CN103681870A - Array substrate and manufacturing method thereof - Google Patents
Array substrate and manufacturing method thereof Download PDFInfo
- Publication number
- CN103681870A CN103681870A CN201210340253.4A CN201210340253A CN103681870A CN 103681870 A CN103681870 A CN 103681870A CN 201210340253 A CN201210340253 A CN 201210340253A CN 103681870 A CN103681870 A CN 103681870A
- Authority
- CN
- China
- Prior art keywords
- signal electrode
- gate insulating
- insulating layer
- electrode
- array substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 85
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 18
- 239000000463 material Substances 0.000 claims abstract description 47
- 239000011347 resin Substances 0.000 claims abstract description 46
- 229920005989 resin Polymers 0.000 claims abstract description 46
- 239000010409 thin film Substances 0.000 claims abstract description 37
- 238000002161 passivation Methods 0.000 claims abstract description 35
- 238000000034 method Methods 0.000 claims abstract description 28
- 239000004065 semiconductor Substances 0.000 claims description 45
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 16
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 16
- 229910018540 Si C Inorganic materials 0.000 claims description 7
- 229910018557 Si O Inorganic materials 0.000 claims description 7
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 7
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Inorganic materials [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 claims description 7
- 230000015572 biosynthetic process Effects 0.000 claims description 4
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 5
- 239000004973 liquid crystal related substance Substances 0.000 description 5
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- 239000004020 conductor Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000002542 deteriorative effect Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 2
- 229910004205 SiNX Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/60—Electrodes characterised by their materials
- H10D64/66—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes
- H10D64/68—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D86/00—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
- H10D86/01—Manufacture or treatment
- H10D86/021—Manufacture or treatment of multiple TFTs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D86/00—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
- H10D86/40—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D86/00—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
- H10D86/40—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs
- H10D86/60—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs wherein the TFTs are in active matrices
Landscapes
- Thin Film Transistor (AREA)
- Liquid Crystal (AREA)
Abstract
本发明公开了一种阵列基板,包括:衬底基板、形成于所述衬底基板上的氧化物薄膜晶体管以及钝化层和像素层,其中,所述氧化物薄膜晶体管中的栅绝缘层采用的材料为非感光型有机树脂。本发明还公开了一种阵列基板的制造方法及显示装置,采用本发明能有效降低功耗,且使底层平坦化。
The invention discloses an array substrate, comprising: a base substrate, an oxide thin film transistor formed on the base substrate, a passivation layer and a pixel layer, wherein the gate insulating layer in the oxide thin film transistor adopts The material is non-photosensitive organic resin. The invention also discloses a method for manufacturing the array substrate and a display device. The invention can effectively reduce power consumption and flatten the bottom layer.
Description
技术领域 technical field
本发明涉及显示技术领域,尤其涉及一种阵列基板及其制造方法。The present invention relates to the field of display technology, in particular to an array substrate and a manufacturing method thereof.
背景技术 Background technique
在薄膜晶体管(Thin Film Transistor,TFT)阵列结构中,常以氮化硅(SiNx)作为栅绝缘层,且栅绝缘层形成于栅电极和源漏信号电极之间,由于氮化硅本身介电常数较高,使得栅绝缘层电容较高,因此可有效提升充电电流值,缩短充电时间。但是,较高的充电电流值会使栅电极和源漏信号电极之间的电容变得较大,该电容直接影响显示屏的功耗,从而使得显示屏的耗电量明显变大;同时,以氮化硅(SiNx)为栅绝缘层,其平坦性较差,凹凸不平的表面对后端的对盒工艺中的液晶取向工艺造成较大的影响,使得液晶取向紊乱,易造成显示异常。In the thin film transistor (Thin Film Transistor, TFT) array structure, silicon nitride (SiNx) is often used as the gate insulating layer, and the gate insulating layer is formed between the gate electrode and the source-drain signal electrode. A higher constant makes the capacitance of the gate insulating layer higher, so the charging current value can be effectively increased and the charging time can be shortened. However, a higher charging current value will increase the capacitance between the gate electrode and the source-drain signal electrode, which directly affects the power consumption of the display screen, so that the power consumption of the display screen will increase significantly; at the same time, Silicon nitride (SiNx) is used as the gate insulating layer, and its flatness is poor. The uneven surface has a great impact on the liquid crystal alignment process in the back-end cell-to-cell process, which makes the liquid crystal orientation disorder and easily causes display abnormalities.
发明内容 Contents of the invention
有鉴于此,本发明的主要目的在于提供一种阵列基板及其制造方法,能防止充电电流损失的同时降低功耗,且能使底层平坦化。In view of this, the main purpose of the present invention is to provide an array substrate and a manufacturing method thereof, which can prevent loss of charging current while reducing power consumption, and can planarize the bottom layer.
