CN103681318B - Use the method that the selective oxidation technology of silicon manufactures junction barrier schottky diode - Google Patents
Use the method that the selective oxidation technology of silicon manufactures junction barrier schottky diode Download PDFInfo
- Publication number
- CN103681318B CN103681318B CN201210345828.1A CN201210345828A CN103681318B CN 103681318 B CN103681318 B CN 103681318B CN 201210345828 A CN201210345828 A CN 201210345828A CN 103681318 B CN103681318 B CN 103681318B
- Authority
- CN
- China
- Prior art keywords
- silicon
- layer
- silicon oxide
- photoresist
- ions
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims abstract description 54
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 54
- 239000010703 silicon Substances 0.000 title claims abstract description 54
- 230000004888 barrier function Effects 0.000 title claims abstract description 30
- 238000000034 method Methods 0.000 title claims abstract description 27
- 230000003647 oxidation Effects 0.000 title claims abstract description 14
- 238000007254 oxidation reaction Methods 0.000 title claims abstract description 14
- 238000005516 engineering process Methods 0.000 title claims abstract description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 42
- 229910052814 silicon oxide Inorganic materials 0.000 claims abstract description 42
- 238000009792 diffusion process Methods 0.000 claims abstract description 17
- 150000002500 ions Chemical class 0.000 claims abstract description 17
- 239000012535 impurity Substances 0.000 claims abstract description 13
- 238000004519 manufacturing process Methods 0.000 claims abstract description 13
- 229920002120 photoresistant polymer Polymers 0.000 claims description 36
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 32
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 32
- -1 boron ions Chemical class 0.000 claims description 31
- 239000013078 crystal Substances 0.000 claims description 28
- 229910052751 metal Inorganic materials 0.000 claims description 21
- 239000002184 metal Substances 0.000 claims description 21
- 239000000758 substrate Substances 0.000 claims description 13
- 238000000206 photolithography Methods 0.000 claims description 12
- 229910052785 arsenic Inorganic materials 0.000 claims description 9
- 229910052796 boron Inorganic materials 0.000 claims description 9
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 8
- 238000001312 dry etching Methods 0.000 claims description 8
- 229910052698 phosphorus Inorganic materials 0.000 claims description 8
- 239000011574 phosphorus Substances 0.000 claims description 8
- 238000005245 sintering Methods 0.000 claims description 8
- 238000005468 ion implantation Methods 0.000 claims description 5
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 4
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 4
- 238000005530 etching Methods 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 claims description 4
- 238000001039 wet etching Methods 0.000 claims description 4
- 238000005538 encapsulation Methods 0.000 claims 1
- 230000015572 biosynthetic process Effects 0.000 abstract description 4
- 239000004065 semiconductor Substances 0.000 description 7
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 4
- 238000004806 packaging method and process Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000004347 surface barrier Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D8/00—Diodes
- H10D8/01—Manufacture or treatment
- H10D8/051—Manufacture or treatment of Schottky diodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/76—Making of isolation regions between components
- H01L21/762—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
- H01L21/76202—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using a local oxidation of silicon, e.g. LOCOS, SWAMI, SILO
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D8/00—Diodes
- H10D8/60—Schottky-barrier diodes
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
本发明公开一种使用硅的选择氧化技术制造结势垒肖特基二极管的方法,使用LOCOS(硅的局部氧化)氧化硅的形成,把注入的杂质离子的扩散范围有效的局限在LOCOS氧化硅区域之间,从而有效减少PN结的P区域或N区域横向(水平方向)的扩散的范围,因而减少了P区域或N区域横向扩散所占用的肖特基介面,因此肖特基介面的面积可以得到充分的利用,同时将有效的肖特基势垒界面弯曲成曲面从而增加导电面积,补偿异型小岛占用的面积,因而提升了势垒结肖特基二极管正向通电的功能及效率。
The invention discloses a method for manufacturing junction barrier Schottky diodes using silicon selective oxidation technology, using the formation of LOCOS (local oxidation of silicon) silicon oxide to effectively limit the diffusion range of implanted impurity ions to LOCOS silicon oxide Between regions, thereby effectively reducing the range of lateral (horizontal) diffusion of the P region or N region of the PN junction, thus reducing the Schottky interface occupied by the lateral diffusion of the P region or N region, so the area of the Schottky interface It can be fully utilized, and at the same time, the effective Schottky barrier interface is bent into a curved surface to increase the conductive area and compensate for the area occupied by the shaped islands, thereby improving the forward-conducting function and efficiency of the barrier junction Schottky diode.
