CN103682094A - Phase change memory structure and manufacturing method thereof - Google Patents
Phase change memory structure and manufacturing method thereof Download PDFInfo
- Publication number
- CN103682094A CN103682094A CN201310673872.XA CN201310673872A CN103682094A CN 103682094 A CN103682094 A CN 103682094A CN 201310673872 A CN201310673872 A CN 201310673872A CN 103682094 A CN103682094 A CN 103682094A
- Authority
- CN
- China
- Prior art keywords
- phase change
- layer
- dielectric layer
- change memory
- phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000015654 memory Effects 0.000 title claims abstract description 53
- 230000008859 change Effects 0.000 title claims abstract description 42
- 238000004519 manufacturing process Methods 0.000 title claims description 6
- 239000012782 phase change material Substances 0.000 claims abstract description 46
- 239000000758 substrate Substances 0.000 claims abstract description 26
- 238000000034 method Methods 0.000 claims description 23
- 238000005498 polishing Methods 0.000 claims description 23
- 239000000463 material Substances 0.000 claims description 21
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 14
- 238000005530 etching Methods 0.000 claims description 14
- 239000000126 substance Substances 0.000 claims description 13
- 239000004065 semiconductor Substances 0.000 claims description 12
- 238000005229 chemical vapour deposition Methods 0.000 claims description 8
- 238000000151 deposition Methods 0.000 claims description 8
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 6
- 229910052710 silicon Inorganic materials 0.000 claims description 6
- 239000010703 silicon Substances 0.000 claims description 6
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 6
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 6
- 230000008569 process Effects 0.000 claims description 5
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 claims description 4
- 238000005137 deposition process Methods 0.000 claims description 4
- 239000000377 silicon dioxide Substances 0.000 claims description 4
- 229910000618 GeSbTe Inorganic materials 0.000 claims description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 3
- COGOJRKCCAQAPE-UHFFFAOYSA-N [N].[Si].[Ti] Chemical compound [N].[Si].[Ti] COGOJRKCCAQAPE-UHFFFAOYSA-N 0.000 claims description 3
- 230000002378 acidificating effect Effects 0.000 claims description 3
- 238000000231 atomic layer deposition Methods 0.000 claims description 3
- 239000003990 capacitor Substances 0.000 claims description 3
- VDDXNVZUVZULMR-UHFFFAOYSA-N germanium tellurium Chemical class [Ge].[Te] VDDXNVZUVZULMR-UHFFFAOYSA-N 0.000 claims description 3
- 238000005240 physical vapour deposition Methods 0.000 claims description 3
- 235000012239 silicon dioxide Nutrition 0.000 claims description 3
- DDJAGKOCVFYQOV-UHFFFAOYSA-N tellanylideneantimony Chemical class [Te]=[Sb] DDJAGKOCVFYQOV-UHFFFAOYSA-N 0.000 claims description 3
- 239000010936 titanium Substances 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- -1 titanium aluminum nitrogen Chemical compound 0.000 claims description 3
- 238000001039 wet etching Methods 0.000 claims description 3
- 238000000059 patterning Methods 0.000 claims description 2
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 claims 1
- 230000003071 parasitic effect Effects 0.000 abstract description 6
- 238000002360 preparation method Methods 0.000 abstract description 3
- 210000004027 cell Anatomy 0.000 abstract 2
- 210000000352 storage cell Anatomy 0.000 abstract 1
- 229910052751 metal Inorganic materials 0.000 description 10
- 239000002184 metal Substances 0.000 description 10
- 238000010586 diagram Methods 0.000 description 9
- 230000004888 barrier function Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 125000006850 spacer group Chemical group 0.000 description 3
- 238000013500 data storage Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000007517 polishing process Methods 0.000 description 1
Images
Landscapes
- Semiconductor Memories (AREA)
Abstract
本发明涉及一种相变存储器结构及其制备方法,制备的相变存储结构包括基底和位于所述基底上的若干相邻的相变存储单元;相变存储单元包括相变材料层、位于相变材料层两侧的第一电介质层、位于相变材料层及其两侧第一电介质层上表面上的上电极层、以及第二电介质层,所述第二电介质层包覆于所述第一电介质层和上电极层外且填充于相邻的相变存储单元之间;相邻两个相变存储单元的第一电介质层之间形成有空气间隔,且所述空气间隔位于第二电介质层之内;所述空气间隔能够增大相变单元间的热阻、减少器件操作中的热损失从而降低操作功耗,同时也可减少存储单元间的热串扰;另一方面具有空气间隔的存储器件可以降低导线间的寄生电容,以提高操作速度。
The invention relates to a phase-change memory structure and a preparation method thereof. The prepared phase-change memory structure includes a substrate and several adjacent phase-change memory units located on the substrate; the phase-change memory unit comprises a phase-change material layer, located The first dielectric layer on both sides of the phase change material layer, the upper electrode layer on the upper surface of the phase change material layer and the first dielectric layer on both sides, and the second dielectric layer, the second dielectric layer covers the first dielectric layer A dielectric layer and the upper electrode layer are filled between adjacent phase-change memory cells; an air gap is formed between the first dielectric layers of two adjacent phase-change memory cells, and the air gap is located in the second dielectric layer Within the layer; the air gap can increase the thermal resistance between the phase change units, reduce the heat loss in device operation, thereby reducing the operating power consumption, and also reduce the thermal crosstalk between the storage cells; on the other hand, the air gap has an air gap Memory devices can reduce parasitic capacitance between wires to increase operating speed.