为达到上述目的,本发明的技术方案是这样实现的:In order to achieve the above object, technical solution of the present invention is achieved in that way:
本发明提供了一种阵列基板,包括:衬底基板、形成于所述衬底基板上的氧化物薄膜晶体管,以及钝化层和像素电极,其中,所述氧化物薄膜晶体管中的栅绝缘层采用非感光型有机树脂形成。The present invention provides an array substrate, comprising: a base substrate, an oxide thin film transistor formed on the base substrate, a passivation layer and a pixel electrode, wherein the gate insulating layer in the oxide thin film transistor Formed with non-photosensitive organic resin.
这里,所述非感光型有机树脂包括主链上含有Si-C和/或Si-O结构的非感光型有机树脂;Here, the non-photosensitive organic resin includes a non-photosensitive organic resin containing Si-C and/or Si-O structures in the main chain;
所述非感光型有机树脂形成的栅绝缘层具有平坦化的表面结构;The gate insulating layer formed by the non-photosensitive organic resin has a planarized surface structure;
所述钝化层采用的材料包括氮化硅、有机树脂材料中的至少一种;The material used for the passivation layer includes at least one of silicon nitride and organic resin materials;
所述氧化物薄膜晶体管包括:栅电极、形成于所述栅电极上的栅绝缘层、形成于所述栅绝缘层上的氧化物半导体层、形成于所述氧化物半导体层上的源信号电极、漏信号电极以及沟道;或者,The oxide thin film transistor includes: a gate electrode, a gate insulating layer formed on the gate electrode, an oxide semiconductor layer formed on the gate insulating layer, a source signal electrode formed on the oxide semiconductor layer , the drain signal electrode and the channel; or,
所述氧化物薄膜晶体管包括:源信号电极、漏信号电极和沟道,以及形成于所述源信号电极、漏信号电极和沟道上的氧化物半导体层、形成于所述氧化物半导体层上的栅绝缘层、形成于所述栅绝缘层上的栅电极。The oxide thin film transistor includes: a source signal electrode, a drain signal electrode, and a channel, and an oxide semiconductor layer formed on the source signal electrode, the drain signal electrode, and the channel, and an oxide semiconductor layer formed on the oxide semiconductor layer. a gate insulating layer, and a gate electrode formed on the gate insulating layer.
本发明还提供了一种阵列基板的制造方法,包括以下步骤:The present invention also provides a method for manufacturing an array substrate, comprising the following steps:
在衬底基板上形成氧化物薄膜晶体管、钝化层以及像素电极;其中,所述氧化物薄膜晶体管中的栅绝缘层采用非感光型有机树脂形成。An oxide thin film transistor, a passivation layer and a pixel electrode are formed on the base substrate; wherein, the gate insulating layer in the oxide thin film transistor is formed by non-photosensitive organic resin.
这里,所述非感光型有机树脂包括主链上含有Si-C和/或Si-O结构的非感光型有机树脂材料;Here, the non-photosensitive organic resin includes non-photosensitive organic resin materials containing Si-C and/or Si-O structures in the main chain;
所述在衬底基板上形成氧化物薄膜晶体管的步骤包括:The step of forming an oxide thin film transistor on the base substrate includes:
在衬底基板上形成栅电极;在所述栅电极上形成栅绝缘层;在所述栅绝缘层上形成氧化物半导体层;在所述氧化物半导体层上形成源信号电极、漏信号电极以及沟道;或者,forming a gate electrode on the base substrate; forming a gate insulating layer on the gate electrode; forming an oxide semiconductor layer on the gate insulating layer; forming a source signal electrode, a drain signal electrode and channel; or,
在衬底基板上形成源信号电极、漏信号电极和沟道;在所述源信号电极、漏信号电极和沟道上形成氧化物半导体层;在所述氧化物半导体层上形成栅绝缘层;在所述栅绝缘层上形成栅电极。Forming a source signal electrode, a drain signal electrode, and a channel on the base substrate; forming an oxide semiconductor layer on the source signal electrode, the drain signal electrode, and the channel; forming a gate insulating layer on the oxide semiconductor layer; A gate electrode is formed on the gate insulating layer.
所述钝化层采用的材料包括氮化硅、有机树脂材料中的至少一种;The material used for the passivation layer includes at least one of silicon nitride and organic resin materials;
本发明又提供了一种显示装置,所述显示装置包括本发明公开的任意一种的阵列基板。The present invention further provides a display device, which includes any one of the array substrates disclosed in the present invention.