Description
技术领域 technical field
本发明设计二极管制造领域,具体涉及一种使用硅的选择氧化技术制造结势垒肖特基二极管的方法。The invention relates to the design field of diode manufacturing, and specifically relates to a method for manufacturing junction barrier Schottky diodes using silicon selective oxidation technology.
背景技术 Background technique
肖特基二极管是近年来问世的低功耗、大电流、超高速半导体器件。其反向恢复时间极短(可以小到几纳秒),正向导通压降仅0.4V左右,而整流电流却可达到几千毫安。这些优良特性是快恢复二极管所无法比拟的。肖特基二极管是利用金属与半导体接触形成的金属-半导体结原理制作而成的,又被称为金属-半导体(接触)二极管或表面势垒二极管。Schottky diodes are low-power, high-current, ultra-high-speed semiconductor devices that have come out in recent years. Its reverse recovery time is extremely short (can be as small as a few nanoseconds), the forward voltage drop is only about 0.4V, and the rectification current can reach several thousand milliamperes. These excellent characteristics are unmatched by fast recovery diodes. Schottky diodes are made using the principle of metal-semiconductor junctions formed by metal-semiconductor contacts, and are also known as metal-semiconductor (contact) diodes or surface barrier diodes.
普通肖特基二极管在表层金属与硅层之间具有的一个肖特基势垒介面。此介面在正向电压时可以导通大正向电流;而在反向电压的情况下阻止电流流通,只有少量的反向漏电发生。当反向偏压加大,反向漏电会随着加大,这是肖特基势垒的自然物理特性。为了克服此反向漏电随着反向电压增加而增大的问题,而设计出的一种结势垒肖特基二极管,该结势垒肖特基二极管在普通肖特基二极管的肖特基势垒介面下加入多个隔离的“P”或“N”型半导体离子扩散而成的小区域,这些“P”型区域与“N”型的外延区形成多个PN结或“N”型区域与“P”型的外延区形成多个PN结。当反向偏压加大时,这些PN结在肖特基势垒介面下形成一层空泛层,此空泛层的厚度会随着反向电压增加而扩大,因而减小了反向电压的电场对肖特基势垒介面的影响,达到反向漏电会大幅度降低的目的。然而这种势垒肖特基二极管所存在的缺点是:由于加入的“P”或“N”型小岛区域占用了一部分原有肖特基势垒介面的面积;所以在正向电压的情况下,可以导通电流的面积变小,所以正向电流也会相对的减小,因而降低了正向导通电流的功能及效率。因此,如何限制加入“P”或“N”型半导体离子横向(水平方向)扩散的范围,同时将有效的肖特基势垒界面弯曲成曲面从而增加导电面积,补偿异型小岛占用的面积,是势垒肖特基二极管制作过程中需要解决的问题。Common Schottky diodes have a Schottky barrier interface between the surface metal and the silicon layer. This interface can conduct a large forward current under forward voltage; and prevent current flow under reverse voltage, only a small amount of reverse leakage occurs. When the reverse bias voltage increases, the reverse leakage will increase accordingly, which is the natural physical characteristic of the Schottky barrier. In order to overcome the problem that the reverse leakage increases with the increase of the reverse voltage, a junction barrier Schottky diode is designed. Add multiple isolated "P" or "N" type semiconductor ion diffusion small regions under the barrier interface. These "P" type regions and "N" type epitaxial regions form multiple PN junctions or "N" type The regions form multiple PN junctions with the "P" type epitaxial regions. When the reverse bias voltage is increased, these PN junctions form a layer of flooding layer under the Schottky barrier interface, and the thickness of this flooding layer will expand as the reverse voltage increases, thus reducing the electric field of the reverse voltage The impact on the Schottky barrier interface can greatly reduce the reverse leakage. However, the disadvantage of this barrier Schottky diode is that the added "P" or "N" type island region occupies a part of the area of the original Schottky barrier interface; so in the case of forward voltage In this case, the area that can conduct current becomes smaller, so the forward current will also be relatively reduced, thus reducing the function and efficiency of forward conduction current. Therefore, how to limit the range of lateral (horizontal) diffusion of "P" or "N" type semiconductor ions, and at the same time bend the effective Schottky barrier interface into a curved surface to increase the conductive area and compensate for the area occupied by the shaped islands, It is a problem that needs to be solved in the production process of the barrier Schottky diode.