Description
技术领域 technical field
本发明涉及一种相变存储器结构及其制备方法,属于相变存储器或高密度相变存储器件领域。 The invention relates to a phase-change memory structure and a preparation method thereof, belonging to the field of phase-change memory or high-density phase-change memory devices. the
背景技术 Background technique
相变存储器是一种新型的非易失性数据存储器件,利用相变合金材料在晶态和非晶态之间相互转化时所表现出来的导电性或光学特性差异来实现数据存储。相变存储器具有高速读取、高可擦写次数、非易失性、器件尺寸小、功耗低和制造工艺简单等优点,可取代多种传统的存储器,并广泛应用于移动通讯、移动数据终端、移动多媒体等消费类电子等领域。 Phase change memory is a new type of non-volatile data storage device, which uses the difference in electrical conductivity or optical properties of phase change alloy materials when they transform between crystalline and amorphous states to achieve data storage. Phase-change memory has the advantages of high-speed reading, high erasable times, non-volatility, small device size, low power consumption, and simple manufacturing process. It can replace a variety of traditional memories and is widely used in mobile communications, mobile data Terminals, mobile multimedia and other consumer electronics and other fields. the
在相变存储器的商品化过程中仍然面对诸多可靠性,功耗,速度等挑战。在相变存储器单元的操作过程中,采用产生焦耳热对相变单元进行晶态与非晶态的转换,其中伴随着复杂的热学过程。上述过程中产生的焦耳热中,一部分用于对相变单元的操作,其它的热量则通过周围的电介质与金属散失。在T型结构的相变单元中,约四分之一的热量散失中周边的电介质中。通过减少存储器中的热散失以提高热效率是降低相变存储器的功耗的有效途径之一。常用集成电路中常用材料的热导率如表1所示,空气的热导率远小于常规的电介质如二氧化硅。采用空气间隔结构可有效地增大相变单元之间的热阻,从而降低相变存储器的功耗。与此同时,通过空气间隔结构增大相变单元之间的热阻也对存储单元之间的热串扰提供了一个解决方案。 In the process of commercialization of phase change memory, there are still many challenges in terms of reliability, power consumption, and speed. During the operation of the phase-change memory unit, Joule heat is used to convert the phase-change unit from a crystalline state to an amorphous state, which is accompanied by a complicated thermal process. Part of the Joule heat generated in the above process is used for the operation of the phase change unit, and other heat is dissipated through the surrounding dielectric and metal. In a T-shaped phase-change cell, about a quarter of the heat is lost to the surrounding dielectric. Improving thermal efficiency by reducing heat loss in the memory is one of the effective ways to reduce the power consumption of the phase change memory. The thermal conductivity of commonly used materials in common integrated circuits is shown in Table 1. The thermal conductivity of air is much smaller than that of conventional dielectrics such as silicon dioxide. Adopting the air gap structure can effectively increase the thermal resistance between the phase change units, thereby reducing the power consumption of the phase change memory. At the same time, increasing the thermal resistance between the phase change units through the air space structure also provides a solution to the thermal crosstalk between the storage units. the
表1:常用集成电路中常用材料的热导率 Table 1: Thermal conductivity of commonly used materials in commonly used integrated circuits
与此同时,随着存储器密度的不断提高,金属连线间的时间延迟(τ)对存储器运行速度也不断增大。金属连线的时间延迟可用金属导线的电阻值(R)与金属导线间的寄生电容(C)的乘积来表达。目前为了降低金属电线的电阻已大量采用电阻率较低的铜导线,与此同时,采用较低介电常数(k)的电介质以降低金属导线间的寄生电容则是降低时间延迟的另一选择。目前主要使用的低介电常数材料主要有FSG、HSQ、SiLKTM、BD、CDO、NDC等。上述低介电常数材料基本上同时具有低介电常数,低表面导电性等性能,然而仍然面临诸如可靠性、机械强度低或与金属整合差等问题。由于空气的理想介电常数接近于1,因此使用空气作为金属间的绝缘物质也是一种有效地降低金属导线间寄生电容的解决方案之一。 