本发明所提供的阵列基板及其制造方法,具有以下的优点和特点:The array substrate and its manufacturing method provided by the present invention have the following advantages and characteristics:
本发明中的栅绝缘层采用主链上含有Si-C和/或Si-O结构的非感光型有机树脂材料代替氮化硅材料,如此,一方面,由于非感光型有机树脂材料的介电常数较氮化硅材料的介电常数低,可有效降低显示屏功耗;另一方面,由于有机树脂材料为平坦化、均匀性好的材料,可有效改善栅绝缘层凹凸不平的现象,使得栅绝缘层平坦化,进而使阵列基板整体平坦,提高后续工艺的可控性。The gate insulating layer among the present invention adopts the non-photosensitive organic resin material that contains Si-C and/or Si-O structure on the main chain to replace silicon nitride material, so, on the one hand, because the dielectric of non-photosensitive organic resin material The constant is lower than the dielectric constant of silicon nitride material, which can effectively reduce the power consumption of the display screen; on the other hand, because the organic resin material is a flattened and uniform material, it can effectively improve the unevenness of the gate insulating layer, making The gate insulating layer is planarized, thereby making the array substrate as a whole flat, and improving the controllability of subsequent processes.
另外,虽然本发明采用的非感光型有机树脂的介电常数比较低,会影响阵列基板的充电电流,但是,通过采用氧化铟锡材料制作氧化物半导体层,可有效弥补充电电流的损失;且由于非感光型有机树脂材料中不含H元素,因此,可较好地防止氧化物薄膜晶体管充电电流的特性变差。In addition, although the dielectric constant of the non-photosensitive organic resin used in the present invention is relatively low, which will affect the charging current of the array substrate, the loss of charging current can be effectively compensated by using indium tin oxide material to make the oxide semiconductor layer; and Since the non-photosensitive organic resin material does not contain H element, it can better prevent the characteristics of the charging current of the oxide thin film transistor from deteriorating.
附图说明 Description of drawings
图1为实施例1阵列基板的组成结构示意图;1 is a schematic diagram of the composition and structure of the array substrate in
图2为实施例2阵列基板的组成结构示意图。FIG. 2 is a schematic diagram of the composition and structure of the array substrate in Embodiment 2. FIG.
附图标记说明Explanation of reference signs
1、衬底基板,2、栅电极,3、栅绝缘层,4、氧化物半导体层,5、源漏信号电极层,5a、源信号电极,5b,漏信号电极,6、钝化层,7、过孔,8、像素电极,9、沟道1. Base substrate, 2. Gate electrode, 3. Gate insulating layer, 4. Oxide semiconductor layer, 5. Source-drain signal electrode layer, 5a, source signal electrode, 5b, drain signal electrode, 6. Passivation layer, 7. Via hole, 8. Pixel electrode, 9. Channel
具体实施方式 Detailed ways
下面将结合具体实施例及附图对本发明的实施方式进行详细描述。The implementation manner of the present invention will be described in detail below in conjunction with specific embodiments and accompanying drawings.
实施例1Example 1
图1为实施例1阵列基板的组成结构示意图,如图1所示,所述阵列基板包括:衬底基板1、形成于所述衬底基板上的氧化物薄膜晶体管,以及钝化层6和像素电极8;其中,所述氧化物薄膜晶体管中的栅绝缘层采用非感光型有机树脂形成。FIG. 1 is a schematic diagram of the composition and structure of the array substrate in Example 1. As shown in FIG. 1, the array substrate includes: a
本发明所述阵列基板中的栅绝缘层采用非感光型有机树脂材料代替氮化硅材料,如此,一方面,由于非感光型有机树脂材料的介电常数较氮化硅材料的介电常数低,可有效降低显示屏功耗;另一方面,由于有机树脂材料为平坦化、均匀性好的材料,可有效改善栅绝缘层凹凸不平的现象,使得栅绝缘层平坦化,进而使阵列基板整体平坦,提高后续工艺的可控性,例如可以大幅度降低液晶器件制造过程中的对盒摩擦(cell rubbing)工艺的端差,提升产品特性。The gate insulating layer in the array substrate of the present invention adopts non-photosensitive organic resin material instead of silicon nitride material, so, on the one hand, because the dielectric constant of non-photosensitive organic resin material is lower than that of silicon nitride material , which can effectively reduce the power consumption of the display screen; on the other hand, since the organic resin material is a flattened and uniform material, it can effectively improve the unevenness of the gate insulating layer, so that the gate insulating layer is planarized, and the overall array substrate It is flat and improves the controllability of the subsequent process, for example, it can greatly reduce the end difference of the cell rubbing process in the liquid crystal device manufacturing process and improve product characteristics.
另外,虽然本发明所述阵列基板采用的非感光型有机树脂的介电常数比较低,会影响阵列基板的充电电流,但是,通过采用氧化铟锡材料制作氧化物半导体层,可有效弥补充电电流的损失;且由于非感光型有机树脂材料中不含H元素,因此,可较好地防止氧化物薄膜晶体管充电电流的特性变差。In addition, although the dielectric constant of the non-photosensitive organic resin used in the array substrate of the present invention is relatively low, which will affect the charging current of the array substrate, by using indium tin oxide material to make the oxide semiconductor layer, the charging current can be effectively compensated. loss; and since the non-photosensitive organic resin material does not contain H element, it can better prevent the characteristics of the charging current of the oxide thin film transistor from deteriorating.
其中,所述氧化物薄膜晶体管可以至少包括:栅电极2、形成于所述栅电极2上的栅绝缘层3、形成于所述栅绝缘层3上的氧化物半导体层4、形成于所述氧化物半导体层4上的源漏信号电极层5、以及形成于所述源漏信号电极层5上的沟道9,所述沟道9在氧化物半导体层4上方截断源漏信号电极层,将所述源漏信号电极层截断成源信号电极5a和漏信号电极5b;Wherein, the oxide thin film transistor may at least include: a gate electrode 2, a
这里,所述阵列基板上的结构不限于上述所列出的结构,且氧化物薄膜晶体管、钝化层以及像素电极形成的方式也不限,其中,氧化物薄膜晶体管、钝化层以及像素电极的形成方式可以采用常规的实现方式,如5次掩膜版(5mask)工艺、4次掩膜版(4mask)工艺等,还可以利用多色调工艺及分层剥离工艺等技术,这些工艺方法均为本领域技术人员所知晓的,此处不再详细描述。Here, the structure on the array substrate is not limited to the structures listed above, and the way of forming the oxide thin film transistor, passivation layer and pixel electrode is also not limited, wherein the oxide thin film transistor, passivation layer and pixel electrode The formation method can adopt conventional implementation methods, such as 5-time mask (5mask) process, 4-time mask (4mask) process, etc., and can also use technologies such as multi-tone process and layered stripping process. These processes are all It is known to those skilled in the art and will not be described in detail here.
这里,所述非感光型有机树脂可以包括主链上含有Si-C和/或Si-O结构的非感光型有机树脂材料;Here, the non-photosensitive organic resin may include non-photosensitive organic resin materials containing Si-C and/or Si-O structures in the main chain;
所述钝化层采用的材料可以包括氮化硅、氧化硅等材料,也可以包括有机树脂材料,其中,采用有机树脂材料做钝化层,可以降低端差以提升产品特性;The material used for the passivation layer may include materials such as silicon nitride and silicon oxide, and may also include organic resin materials, wherein the use of organic resin materials as the passivation layer can reduce end differences to improve product characteristics;
所述像素电极为透明导电材料,且该透明导电材料可以包括纳米铟锡金属氧化物(ITO)、铟锌金属氧化物(IZO)、或铟镓锌氧化物(IGZO)。The pixel electrode is a transparent conductive material, and the transparent conductive material may include nanometer indium tin oxide (ITO), indium zinc oxide (IZO), or indium gallium zinc oxide (IGZO).
结合以上所述,所述阵列基板上的氧化物薄膜晶体管的具体结构如图1所示,包括:In combination with the above, the specific structure of the oxide thin film transistor on the array substrate is shown in Figure 1, including:
衬底基板1,形成于所述衬底基板1上的栅电极2;形成于所述栅电极2上的栅绝缘层3;形成于所述栅绝缘层3上的氧化物半导体层4,且所述氧化物半导体层4通过栅绝缘层3与栅电极2相隔;形成于所述氧化物半导体层上的源漏信号电极层5;形成于所述源漏信号电极层5上的沟道9,所述沟道9在氧化物半导体层4上方截断源漏信号电极层,并将源漏信号电极层5截断成源信号电极5a和漏信号电极5b;形成于在上述已形成栅电极2、栅绝缘层3、氧化物半导体层4、源信号电极5a、漏信号电极5b以及沟道9的阵列基板上的钝化层6;形成于钝化层6上的过孔7和像素电极8,所述像素电极8通过过孔7与漏信号电极5b连接。A
阵列基板上还具有栅线和数据线,在阵列基板的制造过程中,栅线可以在形成栅电极的同时形成,数据线可以在形成源信号电极和漏信号电极的同时形成。There are also gate lines and data lines on the array substrate. During the manufacturing process of the array substrate, the gate lines can be formed at the same time as the gate electrodes, and the data lines can be formed at the same time as the source signal electrodes and the drain signal electrodes.
