[go: up one dir, main page]

CN103681326A - Formation method of fin field-effect transistor (FinFET) substrates with different threshold voltages - Google Patents

Formation method of fin field-effect transistor (FinFET) substrates with different threshold voltages Download PDF

Info

Publication number
CN103681326A
CN103681326A CN201210325732.9A CN201210325732A CN103681326A CN 103681326 A CN103681326 A CN 103681326A CN 201210325732 A CN201210325732 A CN 201210325732A CN 103681326 A CN103681326 A CN 103681326A
Authority
CN
China
Prior art keywords
patterned photoresist
photoresist layer
germanium
layer
different
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201210325732.9A
Other languages
Chinese (zh)
Inventor
凌龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Manufacturing International Shanghai Corp
Semiconductor Manufacturing International Corp
Original Assignee
Semiconductor Manufacturing International Shanghai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Manufacturing International Shanghai Corp filed Critical Semiconductor Manufacturing International Shanghai Corp
Priority to CN201210325732.9A priority Critical patent/CN103681326A/en
Publication of CN103681326A publication Critical patent/CN103681326A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • H10D30/021Manufacture or treatment of FETs having insulated gates [IGFET]
    • H10D30/024Manufacture or treatment of FETs having insulated gates [IGFET] of fin field-effect transistors [FinFET]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/62Fin field-effect transistors [FinFET]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/60Impurity distributions or concentrations

Landscapes

  • Thin Film Transistor (AREA)

Abstract

本发明公开了一种具有不同阈值电压的鳍式场效应管基体的形成方法:预先提供一表面沉积有衬垫氧化层的半导体衬底;在衬垫氧化层的表面形成图案化的光阻胶层;以图案化的光阻胶层为遮蔽,在图案化的光阻胶层所显露的区域,透过衬垫氧化层以预定剂量离子注入锗元素至半导体衬底中,并去除所述图案化的光阻胶层;以图案化的光阻胶层显露不同区域,重复上述步骤N次,在半导体衬底不同区域形成不同浓度的锗离子分布,N为大于等于1的整数;刻蚀注入有锗离子的半导体衬底,形成多个具有不同锗离子浓度的鳍式场效应管基体。采用本发明,对于长度较长的鳍式场效应管基体,能够实现不同基体具有不同阈值电压。

Figure 201210325732

The invention discloses a method for forming fin field effect transistor substrates with different threshold voltages: providing a semiconductor substrate with a pad oxide layer deposited on the surface in advance; forming a patterned photoresist glue on the surface of the pad oxide layer layer; using the patterned photoresist layer as a shield, in the area exposed by the patterned photoresist layer, implant germanium into the semiconductor substrate with a predetermined dose of ions through the pad oxide layer, and remove the pattern patterned photoresist layer; expose different regions with the patterned photoresist layer, repeat the above steps N times, and form germanium ion distributions with different concentrations in different regions of the semiconductor substrate, where N is an integer greater than or equal to 1; etch implantation A semiconductor substrate with germanium ions forms a plurality of fin field effect transistor substrates with different concentrations of germanium ions. By adopting the present invention, different substrates can have different threshold voltages for long-length fin field effect transistor substrates.

Figure 201210325732

Description

具有不同阈值电压的鳍式场效应管基体的形成方法Method for forming fin field effect transistor substrates with different threshold voltages

技术领域 technical field

本发明涉及半导体器件的制作技术,特别涉及一种具有不同阈值电压的鳍式场效应管(FinFET)基体的形成方法。The invention relates to the manufacturing technology of semiconductor devices, in particular to a method for forming fin field effect transistor (FinFET) substrates with different threshold voltages.

背景技术 Background technique

随着半导体技术的发展,半导体器件的性能稳步提高。半导体器件的性能提高主要通过不断缩小半导体器件的特征尺寸来实现,半导体器件的特征尺寸已经缩小到纳米级别。半导体器件在这种特征尺寸下,传统平面制作半导体器件的方法,也就是单栅半导体器件的制作方法已经无法适用了,所以出现了多栅半导体器件的制作方法。与单栅半导体器件的制作方法相比较,多栅半导体器件具有更强的短沟道抑制能力、更好的亚阈特性,更高的驱动能力以及能带来更高的电路密度。With the development of semiconductor technology, the performance of semiconductor devices has been steadily improved. The improvement of the performance of semiconductor devices is mainly achieved by continuously reducing the feature size of semiconductor devices, and the feature size of semiconductor devices has been reduced to the nanometer level. With such a feature size of semiconductor devices, the traditional planar method of manufacturing semiconductor devices, that is, the method of manufacturing single-gate semiconductor devices, is no longer applicable, so a method of manufacturing multi-gate semiconductor devices has emerged. Compared with the manufacturing method of single-gate semiconductor devices, multi-gate semiconductor devices have stronger short-channel suppression ability, better subthreshold characteristics, higher driving ability and higher circuit density.