At the same time, with the continuous improvement of the memory density, the time delay (τ) between the metal wirings is also increasing to the operating speed of the memory. The time delay of the metal connection can be expressed by the product of the resistance (R) of the metal wire and the parasitic capacitance (C) between the metal wires. At present, in order to reduce the resistance of metal wires, a large number of copper wires with low resistivity have been used. At the same time, using a dielectric with a lower dielectric constant (k) to reduce the parasitic capacitance between metal wires is another option to reduce time delay. . The low dielectric constant materials mainly used at present mainly include FSG, HSQ, SiLK TM , BD, CDO, NDC and so on. The above-mentioned low dielectric constant materials basically have properties such as low dielectric constant and low surface conductivity at the same time, but still face problems such as reliability, low mechanical strength or poor integration with metals. Since the ideal dielectric constant of air is close to 1, using air as an insulating substance between metals is also one of the solutions to effectively reduce the parasitic capacitance between metal wires.
鉴于此,一种高效可行的具有空气间隔的相变存储结构及制作方法具有重大意义。本发明可以提供一完整的解决方案,可达到量产规模。 In view of this, an efficient and feasible phase-change memory structure with air gaps and a fabrication method are of great significance. The invention can provide a complete solution and can reach mass production scale. the
发明内容 Contents of the invention
本发明的目的在于克服现有技术的缺点,提供一种相变存储结构及制作方法,通过在相变存储单元之间形成大量的空气间隔,进而有效地增大相变单元之间的热阻,从而降低相变存储器的功耗。同时,具有大量空气间隔也可以达到减少集成电路中的时间延迟的功效。 The purpose of the present invention is to overcome the shortcomings of the prior art, and provide a phase change memory structure and manufacturing method, by forming a large number of air gaps between the phase change memory units, and then effectively increasing the thermal resistance between the phase change units , thereby reducing the power consumption of the phase change memory. At the same time, having a large amount of air space can also achieve the effect of reducing the time delay in the integrated circuit. the
本发明是通过以下技术方案实现的: The present invention is achieved through the following technical solutions:
一种相变存储器结构,包括基底和位于所述基底上的若干相邻的相变存储单元; A phase-change memory structure comprising a substrate and several adjacent phase-change memory cells located on the substrate;
所述相变存储单元包括相变材料层、位于所述相变材料层两侧的第一电介质层、位于所述相变材料层及其两侧第一电介质层上表面上的上电极层、以及第二电介质层,所述第二电介质层包覆于所述第一电介质层和上电极层外且填充于相邻的相变存储单元之间; The phase change memory unit includes a phase change material layer, a first dielectric layer located on both sides of the phase change material layer, an upper electrode layer located on the upper surface of the phase change material layer and the first dielectric layer on both sides, And a second dielectric layer, the second dielectric layer is covered outside the first dielectric layer and the upper electrode layer and filled between adjacent phase-change memory cells;
相邻两个相变存储单元的第一电介质层之间形成有空气间隔,且所述空气间隔位于第二电介质层之内; An air space is formed between the first dielectric layers of two adjacent phase change memory cells, and the air space is located within the second dielectric layer;
所述相变材料层的纵截面为倒梯形; The longitudinal section of the phase change material layer is an inverted trapezoid;
所述上电极层的纵截面为梯形。 The longitudinal section of the upper electrode layer is trapezoidal. the
所述基底为半导体衬底,例如单晶硅的半导体衬底或其他材料的半导体衬底。 The base is a semiconductor substrate, such as a semiconductor substrate of single crystal silicon or a semiconductor substrate of other materials. the
所述基底上还设有已经制作完成的半导体器件,如MOS晶体管、二极管、BJT、电极、电阻、电容等。 The substrate is also provided with fabricated semiconductor devices, such as MOS transistors, diodes, BJTs, electrodes, resistors, capacitors and the like. the
所述相变材料层材料选自锑-碲化合物和锗-碲化合物。 The material of the phase change material layer is selected from antimony-tellurium compounds and germanium-tellurium compounds. the