相应的,所述阵列基板上的氧化物薄膜晶体管以及钝化层和像素电极的制造方法,包括:Correspondingly, the method for manufacturing the oxide thin film transistor on the array substrate, the passivation layer and the pixel electrode includes:
依次在衬底基板1上形成栅电极2;在所述栅电极上形成栅绝缘层3;在所述栅绝缘层3上形成氧化物半导体层4;在所述氧化物半导体层4上形成源漏信号电极层5;在所述源漏信号电极层5上形成沟道9,所述沟道9在所述氧化物半导体层4上方截断源漏信号电极层5,将源漏信号电极层5截断为源信号电极5a和漏信号电极5b;在所述已形成栅电极2、栅绝缘层3、氧化物半导体层4、源信号电极5a、漏信号电极5b以及沟道9的阵列基板上形成钝化层6;在所述钝化层6刻蚀出过孔7,并形成像素电极8,所述像素电极8通过过孔7与漏信号电极5b连接。A gate electrode 2 is sequentially formed on the
相应地,阵列基板上还具有栅线和数据线,在阵列基板的制造过程中,栅线可以在形成栅电极的同时形成,数据线可以在形成源信号电极和漏信号电极的同时形成。Correspondingly, there are gate lines and data lines on the array substrate. During the manufacturing process of the array substrate, the gate lines can be formed at the same time as the gate electrodes, and the data lines can be formed at the same time as the source signal electrodes and the drain signal electrodes.
本实施例中所述钝化层采用的材料为有机树脂,由于有机树脂具有易于平坦化的特性,因此,从图1中可以看出,所述钝化层的表面为平坦的,也可有效地降低表面端差,提升产品特性。The material that the passivation layer adopts in the present embodiment is organic resin, because organic resin has the characteristic that is easy to flatten, therefore, as can be seen from Fig. 1, the surface of described passivation layer is flat, also can effectively Minimally reduce surface end difference and improve product characteristics.
实施例2Example 2
图2为实施例2阵列基板的组成结构示意图,该阵列基板上的氧化物薄膜晶体管的结构为顶栅结构,如图所示,所述阵列基板包括:衬底基板1、形成于所述衬底基板上的氧化物薄膜晶体管以及钝化层6和像素电极8;其中,所述氧化物薄膜晶体管中的栅绝缘层采用非感光型有机树脂形成。阵列基板上还具有栅线和数据线(图中未示出)。2 is a schematic diagram of the composition and structure of the array substrate in Example 2. The structure of the oxide thin film transistor on the array substrate is a top gate structure. As shown in the figure, the array substrate includes: a
本发明所述阵列基板中的栅绝缘层采用非感光型有机树脂材料代替氮化硅材料,如此,一方面,由于非感光型有机树脂材料的介电常数较氮化硅材料的介电常数低,可有效降低显示屏功耗;另一方面,由于有机树脂材料为平坦化、均匀性好的材料,可有效改善栅绝缘层凹凸不平的现象,使得栅绝缘层平坦化,进而使阵列基板整体平坦,提高后续工艺的可控性,例如可以大幅度降低液晶器件制造过程中的对盒摩擦(cell rubbing)工艺的端差,提升产品特性。The gate insulating layer in the array substrate of the present invention adopts non-photosensitive organic resin material instead of silicon nitride material, so, on the one hand, because the dielectric constant of non-photosensitive organic resin material is lower than that of silicon nitride material , which can effectively reduce the power consumption of the display screen; on the other hand, since the organic resin material is a flattened and uniform material, it can effectively improve the unevenness of the gate insulating layer, so that the gate insulating layer is planarized, and the overall array substrate It is flat and improves the controllability of the subsequent process, for example, it can greatly reduce the end difference of the cell rubbing process in the liquid crystal device manufacturing process and improve product characteristics.
另外,虽然本发明所述阵列基板采用的非感光型有机树脂的介电常数比较低,会影响阵列基板的充电电流,但是,通过采用氧化铟锡材料制作氧化物半导体层,可有效弥补充电电流的损失;且由于非感光型有机树脂材料中不含H元素,因此,可较好地防止氧化物薄膜晶体管充电电流的特性变差。In addition, although the dielectric constant of the non-photosensitive organic resin used in the array substrate of the present invention is relatively low, which will affect the charging current of the array substrate, by using indium tin oxide material to make the oxide semiconductor layer, the charging current can be effectively compensated. loss; and since the non-photosensitive organic resin material does not contain H element, it can better prevent the characteristics of the charging current of the oxide thin film transistor from deteriorating.
其中,所述氧化物薄膜晶体管可以至少包括:源漏信号电极层5、形成于所述源漏信号电极层5上的沟道9,所述沟道9截断源漏信号电极层,并将所述源漏信号电极层截断成源信号电极5a和漏信号电极5b,以及形成于所述源信号电极5a、漏信号电极5b和沟道上的氧化物半导体层4、形成于所述氧化物半导体层4上的栅绝缘层3、形成于所述栅绝缘层3上的栅电极2。Wherein, the oxide thin film transistor may at least include: a source-drain signal electrode layer 5, a
这里,所述阵列基板上的结构不限于上述所列出的结构,且氧化物薄膜晶体管、钝化层以及像素电极形成的方式也不限,其中,氧化物薄膜晶体管、钝化层以及像素电极的形成方式可以采用常规的实现方式,如5次掩膜版(5mask)工艺、4次掩膜版(4mask)工艺等,还可以利用多色调工艺及分层剥离工艺等技术,这些工艺方法均为本领域技术人员所知晓的,此处不再详细描述。Here, the structure on the array substrate is not limited to the structures listed above, and the way of forming the oxide thin film transistor, passivation layer and pixel electrode is also not limited, wherein the oxide thin film transistor, passivation layer and pixel electrode The formation method can adopt conventional implementation methods, such as 5-time mask (5mask) process, 4-time mask (4mask) process, etc., and can also use technologies such as multi-tone process and layered stripping process. These processes are all It is known to those skilled in the art and will not be described in detail here.
这里,所述非感光型有机树脂可以包括主链上含有Si-C和/或Si-O结构的非感光型有机树脂材料;Here, the non-photosensitive organic resin may include non-photosensitive organic resin materials containing Si-C and/or Si-O structures in the main chain;
所述钝化层采用的材料可以包括氮化硅、氧化硅等材料,也可以包括有机树脂材料,其中,采用有机树脂材料做钝化层,可以降低端差以提升产品特性;The material used for the passivation layer may include materials such as silicon nitride and silicon oxide, and may also include organic resin materials, wherein the use of organic resin materials as the passivation layer can reduce end differences to improve product characteristics;
所述像素电极为透明导电材料,且该透明导电材料可以包括纳米铟锡金属氧化物(ITO)、铟锌金属氧化物(IZO)、或铟镓锌氧化物(IGZO)。The pixel electrode is a transparent conductive material, and the transparent conductive material may include nanometer indium tin oxide (ITO), indium zinc oxide (IZO), or indium gallium zinc oxide (IGZO).
结合以上所述,所述阵列基板上的氧化物薄膜晶体管以及钝化层和像素电极的具体结构如图2所示,包括:Combining the above, the specific structure of the oxide thin film transistor, the passivation layer and the pixel electrode on the array substrate is shown in Figure 2, including:
衬底基板1,形成于衬底基板1上的源漏信号电极层5;形成于源漏信号电极层5上的沟道9,所述沟道9截断源漏信号电极层,并将所述源漏信号电极层5截断成源信号电极5a和漏信号电极5b;形成于源信号电极5a、漏信号电极5b以及沟道9上的氧化物半导体层4,且所述氧化物半导体层4通过所述沟道9隔断源漏信号电极层;形成于在上述已形成源信号电极5a、漏信号电极5b、沟道9以及氧化物半导体层4的阵列基板上的栅绝缘层3;形成于栅绝缘层3上的栅电极2,且所述栅电极2通过栅绝缘层3与氧化物半导体层4相隔;形成于在上述已形成源信号电极5a、漏信号电极5b、沟道9、氧化物半导体层4、栅绝缘层3以及栅电极2的阵列基板上的钝化层6;形成于所述钝化层6上的过孔7和像素电极8,所述像素电极8通过过孔7与漏电极连接5b。The base substrate 1, the source-drain signal electrode layer 5 formed on the base substrate 1; the channel 9 formed on the source-drain signal electrode layer 5, the channel 9 intercepts the source-drain signal electrode layer, and the The source-drain signal electrode layer 5 is cut into a source signal electrode 5a and a drain signal electrode 5b; the oxide semiconductor layer 4 is formed on the source signal electrode 5a, the drain signal electrode 5b, and the channel 9, and the oxide semiconductor layer 4 passes through The channel 9 separates the source-drain signal electrode layer; the gate insulating layer 3 formed on the array substrate on which the source signal electrode 5a, the drain signal electrode 5b, the channel 9 and the oxide semiconductor layer 4 have been formed; The gate electrode 2 on the insulating layer 3, and the gate electrode 2 is separated from the oxide semiconductor layer 4 by the gate insulating layer 3; formed on the above-mentioned source signal electrode 5a, drain signal electrode 5b, channel 9, oxide The passivation layer 6 on the array substrate of the semiconductor layer 4, the gate insulating layer 3 and the gate electrode 2; the via hole 7 and the pixel electrode 8 formed on the passivation layer 6, and the pixel electrode 8 passes through the via hole 7 and The drain electrode is connected to 5b.
阵列基板上还具有栅线和数据线,在阵列基板的制造过程中,栅线可以在形成栅电极的同时形成,数据线可以在形成源信号电极和漏信号电极的同时形成。There are also gate lines and data lines on the array substrate. During the manufacturing process of the array substrate, the gate lines can be formed at the same time as the gate electrodes, and the data lines can be formed at the same time as the source signal electrodes and the drain signal electrodes.
相应地,所述阵列基板上的氧化物薄膜晶体管以及钝化层和像素电极的制造方法,包括:Correspondingly, the method for manufacturing the oxide thin film transistor on the array substrate, the passivation layer and the pixel electrode includes:
在衬底基板1上形成源漏信号电极层5;在所述源漏信号电极层5上形成沟道9,所述沟道9截断源漏信号电极层5,并将所述源漏信号电极层5截断成源信号电极5a和漏信号电极5b;在所述源信号电极5a、漏信号电极5b和沟道9上形成氧化物半导体层4,且所述氧化物半导体层4通过所述沟道9隔断源漏信号电极层;在所述已形成源信号电极5a、漏信号电极5b、沟道9以及氧化物半导体层4的阵列基板上沉积栅绝缘层3;在所述栅绝缘层3上沉积栅电极2;在所述已形成源信号电极5a、漏信号电极5b、沟道9、氧化物半导体层4、栅绝缘层3以及栅电极2的阵列基板上形成钝化层6;在所述钝化层6刻蚀出过孔7,并形成像素电极8,所述像素电极8通过过孔7与漏信号电极5b连接。A source-drain signal electrode layer 5 is formed on the base substrate 1; a channel 9 is formed on the source-drain signal electrode layer 5, and the channel 9 intercepts the source-drain signal electrode layer 5 and connects the source-drain signal electrode The layer 5 is cut into a source signal electrode 5a and a drain signal electrode 5b; the oxide semiconductor layer 4 is formed on the source signal electrode 5a, the drain signal electrode 5b and the channel 9, and the oxide semiconductor layer 4 passes through the channel The source-drain signal electrode layer is separated by the channel 9; the gate insulating layer 3 is deposited on the array substrate on which the source signal electrode 5a, the drain signal electrode 5b, the channel 9 and the oxide semiconductor layer 4 have been formed; on the gate insulating layer 3 Depositing the gate electrode 2; forming a passivation layer 6 on the array substrate on which the source signal electrode 5a, the drain signal electrode 5b, the channel 9, the oxide semiconductor layer 4, the gate insulating layer 3 and the gate electrode 2 have been formed; A via hole 7 is etched out of the passivation layer 6 to form a pixel electrode 8 , and the pixel electrode 8 is connected to the drain signal electrode 5 b through the via hole 7 .
相应地,阵列基板上还具有栅线和数据线,在阵列基板的制造过程中,栅线可以在形成栅电极的同时形成,数据线可以在形成源电极和漏电极的同时形成。Correspondingly, there are gate lines and data lines on the array substrate. During the manufacturing process of the array substrate, the gate lines can be formed at the same time as the gate electrodes, and the data lines can be formed at the same time as the source electrodes and the drain electrodes.
本实施例中所述钝化层采用的材料为氮化硅,由于氮化硅为非平坦化材料,因此,从图2中可以看出,所述钝化层的表面为非平坦的。The material used for the passivation layer in this embodiment is silicon nitride. Since silicon nitride is a non-planar material, it can be seen from FIG. 2 that the surface of the passivation layer is non-planar.
本发明实施例中例举的阵列基板的结构只是可选的方案,阵列基板上的各组成部分以及薄膜晶体管所包括的各层的位置和形成顺序不限于实施例中所描述的方式,而是可以有很多种变化,比如可以最先形成像素电极,然后再形成源漏信号电极、栅电极等,只要所形成的结构能够实现面板的驱动即可。The structure of the array substrate exemplified in the embodiment of the present invention is only an optional solution, and the positions and formation sequences of the components on the array substrate and the layers included in the thin film transistor are not limited to the methods described in the embodiment, but There can be many variations, for example, the pixel electrode can be formed first, and then the source-drain signal electrode, gate electrode, etc. can be formed, as long as the formed structure can realize the driving of the panel.