发明内容 Contents of the invention
本发明所要解决的技术问题是提供使用一种使用硅的选择氧化技术制造结势垒肖特基二极管的方法,该方法能够减少加入的“P”或“N”异型半导体离子横向(水平方向)扩散的范围,同时将有效的肖特基势垒界面弯曲成曲面从而增加导电面积,补偿异型小岛占用的面积,有效提升了势垒结肖特基二极管正向通电的功能及效率。The technical problem to be solved by the present invention is to provide a method for manufacturing junction barrier Schottky diodes using a silicon selective oxidation technology, which can reduce the lateral (horizontal direction) of "P" or "N" heterogeneous semiconductor ions added. At the same time, the effective Schottky barrier interface is bent into a curved surface to increase the conductive area, compensate for the area occupied by the special-shaped islands, and effectively improve the forward-conducting function and efficiency of the barrier junction Schottky diode.
为解决上述问题,本发明是通过以下方案实现的:In order to solve the above problems, the present invention is achieved through the following schemes:
一种使用硅的选择氧化技术制造结势垒肖特基二极管的方法,包括晶体生成步骤和封装步骤,其中晶体生成步骤包括:A method for manufacturing a junction barrier Schottky diode using a silicon selective oxidation technique, comprising a crystal generating step and a packaging step, wherein the crystal generating step includes:
(1)在硅片衬底上覆盖一层硅外延层;(1) Cover a silicon epitaxial layer on the silicon wafer substrate;
(2)在硅外延层上先成长一层薄的氧化硅,其上再沉积一层氮化硅;(2) A thin layer of silicon oxide is first grown on the silicon epitaxial layer, and then a layer of silicon nitride is deposited on it;
(3)用光刻法在氮化硅层表面形成多个块状光胶区域,这些块状光胶区域各自独立分布并覆盖在氮化硅层表面;(3) A plurality of block photoresist regions are formed on the surface of the silicon nitride layer by photolithography, and these block photoresist regions are independently distributed and cover the surface of the silicon nitride layer;
(4)用干蚀刻法把没有光胶覆盖的区域下的氮化硅蚀刻掉,再把光胶清除干净;(4) Etch the silicon nitride under the area not covered by photoresist by dry etching, and then remove the photoresist;
(5)使用炉管烧结法在没有氮化硅的区域内即氧化硅的上下表面双向成长一层厚的氧化硅,此时由于氧化硅向下的成长,硅表面变成一些相互独立的下突曲面;(5) Use the furnace tube sintering method to grow a layer of thick silicon oxide bidirectionally on the upper and lower surfaces of the silicon oxide in the area without silicon nitride. At this time, due to the downward growth of silicon oxide, the silicon surface becomes some mutually independent lower layers. convex surface;
(6)使用磷酸把剩余的氮化硅清除;(6) Use phosphoric acid to remove the remaining silicon nitride;
(7)在步骤(6)所得晶体表面用离子注入法注入杂质离子,此时晶片表面有步骤(5)所述厚的氧化硅的区域,杂质离子被阻挡而不能进入至硅表面;(7) Impurity ions are implanted on the crystal surface obtained in step (6) by ion implantation. At this time, there is a thick silicon oxide region on the wafer surface as described in step (5), and the impurity ions are blocked from entering the silicon surface;
(8)用炉管烧结法把杂质离子扩散至硅片表面以下与下突曲面区形成PN结;(8) Use the furnace tube sintering method to diffuse the impurity ions below the surface of the silicon wafer and form a PN junction with the protruding surface area;
(9)用光刻法在步骤(8)所得晶体的表面形成一个环状光胶区域,该环状光胶区域位于晶体表面的边缘处并覆盖在晶体表面;(9) forming a ring-shaped photoresist region on the surface of the crystal obtained in step (8) by photolithography, the ring-shaped photoresist region is located at the edge of the crystal surface and covers the crystal surface;
(10)用干或湿蚀刻法把没有光胶覆盖的区域下的氧化硅蚀刻掉,再把光胶清除干净;(10) Etch the silicon oxide under the area not covered by photoresist by dry or wet etching, and then remove the photoresist;
(11)在步骤(10)所得晶片表面沉积肖特基金属,并用炉管或快速热处理方法形成金属硅的肖特基介面;(11) Depositing Schottky metal on the surface of the wafer obtained in step (10), and forming a Schottky interface of metal silicon by furnace tube or rapid heat treatment;
(12)在步骤(11)所得晶片表面蒸镀或溅镀一层厚的表面金属层,再用光刻及蚀刻方法把表面金属层进行区隔或独立;(12) Evaporate or sputter a thick surface metal layer on the surface of the wafer obtained in step (11), and then use photolithography and etching to separate or separate the surface metal layer;
(13)把硅片衬底减薄至适当的厚度,并在晶片底面蒸镀或溅镀背面金属层。(13) Thin the silicon wafer substrate to an appropriate thickness, and evaporate or sputter the metal layer on the bottom of the wafer.