优选的,所述相变材料层材料选自锗-锑-碲、硅-锑-碲、钛-锑-碲和铝-锑-碲化合物。 Preferably, the material of the phase change material layer is selected from germanium-antimony-tellurium, silicon-antimony-tellurium, titanium-antimony-tellurium and aluminum-antimony-tellurium compounds. the
所述第一电介质层材料选自氧化硅、氮化硅或氮氧硅。 The material of the first dielectric layer is selected from silicon oxide, silicon nitride or silicon oxynitride. the
所述第二电介质层材料为氧化硅、氮化硅或氮氧硅。 The material of the second dielectric layer is silicon oxide, silicon nitride or silicon oxynitride. the
所述上电极层材料为钛、氮化钛、钛铝氮或者钛硅氮。 The material of the upper electrode layer is titanium, titanium nitride, titanium aluminum nitrogen or titanium silicon nitrogen. the
本发明进一步提供所述相变存储结构的制备方法,包括以下步骤: The present invention further provides a preparation method of the phase change memory structure, comprising the following steps:
(1)提供一基底,在所述基底上形成第一电介质层; (1) providing a substrate on which a first dielectric layer is formed;
(2)非等向性蚀刻所述第一电介质层,在所述基底上形成若干倒梯形第一沟槽用于形成限制型相变存储单元; (2) Etching the first dielectric layer anisotropically, and forming a number of inverted trapezoidal first grooves on the substrate for forming confinement phase-change memory cells;
(3)在所述第一沟槽内沉积相变材料层并覆盖于所述第一电介质层的上表面上; (3) Depositing a phase change material layer in the first trench and covering the upper surface of the first dielectric layer;
(4)采用化学机械抛光的方法对相变材料层进行平整化处理,直至相变材料层与第一电介质层的上表面齐平; (4) Planarize the phase change material layer by chemical mechanical polishing until the phase change material layer is flush with the upper surface of the first dielectric layer;
(5)在相变材料层与第一电介质层的上表面上沉积一上电极层; (5) Depositing an upper electrode layer on the upper surface of the phase change material layer and the first dielectric layer;
(6)对位于第一电介质层上的上电极层进行图案化,然后非等向性刻蚀所述上电极层,并以上电极层为硬掩膜对第一电介质层进行过刻蚀形成第二沟槽; (6) Patterning the upper electrode layer on the first dielectric layer, then anisotropically etching the upper electrode layer, and using the upper electrode layer as a hard mask to over-etch the first dielectric layer to form the second two grooves;
(7)采用湿法刻蚀并在短时间内各向同性刻蚀所述第二沟槽,在第一电介质层内形成中空结构; (7) wet etching and isotropically etching the second trench within a short period of time to form a hollow structure in the first dielectric layer;
(8)在上述形成的整体结构上沉积第二电介质层用于封盖各中空结构,形成空气间隔; (8) Depositing a second dielectric layer on the overall structure formed above is used to cover each hollow structure to form an air gap;
(9)采用化学机械抛光的方法对第二电介质层表面进行平整化。 (9) Planarize the surface of the second dielectric layer by chemical mechanical polishing. the
其中, in,
所述相变材料层的沉积工艺可以采用物理气相沉积,化学气体沉积,原子层沉积等技术。 The deposition process of the phase-change material layer can adopt techniques such as physical vapor deposition, chemical vapor deposition, and atomic layer deposition. the
所述第二电介质层的沉积工艺可以采用化学气相沉积法(CVD)或等离子体增强化学气体沉积等方法。 The deposition process of the second dielectric layer may adopt methods such as chemical vapor deposition (CVD) or plasma enhanced chemical gas deposition. the
步骤(4)所述的化学机械抛光所用的抛光液为酸性相变材料抛光液。 The polishing liquid used in the chemical mechanical polishing described in step (4) is an acidic phase change material polishing liquid. the
步骤(9)所述的化学机械抛光所用的抛光液为碱性二氧化硅抛光液。 The polishing liquid used in the chemical mechanical polishing described in step (9) is an alkaline silica polishing liquid. the
本发明的技术效果及优点在于:在相变单元之间形成了空气间隔,一方面可以增大相变单元间的热阻,减少器件操作中的热损失从而降低操作功耗,同时也可减少存储单元间的热串扰;另一方面具有空气间隔结构的存储器件可以降低导线间的寄生电容,以提高操 作速度。 The technical effects and advantages of the present invention are: an air gap is formed between the phase change units, on the one hand, the thermal resistance between the phase change units can be increased, the heat loss in device operation can be reduced to reduce the operating power consumption, and at the same time, the Thermal crosstalk between memory cells; on the other hand, memory devices with an air spacer structure can reduce parasitic capacitance between wires to increase operating speed. the