本发明还提供了一种显示装置,其中,所述显示装置中的阵列基板为实施例1或实施例2所述的任意一种阵列基板。The present invention also provides a display device, wherein the array substrate in the display device is any one of the array substrates described in
这里,所述显示装置可以为:液晶面板、电子纸、OLED面板、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。Here, the display device may be any product or component with a display function such as a liquid crystal panel, an electronic paper, an OLED panel, a mobile phone, a tablet computer, a television set, a monitor, a notebook computer, a digital photo frame, a navigator, and the like.
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210340253.4A CN103681870B (en) | 2012-09-13 | 2012-09-13 | Array base palte and manufacture method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210340253.4A CN103681870B (en) | 2012-09-13 | 2012-09-13 | Array base palte and manufacture method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103681870A true CN103681870A (en) | 2014-03-26 |
CN103681870B CN103681870B (en) | 2016-12-21 |
Family
ID=50318803
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210340253.4A Active CN103681870B (en) | 2012-09-13 | 2012-09-13 | Array base palte and manufacture method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103681870B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090278134A1 (en) * | 2006-09-22 | 2009-11-12 | National Univrsity Corporation Thoku University | Semiconductor device and method of manufacturing the semiconductor device |
CN101750821A (en) * | 2008-12-03 | 2010-06-23 | 株式会社半导体能源研究所 | Liquid crystal display device with a light guide plate |
TW201203557A (en) * | 2010-04-09 | 2012-01-16 | Dainippon Printing Co Ltd | Thin film transistor substrate |
JP2012174801A (en) * | 2011-02-18 | 2012-09-10 | Nippon Hoso Kyokai <Nhk> | Semiconductor element |
CN202948924U (en) * | 2012-09-13 | 2013-05-22 | 北京京东方光电科技有限公司 | Array substrate and display device |
-
2012
- 2012-09-13 CN CN201210340253.4A patent/CN103681870B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090278134A1 (en) * | 2006-09-22 | 2009-11-12 | National Univrsity Corporation Thoku University | Semiconductor device and method of manufacturing the semiconductor device |
CN101750821A (en) * | 2008-12-03 | 2010-06-23 | 株式会社半导体能源研究所 | Liquid crystal display device with a light guide plate |
TW201203557A (en) * | 2010-04-09 | 2012-01-16 | Dainippon Printing Co Ltd | Thin film transistor substrate |
JP2012174801A (en) * | 2011-02-18 | 2012-09-10 | Nippon Hoso Kyokai <Nhk> | Semiconductor element |
CN202948924U (en) * | 2012-09-13 | 2013-05-22 | 北京京东方光电科技有限公司 | Array substrate and display device |
Also Published As
Publication number | Publication date |
---|---|
CN103681870B (en) | 2016-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11726377B2 (en) | Display device including two types of transistors | |
CN102955312B (en) | Array substrate and manufacture method thereof and display device | |
CN108321159B (en) | Array substrate, preparation method thereof and display device | |
CN103354218B (en) | Array base palte and preparation method thereof and display device | |
CN105390551B (en) | Thin film transistor (TFT) and its manufacturing method, array substrate, display device | |
WO2016041304A1 (en) | Thin film transistor and manufacturing method therefor, array substrate and manufacturing method therefor, and display device | |
CN104576747A (en) | Thin film transistor, display panel having the same and method of manufacturing the same | |
WO2015089963A1 (en) | Array substrate, preparation method therefor, and display device | |
CN104409462B (en) | Array base palte and its manufacture method, display device | |
CN105514120B (en) | A kind of double grid tft array substrate and its manufacturing method and display device | |
CN103489920A (en) | Thin film transistor, preparation method of thin film transistor, array substrate and display device | |
CN104952879B (en) | Using the bigrid TFT substrate structure of COA technologies | |
JP2018510490A (en) | THIN FILM TRANSISTOR AND METHOD FOR MANUFACTURING THE SAME, ARRAY SUBSTRATE, AND DISPLAY DEVICE | |
TWI590423B (en) | Display device | |
CN105552028A (en) | Array substrate, fabrication method thereof, display panel and display device | |
US10205029B2 (en) | Thin film transistor, manufacturing method thereof, and display device | |
CN102629611A (en) | Display device, array substrate and manufacturing method thereof | |
CN104091809A (en) | Array substrate, preparation method of array substrate, LCD and display device | |
CN107611181A (en) | Thin film transistor (TFT), array base palte and its manufacture method, display device | |
CN103413813B (en) | A kind of array base palte and preparation method thereof, display unit | |
CN103489882A (en) | Array substrate, preparation method for same and display device | |
CN202948924U (en) | Array substrate and display device | |
CN105633103B (en) | A kind of production method of array substrate, display device and array substrate | |
US20160027873A1 (en) | Thin film transistor | |
CN203983289U (en) | Thin-film transistor, array base palte and display unit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |