类视频的占比为70%,文艺类视频的占比为10%等。 After the server receives the viewing history records of each user, it can firstly perform normalization processing on the data and delete duplicate data. Then, based on the processed historical records, the proportion of users watching various types of videos can be calculated. For example, there are 100 viewing records in the historical records. Among the 100 viewing records, the user watched 70 action movies, 10 literary movies, etc., then the calculated proportion of users watching action videos is 70%, literary and artistic videos accounted for 10% and so on.
S102:对收集到的各用户的历史记录进行统计,根据每一用户观看的各类型视频的数量计算其观看各类型视频的数量占比,并将该用户归入数量占比大于组阈值的特定类型视频所对应的用户组,该用户定义为典型用户,生成各特定视频类型对应的包括典型用户的用户组; S102: Make statistics on the collected historical records of each user, calculate the proportion of the number of videos watched by each user according to the number of videos of each type watched by each user, and classify the user into a specific group whose number ratio is greater than the group threshold The user group corresponding to the type of video, the user is defined as a typical user, and a user group including typical users corresponding to each specific video type is generated;
在已存在历史记录的用户中,一些用户具有明显的分类特征,如某些用户观看动作类视频的比例大于60%,某些用户观看文艺类视频的比例大于70%,某些用户观看动漫类视频的比例大于80%等等,则这些用户可以对应的分入动作组、文艺组、动漫组等。而另一些用户不具有明显特征,例如有些用户的历史记录不完整,其中可能存在缺失的数据,例如,有些视频的类型难以划分,则系统就无法获得这次观看历史记录中的视频类型的记录,或者观看过程中网络中断导致无法获得观看时长等等情况,或者有些用户观看类型分类不明确,如一些用户观看各类型的占比基本相同,比如观看动作类的占比为30%、观看文艺类的占比为31%、观看动漫类的占比为28%等,对于这些用户难以向其推荐视频。 Among the users with existing historical records, some users have obvious classification characteristics. For example, some users watch more than 60% of action videos, some users watch more than 70% of literary videos, and some users watch animation videos. If the proportion of video is greater than 80%, etc., these users can be divided into action group, art group, animation group, etc. correspondingly. Other users do not have obvious characteristics. For example, some users have incomplete historical records, and there may be missing data. For example, some video types are difficult to classify, so the system cannot obtain the record of the video type in this viewing history. , or the network is interrupted during the viewing process and the viewing duration cannot be obtained, etc., or the classification of some users’ viewing types is not clear. It is difficult to recommend videos to these users.
为了解决这一问题,本发明选取一部分具有明显分类特征的用户进行组划分,确定观看特定类型视频的数量占比大于组阈值的典型用户,为下文的模型训练做准备。例如选取1000个用户,这1000个用户观看对应类型视频的占比均大于对应的组阈值,例如1000个用户中属于动作组的用户观看动作类视频的占比大于60%,属于文艺类组的用户观看文艺类视频的占比大于65%等。这种用户称为典型用户,这里60%、65%称为组阈值,不同组的组阈值既可以相同也可以不同,其组阈值可以动态调整。 In order to solve this problem, the present invention selects a part of users with obvious classification characteristics to divide into groups, and determines the typical users whose proportion of watching a specific type of video is greater than the group threshold, so as to prepare for the following model training. For example, if 1,000 users are selected, the proportion of the 1,000 users who watch the corresponding type of video is greater than the corresponding group threshold. For example, among the 1,000 users, the proportion of users who belong to the action group to watch action videos is greater than 60%, and those who belong to the art group The proportion of users watching literary and artistic videos is greater than 65%. Such users are called typical users, and here 60% and 65% are called group thresholds. The group thresholds of different groups can be the same or different, and the group thresholds can be adjusted dynamically.
S103:分别获取各特定类型的用户组内典型用户在其他维度上的数据特征,确定各特定类型的用户在其他维度上的组特征; S103: Obtain the data characteristics of typical users in other dimensions in each specific type of user group respectively, and determine the group characteristics of each specific type of user in other dimensions;
在完成对典型用户分组后,进行模型训练,获取对应分组内各典型用户在其他维度上的数据特征。下面以动作类为例对其进行说明,如1000个用户中属于动作组的用户为100人,这100人观看动作类视频的占比均大于60%,除了观看视频类型占比大于60%这一数据特征为,该组还存在一些其他维度上的数据特征,如此类用户平均观影时间大于60分钟,且观影时段经常在晚上看,对推荐类的消息点击比例平均大于70%,在该例中用户平均观影时间、观影时段、推荐类的消息点击比例被称为其他维度上的数据。 After completing the grouping of typical users, perform model training to obtain the data characteristics of each typical user in the corresponding group in other dimensions. The following uses the action category as an example to illustrate it. For example, among 1000 users, there are 100 users belonging to the action group, and the proportion of these 100 people watching action videos is greater than 60%, except that the proportion of watching video types is greater than 60%. The first data feature is that this group also has some data features in other dimensions. For example, the average viewing time of such users is more than 60 minutes, and the viewing time is often at night, and the average click rate on recommended messages is greater than 70%. In this example, the user's average movie watching time, movie watching time period, and the proportion of clicks on recommended messages are referred to as data on other dimensions.
再比如1000个用户中属于文艺组的用户为200人,这200人观看文艺类视频的占比均大于65%,除了观看视频类型占比大于65%这一数据特征为,该组还存在一些其他维度上的数据特征,如此类此类用户观影时段经常在中午,用户观看同一视频的次数大于10次,搜索内容的类型分布中文艺类占比大于40%等,在该例中用户观影时段、用户观看同一视频的次数、搜索内容的类型分布被称为其他维度上的数据。 Another example is that among the 1,000 users, there are 200 users belonging to the literature and art group. The proportion of these 200 people watching literature and art videos is greater than 65%. Data characteristics in other dimensions, for example, the viewing time of such users is often at noon, the number of times users watch the same video is more than 10 times, and the type of search content is more than 40% in the art category. In this example, users view Movie time period, the number of times users watch the same video, and the type distribution of search content are called data on other dimensions.
通过这种模型训练可以获得各组用户在其他维度上的数据特征,本领域技术人员应当明了,在收集到的历史观看记录中,任何不同于观看各视频类型的占比的数据,均可称为其他维度上的数据,本发明实施例并非意在限制其他维度上的数据所包含的内容。 Through this model training, the data characteristics of each group of users in other dimensions can be obtained. Those skilled in the art should understand that in the collected historical viewing records, any data that is different from the proportion of watching each video type can be called It is data in other dimensions, and the embodiment of the present invention is not intended to limit the content included in the data in other dimensions.
S104:判断典型用户外的其他用户在其他维度上的数据特征,是否满足某特定类型用户组的组特征,如果是,则将该用户加入该特定类型的用户组; S104: Determine whether the data characteristics of other users other than typical users in other dimensions meet the group characteristics of a specific type of user group, and if so, add the user to the specific type of user group;
获得其他维度上的数据特征之后,可以用这些数据特征对典型用户之外的其他用户进行分组。相当于利用训练出的模型,对用户进行分类。 After obtaining data characteristics in other dimensions, these data characteristics can be used to group users other than typical users. It is equivalent to using the trained model to classify users.
具体而言可以是首先判断所获取的历史记录中关于其观看视频类型的记录是否完整,若记录完整,则对其计算其观看各视频类型的占比,判断这一占比是否大于对应组的组阈值,若大于组阈值则将其划入该组。在判断历史记录中关于其观看视频类型的记录是否完整时,可以设置一下限值,对于缺失数据大于下限值的用户才进一步进行其他维度上的判断,例如对于缺失记录大于10%的用户才进行进一步进行其他维度上的判断,这一下限值可以动态调整。 Specifically, it can be first judged whether the record about the type of video watched in the acquired historical records is complete, if the record is complete, then calculate the proportion of each video type it watches, and judge whether this proportion is greater than that of the corresponding group Group threshold, if it is greater than the group threshold, it will be classified into this group. When judging whether the records about the type of video they watched in the historical records are complete, you can set a lower limit value, and only for users whose missing data is greater than the lower limit value can further judge in other dimensions, for example, only for users whose missing records are greater than 10% For further judgments in other dimensions, this lower limit can be dynamically adjusted.
若记录不完整或其占比小于各分组的组阈值,则获得该用户其他维度上的数据特征,判断其是否满足某特定类型中通过模型训练统计出的其他维度上的数据特征,满足则将其分入该组,若判断后发现不存在于该用户对应的分组,即该用户不能划入任何一个类型的组,则将该用户分组未分组用户。 If the record is incomplete or its proportion is less than the group threshold of each group, the data characteristics of the user in other dimensions are obtained, and it is judged whether it meets the data characteristics of other dimensions in a certain type that are statistically obtained through model training. It is classified into this group. If it is found after the judgment that it does not exist in the group corresponding to the user, that is, the user cannot be classified into any type of group, then the user will be grouped into an ungrouped user.
例如对于某一用户,历史记录中存在500条记录,则系统首先判断这500历史记录中关于其观看视频类型的记录是否完整,若记录完整,则对其计算其观看各视频类型的占比,若这500条记录中有400条为观看动作类的记录,则数量占比为80%,其大于动作组的组阈值60%,那么将其划入动作组;若这500条记录中有100条为观看动作类的记录,或者500历史记录中关于其观看视频类型的记录是不完整,则判断该用户的所述至少一种其他维度上的数据是否满足某特定类型中统计出所述特征,如判断用户平均观影时间是否大于60分钟,是否经常在晚上看,对推荐类的消息点击比例是否大于70%,若满足这些条件,则将该用户划入动作组;若判断后发现不存在于该用户对应的分组,即该用户不能划入任何一个类型的组,则将该用户分组至未分组用户。 For example, for a certain user, there are 500 records in the historical records, the system first judges whether the records about the types of videos watched by the user in the 500 historical records are complete, and if the records are complete, calculate the proportion of each video type watched by the user. If 400 of the 500 records are viewing action records, the proportion of the number is 80%, which is greater than the group threshold of 60% of the action group, then it will be classified into the action group; if there are 100 of the 500 records is a record of watching actions, or the record about the type of video watched in the 500 historical records is incomplete, then judge whether the data on the user’s said at least one other dimension satisfies the characteristics of a specific type , such as judging whether the user’s average viewing time is greater than 60 minutes, whether they often watch movies at night, and whether the proportion of clicks on recommended messages is greater than 70%. If these conditions are met, the user is classified into the action group; There is a group corresponding to the user, that is, the user cannot be classified into any type of group, then the user is grouped into an ungrouped user.
应当理解,本发明的同一用户可以分组不同的组,例如对于同一用户,其他维度上的数据可能同时满足多个对应分组模型中统计出所述其他维度上的数据特征,则将该用户同时分入这两个组。 It should be understood that the same user in the present invention can be grouped into different groups. For example, for the same user, the data on other dimensions may simultaneously satisfy the data characteristics on the other dimensions in multiple corresponding grouping models, and the user is divided into groups at the same time. into these two groups.
本发明中,随着用户观看时间的增加,其历史记录的信息越来越丰富,为了更加准确的实现对用户的分组,系统只对于用户的历史记录条数大于下限值的用户进行统计分组,这一下限值例如可以是10条。分组后系统可以在每增加一定条数的记录后重新对用户进行统计分组,例如记录条数新增10条之后,系统会对原有记录和新增的这10条记录重新进行统计分组。 In the present invention, as the viewing time of users increases, the information of their historical records becomes more and more abundant. In order to realize the grouping of users more accurately, the system only performs statistical grouping for users whose historical records are greater than the lower limit. , the lower limit may be 10, for example. After grouping, the system can re-group the users after adding a certain number of records. For example, after adding 10 records, the system will re-group the original records and the 10 new records.
S105:根据各用户组所对应的特定类型信息,向用户组内的用户推荐对应的视频资源。 S105: According to the specific type information corresponding to each user group, recommend corresponding video resources to users in the user group.
对用户分组完成后,用户通过账号登陆系统后,就可以将历史记录与用户账号进行关联,分析用户的观看习惯比如爱看电视剧,爱看电影,电视剧爱看国产或者美剧,电影爱看科幻片,恐怖片或者爱情片等等,根据各用户对应的组信息,向用户推荐特定类型的视频资源。例如服务器记录的某一账号属于动作组,则当用户通过该账号登陆后,系统自动向其推荐动作类视频。同一视频可以进行跨组推荐,如对于同时具有动作和喜剧特征的视频,则将该视频同时推荐给动作组合喜剧组,优选是推荐给两个组的交集用户。 After the user grouping is completed, after the user logs in to the system through the account, the history record can be associated with the user account, and the user's viewing habits can be analyzed, such as watching TV series, watching movies, watching domestic or American dramas for TV series, and watching sci-fi movies for movies. , horror movies or romance movies, etc., recommend specific types of video resources to users according to the group information corresponding to each user. For example, if an account recorded by the server belongs to the action group, the system will automatically recommend action videos to the user after logging in through the account. The same video can be recommended across groups. For example, for a video with both action and comedy features, the video is recommended to the action combination comedy group at the same time, preferably to the intersection users of the two groups.
可以采用海报或消息的方式向用户推荐视频,海报画面会在客户端开机时显示,例如若客户端为电视,则在电视开机画面中显示向用户推荐的相关视频,画面包含链接,用户点击画面可以直接链接到相关视频进行观看;或者在用户观看视频过程中通过弹出消息来向用户推荐,消息中包含视频名称、视频地址、缩略图等。 Videos can be recommended to users in the form of posters or messages. The poster screen will be displayed when the client is turned on. For example, if the client is a TV, related videos recommended to users will be displayed on the TV startup screen. The screen contains links, and the user clicks on the screen You can directly link to related videos to watch; or recommend to users by popping up messages during the process of watching videos. The messages include video names, video addresses, thumbnails, etc.
当用户没有通过账号登陆或者用户为新注册用户或者用户属于未分组用户组,则系统可以根据他当前所观看的视频类型,向其推荐该类型的其他视频,这样方便用户观看同类视频,或进行随机推荐。 When the user does not log in through the account or the user is a newly registered user or the user belongs to an ungrouped user group, the system can recommend other videos of this type to him according to the type of video he is currently watching, so that it is convenient for the user to watch similar videos, or random recommendation.
实施例2 Example 2
如图2所示,本发明还提供一种推荐视频资源的系统。系统包括客户端和服务器,用户通过客户端登陆特定账号后可以访问服务器上的各种视频资源,客户端是运行在智能电视终端的应用程序,通过终端设备用户可以收看服务器上的视频资源。服务器保存有各账号的观看历史记录,通过对观看历史记录的分析向不同用户推荐其感兴趣的视频资源。 As shown in FIG. 2 , the present invention also provides a system for recommending video resources. The system includes a client and a server. Users can access various video resources on the server after logging in to a specific account through the client. The client is an application program running on a smart TV terminal. Users can watch video resources on the server through the terminal device. The server saves the viewing history records of each account, and recommends video resources of interest to different users by analyzing the viewing history records.
历史记录获取模块201,用于收集各用户观看视频过程中的历史记录,所述历史记录包括观看过的各视频类型,以及至少一种其他维度上的数据;
A historical
典型用户选取划分模块202,对收集到的各用户的历史记录进行统计,根据每一用户观看的各类型视频的数量计算其观看各类型视频的数量占比,并将该用户归入数量占比大于组阈值的特定类型视频所对应的用户组,该用户定义为典型用户,生成各特定视频类型对应的包括典型用户的用户组;
A typical user selects the
模型训练模块203,用于分别获取各特定类型的用户组内典型用户在其他维度上的数据特征,确定该组在其他维度上的组特征;
The
用户分组模块204,用于判断典型用户外的其他用户在其他维度上的数据特征,是否满足某特定类型用户组的组特征,如果是,则将该用户加入该特定类型的用户组;
The
视频推荐模块205,用于根据各用户组所对应的特定类型信息,向用户组内的用户推荐对应的视频资源。
The
其中,所述至少一种其他维度上的数据包括,用户观看各类型视频的观看时长、用户观看视频的时间段分布、用户观看同一视频的次数、用户进行搜索的次数和搜索内容、用户使用应用的次数、和用户对推荐类的消息的点击次数。 Wherein, the data on the at least one other dimension includes the viewing time of various types of videos that users watch, the time period distribution of users watching videos, the number of times users watch the same video, the number of times users search and what they search for, and the number of times users use applications. The number of times, and the number of user clicks on recommended messages.
具体实现时,所述历史记录获取模块具体用于:当用户观看视频的时长大于第一下限值时,记录其历史记录。所述组阈值为用户观看的各类型视频的数量占比的第二下限值。 During specific implementation, the historical record acquisition module is specifically configured to: record the user's historical record when the duration of watching the video by the user is greater than the first lower limit value. The group threshold is the second lower limit value of the proportion of the number of videos of various types watched by the user.
为了降低计算量,该系统还可以包括: In order to reduce the amount of computation, the system can also include:
归一化处理模块,用于对收集到的历史记录进行归一化处理,删除重复数据。 The normalization processing module is used for normalizing the collected historical records and deleting duplicate data.
第一判断模块,用于计算典型用户外的其他用户观看的各类型视频的数量计算各类型的数量占比,判断该数量占比是否大于等于对应组的组阈值,若大于等于组阈值则将其划入该组;若占比小于各分组的组阈值,则触发所述用户分组模块执行所述判断在其他维度上的数据特征的操作。 The first judging module is used to calculate the quantity of each type of video watched by other users other than the typical user, calculate the quantity proportion of each type, and judge whether the quantity proportion is greater than or equal to the group threshold of the corresponding group. If it is greater than or equal to the group threshold, then the It is classified into the group; if the proportion is less than the group threshold of each group, the user grouping module is triggered to perform the operation of judging the data characteristics in other dimensions.
重新分组模块,用于对于历史记录条数大于第三下限值的用户进行统计分组,对于分组后的用户在每增加一定条数的记录后重新对该用户进行统计分组。 The regrouping module is used to perform statistical grouping on users whose history record number is greater than the third lower limit, and perform statistical grouping on the grouped users every time a certain number of records is added.
对于前述的各装置实施例,为了简单描述,故将其都表述为一系列的模块组合,但是本领域的技术人员应该知悉,本发明并不受所描述的模块组合的限制,因为根据本发明,某些模块可以采用其他模块执行;其次,本领域技术人员也应该知悉,上述装置实施例均属于优选实施例,所涉及的模块并不一定是本发明所必须的。 For the aforementioned device embodiments, for the sake of simple description, they are expressed as a series of module combinations, but those skilled in the art should know that the present invention is not limited by the described module combinations, because according to the present invention , some modules can be implemented by other modules; secondly, those skilled in the art should also know that the above device embodiments are all preferred embodiments, and the modules involved are not necessarily required by the present invention.
本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。对于系统实施例而言,由于其与方法实施例基本相似,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。 Each embodiment in this specification is described in a progressive manner, each embodiment focuses on the difference from other embodiments, and the same and similar parts of each embodiment can be referred to each other. As for the system embodiment, since it is basically similar to the method embodiment, the description is relatively simple, and for the related parts, please refer to the part of the description of the method embodiment.
以上对本发明所提供的推荐视频资源的方法及系统,进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。 The method and system for recommending video resources provided by the present invention are described above in detail. In this paper, specific examples are used to illustrate the principle and implementation of the present invention. The descriptions of the above embodiments are only used to help understand the present invention. method and its core idea; at the same time, for those of ordinary skill in the art, according to the idea of the present invention, there will be changes in the specific implementation and application scope. Invention Limitations.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310578787.5A CN103686237B (en) | 2013-11-19 | 2013-11-19 | Recommend the method and system of video resource |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310578787.5A CN103686237B (en) | 2013-11-19 | 2013-11-19 | Recommend the method and system of video resource |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103686237A true CN103686237A (en) | 2014-03-26 |
CN103686237B CN103686237B (en) | 2017-03-08 |
Family
ID=50322315
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310578787.5A Active CN103686237B (en) | 2013-11-19 | 2013-11-19 | Recommend the method and system of video resource |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103686237B (en) |
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104469432A (en) * | 2014-12-31 | 2015-03-25 | 合一网络技术(北京)有限公司 | A User-Based Viewer Rating Correction Method and Device |
CN104469430A (en) * | 2014-12-24 | 2015-03-25 | 武汉泰迪智慧科技有限公司 | Video recommending method and system based on context and group combination |
CN104954877A (en) * | 2015-06-29 | 2015-09-30 | 冯旋宇 | Set top box data loading method and system |
CN105163142A (en) * | 2015-09-09 | 2015-12-16 | 青岛海信传媒网络技术有限公司 | User preference determination method, video recommendation method, user preference determination system and video recommendation system |
CN105426688A (en) * | 2015-12-07 | 2016-03-23 | 杭州聪宝科技有限公司 | Personalized video content pushing method based on traditional Chinese medicine constitution data of users |
CN105516279A (en) * | 2015-11-30 | 2016-04-20 | 海信集团有限公司 | User account creating method and device |
CN105550334A (en) * | 2015-12-22 | 2016-05-04 | 海信集团有限公司 | Video recommendation method and device |
CN105898433A (en) * | 2016-05-27 | 2016-08-24 | 青岛海信电器股份有限公司 | Television program recommendation method and device |
CN105912544A (en) * | 2015-12-14 | 2016-08-31 | 乐视网信息技术(北京)股份有限公司 | Method and device for matching video content, server, and video playing system |
CN106131632A (en) * | 2016-06-29 | 2016-11-16 | 乐视控股(北京)有限公司 | Opening video playing method, device and terminal |
CN106231379A (en) * | 2016-07-29 | 2016-12-14 | 广州酷狗计算机科技有限公司 | A kind of methods, devices and systems playing live video |
CN106303591A (en) * | 2015-06-03 | 2017-01-04 | 中移(苏州)软件技术有限公司 | A kind of video recommendation method and device |
CN106604068A (en) * | 2016-12-30 | 2017-04-26 | 中广热点云科技有限公司 | Method and system for updating media program |
CN107153907A (en) * | 2017-03-22 | 2017-09-12 | 华为技术有限公司 | The method and relevant apparatus of a kind of potential user for assessing video traffic |
CN107690638A (en) * | 2015-06-07 | 2018-02-13 | 苹果公司 | The reader application and method with personalized feed for recommending to keep privacy of user simultaneously are provided |
CN108304525A (en) * | 2018-01-25 | 2018-07-20 | 阿里巴巴集团控股有限公司 | A kind of determination method and device of condition data |
CN108614856A (en) * | 2018-03-21 | 2018-10-02 | 北京奇艺世纪科技有限公司 | A kind of video sequence calibration method and device |
CN109547814A (en) * | 2018-12-13 | 2019-03-29 | 北京达佳互联信息技术有限公司 | Video recommendation method, device, server and storage medium |
CN109769145A (en) * | 2018-11-28 | 2019-05-17 | 北京达佳互联信息技术有限公司 | Access control method, device, terminal and the storage medium of short-sighted frequency |
CN109934748A (en) * | 2019-03-25 | 2019-06-25 | 京工博创(北京)科技有限公司 | A kind of personalized course method for customizing based under the conditions of big data |
CN110213660A (en) * | 2019-05-27 | 2019-09-06 | 广州荔支网络技术有限公司 | Distribution method, system, computer equipment and the storage medium of program |
CN110784531A (en) * | 2019-10-24 | 2020-02-11 | 北京联卓信息技术有限公司 | Advertisement display method and system for mobile phone video software |
CN110971973A (en) * | 2019-12-03 | 2020-04-07 | 北京奇艺世纪科技有限公司 | Video pushing method and device and electronic equipment |
CN111028572A (en) * | 2019-12-31 | 2020-04-17 | 浙江正元智慧科技股份有限公司 | Online education platform |
CN111125498A (en) * | 2018-10-30 | 2020-05-08 | 百度在线网络技术(北京)有限公司 | User attribute distinguishing method, device, equipment and computer readable medium |
CN112417263A (en) * | 2019-08-23 | 2021-02-26 | 北京达佳互联信息技术有限公司 | Data recommendation method and device and storage medium |
CN113014938A (en) * | 2021-02-24 | 2021-06-22 | 北京金和网络股份有限公司 | Multi-dimensional live video recommendation method and device |
CN113378020A (en) * | 2021-06-08 | 2021-09-10 | 深圳Tcl新技术有限公司 | Acquisition method, device and computer readable storage medium for similar film watching users |
CN114598932A (en) * | 2020-12-04 | 2022-06-07 | 深圳Tcl新技术有限公司 | Program recommendation method, terminal and storage medium |
CN116233498A (en) * | 2023-03-09 | 2023-06-06 | 联通沃音乐文化有限公司 | Audio-video playing control method based on AI artificial intelligence |
CN118690047A (en) * | 2024-08-23 | 2024-09-24 | 天津市天益达科技发展有限公司 | A video recommendation method and system based on big data |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1756336A (en) * | 2004-09-29 | 2006-04-05 | 松下电器产业株式会社 | TV channel recommendation system and recommendation method |
CN102088626A (en) * | 2009-12-02 | 2011-06-08 | Tcl集团股份有限公司 | On-line video recommendation method and video portal service system |
CN102236669A (en) * | 2010-04-30 | 2011-11-09 | 腾讯科技(深圳)有限公司 | Recommendation list generation method, device, media server, client and method |
CN102306178A (en) * | 2011-08-25 | 2012-01-04 | 盛乐信息技术(上海)有限公司 | Video recommendation method and device |
CN102421025A (en) * | 2011-11-22 | 2012-04-18 | 康佳集团股份有限公司 | Television program navigation method and system based on program content attributes |
CN102843586A (en) * | 2011-06-21 | 2012-12-26 | 华为软件技术有限公司 | Video recommendation method and terminal |
CN102946566A (en) * | 2012-10-24 | 2013-02-27 | 北京奇虎科技有限公司 | Video recommending method and device based on historical information |
CN102968446A (en) * | 2012-10-24 | 2013-03-13 | 北京奇虎科技有限公司 | Video recommendation method and video recommendation device |
CN103020161A (en) * | 2012-11-26 | 2013-04-03 | 北京奇虎科技有限公司 | On-line video recommending method recommending system, and processing system |
US8418205B2 (en) * | 2008-11-18 | 2013-04-09 | Electronics And Telecommunications Research Institute | Method and apparatus for recommending personalized content |
CN103167330A (en) * | 2011-12-15 | 2013-06-19 | 盛乐信息技术(上海)有限公司 | Method and system for audio/video recommendation |
-
2013
- 2013-11-19 CN CN201310578787.5A patent/CN103686237B/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1756336A (en) * | 2004-09-29 | 2006-04-05 | 松下电器产业株式会社 | TV channel recommendation system and recommendation method |
US8418205B2 (en) * | 2008-11-18 | 2013-04-09 | Electronics And Telecommunications Research Institute | Method and apparatus for recommending personalized content |
CN102088626A (en) * | 2009-12-02 | 2011-06-08 | Tcl集团股份有限公司 | On-line video recommendation method and video portal service system |
CN102236669A (en) * | 2010-04-30 | 2011-11-09 | 腾讯科技(深圳)有限公司 | Recommendation list generation method, device, media server, client and method |
CN102843586A (en) * | 2011-06-21 | 2012-12-26 | 华为软件技术有限公司 | Video recommendation method and terminal |
CN102306178A (en) * | 2011-08-25 | 2012-01-04 | 盛乐信息技术(上海)有限公司 | Video recommendation method and device |
CN102421025A (en) * | 2011-11-22 | 2012-04-18 | 康佳集团股份有限公司 | Television program navigation method and system based on program content attributes |
CN103167330A (en) * | 2011-12-15 | 2013-06-19 | 盛乐信息技术(上海)有限公司 | Method and system for audio/video recommendation |
CN102946566A (en) * | 2012-10-24 | 2013-02-27 | 北京奇虎科技有限公司 | Video recommending method and device based on historical information |
CN102968446A (en) * | 2012-10-24 | 2013-03-13 | 北京奇虎科技有限公司 | Video recommendation method and video recommendation device |
CN103020161A (en) * | 2012-11-26 | 2013-04-03 | 北京奇虎科技有限公司 | On-line video recommending method recommending system, and processing system |
Cited By (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104469430A (en) * | 2014-12-24 | 2015-03-25 | 武汉泰迪智慧科技有限公司 | Video recommending method and system based on context and group combination |
CN104469432A (en) * | 2014-12-31 | 2015-03-25 | 合一网络技术(北京)有限公司 | A User-Based Viewer Rating Correction Method and Device |
CN104469432B (en) * | 2014-12-31 | 2017-12-05 | 合一网络技术(北京)有限公司 | A kind of audience ratings modification method and device based on user |
CN106303591A (en) * | 2015-06-03 | 2017-01-04 | 中移(苏州)软件技术有限公司 | A kind of video recommendation method and device |
CN106303591B (en) * | 2015-06-03 | 2019-05-28 | 中移(苏州)软件技术有限公司 | A kind of video recommendation method and device |
CN107690638B (en) * | 2015-06-07 | 2022-01-04 | 苹果公司 | Reader application and method with personalized feed providing recommendations while maintaining user privacy |
CN107690638A (en) * | 2015-06-07 | 2018-02-13 | 苹果公司 | The reader application and method with personalized feed for recommending to keep privacy of user simultaneously are provided |
CN104954877B (en) * | 2015-06-29 | 2019-02-12 | 深圳市微浦技术有限公司 | The data load method and system of set-top box |
CN104954877A (en) * | 2015-06-29 | 2015-09-30 | 冯旋宇 | Set top box data loading method and system |
CN105163142A (en) * | 2015-09-09 | 2015-12-16 | 青岛海信传媒网络技术有限公司 | User preference determination method, video recommendation method, user preference determination system and video recommendation system |
CN105163142B (en) * | 2015-09-09 | 2018-10-26 | 聚好看科技股份有限公司 | A kind of user preference determines method, video recommendation method and system |
CN105516279A (en) * | 2015-11-30 | 2016-04-20 | 海信集团有限公司 | User account creating method and device |
CN105516279B (en) * | 2015-11-30 | 2019-06-28 | 海信集团有限公司 | A kind of user account creation method and device |
CN105426688A (en) * | 2015-12-07 | 2016-03-23 | 杭州聪宝科技有限公司 | Personalized video content pushing method based on traditional Chinese medicine constitution data of users |
CN105426688B (en) * | 2015-12-07 | 2018-12-21 | 杭州聪宝科技有限公司 | Individualized video content push system based on user's tcm constitution data |
CN105912544A (en) * | 2015-12-14 | 2016-08-31 | 乐视网信息技术(北京)股份有限公司 | Method and device for matching video content, server, and video playing system |
CN105550334A (en) * | 2015-12-22 | 2016-05-04 | 海信集团有限公司 | Video recommendation method and device |
CN105550334B (en) * | 2015-12-22 | 2019-01-22 | 海信集团有限公司 | A kind of video recommendation method and device |
CN105898433B (en) * | 2016-05-27 | 2019-08-06 | 青岛海信电器股份有限公司 | TV programme suggesting method and device |
CN105898433A (en) * | 2016-05-27 | 2016-08-24 | 青岛海信电器股份有限公司 | Television program recommendation method and device |
CN106131632A (en) * | 2016-06-29 | 2016-11-16 | 乐视控股(北京)有限公司 | Opening video playing method, device and terminal |
CN106231379A (en) * | 2016-07-29 | 2016-12-14 | 广州酷狗计算机科技有限公司 | A kind of methods, devices and systems playing live video |
CN106604068A (en) * | 2016-12-30 | 2017-04-26 | 中广热点云科技有限公司 | Method and system for updating media program |
CN106604068B (en) * | 2016-12-30 | 2019-11-05 | 中广热点云科技有限公司 | A kind of method and its system of more new media program |
CN107153907A (en) * | 2017-03-22 | 2017-09-12 | 华为技术有限公司 | The method and relevant apparatus of a kind of potential user for assessing video traffic |
CN108304525B (en) * | 2018-01-25 | 2022-02-11 | 创新先进技术有限公司 | Condition data determination method and device |
CN108304525A (en) * | 2018-01-25 | 2018-07-20 | 阿里巴巴集团控股有限公司 | A kind of determination method and device of condition data |
CN108614856A (en) * | 2018-03-21 | 2018-10-02 | 北京奇艺世纪科技有限公司 | A kind of video sequence calibration method and device |
CN108614856B (en) * | 2018-03-21 | 2021-01-05 | 北京奇艺世纪科技有限公司 | Video sequencing calibration method and device |
CN111125498B (en) * | 2018-10-30 | 2023-06-06 | 百度在线网络技术(北京)有限公司 | User attribute distinguishing method, device, equipment and computer readable medium |
CN111125498A (en) * | 2018-10-30 | 2020-05-08 | 百度在线网络技术(北京)有限公司 | User attribute distinguishing method, device, equipment and computer readable medium |
CN109769145A (en) * | 2018-11-28 | 2019-05-17 | 北京达佳互联信息技术有限公司 | Access control method, device, terminal and the storage medium of short-sighted frequency |
CN109547814A (en) * | 2018-12-13 | 2019-03-29 | 北京达佳互联信息技术有限公司 | Video recommendation method, device, server and storage medium |
CN109547814B (en) * | 2018-12-13 | 2021-07-16 | 北京达佳互联信息技术有限公司 | Video recommendation method and device, server and storage medium |
CN109934748A (en) * | 2019-03-25 | 2019-06-25 | 京工博创(北京)科技有限公司 | A kind of personalized course method for customizing based under the conditions of big data |
CN110213660B (en) * | 2019-05-27 | 2021-08-20 | 广州荔支网络技术有限公司 | Program distribution method, system, computer device and storage medium |
CN110213660A (en) * | 2019-05-27 | 2019-09-06 | 广州荔支网络技术有限公司 | Distribution method, system, computer equipment and the storage medium of program |
CN112417263A (en) * | 2019-08-23 | 2021-02-26 | 北京达佳互联信息技术有限公司 | Data recommendation method and device and storage medium |
CN112417263B (en) * | 2019-08-23 | 2024-01-09 | 北京达佳互联信息技术有限公司 | Data recommendation method, device and storage medium |
CN110784531A (en) * | 2019-10-24 | 2020-02-11 | 北京联卓信息技术有限公司 | Advertisement display method and system for mobile phone video software |
CN110971973A (en) * | 2019-12-03 | 2020-04-07 | 北京奇艺世纪科技有限公司 | Video pushing method and device and electronic equipment |
CN111028572A (en) * | 2019-12-31 | 2020-04-17 | 浙江正元智慧科技股份有限公司 | Online education platform |
CN114598932A (en) * | 2020-12-04 | 2022-06-07 | 深圳Tcl新技术有限公司 | Program recommendation method, terminal and storage medium |
CN113014938A (en) * | 2021-02-24 | 2021-06-22 | 北京金和网络股份有限公司 | Multi-dimensional live video recommendation method and device |
CN113014938B (en) * | 2021-02-24 | 2022-06-14 | 北京金和网络股份有限公司 | Multi-dimensional live video recommendation method and device |
CN113378020A (en) * | 2021-06-08 | 2021-09-10 | 深圳Tcl新技术有限公司 | Acquisition method, device and computer readable storage medium for similar film watching users |
CN116233498A (en) * | 2023-03-09 | 2023-06-06 | 联通沃音乐文化有限公司 | Audio-video playing control method based on AI artificial intelligence |
CN116233498B (en) * | 2023-03-09 | 2023-10-10 | 联通沃音乐文化有限公司 | Audio-video playing control method based on AI artificial intelligence |
CN118690047A (en) * | 2024-08-23 | 2024-09-24 | 天津市天益达科技发展有限公司 | A video recommendation method and system based on big data |
CN118690047B (en) * | 2024-08-23 | 2024-11-19 | 天津市天益达科技发展有限公司 | Video recommendation method and system based on big data |
Also Published As
Publication number | Publication date |
---|---|
CN103686237B (en) | 2017-03-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103686237A (en) | Method and system for recommending video resources | |
CN103647800B (en) | Recommend the method and system of application resource | |
CN103686236A (en) | Method and system for recommending video resources | |
US9967628B2 (en) | Rating videos based on parental feedback | |
US20240211524A1 (en) | Managing access rights to content using social media | |
CN104486649B (en) | Video content ranking method and device | |
CN103686375A (en) | Video sharing method and device | |
CN105163142B (en) | A kind of user preference determines method, video recommendation method and system | |
US11558480B2 (en) | Tracking content use via social media | |
CN103945430B (en) | A kind of mobile terminal style recommends method and device | |
US11720628B2 (en) | Playlist analytics | |
US9998554B2 (en) | Customized graphic identifiers | |
CN101715104A (en) | Network interaction reading system and method for user and content management | |
CN104639957A (en) | Mobile multimedia terminal, video program recommendation method and server | |
CN104484435B (en) | The method of alternate analysis user behavior | |
CN106534984B (en) | Television program pushing method and device | |
CN102572543A (en) | Digital television program recommending system and method thereof | |
CN106303591B (en) | A kind of video recommendation method and device | |
CN112328895A (en) | User portrait generation method, device, server and storage medium | |
CN103942247A (en) | Method and device for providing information of multimedia resources | |
US20160021051A1 (en) | Providing Access To Content Via Social Media | |
CN201532715U (en) | Network interactive point-and-read system capable of performing user and content management | |
CN105472460A (en) | Intelligent sorting method and system for TV application programs | |
Liu et al. | Peripheral sensing: Monitoring quality of experience for video services based on mobile terminals | |
CN114915847A (en) | A data preprocessing method and system for IPTV intelligent terminal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
PP01 | Preservation of patent right |
Effective date of registration: 20170721 Granted publication date: 20170308 |
|
PP01 | Preservation of patent right | ||
PD01 | Discharge of preservation of patent | ||
PD01 | Discharge of preservation of patent |
Date of cancellation: 20200721 Granted publication date: 20170308 |
|
CP03 | Change of name, title or address | ||
CP03 | Change of name, title or address |
Address after: 300453 Tianjin Binhai New Area, Tianjin Eco-city, No. 126 Animation and Animation Center Road, Area B1, Second Floor 201-427 Patentee after: Xinle Visual Intelligent Electronic Technology (Tianjin) Co.,Ltd. Address before: 300467 Tianjin Binhai New Area, ecological city, animation Middle Road, building, No. two, B1 District, 201-427 Patentee before: LE SHI ZHI XIN ELECTRONIC TECHNOLOGY (TIANJIN) Ltd. Address after: Room 301-1, Room 301-3, Area B2, Animation Building, No. 126 Animation Road, Zhongxin Eco-city, Tianjin Binhai New Area, Tianjin Patentee after: LE SHI ZHI XIN ELECTRONIC TECHNOLOGY (TIANJIN) Ltd. Address before: 300453 Tianjin Binhai New Area, Tianjin Eco-city, No. 126 Animation and Animation Center Road, Area B1, Second Floor 201-427 Patentee before: Xinle Visual Intelligent Electronic Technology (Tianjin) Co.,Ltd. |
|
PP01 | Preservation of patent right | ||
PP01 | Preservation of patent right |
Effective date of registration: 20210201 Granted publication date: 20170308 |