附图说明 Description of drawings
图1基底和第一电介质层示意图(刻蚀前); Figure 1 Schematic diagram of substrate and first dielectric layer (before etching);
图2第一沟槽示意图; Fig. 2 schematic diagram of the first groove;
图3相变材料层示意图(抛光前); Figure 3 Schematic diagram of phase change material layer (before polishing);
图4相变材料层示意图(抛光后); Figure 4 Schematic diagram of phase change material layer (after polishing);
图5上电极层示意图(刻蚀前); Figure 5 schematic diagram of the upper electrode layer (before etching);
图6第二沟槽示意图; The schematic diagram of the second groove of Fig. 6;
图7中空结构示意图; Figure 7 hollow structure schematic diagram;
图8第二电介质层和空气间隔示意图(抛光前); Figure 8 Schematic diagram of the second dielectric layer and air space (before polishing);
图9第二电介质层和空气间隔示意图(抛光后) Figure 9 Schematic diagram of the second dielectric layer and air gap (after polishing)
附图标记: Reference signs:
210-基底; 210 - base;
220-第一电介质层; 220-the first dielectric layer;
221-第一沟槽; 221 - the first groove;
230-相变材料层; 230-phase change material layer;
231-化学机械抛光处理后填充在第一沟槽里的相变材料层; 231-The phase change material layer filled in the first trench after chemical mechanical polishing;
240-上电极层; 240-upper electrode layer;
241-刻蚀图形化后的上电极层; 241-etching the patterned upper electrode layer;
242-第二沟槽; 242 - the second groove;
243-中空结构; 243-hollow structure;
250-第二电介质层; 250 - the second dielectric layer;
251-空气间隔; 251 - air spacer;
252-化学机械抛光处理后的第二电介质层; 252-the second dielectric layer after chemical mechanical polishing;
具体实施方式 Detailed ways
以下通过特定的具体实例说明本发明的技术方案。应理解,本发明提到的一个或多个方法步骤并不排斥在所述组合步骤前后还存在其他方法步骤或在这些明确提到的步骤之间还 可以插入其他方法步骤;还应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。而且,除非另有说明,各方法步骤的编号仅为鉴别各方法步骤的便利工具,而非为限制各方法步骤的排列次序或限定本发明可实施的范围,其相对关系的改变或调整,在无实质变更技术内容的情况下,当亦视为本发明可实施的范畴。 The technical solutions of the present invention are illustrated below through specific examples. It should be understood that one or more method steps mentioned in the present invention do not exclude that there are other method steps before and after the combined steps or other method steps can be inserted between these explicitly mentioned steps; it should also be understood that these The examples are only for illustrating the present invention and are not intended to limit the scope of the present invention. Moreover, unless otherwise stated, the numbering of each method step is only a convenient tool for identifying each method step, and is not intended to limit the sequence of each method step or limit the scope of the present invention. The change or adjustment of its relative relationship is in In the case of no substantive change in the technical content, it shall also be regarded as the applicable scope of the present invention. the
一种相变存储器结构,如图9所示,包括基底210和位于所述基底210上的若干相邻的相变存储单元;
A phase-change memory structure, as shown in Figure 9, includes a
所述相变存储单元包括相变材料层、位于所述相变材料层230两侧的第一电介质层220、位于所述相变材料层230及其两侧第一电介质层上220表面上的上电极层241、以及第二电介质层252,所述第二电介质层252包覆于所述第一电介质层220和上电极层241外且填充于相邻的相变存储单元之间;
The phase-change memory unit includes a phase-change material layer, a first
相邻两个相变存储单元的第一电介质层220之间形成有空气间隔251,且所述空气间隔251位于第二电介质层252之内;
An
所述相变材料层230的纵截面为倒梯形;
The longitudinal section of the phase
所述上电极层241的纵截面为梯形。
The longitudinal section of the
所述相变存储结构通过以下方法步骤制得: The phase change memory structure is prepared through the following method steps:
步骤(1):如图1所示,提供一基底210,在所述基底上形成第一电介质层220,所述第一电介质层220布置于基底(半导体衬底)210表面。在基底210的表面可以包含有已经制作完成的半导体组件,例如MOS晶体管、二极管、BJT、电极、电阻、电容等等。由于这些组件并非本发明的重点,因此并未显示在图标之中。所述半导体衬底210可以是单晶硅的半导体衬底或其他材料的半导体衬底。所述第一电介质层220可以是氧化硅、氮化硅或氮氧硅或其形成的组合。
Step (1): As shown in FIG. 1 , a
步骤(2):如图2所示,非等向性蚀刻所述第一电介质层220,形成倒梯形第一沟槽221用于形成限制型相变存储单元;
Step (2): As shown in FIG. 2 , anisotropically etch the
步骤(3):如图3所示,在第一沟槽221内沉积相变材料层230并覆盖于所述第一电介质层220的上表面上,该相变材料层230的材料为锗-锑-碲、硅-锑-碲、钛-锑-碲、铝-锑-碲、或其它锑-碲化合物以及锗-碲化合物等。相变材料形成于基底上可以采用物理气相沉积,化学气体沉积或原子层沉积等技术。
Step (3): As shown in FIG. 3 , deposit a phase-
步骤(4):如图4所示,采用酸性相变材料抛光工艺对相变材料层230进行平整化处理,,直至剩余的相变材料层231与第一电介质层220的上表面齐平,处理后相变材料表面的尺寸为d;
Step (4): As shown in FIG. 4 , planarize the phase
步骤(5):如图5所示,在所述平整化处理后的相变材料层2表面覆盖上电极层240;本实施例中,所述刻蚀阻挡层240的材料是氮化钛。氮化钛作为刻蚀阻挡层的优点在与相变材料粘合性好,导电性及导热性满足性能需求。所述刻蚀阻挡层240的材料也可以是钛、钛铝氮、钛硅氮等本领域内常见的材料。
Step (5): As shown in FIG. 5 , the surface of the phase change material layer 2 after the planarization treatment is covered with an
步骤(6),如图6所示,对位于第一电介质层220上的上电极层240进行图案化,然后非等向性刻蚀所述上电极层240以使预设部分暴露出来,继而以剩余的上电极层作为刻蚀阻挡层,并以该阻挡层为硬掩膜,对第一电介质层220进行过刻蚀形成第二沟槽242;所述刻蚀阻挡层上表面尺寸为h,下表面尺寸为H,H>h且H>d;即剩余上电极层240为梯形且完全覆盖在相变材料层上;
Step (6), as shown in FIG. 6 , pattern the
步骤(7),如图7所示,采用湿法刻蚀并在短时间内各向同性刻蚀所述第二沟槽242,在第一电介质层220形成中空结构243;
Step (7), as shown in FIG. 7 , wet etching isotropically etches the
步骤(8),如图8所示,在步骤(7)形成的整体结构上沉积第二电介质层250用于封盖各中空结构,形成空气间隔251;所述第二电介质层250的材料可以为氧化硅、氮化硅或氮氧硅;所述第二电介质层的沉积工艺可以采用化学气相沉积法(CVD)或等离子体增强化学气体沉积等方法。
In step (8), as shown in FIG. 8 , a
步骤(9),如图9所示,采用碱性二氧化硅抛光液对第二电介质层250表面进行平整化,处理后得到第二电介质层252。
In step (9), as shown in FIG. 9 , the surface of the
本发明的优点在于在相变单元之间形成了空气间隔,一方面可以增大相变单元间的热阻,减少器件操作中的热损失从而降低操作功耗,同时也可减少存储单元间的热串扰;另一方面具有空气间隔结构的存储器件可以降低导线间的寄生电容,以提高操作速度。 The advantage of the present invention is that an air gap is formed between the phase change units, on the one hand, it can increase the thermal resistance between the phase change units, reduce the heat loss in device operation and thereby reduce the operating power consumption, and also reduce the thermal resistance between the storage units. Thermal crosstalk; on the other hand, memory devices with an air spacer structure can reduce parasitic capacitance between wires to increase operating speed. the
综上所述,本发明有效克服了现有技术中的种种缺点而具高度产业利用价值。 To sum up, the present invention effectively overcomes various shortcomings in the prior art and has high industrial application value. the
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。 The above-mentioned embodiments only illustrate the principles and effects of the present invention, but are not intended to limit the present invention. Anyone skilled in the art can modify or change the above-mentioned embodiments without departing from the spirit and scope of the present invention. Therefore, all equivalent modifications or changes made by those skilled in the art without departing from the spirit and technical ideas disclosed in the present invention should still be covered by the claims of the present invention. the
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310673872.XA CN103682094B (en) | 2013-12-11 | 2013-12-11 | A kind of phase change memory structure and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310673872.XA CN103682094B (en) | 2013-12-11 | 2013-12-11 | A kind of phase change memory structure and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103682094A true CN103682094A (en) | 2014-03-26 |
CN103682094B CN103682094B (en) | 2016-08-17 |
Family
ID=50318963
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310673872.XA Active CN103682094B (en) | 2013-12-11 | 2013-12-11 | A kind of phase change memory structure and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103682094B (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105405972A (en) * | 2015-12-15 | 2016-03-16 | 上海新储集成电路有限公司 | Preparation method of three-dimensional resistive random access memory retaining air layer |