目前,鳍式场效应管作为多栅半导体器件的代表被广泛使用,FinFET分为双栅FinFET和三栅FinFET。At present, fin field effect transistors are widely used as a representative of multi-gate semiconductor devices, and FinFETs are divided into double-gate FinFETs and triple-gate FinFETs.

现有技术FinFET的立体结构示意图如图1所示。半导体衬底10上具有基体11和栅极结构12,所述基体11为翅片结构,为长方体状,包括其中间延伸有沟道区域15的源极区域13和漏极区域14,所述栅极结构12围绕翅片结构中间的沟道区域15表面,该表面包括沟道区域的侧壁和顶部。实际上,半导体衬底表面还存在多个FinFET,每个FinFET可以具有不同的阈值电压。A schematic diagram of a three-dimensional structure of a FinFET in the prior art is shown in FIG. 1 . There is a base body 11 and a gate structure 12 on the semiconductor substrate 10. The base body 11 is a fin structure and is in the shape of a cuboid, including a source region 13 and a drain region 14 extending with a channel region 15 in the middle. The pole structure 12 surrounds the surface of the channel region 15 in the middle of the fin structure, which surface includes the side walls and the top of the channel region. In fact, there are multiple FinFETs on the surface of the semiconductor substrate, and each FinFET may have a different threshold voltage.

现有技术通过在半导体衬底上给不同的FinFET施加不同的偏置电压,达到不同FinFET具有不同的阈值电压。但是,对于长度较长的FinFET基体,调节偏置电压并不能达到预期目的。因此,对于长度较长的FinFET基体,如何使不同基体具有不同阈值电压,成为业内尤其关注的一个问题。In the prior art, different FinFETs have different threshold voltages by applying different bias voltages to different FinFETs on a semiconductor substrate. However, for a FinFET substrate with a long length, adjusting the bias voltage cannot achieve the desired purpose. Therefore, how to make different substrates have different threshold voltages for long-length FinFET substrates has become a particularly concerned issue in the industry.

发明内容 Contents of the invention

有鉴于此,本发明提供一种具有不同阈值电压的鳍式场效应管基体的形成方法,对于长度较长的FinFET基体,能够实现不同基体具有不同阈值电压。In view of this, the present invention provides a method for forming FinFET substrates with different threshold voltages. For FinFET substrates with longer lengths, different substrates can have different threshold voltages.

本发明的技术方案是这样实现的:Technical scheme of the present invention is realized like this:

一种具有不同阈值电压的鳍式场效应管FinFET基体的形成方法,该方法包括:A method for forming a FinFET substrate with different threshold voltages, the method comprising:

预先提供一表面沉积有衬垫氧化层的半导体衬底;Pre-providing a semiconductor substrate with a pad oxide layer deposited on its surface;

在衬垫氧化层的表面形成图案化的光阻胶层;以图案化的光阻胶层为遮蔽,在图案化的光阻胶层所显露的区域,透过衬垫氧化层以预定剂量离子注入锗元素至半导体衬底中,并去除所述图案化的光阻胶层;A patterned photoresist layer is formed on the surface of the pad oxide layer; the patterned photoresist layer is used as a shield, and a predetermined dose of ions is transmitted through the pad oxide layer in the area exposed by the patterned photoresist layer. injecting germanium into the semiconductor substrate, and removing the patterned photoresist layer;

以图案化的光阻胶层显露不同区域,重复上述步骤N次,在半导体衬底不同区域形成不同浓度的锗离子分布,N为大于等于1的整数;Exposing different areas with a patterned photoresist layer, repeating the above steps N times, forming germanium ion distributions with different concentrations in different areas of the semiconductor substrate, where N is an integer greater than or equal to 1;

在所述衬垫氧化层表面沉积硬掩膜层,在所述硬掩膜层的表面再次形成图案化的光阻胶层,再次形成的图案化的光阻胶层所覆盖的区域定义每个基体的宽度;A hard mask layer is deposited on the surface of the pad oxide layer, a patterned photoresist layer is formed again on the surface of the hard mask layer, and the area covered by the patterned photoresist layer again defines each the width of the substrate;

以再次形成的图案化的光阻胶层为掩膜,依次刻蚀硬掩膜层、衬垫氧化层和注入有锗离子的半导体衬底,形成多个具有不同锗离子浓度的FinFET基体。Using the re-formed patterned photoresist layer as a mask, the hard mask layer, the pad oxide layer and the semiconductor substrate implanted with germanium ions are sequentially etched to form multiple FinFET substrates with different concentrations of germanium ions.

在半导体衬底不同区域形成不同浓度的锗离子分布之后,沉积硬掩膜层之前,该方法进一步包括退火的步骤。After forming germanium ion distributions with different concentrations in different regions of the semiconductor substrate and before depositing a hard mask layer, the method further includes an annealing step.

形成多个具有不同锗离子浓度的FinFET基体之后,该方法进一步包括:依次去除硬掩膜层和衬垫氧化层。After forming a plurality of FinFET substrates with different concentrations of germanium ions, the method further includes: sequentially removing the hard mask layer and the pad oxide layer.

在同一光阻胶层所显露的区域离子注入锗元素,分为多次注入完成。The ion implantation of germanium element in the exposed area of the same photoresist layer is divided into multiple implantations.

所述FinFET基体为翅片结构,包括其中间延伸有沟道区域的源极区域和漏极区域。The FinFET base body is a fin structure, including a source region and a drain region with a channel region extending therebetween.

所述离子注入为垂直注入。The ion implantation is vertical implantation.

从上述方案可以看出,本发明通过在不同区域均匀离子注入锗离子,就可以达到不同基体具有不同的阈值电压,即使对于长度较长的FinFET基体,也可以很好地达到所要求的阈值电压。It can be seen from the above scheme that the present invention can achieve different threshold voltages for different substrates by uniform ion implantation of germanium ions in different regions, and even for long-length FinFET substrates, the required threshold voltage can be well achieved. .

附图说明 Description of drawings

图1为现有技术FinFET的立体结构示意图。FIG. 1 is a schematic diagram of a three-dimensional structure of a FinFET in the prior art.

图2为本发明具有不同阈值电压的鳍式场效应管基体的形成方法的流程示意图。FIG. 2 is a schematic flowchart of a method for forming a FinFET substrate with different threshold voltages according to the present invention.

图3a至图3h为本发明实施例形成具有不同阈值电压的鳍式场效应管基体的具体结构示意图。FIGS. 3 a to 3 h are specific structural schematic diagrams of forming fin field effect transistor substrates with different threshold voltages according to an embodiment of the present invention.

具体实施方式 Detailed ways

为使本发明的目的、技术方案及优点更加清楚明白,以下参照附图并举实施例,对本发明作进一步详细说明。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be further described in detail below with reference to the accompanying drawings and examples.

根据研究可知,基体中离子浓度的大小决定了沟道载流子迁移率的大小,载流子迁移率是实现阈值电压的重要参数,因此,通过控制不同基体中离子注入浓度的大小,来实现不同阈值电压,是本发明的核心思想。According to the research, the ion concentration in the matrix determines the carrier mobility of the channel, and the carrier mobility is an important parameter to realize the threshold voltage. Therefore, by controlling the concentration of ion implantation in different substrates, to achieve Different threshold voltages are the core idea of the present invention.

本发明具有不同阈值电压的鳍式场效应管基体的形成方法的流程示意图如图2所示,其包括以下步骤:The flow diagram of the method for forming the fin field effect transistor substrate with different threshold voltages of the present invention is shown in Figure 2, which includes the following steps:

步骤21、预先提供一表面沉积有衬垫氧化层的半导体衬底;Step 21, pre-providing a semiconductor substrate with a pad oxide layer deposited on its surface;

步骤22、在衬垫氧化层的表面形成图案化的光阻胶层;以图案化的光阻胶层为遮蔽,在图案化的光阻胶层所显露的区域,透过衬垫氧化层以预定剂量离子注入锗元素至半导体衬底中,并去除所述图案化的光阻胶层;Step 22, forming a patterned photoresist layer on the surface of the pad oxide layer; using the patterned photoresist layer as a shield, in the area exposed by the patterned photoresist layer, through the pad oxide layer to Implanting germanium elements into the semiconductor substrate with a predetermined dose of ions, and removing the patterned photoresist layer;

步骤23、以图案化的光阻胶层显露不同区域,重复上述步骤N次,在半导体衬底不同区域形成不同浓度的锗离子分布,N为大于等于1的整数;Step 23, using the patterned photoresist layer to reveal different areas, repeating the above steps N times, forming germanium ion distributions with different concentrations in different areas of the semiconductor substrate, where N is an integer greater than or equal to 1;

步骤24、在所述衬垫氧化层表面沉积硬掩膜层,在所述硬掩膜层的表面再次形成图案化的光阻胶层,再次形成的图案化的光阻胶层所覆盖的区域定义每个基体的宽度;Step 24, depositing a hard mask layer on the surface of the pad oxide layer, forming a patterned photoresist layer on the surface of the hard mask layer again, and forming an area covered by the patterned photoresist layer define the width of each matrix;

步骤25、以再次形成的图案化的光阻胶层为掩膜,依次刻蚀硬掩膜层、衬垫氧化层和注入有锗离子的半导体衬底,形成多个具有不同锗离子浓度的FinFET基体。Step 25: Using the re-formed patterned photoresist layer as a mask, sequentially etch the hard mask layer, the pad oxide layer, and the semiconductor substrate implanted with germanium ions to form a plurality of FinFETs with different concentrations of germanium ions matrix.

下面列举实施例对本发明进行详细说明。The following examples are given to describe the present invention in detail.

图3a至图3h为本发明实施例形成具有不同阈值电压的鳍式场效应管基体的具体结构示意图。FIGS. 3 a to 3 h are specific structural schematic diagrams of forming fin field effect transistor substrates with different threshold voltages according to an embodiment of the present invention.

请参阅图3a,半导体衬底100表面沉积有衬垫氧化层101;Referring to FIG. 3a, a pad oxide layer 101 is deposited on the surface of the semiconductor substrate 100;

其中,衬垫氧化层101覆盖在半导体衬底100表面,用于在后续离子注入时保护衬底表面不受损伤。Wherein, the pad oxide layer 101 covers the surface of the semiconductor substrate 100 and is used to protect the substrate surface from damage during subsequent ion implantation.

请参阅图3b,在衬垫氧化层101的表面形成图案化的第一光阻胶层102;以图案化的第一光阻胶层102为遮蔽,在图案化的第一光阻胶层102所显露的区域,透过衬垫氧化层101以预定剂量离子注入锗元素至半导体衬底100中,形成第一锗离子注入区域103;Please refer to FIG. 3b, a patterned first photoresist layer 102 is formed on the surface of the pad oxide layer 101; In the exposed area, germanium is ion-implanted into the semiconductor substrate 100 at a predetermined dose through the pad oxide layer 101 to form a first germanium ion implantation area 103;

该步骤中锗离子的注入也可以分为多次完成,每次注入剂量相同,但能量不同,通过不同能量的锗离子注入,实现锗离子浓度的均匀分布。锗离子注入的次数,以及每次注入的能量和剂量,可以根据实际应用灵活调整的,只要能够达到预定的浓度即可。The implantation of germanium ions in this step can also be done in multiple times, each implantation dose is the same, but the energy is different, and the germanium ion concentration is uniformly distributed through implantation of germanium ions with different energies. The number of germanium ion implantations, as well as the energy and dose of each implantation, can be flexibly adjusted according to practical applications, as long as the predetermined concentration can be achieved.

请参阅图3c,去除所述图案化的第一光阻胶层102;Referring to FIG. 3c, remove the patterned first photoresist layer 102;

请参阅图3d,在衬垫氧化层的表面形成图案化的第二光阻胶层104;以图案化的第二光阻胶层104为遮蔽,在图案化的第二光阻胶层104所显露的区域,透过衬垫氧化层101以预定剂量离子注入锗元素至半导体衬底100中,形成第二锗离子注入区域105;Please refer to FIG. 3d, a patterned second photoresist layer 104 is formed on the surface of the pad oxide layer; In the exposed area, ion-implant germanium into the semiconductor substrate 100 at a predetermined dose through the pad oxide layer 101 to form a second germanium ion implantation area 105;

同理,该步骤中锗离子的注入也可以分为多次完成,每次注入剂量相同,但能量不同,通过不同能量的锗离子注入,实现锗离子浓度的均匀分布。锗离子注入的次数,以及每次注入的能量和剂量,可以根据实际应用灵活调整的,只要能够达到预定的浓度即可。而且,该步骤锗离子在半导体衬底的部分区域重复注入,所以重复注入部分的锗离子浓度高于其他区域的锗离子浓度。Similarly, the implantation of germanium ions in this step can also be performed in multiple times, each implantation dose is the same, but the energy is different, and the germanium ion concentration is uniformly distributed through implantation of germanium ions with different energies. The number of germanium ion implantations, as well as the energy and dose of each implantation, can be flexibly adjusted according to practical applications, as long as the predetermined concentration can be achieved. Moreover, in this step, germanium ions are repeatedly implanted in some regions of the semiconductor substrate, so the concentration of germanium ions in the repeatedly implanted part is higher than that in other regions.

请参阅图3e,去除所述图案化的第二光阻胶层104;Referring to FIG. 3e, removing the patterned second photoresist layer 104;

上述完成了在半导体衬底不同区域形成不同浓度的锗离子分布,所以在此加入退火的步骤,目的在于:一,修复锗离子注入过程中的晶格损伤;二,使锗离子的浓度分布均匀;三,激活锗离子,使之与半导体衬底硅元素城键,形成沟道载流子。The above completed the formation of germanium ion distributions with different concentrations in different regions of the semiconductor substrate, so the annealing step is added here for the purpose of: first, repairing the lattice damage during the germanium ion implantation process; second, making the concentration distribution of germanium ions uniform ; Three, activate the germanium ions to make them bond with the silicon element of the semiconductor substrate to form channel carriers.

接下来,请参阅图3f,在所述衬垫氧化层101表面沉积硬掩膜层106,在所述硬掩膜层106的表面形成图案化的第三光阻胶层107,图案化的第三光阻胶层107所覆盖的区域定义每个基体的宽度;Next, referring to FIG. 3f, a hard mask layer 106 is deposited on the surface of the pad oxide layer 101, a patterned third photoresist layer 107 is formed on the surface of the hard mask layer 106, and the patterned first The area covered by the three photoresist layers 107 defines the width of each substrate;

从图3f可以看出,在锗离子注入的区域刻蚀形成基体的个数可以根据需要而定。It can be seen from FIG. 3f that the number of substrates formed by etching in the region where germanium ions are implanted can be determined as required.

请参阅图3g、以图案化的第三光阻胶层107为掩膜,依次刻蚀硬掩膜层106、衬垫氧化层101和注入有锗离子的半导体衬底,形成多个具有不同锗离子浓度的FinFET基体108。Please refer to FIG. 3g. Using the patterned third photoresist layer 107 as a mask, the hard mask layer 106, the pad oxide layer 101, and the semiconductor substrate implanted with germanium ions are sequentially etched to form a plurality of semiconductor substrates with different germanium ions. ion concentration of the FinFET substrate 108 .

请参阅图3h,为去除硬掩膜层106和衬垫氧化层101的FinFET基体108。Please refer to FIG. 3 h , which shows the FinFET substrate 108 with the hard mask layer 106 and the pad oxide layer 101 removed.

图3h为每个FinFET基体的剖面图,不同阴影颜色的基体108表示具有不同的阈值电压。仍然如立体图1所示,每个FinFET基体为翅片结构,包括其中间延伸有沟道区域的源极区域和漏极区域。FIG. 3h is a cross-sectional view of each FinFET substrate, and substrates 108 with different shaded colors represent different threshold voltages. Still as shown in perspective view 1, each FinFET base body is a fin structure, including a source region and a drain region with a channel region extending therebetween.

由于每个基体的锗离子注入浓度不同,所以形成的FinFET阈值电压也不相同,从而实现了本发明的目的。上述实施例,通过图案化的光阻胶层两次显露不同区域,进行锗离子注入,实现不同区域锗离子注入浓度不同。实际上,这只是其中的一种实现方式,简要说明本发明的实质,当然还可以通过图案化的光阻胶层多次显露不同区域,进行锗离子注入,都在本发明的保护范围之内。Since the germanium ion implantation concentration of each substrate is different, the threshold voltages of the formed FinFETs are also different, thereby achieving the object of the present invention. In the above embodiment, different regions are exposed twice through the patterned photoresist layer, and germanium ion implantation is performed, so that different concentrations of germanium ion implantation are realized in different regions. In fact, this is only one of the implementation methods. The essence of the present invention will be briefly described. Of course, different regions can also be exposed through the patterned photoresist layer for multiple times, and germanium ion implantation is performed, all within the protection scope of the present invention. .

需要说明的是,本发明锗离子注入是在刻蚀形成基体形状之前,所以进行简单的垂直注入即可。如果刻蚀形成基体形状之后,再进行离子注入,那样就需要倾斜注入,如果倾斜的角度控制不好,很可能注入到其他区域,产生阴影效应(shadow effect),无法准确控制离子注入浓度。因此本发明的方法简单易实现。It should be noted that the implantation of germanium ions in the present invention is performed before etching to form the shape of the matrix, so simple vertical implantation is sufficient. If ion implantation is performed after etching to form the shape of the substrate, oblique implantation is required. If the inclination angle is not well controlled, it is likely to be implanted into other areas, resulting in a shadow effect (shadow effect), and the ion implantation concentration cannot be accurately controlled. Therefore, the method of the present invention is simple and easy to implement.

综上,通过本发明的方法,即使对于长度较长的FinFET基体,只需要在不同区域均匀离子注入锗离子,就可以达到不同基体具有不同的阈值电压,不会像现有技术那样,无法通过调节偏置电压来实现长度较长的FinFET基体的阈值电压。To sum up, through the method of the present invention, even for a FinFET substrate with a long length, only germanium ions need to be uniformly implanted in different regions to achieve different threshold voltages for different substrates. Adjust the bias voltage to achieve the threshold voltage of the FinFET body with longer length.

以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明保护的范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included in the present invention. within the scope of protection.

Claims (6)

1.一种具有不同阈值电压的鳍式场效应管FinFET基体的形成方法,该方法包括:1. A method for forming a fin field effect transistor FinFET substrate with different threshold voltages, the method comprising: 预先提供一表面沉积有衬垫氧化层的半导体衬底;Pre-providing a semiconductor substrate with a pad oxide layer deposited on its surface; 在衬垫氧化层的表面形成图案化的光阻胶层;以图案化的光阻胶层为遮蔽,在图案化的光阻胶层所显露的区域,透过衬垫氧化层以预定剂量离子注入锗元素至半导体衬底中,并去除所述图案化的光阻胶层;A patterned photoresist layer is formed on the surface of the pad oxide layer; the patterned photoresist layer is used as a shield, and a predetermined dose of ions is transmitted through the pad oxide layer in the area exposed by the patterned photoresist layer. injecting germanium into the semiconductor substrate, and removing the patterned photoresist layer; 以图案化的光阻胶层显露不同区域,重复上述步骤N次,在半导体衬底不同区域形成不同浓度的锗离子分布,N为大于等于1的整数;Exposing different areas with a patterned photoresist layer, repeating the above steps N times, forming germanium ion distributions with different concentrations in different areas of the semiconductor substrate, where N is an integer greater than or equal to 1; 在所述衬垫氧化层表面沉积硬掩膜层,在所述硬掩膜层的表面再次形成图案化的光阻胶层,再次形成的图案化的光阻胶层所覆盖的区域定义每个基体的宽度;A hard mask layer is deposited on the surface of the pad oxide layer, a patterned photoresist layer is formed again on the surface of the hard mask layer, and the area covered by the patterned photoresist layer again defines each the width of the substrate; 以再次形成的图案化的光阻胶层为掩膜,依次刻蚀硬掩膜层、衬垫氧化层和注入有锗离子的半导体衬底,形成多个具有不同锗离子浓度的FinFET基体。Using the re-formed patterned photoresist layer as a mask, the hard mask layer, the pad oxide layer and the semiconductor substrate implanted with germanium ions are sequentially etched to form multiple FinFET substrates with different concentrations of germanium ions. 2.如权利要求1所述的方法,其特征在于,在半导体衬底不同区域形成不同浓度的锗离子分布之后,沉积硬掩膜层之前,该方法进一步包括退火的步骤。2. The method according to claim 1, characterized in that, after forming germanium ion distributions with different concentrations in different regions of the semiconductor substrate and before depositing a hard mask layer, the method further comprises an annealing step. 3.如权利要求2所述的方法,其特征在于,形成多个具有不同锗离子浓度的FinFET基体之后,该方法进一步包括:依次去除硬掩膜层和衬垫氧化层。3. The method according to claim 2, wherein after forming a plurality of FinFET substrates with different concentrations of germanium ions, the method further comprises: sequentially removing the hard mask layer and the pad oxide layer. 4.如权利要求1所述的方法,其特征在于,在同一光阻胶层所显露的区域离子注入锗元素,分为多次注入完成。4 . The method according to claim 1 , wherein ion implantation of germanium element into the exposed area of the same photoresist layer is divided into multiple implantations. 5 . 5.如权利要求1所述的方法,其特征在于,所述FinFET基体为翅片结构,包括其中间延伸有沟道区域的源极区域和漏极区域。5. The method according to claim 1, wherein the FinFET base body is a fin structure including a source region and a drain region extending a channel region therebetween. 6.如权利要求1所述的方法,其特征在于,所述离子注入为垂直注入。6. The method of claim 1, wherein the ion implantation is vertical implantation.
CN201210325732.9A 2012-09-05 2012-09-05 Formation method of fin field-effect transistor (FinFET) substrates with different threshold voltages Pending CN103681326A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210325732.9A CN103681326A (en) 2012-09-05 2012-09-05 Formation method of fin field-effect transistor (FinFET) substrates with different threshold voltages

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210325732.9A CN103681326A (en) 2012-09-05 2012-09-05 Formation method of fin field-effect transistor (FinFET) substrates with different threshold voltages

Publications (1)

Publication Number Publication Date
CN103681326A true CN103681326A (en) 2014-03-26

Family

ID=50318518

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210325732.9A Pending CN103681326A (en) 2012-09-05 2012-09-05 Formation method of fin field-effect transistor (FinFET) substrates with different threshold voltages

Country Status (1)

Country Link
CN (1) CN103681326A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105304489A (en) * 2014-07-01 2016-02-03 中芯国际集成电路制造(上海)有限公司 Forming method of semiconductor device
US9425196B1 (en) 2015-12-08 2016-08-23 International Business Machines Corporation Multiple threshold voltage FinFETs
US9755078B2 (en) 2015-10-23 2017-09-05 International Business Machines Corporation Structure and method for multi-threshold voltage adjusted silicon germanium alloy devices with same silicon germanium content
CN107437544A (en) * 2016-05-27 2017-12-05 中芯国际集成电路制造(上海)有限公司 Manufacturing method of semiconductor device, semiconductor devices and electronic installation
US10361301B2 (en) 2016-03-31 2019-07-23 International Business Machines Corporation Fabrication of vertical fin transistor with multiple threshold voltages
US10818756B2 (en) 2018-11-02 2020-10-27 International Business Machines Corporation Vertical transport FET having multiple threshold voltages with zero-thickness variation of work function metal

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1967792A (en) * 2005-10-27 2007-05-23 国际商业机器公司 Structure and method of fabricating finfet with buried channel
CN101303975A (en) * 2007-05-07 2008-11-12 台湾积体电路制造股份有限公司 Fin field effect transistor and forming method thereof
US20090124069A1 (en) * 2007-11-14 2009-05-14 Clark Jr William F Methods of changing threshold voltages of semiconductor transistors by ion implantation
CN102088029A (en) * 2009-12-08 2011-06-08 上海华虹Nec电子有限公司 PNP bipolar transistor in SiGe BiCMOS technology
CN102157377A (en) * 2010-02-11 2011-08-17 上海华虹Nec电子有限公司 Super-junction VDMOS (Vertical Double-diffused Metal Oxide Semiconductor) device and manufacturing method thereof
CN102412162A (en) * 2011-11-23 2012-04-11 上海华虹Nec电子有限公司 The Method of Improving the Breakdown Voltage of NLDMOS
CN102543726A (en) * 2010-12-20 2012-07-04 上海华虹Nec电子有限公司 Manufacture method for high-voltage silicon germanium heterojunction bipolar transistor
CN102640273A (en) * 2009-12-01 2012-08-15 国际商业机器公司 Method and structure for forming finfets with multiple doping regions on a same chip

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1967792A (en) * 2005-10-27 2007-05-23 国际商业机器公司 Structure and method of fabricating finfet with buried channel
CN101303975A (en) * 2007-05-07 2008-11-12 台湾积体电路制造股份有限公司 Fin field effect transistor and forming method thereof
US20090124069A1 (en) * 2007-11-14 2009-05-14 Clark Jr William F Methods of changing threshold voltages of semiconductor transistors by ion implantation
CN102640273A (en) * 2009-12-01 2012-08-15 国际商业机器公司 Method and structure for forming finfets with multiple doping regions on a same chip
CN102088029A (en) * 2009-12-08 2011-06-08 上海华虹Nec电子有限公司 PNP bipolar transistor in SiGe BiCMOS technology
CN102157377A (en) * 2010-02-11 2011-08-17 上海华虹Nec电子有限公司 Super-junction VDMOS (Vertical Double-diffused Metal Oxide Semiconductor) device and manufacturing method thereof
CN102543726A (en) * 2010-12-20 2012-07-04 上海华虹Nec电子有限公司 Manufacture method for high-voltage silicon germanium heterojunction bipolar transistor
CN102412162A (en) * 2011-11-23 2012-04-11 上海华虹Nec电子有限公司 The Method of Improving the Breakdown Voltage of NLDMOS

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105304489A (en) * 2014-07-01 2016-02-03 中芯国际集成电路制造(上海)有限公司 Forming method of semiconductor device
CN105304489B (en) * 2014-07-01 2018-06-01 中芯国际集成电路制造(上海)有限公司 The forming method of semiconductor devices
US9755078B2 (en) 2015-10-23 2017-09-05 International Business Machines Corporation Structure and method for multi-threshold voltage adjusted silicon germanium alloy devices with same silicon germanium content
US9425196B1 (en) 2015-12-08 2016-08-23 International Business Machines Corporation Multiple threshold voltage FinFETs
US10361301B2 (en) 2016-03-31 2019-07-23 International Business Machines Corporation Fabrication of vertical fin transistor with multiple threshold voltages
US10991823B2 (en) 2016-03-31 2021-04-27 International Business Machines Corporation Fabrication of vertical fin transistor with multiple threshold voltages
US11018254B2 (en) 2016-03-31 2021-05-25 International Business Machines Corporation Fabrication of vertical fin transistor with multiple threshold voltages
US11043587B2 (en) 2016-03-31 2021-06-22 International Business Machines Corporation Fabrication of vertical fin transistor with multiple threshold voltages
CN107437544A (en) * 2016-05-27 2017-12-05 中芯国际集成电路制造(上海)有限公司 Manufacturing method of semiconductor device, semiconductor devices and electronic installation
US10818756B2 (en) 2018-11-02 2020-10-27 International Business Machines Corporation Vertical transport FET having multiple threshold voltages with zero-thickness variation of work function metal

Similar Documents

Publication Publication Date Title
CN103985636B (en) FinFET/Tri-Gate Channel Doping for Multiple Threshold Voltage Tuning
CN103515422B (en) There is the FinFET of high mobility and strained-channel
US8728885B1 (en) Methods of forming a three-dimensional semiconductor device with a nanowire channel structure
CN103137685B (en) Semiconductor device and manufacture method thereof
JP5498394B2 (en) Transistor and method for forming the same
US20090001470A1 (en) Method for forming acute-angle spacer for non-orthogonal finfet and the resulting structure
CN103681326A (en) Formation method of fin field-effect transistor (FinFET) substrates with different threshold voltages
US8877588B2 (en) Methods of forming a three-dimensional semiconductor device with a dual stress channel and the resulting device
KR101026479B1 (en) Semiconductor element and manufacturing method thereof
US7419857B2 (en) Method for manufacturing field effect transistor having channel consisting of silicon fins and silicon body and transistor structure manufactured thereby
CN107533960B (en) Method of fabricating three-dimensional device and method of forming multi-gate transistor
CN103515205B (en) A kind of FinFET channel doping process
CN104637814B (en) A kind of fin formula field effect transistor and preparation method thereof
CN104916540B (en) A kind of strained channel transistor and preparation method thereof
CN102543990A (en) Strained silicon semiconductor structure
CN104282564A (en) Method for forming semiconductor device and method for forming fin field effect transistor
CN108630544B (en) Semiconductor element and manufacturing method thereof
KR101213723B1 (en) Semiconductor device and Method for fabricating the same
CN103681342B (en) A kind of conducting channel preparation method
CN107039349B (en) By executing heating process to thermally expansible material in the method for forming strained channel region on FinFET devices
CN107045986B (en) Method for forming a strained channel region on a FinFET device
KR101140060B1 (en) semiconductor device and Method for fabricating the same
CN107546127B (en) Semiconductor device and method of making the same
CN105374878B (en) Semiconductor device including charged punch-through prevention layer to reduce punch-through and method of fabricating the same
CN108054099B (en) Method for manufacturing semiconductor power device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20140326

RJ01 Rejection of invention patent application after publication