上述步骤(2)中,所述氧化硅为SiO2,所述氮化硅为Si3N4。In the above step (2), the silicon oxide is SiO 2 , and the silicon nitride is Si 3 N 4 .
上述步骤(2)中,氧化硅的厚度小于氮化硅的厚度。In the above step (2), the thickness of silicon oxide is smaller than that of silicon nitride.
上述步骤(8)中,杂质离子在垂直方向上的扩散深度小于或等于外延层下突曲面的深度。In the above step (8), the diffusion depth of the impurity ions in the vertical direction is less than or equal to the depth of the protruding curved surface under the epitaxial layer.
上述方法中,当使用N+型硅片衬底时,则所覆盖的外延层为N-型外延层,所注入的杂质离子为P型的硼离子或硼的化合物离子;此外,当使用P+型硅片衬底时,则所覆盖的外延层为P-型外延层,所注入的离子为N型的磷离子或砷离子。In the above method, when an N+ type silicon substrate is used, the covered epitaxial layer is an N-type epitaxial layer, and the implanted impurity ions are P-type boron ions or boron compound ions; in addition, when using a P+ type In the case of a silicon wafer substrate, the covered epitaxial layer is a P-type epitaxial layer, and the implanted ions are N-type phosphorus ions or arsenic ions.
与现有技术相比,本发明使用LOCOS(硅的局部氧化)氧化硅的形成,把注入的杂质离子的扩散范围有效的局限在LOCOS氧化硅区域之间,从而有效减少PN结的P区域或N区域横向(水平方向)的扩散的范围,因而减少了P区域或N区域横向扩散所占用的肖特基介面,因此肖特基介面的面积可以得到充分的利用,同时将有效的肖特基势垒界面弯曲成曲面从而增加导电面积,补偿异型小岛占用的面积,因而提升了势垒结肖特基二极管正向通电的功能及效率。Compared with the prior art, the present invention uses the formation of LOCOS (local oxidation of silicon) silicon oxide to effectively limit the diffusion range of implanted impurity ions between the LOCOS silicon oxide regions, thereby effectively reducing the P region or The scope of the lateral (horizontal) diffusion of the N region reduces the Schottky interface occupied by the lateral diffusion of the P region or the N region, so the area of the Schottky interface can be fully utilized, and the effective Schottky The barrier interface is bent into a curved surface to increase the conductive area and compensate for the area occupied by the shaped islands, thereby improving the forward-conducting function and efficiency of the barrier junction Schottky diode.
附图说明 Description of drawings
图1-图9为实施例1所述晶体生成步骤的各个分步骤所得到得晶体结构示意图。1 to 9 are schematic diagrams of crystal structures obtained in each sub-step of the crystal formation step described in Example 1.
图10为实施2所述晶体生成步骤最终所得到得晶体结构示意图。FIG. 10 is a schematic diagram of the final crystal structure obtained by implementing the crystal formation step described in 2.
具体实施方式 detailed description
实施例1:Example 1:
一种使用硅的选择氧化技术制造结势垒肖特基二极管的方法,包括晶体生成步骤和封装步骤,其中晶体生成步骤包括:A method for manufacturing a junction barrier Schottky diode using a silicon selective oxidation technique, comprising a crystal generating step and a packaging step, wherein the crystal generating step includes:
(1)在N+型硅片衬底上覆盖一层N-型硅外延层。如图1所示。(1) An N-type silicon epitaxial layer is covered on the N+ type silicon wafer substrate. As shown in Figure 1.
(2)在N-型硅外延层上先成长一层薄的氧化硅,其上再沉积一层氮化硅;且氧化硅的厚度小于氮化硅的厚度。在本实施例中,所述氧化硅为SiO2,其厚度约为300埃;所述氮化硅为Si3N4,其厚度约为2000埃。(2) A thin layer of silicon oxide is first grown on the N-type silicon epitaxial layer, and a layer of silicon nitride is deposited on it; and the thickness of silicon oxide is smaller than that of silicon nitride. In this embodiment, the silicon oxide is SiO 2 with a thickness of about 300 angstroms; the silicon nitride is Si 3 N 4 with a thickness of about 2000 angstroms.
(3)用光刻法在氮化硅层表面形成多个块状光胶区域,这些块状光胶区域各自独立的分布并覆盖在氮化硅层表面。如图2所示。(3) A plurality of block photoresist regions are formed on the surface of the silicon nitride layer by photolithography, and these block photoresist regions are independently distributed and cover the surface of the silicon nitride layer. as shown in picture 2.
(4)用干蚀刻法把非块状光胶区域下(此时为没有光胶覆盖部分)的氮化硅蚀刻掉,再把光胶清除干净。如图3所示。(4) Etch away the silicon nitride under the non-block photoresist area (the part not covered by the photoresist at this time) by dry etching, and then remove the photoresist. As shown in Figure 3.
(5)使用炉管烧结法在非块状光胶区域(此时为没有氮化硅覆盖区域)内上下双向成长一层厚的氧化硅,其厚度约为1um。由于氧化硅向下的成长,硅下表面变成一些相互独立的下突曲面;而由于氧化硅向上的成长,硅上表面变成一些相互独立的上突曲面。如图4所示。(5) Use the furnace tube sintering method to grow a layer of thick silicon oxide bidirectionally up and down in the non-blocky photoresist area (in this case, the area without silicon nitride coverage), with a thickness of about 1um. Due to the downward growth of the silicon oxide, the lower surface of the silicon becomes some mutually independent downward protruding curved surfaces; and due to the upward growth of the silicon oxide, the upper surface of the silicon becomes some mutually independent upward protruding curved surfaces. As shown in Figure 4.
(6)使用磷酸把剩余的氮化硅清除。(6) Use phosphoric acid to remove the remaining silicon nitride.
(7)在步骤(6)所得晶体表面用离子注入法注入P型的硼离子或硼的化合物离子。此时,由于晶片表面有步骤(5)所述厚的氧化硅的区域,硼离子或硼的化合物离子被阻挡而不能进入至硅表面,即硼离子或硼的化合物离子被限制在下突曲面之间。如图5所示。(7) Implanting P-type boron ions or boron compound ions on the surface of the crystal obtained in step (6) by ion implantation. At this time, since there is a thick silicon oxide region on the surface of the wafer as described in step (5), boron ions or boron compound ions are blocked from entering the silicon surface, that is, boron ions or boron compound ions are limited to the protruding curved surface between. As shown in Figure 5.
(8)用炉管烧结法把硼或硼的化合物离子扩散至硅表面以下与下突曲面区形成PN结。由于厚的氧化硅的阻挡,硼或硼的化合物离子在水平方向上的扩散宽度被限在厚的氧化硅层之间。另外,硼或硼的化合物离子在垂直方向上的扩散深度小于或等于凹陷区域的深度,即硼或硼的化合物离子扩散后的最底部所处水平面高度高于厚的氧化硅层的最底部所处水平面高度。如图6所示。(8) Use furnace tube sintering method to diffuse boron or boron compound ions below the silicon surface and form a PN junction with the lower convex surface area. Due to the barrier of thick silicon oxide, the diffusion width of boron or boron compound ions in the horizontal direction is limited between the thick silicon oxide layers. In addition, the diffusion depth of boron or boron compound ions in the vertical direction is less than or equal to the depth of the recessed region, that is, the bottom of boron or boron compound ions after diffusion is higher than the bottom of the thick silicon oxide layer. at the height of the water level. As shown in Figure 6.
(9)用光刻法在步骤(8)所得晶体的表面形成一个环状光胶区域,该环状光胶区域位于晶体表面的边缘处并覆盖在晶体表面。如图7所示。(9) Forming a ring-shaped photoresist region on the surface of the crystal obtained in step (8) by photolithography, the ring-shaped photoresist region is located at the edge of the crystal surface and covers the crystal surface. As shown in Figure 7.
(10)用干或湿蚀刻法把没有光胶覆盖的区域下的氧化硅蚀刻掉,再把光胶清除干净。如图8所示。(10) Etch away the silicon oxide under the area not covered by photoresist by dry or wet etching, and then remove the photoresist. As shown in Figure 8.
(11)在步骤(10)所得晶片表面沉积肖特基金属,并用炉管或快速热处理方法形成金属硅的肖特基介面。如图9所示。(11) Deposit Schottky metal on the surface of the wafer obtained in step (10), and form the Schottky interface of metal silicon by furnace tube or rapid heat treatment. As shown in Figure 9.
(12)在步骤(11)所得晶片表面蒸镀或溅镀一层厚的阳极表面金属层,再用光刻及蚀刻方法把阳极表面金属层进行区隔或独立。(12) Evaporate or sputter a thick anode surface metal layer on the surface of the wafer obtained in step (11), and then separate or separate the anode surface metal layer by photolithography and etching.
(13)把硅片衬底减薄至适当的厚度,并在晶片底面蒸镀或溅镀阴极背面金属层。(13) Thin the silicon substrate to an appropriate thickness, and vapor-deposit or sputter the metal layer on the back of the cathode on the bottom of the wafer.
实施例2:Example 2:
本实施例2可以将实施例1的N型及P型互换,而获得以P+型衬底,P-型外延层及N型离子注入的势垒结肖特基二极管,如图10所示。即In Example 2, the N-type and P-type in Example 1 can be interchanged to obtain a barrier junction Schottky diode with P+ type substrate, P-type epitaxial layer and N-type ion implantation, as shown in Figure 10 . which is
一种使用硅的选择氧化技术制造结势垒肖特基二极管的方法,包括晶体生成步骤和封装步骤,其中晶体生成步骤包括:A method for manufacturing a junction barrier Schottky diode using a silicon selective oxidation technique, comprising a crystal generating step and a packaging step, wherein the crystal generating step includes:
(1)在P+型硅片衬底上覆盖一层P-型硅外延层;如图1所示。(1) Cover a P-type silicon epitaxial layer on the P+-type silicon wafer substrate; as shown in Figure 1.
(2)在P-型硅外延层上先成长一层薄的氧化硅,其上再沉积一层氮化硅;且氧化硅的厚度小于氮化硅的厚度。在本实施例中,所述氧化硅为SiO2,其厚度约为300A;所述氮化硅为Si3N4,其厚度约为2000A。上述1A=10-4u。(2) A thin layer of silicon oxide is first grown on the P-type silicon epitaxial layer, and then a layer of silicon nitride is deposited on it; and the thickness of silicon oxide is smaller than that of silicon nitride. In this embodiment, the silicon oxide is SiO 2 with a thickness of about 300A; the silicon nitride is Si 3 N 4 with a thickness of about 2000A. The above 1A=10 -4 u.
(3)用光刻法在氮化硅层表面形成多个块状光胶区域,这些块状光胶区域各自独立的分布并覆盖在氮化硅层表面。(3) A plurality of block photoresist regions are formed on the surface of the silicon nitride layer by photolithography, and these block photoresist regions are independently distributed and cover the surface of the silicon nitride layer.
(4)用干蚀刻法把非块状光胶区域下(此时为没有光胶覆盖部分)的氮化硅蚀刻掉,再把光胶清除干净。(4) Etch away the silicon nitride under the non-block photoresist area (the part not covered by the photoresist at this time) by dry etching, and then remove the photoresist.
(5)使用炉管烧结法在非块状光胶区域(此时为没有氮化硅覆盖区域)内上下双向成长一层厚的氧化硅,其厚度约为1um。由于氧化硅向下的成长,硅下表面变成一些相互独立的下突曲面;而由于氧化硅向上的成长,硅上表面变成一些相互独立的上突曲面。(5) Use the furnace tube sintering method to grow a layer of thick silicon oxide bidirectionally up and down in the non-blocky photoresist area (in this case, the area without silicon nitride coverage), with a thickness of about 1um. Due to the downward growth of the silicon oxide, the lower surface of the silicon becomes some mutually independent downward protruding curved surfaces; and due to the upward growth of the silicon oxide, the upper surface of the silicon becomes some mutually independent upward protruding curved surfaces.
(6)使用磷酸把剩余的氮化硅清除。(6) Use phosphoric acid to remove the remaining silicon nitride.
(7)在步骤(6)所得晶体表面用离子注入法注入N型的磷离子或砷离子。此时,由于晶片表面有步骤(5)所述厚的氧化硅的区域,磷离子或砷离子被阻挡而不能进入至硅表面,即磷离子或砷离子被限制在下突曲面之间。(7) Implanting N-type phosphorus ions or arsenic ions on the surface of the crystal obtained in step (6) by ion implantation. At this time, since there is a thick silicon oxide region in step (5) on the surface of the wafer, phosphorus ions or arsenic ions are blocked from entering the silicon surface, that is, phosphorus ions or arsenic ions are confined between the lower convex curved surfaces.
(8)用炉管烧结法把磷离子或砷离子扩散至硅表面以下与下突曲面区形成PN结。由于厚的氧化硅的阻挡,磷离子或砷离子在水平方向上的扩散宽度被限在厚的氧化硅层之间。另外,磷离子或砷离子在垂直方向上的扩散深度小于或等于凹陷区域的深度,即磷离子或砷离子扩散后的最底部所处水平面高度高于厚的氧化硅层的最底部所处水平面高度。(8) Diffusion of phosphorous ions or arsenic ions below the silicon surface by furnace tube sintering method to form a PN junction with the lower protruding curved surface area. Due to the blocking of the thick silicon oxide, the diffusion width of phosphorus ions or arsenic ions in the horizontal direction is limited between the thick silicon oxide layers. In addition, the diffusion depth of phosphorus ions or arsenic ions in the vertical direction is less than or equal to the depth of the recessed region, that is, the horizontal plane at the bottom of the diffused phosphorus or arsenic ions is higher than the horizontal plane at the bottom of the thick silicon oxide layer high.
(9)用光刻法在步骤(8)所得晶体的表面形成一个环状光胶区域,该环状光胶区域位于晶体表面的边缘处并覆盖在晶体表面。(9) Forming a ring-shaped photoresist region on the surface of the crystal obtained in step (8) by photolithography, the ring-shaped photoresist region is located at the edge of the crystal surface and covers the crystal surface.
(10)用干或湿蚀刻法把没有光胶覆盖的区域下的氧化硅蚀刻掉,再把光胶清除干净。(10) Etch away the silicon oxide under the area not covered by photoresist by dry or wet etching, and then remove the photoresist.
(11)在步骤(10)所得晶片表面沉积肖特基金属,并用炉管或快速热处理方法形成金属硅的肖特基介面;如图10所示。(11) Deposit Schottky metal on the surface of the wafer obtained in step (10), and form the Schottky interface of metal silicon by furnace tube or rapid heat treatment; as shown in Figure 10.
(12)在步骤(11)所得晶片表面蒸镀或溅镀一层厚的阴极表面金属层,再用光刻及蚀刻方法把阴极表面金属层进行区隔或独立。(12) Evaporate or sputter a thick cathode surface metal layer on the surface of the wafer obtained in step (11), and then separate or separate the cathode surface metal layer by photolithography and etching.
(13)把硅片衬底减薄至适当的厚度,并在晶片底面蒸镀或溅镀阳极背面金属层。(13) Thin the silicon wafer substrate to an appropriate thickness, and evaporate or sputter the metal layer on the back of the anode on the bottom surface of the wafer.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210345828.1A CN103681318B (en) | 2012-09-18 | 2012-09-18 | Use the method that the selective oxidation technology of silicon manufactures junction barrier schottky diode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210345828.1A CN103681318B (en) | 2012-09-18 | 2012-09-18 | Use the method that the selective oxidation technology of silicon manufactures junction barrier schottky diode |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103681318A CN103681318A (en) | 2014-03-26 |
CN103681318B true CN103681318B (en) | 2016-06-29 |
Family
ID=50318512
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210345828.1A Active CN103681318B (en) | 2012-09-18 | 2012-09-18 | Use the method that the selective oxidation technology of silicon manufactures junction barrier schottky diode |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103681318B (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105590850A (en) * | 2014-10-23 | 2016-05-18 | 无锡华润华晶微电子有限公司 | Schottky diode manufacturing method |
CN106298775B (en) * | 2015-05-20 | 2019-12-24 | 北大方正集团有限公司 | A hybrid rectifier diode and its manufacturing method |
CN105226103A (en) * | 2015-10-14 | 2016-01-06 | 上海芯石微电子有限公司 | Containing schottky device and the manufacture method of directed diffusion junctions |
CN105762076B (en) * | 2016-02-29 | 2019-01-18 | 重庆平伟实业股份有限公司 | A kind of production technology of diffused high-voltage great-current Schottky chip |
CN106298977B (en) * | 2016-10-26 | 2019-11-15 | 苏州捷芯威半导体有限公司 | Diode Anode Structures, Vertical Diodes, and Lateral Diodes |
CN107221604A (en) * | 2017-06-01 | 2017-09-29 | 深圳市华星光电技术有限公司 | Organic Light Emitting Diode and manufacture method |
CN113130624A (en) * | 2021-03-26 | 2021-07-16 | 先之科半导体科技(东莞)有限公司 | Low-loss Schottky rectifier tube and forming process thereof |
CN113314618A (en) * | 2021-06-04 | 2021-08-27 | 厦门吉顺芯微电子有限公司 | Planar Schottky rectifier device with increased contact area and manufacturing method thereof |
CN113675278A (en) * | 2021-08-19 | 2021-11-19 | 江苏芯唐微电子有限公司 | MoN alloy-based Schottky barrier diode and manufacturing method thereof |
CN119153542A (en) * | 2024-11-11 | 2024-12-17 | Tcl环鑫半导体(天津)有限公司 | Schottky barrier diode integrating groove and N-type suspended junction and preparation method |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19853743C2 (en) * | 1998-11-21 | 2000-10-12 | Micronas Intermetall Gmbh | Semiconductor component with at least one Zener diode and at least one Schottky diode connected in parallel thereto, and method for producing the semiconductor components |
CN1591908A (en) * | 2003-08-18 | 2005-03-09 | 谢福淵 | Junction barrier schottky device of low forward flow voltage drop and high reverse blocking voltage |
JP4695402B2 (en) * | 2005-01-26 | 2011-06-08 | パナソニック株式会社 | Manufacturing method of Schottky barrier diode |
CN101452967B (en) * | 2007-11-30 | 2010-11-03 | 上海华虹Nec电子有限公司 | Schottky barrier diode device and manufacturing method thereof |
DE102009018971A1 (en) * | 2009-04-25 | 2010-11-04 | Secos Halbleitertechnologie Gmbh | Construction of a Schottky diode with improved high-current behavior and method for its production |
-
2012
- 2012-09-18 CN CN201210345828.1A patent/CN103681318B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN103681318A (en) | 2014-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103681318B (en) | Use the method that the selective oxidation technology of silicon manufactures junction barrier schottky diode | |
US9905666B2 (en) | Trench schottky rectifier device and method for manufacturing the same | |
CN102768994B (en) | Integration of schottky diode within power MOSFET | |
CN104253153B (en) | Field cut-off type reverse-conducting insulated gate bipolar transistor npn npn and its manufacture method | |
CN111244171A (en) | A trench RC-IGBT device structure and fabrication method thereof | |
TWI480951B (en) | Wide trench terminal structure for semiconductor components | |
CN102157568A (en) | Metal Oxide Semiconductor P-N Junction Diode Structure and Manufacturing Method | |
CN105679667A (en) | Manufacturing method for terminal structure of trench IGBT device | |
US9202886B2 (en) | Method for fabricating a Schottky diode including a guard ring overlapping an insolation layer | |
CN104134702A (en) | Enhanced grooved Schottky diode rectification device and fabrication method thereof | |
CN102916042B (en) | Reverse conducting IGBT device structure and manufacturing method | |
CN102694033B (en) | Schottky diode device and manufacturing method thereof | |
CN211017091U (en) | Vertical GaN-based groove junction barrier Schottky diode | |
CN104253151A (en) | Field stop type reverse conducting insulated gate bipolar transistor and manufacturing method thereof | |
CN104282741B (en) | Field cut-off type reverse-conducting insulated gate bipolar transistor npn npn and its manufacture method | |
TWI422041B (en) | Ditch isolation type gold-oxygen semi-P-N junction diode structure and manufacturing method thereof | |
TWI532193B (en) | Ditch-type gold-oxygen semi-P-N junction diode structure and manufacturing method thereof | |
CN216698373U (en) | Schottky diode | |
US20180090562A1 (en) | Schottky barrier diode and method of manufacturing the same | |
CN205282480U (en) | FS type IGBT device with double buffering layer | |
CN104733526A (en) | Trench-type metal-oxide-semiconductor P-N junction diode structure and manufacturing method thereof | |
CN103700590B (en) | Realize the manufacture method of the bipolar IC structure of Schottky diode and bipolar IC structure | |
CN104241283B (en) | Double-trench rectifier and manufacturing method thereof | |
CN103178121B (en) | Pin diode and manufacturing method thereof | |
CN103117300A (en) | Parasitically transversal type PNP device and manufacture method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20220112 Address after: 541004 floor 1, SMD new chip transistor production building, plot 8, information industry park, Guilin National High tech Zone, Qixing District, Guilin, Guangxi Zhuang Autonomous Region Patentee after: Guilin sizhuanggui Microelectronics Co.,Ltd. Address before: 541004 d-8, information industry park, Guilin National High tech Zone, Guangxi Zhuang Autonomous Region Patentee before: GUILIN STRONG MICROELECTRONICS Co.,Ltd. |
|
TR01 | Transfer of patent right |