CN107078150A (en) * | 2014-11-07 | 2017-08-18 | 美光科技公司 | Cross-point memory and manufacturing method thereof |
CN108039409A (en) * | 2017-11-23 | 2018-05-15 | 上海新储集成电路有限公司 | A kind of preparation method of three-dimensional superconductive electrode material phase transition storage |
CN109037272A (en) * | 2017-06-08 | 2018-12-18 | 爱思开海力士有限公司 | Electronic device and its manufacturing method |
US10714684B2 (en) | 2018-07-02 | 2020-07-14 | International Business Machines Corporation | Phase change memory with doped silicon germanium alloy-containing electrodes and air gap-containing spacer |
CN112470283A (en) * | 2020-10-10 | 2021-03-09 | 长江先进存储产业创新中心有限责任公司 | Method for reducing thermal crosstalk in 3D cross-point memory arrays |
CN112768606A (en) * | 2019-10-21 | 2021-05-07 | 联华电子股份有限公司 | Memory element structure and manufacturing method thereof |
US11437571B2 (en) | 2019-06-25 | 2022-09-06 | International Business Machines Corporation | Integration of selector on confined phase change memory |
CN116113313A (en) * | 2023-02-23 | 2023-05-12 | 上海积塔半导体有限公司 | Phase change memory device and method of manufacturing the same |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101022151A (en) * | 2005-11-21 | 2007-08-22 | 旺宏电子股份有限公司 | Programmable resistive material memory array with air-insulated cells |
CN102376881A (en) * | 2010-08-19 | 2012-03-14 | 中芯国际集成电路制造(上海)有限公司 | Method for manufacturing memory unit of phase-change random access memory |
CN102881823A (en) * | 2011-07-13 | 2013-01-16 | 爱思开海力士有限公司 | Phase-change random access memory device and method of manufacturing the same |
US20130126816A1 (en) * | 2011-11-17 | 2013-05-23 | Micron Technology, Inc. | Memory Arrays and Methods of Forming Memory Cells |
-
2013
- 2013-12-11 CN CN201310673872.XA patent/CN103682094B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101022151A (en) * | 2005-11-21 | 2007-08-22 | 旺宏电子股份有限公司 | Programmable resistive material memory array with air-insulated cells |
CN102376881A (en) * | 2010-08-19 | 2012-03-14 | 中芯国际集成电路制造(上海)有限公司 | Method for manufacturing memory unit of phase-change random access memory |
CN102881823A (en) * | 2011-07-13 | 2013-01-16 | 爱思开海力士有限公司 | Phase-change random access memory device and method of manufacturing the same |
US20130126816A1 (en) * | 2011-11-17 | 2013-05-23 | Micron Technology, Inc. | Memory Arrays and Methods of Forming Memory Cells |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10680037B2 (en) | 2014-11-07 | 2020-06-09 | Micron Technology, Inc. | Cross-point memory and methods for fabrication of same |
CN107078150A (en) * | 2014-11-07 | 2017-08-18 | 美光科技公司 | Cross-point memory and manufacturing method thereof |
CN107078150B (en) * | 2014-11-07 | 2019-01-08 | 美光科技公司 | Cross point memory and its manufacturing method |
US10396125B2 (en) | 2014-11-07 | 2019-08-27 | Micron Technology, Inc. | Cross-point memory and methods for fabrication of same |
CN105405972A (en) * | 2015-12-15 | 2016-03-16 | 上海新储集成电路有限公司 | Preparation method of three-dimensional resistive random access memory retaining air layer |
CN109037272A (en) * | 2017-06-08 | 2018-12-18 | 爱思开海力士有限公司 | Electronic device and its manufacturing method |
CN108039409B (en) * | 2017-11-23 | 2020-09-04 | 上海新储集成电路有限公司 | Preparation method of three-dimensional superconducting electrode material phase change memory |
CN108039409A (en) * | 2017-11-23 | 2018-05-15 | 上海新储集成电路有限公司 | A kind of preparation method of three-dimensional superconductive electrode material phase transition storage |
US10714684B2 (en) | 2018-07-02 | 2020-07-14 | International Business Machines Corporation | Phase change memory with doped silicon germanium alloy-containing electrodes and air gap-containing spacer |
US11437571B2 (en) | 2019-06-25 | 2022-09-06 | International Business Machines Corporation | Integration of selector on confined phase change memory |
US11968913B2 (en) | 2019-06-25 | 2024-04-23 | International Business Machines Corporation | Integration of selector on confined phase change memory |
CN112768606A (en) * | 2019-10-21 | 2021-05-07 | 联华电子股份有限公司 | Memory element structure and manufacturing method thereof |
CN112470283A (en) * | 2020-10-10 | 2021-03-09 | 长江先进存储产业创新中心有限责任公司 | Method for reducing thermal crosstalk in 3D cross-point memory arrays |
WO2022073222A1 (en) * | 2020-10-10 | 2022-04-14 | Yangtze Advanced Memory Industrial Innovation Center Co., Ltd | Method to reduce thermal cross talk in 3d x-point memory array |
CN112470283B (en) * | 2020-10-10 | 2024-01-16 | 长江先进存储产业创新中心有限责任公司 | Method for reducing thermal cross-talk in a 3D cross-point memory array |
CN116113313A (en) * | 2023-02-23 | 2023-05-12 | 上海积塔半导体有限公司 | Phase change memory device and method of manufacturing the same |
CN116113313B (en) * | 2023-02-23 | 2024-02-02 | 上海积塔半导体有限公司 | Phase change memory device and method of manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
CN103682094B (en) | 2016-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103682094B (en) | A kind of phase change memory structure and preparation method thereof | |
US8722455B2 (en) | Phase change memory structure having low-K dielectric heat-insulating material and fabrication method thereof | |
JP2013232480A (en) | Semiconductor device and method of manufacturing the same | |
CN107046096A (en) | Semiconductor structure and its manufacture method | |
CN1897320A (en) | Phase change memory element and method of forming the same | |
TW200901458A (en) | Variable resistance memory device with an interfacial adhesion heating layer, systems using the same and methods of forming the same | |
CN108630810B (en) | 1S1R memory integrated structure and preparation method thereof | |
CN107978675A (en) | Phase-change random access memory storage unit and preparation method thereof, electronic device | |
CN115362569A (en) | Phase change material switch and manufacturing method thereof | |
TWI854230B (en) | Semiconductor integrated circuit device and manufacturing method thereof | |
CN101882627A (en) | Phase change memory device and manufacturing method thereof | |
TW202125713A (en) | Phase-change memory | |
CN103560205B (en) | Phase change storage structure and manufacture method | |
CN109980081B (en) | Method for manufacturing MRAM device capable of stopping polishing automatically and MRAM device | |
CN112635668B (en) | A kind of resistive memory and preparation method thereof | |
JP7657210B2 (en) | Structure and method for fabricating a resistive memory having vertically defined filaments - Patents.com | |
CN101150172A (en) | Phase change memory and manufacturing method thereof | |
CN104538548B (en) | A kind of new resistive random access memory and its manufacture method | |
CN103441215B (en) | Phase change storage structure of sandwich type blade-like electrode and preparation method thereof | |
TWI521576B (en) | Resistive random-access memory and method for fabricating the same | |
CN103325940B (en) | Phase-change memory cell and manufacturing method thereof | |
CN101399314A (en) | Phase change memory and manufacturing method thereof | |
CN219719008U (en) | semiconductor structure | |
TWI818709B (en) | Phase change memory structure and manufacturing method thereof | |
CN104779349B (en) | Phase change memory cell and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |