CN103681234A - Method for forming self-alignment duplex pattern - Google Patents
Method for forming self-alignment duplex pattern Download PDFInfo
- Publication number
- CN103681234A CN103681234A CN201210333005.7A CN201210333005A CN103681234A CN 103681234 A CN103681234 A CN 103681234A CN 201210333005 A CN201210333005 A CN 201210333005A CN 103681234 A CN103681234 A CN 103681234A
- Authority
- CN
- China
- Prior art keywords
- layer
- photoresist layer
- mask
- etched
- pattern
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 101
- 229920002120 photoresistant polymer Polymers 0.000 claims abstract description 185
- 239000000463 material Substances 0.000 claims abstract description 160
- 238000005530 etching Methods 0.000 claims abstract description 43
- 230000015572 biosynthetic process Effects 0.000 claims description 22
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 12
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 8
- 229910003481 amorphous carbon Inorganic materials 0.000 claims description 8
- 238000002513 implantation Methods 0.000 claims description 8
- 229910052710 silicon Inorganic materials 0.000 claims description 8
- 239000010703 silicon Substances 0.000 claims description 8
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 8
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 claims description 6
- 150000002500 ions Chemical class 0.000 claims description 6
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 claims description 5
- 229910052799 carbon Inorganic materials 0.000 claims description 4
- 229910052739 hydrogen Inorganic materials 0.000 claims description 4
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 4
- 229920005591 polysilicon Polymers 0.000 claims description 4
- 229910015892 BF 4 Inorganic materials 0.000 claims description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 3
- 229910052785 arsenic Inorganic materials 0.000 claims description 3
- 229910000449 hafnium oxide Inorganic materials 0.000 claims description 3
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 claims description 3
- 229910052738 indium Inorganic materials 0.000 claims description 3
- 229910052698 phosphorus Inorganic materials 0.000 claims description 3
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- 239000010936 titanium Substances 0.000 claims description 3
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 3
- 238000003384 imaging method Methods 0.000 claims 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims 2
- 238000002347 injection Methods 0.000 claims 2
- 239000007924 injection Substances 0.000 claims 2
- 239000000377 silicon dioxide Substances 0.000 claims 2
- 239000000243 solution Substances 0.000 claims 1
- 239000010410 layer Substances 0.000 description 335
- 239000000758 substrate Substances 0.000 description 18
- 239000004065 semiconductor Substances 0.000 description 16
- 238000005468 ion implantation Methods 0.000 description 11
- 229910052751 metal Inorganic materials 0.000 description 9
- 239000002184 metal Substances 0.000 description 9
- 230000009286 beneficial effect Effects 0.000 description 8
- 229910052814 silicon oxide Inorganic materials 0.000 description 7
- 230000003667 anti-reflective effect Effects 0.000 description 6
- 238000004380 ashing Methods 0.000 description 6
- 238000000059 patterning Methods 0.000 description 5
- 238000001312 dry etching Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 229910052732 germanium Inorganic materials 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 238000000206 photolithography Methods 0.000 description 3
- 238000001039 wet etching Methods 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 239000012790 adhesive layer Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 239000012495 reaction gas Substances 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 238000004528 spin coating Methods 0.000 description 2
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 229910001928 zirconium oxide Inorganic materials 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 1
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical group [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000001505 atmospheric-pressure chemical vapour deposition Methods 0.000 description 1
- 238000000231 atomic layer deposition Methods 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- VUZPPFZMUPKLLV-UHFFFAOYSA-N methane;hydrate Chemical compound C.O VUZPPFZMUPKLLV-UHFFFAOYSA-N 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
- 238000000101 transmission high energy electron diffraction Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910001868 water Inorganic materials 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/027—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
- H01L21/033—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
- H01L21/0334—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
- H01L21/0337—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/027—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
- H01L21/033—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
- H01L21/0334—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
- H01L21/0338—Process specially adapted to improve the resolution of the mask
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3205—Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
- H01L21/321—After treatment
- H01L21/3213—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
- H01L21/32139—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer using masks
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Photosensitive Polymer And Photoresist Processing (AREA)
Abstract
一种自对准双重图形的形成方法,包括:提供待刻蚀材料层;在所述待刻蚀材料层上形成牺牲光刻胶层;将所述牺牲光刻胶层进行固化;在所述牺牲光刻胶层的侧壁表面形成第一掩膜图形;去除所述牺牲光刻胶层。由于所述牺牲光刻胶层进行固化后,牺牲光刻胶层的硬度提高,形成第一掩膜图形过程中的第一掩膜材料层产生的应力不会使得牺牲光刻胶层发生形变,使得牺牲光刻胶层的侧壁依然垂直于待刻蚀材料层表面,使得后续形成于所述牺牲光刻胶层侧壁表面的第一掩膜图形的侧壁垂直于待刻蚀材料层表面,最终对待刻蚀材料层进行刻蚀形成的刻蚀图形的侧壁形貌较佳。
A method for forming a self-aligned double pattern, comprising: providing a material layer to be etched; forming a sacrificial photoresist layer on the material layer to be etched; curing the sacrificial photoresist layer; Sacrifice the sidewall surface of the photoresist layer to form a first mask pattern; remove the sacrificial photoresist layer. Since the hardness of the sacrificial photoresist layer increases after the sacrificial photoresist layer is cured, the stress generated by the first mask material layer in the process of forming the first mask pattern will not cause the sacrificial photoresist layer to deform, Make the sidewall of the sacrificial photoresist layer still perpendicular to the surface of the material layer to be etched, so that the sidewall of the first mask pattern subsequently formed on the sidewall surface of the sacrificial photoresist layer is perpendicular to the surface of the material layer to be etched , the sidewall morphology of the etched pattern formed by etching the material layer to be etched finally is better.
Description
技术领域 technical field
本发明涉及半导体技术,特别涉及一种自对准双重图形的形成方法。The invention relates to semiconductor technology, in particular to a method for forming a self-aligned double pattern.
背景技术 Background technique
在半导体制造领域,光刻胶材料用于将掩膜图像转印到一层或多层的材料层中,例如将掩膜图像转印到金属层、介质层或半导体衬底上。但随着半导体工艺的特征尺寸的不断缩小,利用光刻工艺在材料层中形成小特征尺寸的掩膜图形变得越来越困难。In the field of semiconductor manufacturing, photoresist materials are used to transfer mask images to one or more material layers, for example, transfer mask images to metal layers, dielectric layers or semiconductor substrates. However, as the feature size of the semiconductor process continues to shrink, it becomes more and more difficult to form a mask pattern with a small feature size in the material layer by using a photolithography process.
为了提高半导体器件的集成度,业界已提出了多种双重图形工艺,其中,自对准双重图形(Self-Aligned Double Patterning,SADP)工艺即为其中的一种。图1至图6为现有技术的一种利用自对准双重图形为掩膜对半导体结构进行刻蚀的方法,具体包括:In order to improve the integration level of semiconductor devices, various double patterning processes have been proposed in the industry, among which the self-aligned double patterning (Self-Aligned Double Patterning, SADP) process is one of them. 1 to 6 are a method for etching a semiconductor structure using a self-aligned double pattern as a mask in the prior art, specifically including:
请参考图1,提供半导体衬底10,在半导体衬底10表面形成待刻蚀材料层20,在所述待刻蚀材料层20表面形成底部抗反射层40,在所述底部抗反射层40表面形成光刻胶层50;1, a
请参考图2,对所述光刻胶层进行曝光显影,形成牺牲光刻胶层55,以所述牺牲光刻胶层55为掩膜,对底部抗反射层进行刻蚀,形成牺牲底部抗反射层45;Please refer to FIG. 2, the photoresist layer is exposed and developed to form a sacrificial
请参考图3,在所述待刻蚀材料层20表面、牺牲光刻胶层55和牺牲底部抗反射层45的侧壁表面、牺牲光刻胶层55的顶部表面形成硬掩膜层60;Referring to FIG. 3 , a
请参考图4,对所述硬掩膜层进行回刻蚀,直到暴露出所述待刻蚀材料层20表面和牺牲光刻胶层55的顶部表面,在所述牺牲光刻胶层55、牺牲底部抗反射层45侧壁表面形成侧墙65;Please refer to FIG. 4, the hard mask layer is etched back until the surface of the
请参考图5,去除所述牺牲光刻胶层和牺牲底部抗反射层;Please refer to FIG. 5, removing the sacrificial photoresist layer and the sacrificial bottom anti-reflection layer;
请参考图6,以所述侧墙65作为掩膜,对所述待刻蚀材料层20进行刻蚀。Referring to FIG. 6 , the
更多关于自对准双重图形工艺请参考公开号为US2009/0146322A1的美国专利文献。For more information about the self-aligned double patterning process, please refer to the US patent document with publication number US2009/0146322A1.
但是发明人发现,利用上述方法刻蚀待刻蚀材料层形成的刻蚀图形的侧壁形貌较差。However, the inventors found that the sidewall morphology of the etched pattern formed by etching the material layer to be etched by the above method is relatively poor.
发明内容 Contents of the invention
本发明解决的问题是提供一种自对准双重图形的形成方法,利用所述方法最终形成的刻蚀图形的侧壁形貌较佳。The problem to be solved by the present invention is to provide a method for forming a self-aligned double pattern, and the etched pattern finally formed by the method has better sidewall morphology.
为解决上述问题,本发明技术方案提供了一种自对准双重图形的形成方法,包括:提供待刻蚀材料层;在所述待刻蚀材料层上形成牺牲光刻胶层;将所述牺牲光刻胶层进行固化;在所述牺牲光刻胶层的侧壁表面形成第一掩膜图形;去除所述牺牲光刻胶层。In order to solve the above problems, the technical solution of the present invention provides a method for forming a self-aligned double pattern, comprising: providing a material layer to be etched; forming a sacrificial photoresist layer on the material layer to be etched; curing the sacrificial photoresist layer; forming a first mask pattern on the sidewall surface of the sacrificial photoresist layer; removing the sacrificial photoresist layer.
可选的,所述固化工艺为离子注入固化工艺,利用所述离子注入固化工艺将牺牲光刻胶层中顶部和侧壁的光刻胶变为固化光刻胶外壳。Optionally, the curing process is an ion implantation curing process, and the photoresist on the top and side walls of the sacrificial photoresist layer is converted into a cured photoresist shell by using the ion implantation curing process.
可选的,所述离子注入固化工艺中注入的离子为H、B、BF2、BF3、BF4、P、As、In、C、Ge其中的一种或几种的组合。Optionally, the ion implanted in the ion implantation curing process is one or a combination of H, B, BF 2 , BF 3 , BF 4 , P, As, In, C, Ge.
可选的,所述离子注入固化工艺中注入的剂量范围为10E13atom/cm2~10E16atom/cm2,注入的能量范围为1KeV~500KeV,注入的角度范围为-70~70度。Optionally, in the ion implantation curing process, the implantation dose ranges from 10E13atom/cm 2 to 10E16atom/cm 2 , the implantation energy ranges from 1KeV to 500KeV, and the implantation angle ranges from -70° to 70°.
可选的,形成所述牺牲光刻胶层的工艺包括:在所述待刻蚀材料层表面形成光刻胶层,对所述光刻胶层进行曝光显影,形成牺牲光刻胶层。Optionally, the process of forming the sacrificial photoresist layer includes: forming a photoresist layer on the surface of the material layer to be etched, and exposing and developing the photoresist layer to form a sacrificial photoresist layer.
可选的,形成所述第一掩膜图形的工艺包括:在所述待刻蚀材料层、牺牲光刻胶层表面形成第一掩膜材料层,对所述第一掩膜材料层进行回刻蚀,在所述牺牲光刻胶层侧壁形成第一掩膜图形。Optionally, the process of forming the first mask pattern includes: forming a first mask material layer on the surface of the material layer to be etched and the sacrificial photoresist layer; etching to form a first mask pattern on the sidewall of the sacrificial photoresist layer.
可选的,形成所述牺牲光刻胶层的工艺包括:在所述待刻蚀材料层表面形成底部抗反射层,在所述底部抗反射层表面形成光刻胶层,对所述光刻胶层进行曝光显影,形成牺牲光刻胶层。Optionally, the process of forming the sacrificial photoresist layer includes: forming a bottom antireflection layer on the surface of the material layer to be etched, forming a photoresist layer on the surface of the bottom antireflection layer, The adhesive layer is exposed and developed to form a sacrificial photoresist layer.
可选的,形成所述第一掩膜图形的工艺包括:在所述底部抗反射层、牺牲光刻胶层表面形成第一掩膜材料层,对所述第一掩膜材料层进行回刻蚀,在所述牺牲光刻胶层侧壁形成第一掩膜图形。Optionally, the process of forming the first mask pattern includes: forming a first mask material layer on the surface of the bottom anti-reflection layer and the sacrificial photoresist layer, and etching back the first mask material layer etch to form a first mask pattern on the sidewall of the sacrificial photoresist layer.
可选的,形成所述牺牲光刻胶层的工艺包括:在所述待刻蚀材料层上形成底部抗反射层,在所述底部抗反射层表面形成光刻胶层,对所述光刻胶层进行曝光显影,形成牺牲光刻胶层,以所述牺牲光刻胶层为掩膜,对所述底部抗反射层进行刻蚀,形成牺牲底部抗反射层。Optionally, the process of forming the sacrificial photoresist layer includes: forming a bottom antireflection layer on the material layer to be etched, forming a photoresist layer on the surface of the bottom antireflection layer, Expose and develop the adhesive layer to form a sacrificial photoresist layer, and use the sacrificial photoresist layer as a mask to etch the bottom antireflection layer to form a sacrificial bottom antireflection layer.
可选的,形成所述牺牲光刻胶层的工艺包括:在所述待刻蚀材料层上形成可溶于显影液的底部抗反射层,在所述底部抗反射层表面形成光刻胶层,对所述底部抗反射层和光刻胶层进行曝光显影,形成牺牲底部抗反射层和位于所述牺牲底部抗反射层表面的牺牲光刻胶层。Optionally, the process of forming the sacrificial photoresist layer includes: forming a developer-soluble bottom antireflection layer on the material layer to be etched, and forming a photoresist layer on the surface of the bottom antireflection layer and exposing and developing the bottom anti-reflection layer and the photoresist layer to form a sacrificial bottom anti-reflection layer and a sacrificial photoresist layer on the surface of the sacrificial bottom anti-reflection layer.
可选的,形成所述第一掩膜图形的工艺包括:在所述待刻蚀材料层表面、牺牲底部抗反射层和牺牲光刻胶层的侧壁表面、牺牲光刻胶层的顶部表面形成第一掩膜材料层,对所述第一掩膜材料层进行回刻蚀,在所述牺牲底部抗反射层和牺牲光刻胶层的侧壁表面形成第一掩膜图形。Optionally, the process of forming the first mask pattern includes: on the surface of the material layer to be etched, on the sidewall surface of the sacrificial bottom anti-reflection layer and the sacrificial photoresist layer, on the top surface of the sacrificial photoresist layer A first mask material layer is formed, the first mask material layer is etched back, and a first mask pattern is formed on the sidewall surfaces of the sacrificial bottom anti-reflection layer and the sacrificial photoresist layer.
可选的,所述第一掩膜图形的材料为氧化硅、氮化硅、氮氧化硅、氮化钛、氮化钽其中的一种或几种。Optionally, the material of the first mask pattern is one or more of silicon oxide, silicon nitride, silicon oxynitride, titanium nitride, and tantalum nitride.
可选的,还包括,在所述待刻蚀材料层表面形成第二掩膜材料层,在所述第二掩膜材料层上形成牺牲光刻胶层。Optionally, the method further includes forming a second mask material layer on the surface of the material layer to be etched, and forming a sacrificial photoresist layer on the second mask material layer.
可选的,形成所述第一掩膜图形后,以所述第一掩膜图形为掩膜,对所述第二掩膜材料层进行刻蚀,形成第二掩膜图形。Optionally, after the first mask pattern is formed, the second mask material layer is etched using the first mask pattern as a mask to form a second mask pattern.
可选的,去除所述第一掩膜图形,以所述第二掩膜图形为掩膜,对所述待刻蚀材料层进行刻蚀。Optionally, the first mask pattern is removed, and the material layer to be etched is etched using the second mask pattern as a mask.
可选的,所述第二掩膜材料层的材料为氧化硅、氮化硅、碳化硅、氮氧化硅、无定形碳、多晶硅、氧化铪、氧化钛、氧化锆、氮化钛、氮化钽、钛其中的一种或几种。Optionally, the material of the second mask material layer is silicon oxide, silicon nitride, silicon carbide, silicon oxynitride, amorphous carbon, polysilicon, hafnium oxide, titanium oxide, zirconium oxide, titanium nitride, nitride One or more of tantalum and titanium.
可选的,还包括,以所述第一掩膜图形为掩膜,对所述待刻蚀材料层进行刻蚀。Optionally, the method further includes: using the first mask pattern as a mask to etch the material layer to be etched.
与现有技术相比,本发明具有以下优点:Compared with the prior art, the present invention has the following advantages:
本发明实施例在所述待刻蚀材料层上形成牺牲光刻胶层,将所述牺牲光刻胶层进行离子注入固化,然后在所述牺牲光刻胶层的侧壁表面形成第一掩膜图形,去除所述牺牲光刻胶层后,利用所述第一掩膜图形对待刻蚀材料层进行刻蚀。由于所述牺牲光刻胶层进行固化后,牺牲光刻胶层的硬度提高,形成第一掩膜图形过程中的第一掩膜材料层产生的应力不会使得牺牲光刻胶层发生形变,使得牺牲光刻胶层的侧壁依然垂直于待刻蚀材料层表面,使得后续形成于所述牺牲光刻胶层侧壁表面的第一掩膜图形的侧壁垂直于待刻蚀材料层表面,最终对待刻蚀材料层进行刻蚀形成的刻蚀图形的侧壁形貌较佳。In the embodiment of the present invention, a sacrificial photoresist layer is formed on the material layer to be etched, ion implantation is performed on the sacrificial photoresist layer, and then a first mask is formed on the side wall surface of the sacrificial photoresist layer. film pattern, after removing the sacrificial photoresist layer, use the first mask pattern to etch the material layer to be etched. Since the hardness of the sacrificial photoresist layer increases after the sacrificial photoresist layer is cured, the stress generated by the first mask material layer in the process of forming the first mask pattern will not cause the sacrificial photoresist layer to deform, Make the sidewall of the sacrificial photoresist layer still perpendicular to the surface of the material layer to be etched, so that the sidewall of the first mask pattern subsequently formed on the sidewall surface of the sacrificial photoresist layer is perpendicular to the surface of the material layer to be etched , the sidewall morphology of the etching pattern formed by etching the material layer to be etched finally is better.
附图说明 Description of drawings
图1至图6是现有技术的自对准双重图形工艺的剖面结构示意图;1 to 6 are schematic cross-sectional structural diagrams of a self-aligned double patterning process in the prior art;
图7是本发明实施例的自对准双重图形的形成方法的流程示意图;7 is a schematic flowchart of a method for forming a self-aligned double pattern according to an embodiment of the present invention;
图8至图17是本发明实施例的自对准双重图形的形成过程的剖面结构示意图。8 to 17 are schematic cross-sectional structural views of the formation process of the self-aligned double pattern according to the embodiment of the present invention.
具体实施方式 Detailed ways
由于利用上述技术刻蚀待刻蚀材料层形成的刻蚀图形的侧壁形貌较差,发明人经过研究发现,当在所述牺牲材料层和牺牲光刻胶层表面形成硬掩膜层时,所述硬掩膜层会对牺牲光刻胶层产生应力作用,由于光刻胶层的硬度不大,即使经过前烘后光刻胶层也较为柔软,所述硬掩膜层产生的应力会使得牺牲光刻胶层变形,形成剖面为类梯形的牺牲光刻胶层,使得牺牲光刻胶层的侧壁不垂直于待刻蚀材料层表面,使得后续形成于所述牺牲光刻胶层侧壁表面的侧墙不垂直于待刻蚀材料层表面,影响最终对待刻蚀材料层进行刻蚀形成的刻蚀图形的侧壁形貌。Due to the poor sidewall morphology of the etched pattern formed by etching the material layer to be etched using the above technology, the inventors have found through research that when a hard mask layer is formed on the surface of the sacrificial material layer and the sacrificial photoresist layer , the hard mask layer will produce stress on the sacrificial photoresist layer. Since the hardness of the photoresist layer is not large, the photoresist layer is relatively soft even after pre-baking. The stress generated by the hard mask layer The sacrificial photoresist layer will be deformed to form a trapezoidal sacrificial photoresist layer, so that the sidewall of the sacrificial photoresist layer is not perpendicular to the surface of the material layer to be etched, so that the subsequent formation of the sacrificial photoresist layer The sidewall on the surface of the sidewall of the layer is not perpendicular to the surface of the material layer to be etched, which affects the morphology of the sidewall of the etched pattern formed by etching the material layer to be etched.
为此,本发明提出了一种自对准双重图形的形成方法,在所述待刻蚀材料层上形成牺牲光刻胶层,将所述牺牲光刻胶层进行固化,然后在所述牺牲光刻胶层的侧壁表面形成第一掩膜图形,去除所述牺牲光刻胶层后,利用所述第一掩膜图形对待刻蚀材料层进行刻蚀。由于所述牺牲光刻胶层进行固化后,牺牲光刻胶层的硬度提高,形成第一掩膜图形过程中的第一掩膜材料层产生的应力不会使得牺牲光刻胶层发生形变,使得牺牲光刻胶层的侧壁依然垂直于待刻蚀材料层表面,使得后续形成于所述牺牲光刻胶层侧壁表面的第一掩膜图形的侧壁垂直于待刻蚀材料层表面,最终对待刻蚀材料层进行刻蚀形成的刻蚀图形的侧壁形貌较佳。For this reason, the present invention proposes a kind of formation method of self-aligned double pattern, forms sacrificial photoresist layer on described to-be-etched material layer, described sacrificial photoresist layer is cured, then on described sacrificial photoresist layer A first mask pattern is formed on the sidewall surface of the photoresist layer, and after the sacrificial photoresist layer is removed, the material layer to be etched is etched using the first mask pattern. Since the hardness of the sacrificial photoresist layer increases after the sacrificial photoresist layer is cured, the stress generated by the first mask material layer in the process of forming the first mask pattern will not cause the sacrificial photoresist layer to deform, Make the sidewall of the sacrificial photoresist layer still perpendicular to the surface of the material layer to be etched, so that the sidewall of the first mask pattern subsequently formed on the sidewall surface of the sacrificial photoresist layer is perpendicular to the surface of the material layer to be etched , the sidewall morphology of the etching pattern formed by etching the material layer to be etched finally is better.
为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。In order to make the above objects, features and advantages of the present invention more comprehensible, specific implementations of the present invention will be described in detail below in conjunction with the accompanying drawings.
在以下描述中阐述了具体细节以便于充分理解本发明。但是本发明能够以多种不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似推广。因此本发明不受下面公开的具体实施的限制。In the following description, specific details are set forth in order to provide a thorough understanding of the present invention. However, the present invention can be implemented in many other ways than those described here, and those skilled in the art can make similar extensions without departing from the connotation of the present invention. Accordingly, the invention is not limited to the specific implementations disclosed below.
请参考图7,为本发明实施例的自对准双重图形的形成方法的流程示意图,具体包括:Please refer to FIG. 7 , which is a schematic flowchart of a method for forming a self-aligned double pattern according to an embodiment of the present invention, specifically including:
步骤S101,提供半导体衬底,在所述半导体衬底表面形成待刻蚀材料层;Step S101, providing a semiconductor substrate, and forming a material layer to be etched on the surface of the semiconductor substrate;
步骤S102,在所述待刻蚀材料层表面形成第二掩膜材料层;Step S102, forming a second mask material layer on the surface of the material layer to be etched;
步骤S103,在所述第二掩膜材料层表面形成底部抗反射层,在所述底部抗反射层表面形成光刻胶层;Step S103, forming a bottom antireflection layer on the surface of the second mask material layer, and forming a photoresist layer on the surface of the bottom antireflection layer;
步骤S104,对所述光刻胶层进行曝光显影,形成牺牲光刻胶层;Step S104, exposing and developing the photoresist layer to form a sacrificial photoresist layer;
步骤S105,对所述牺牲光刻胶层进行离子注入,将所述牺牲光刻胶层中顶部和侧壁的光刻胶形成固化光刻胶外壳;Step S105, performing ion implantation on the sacrificial photoresist layer, and forming a cured photoresist shell from the photoresist on the top and side walls of the sacrificial photoresist layer;
步骤S106,在所述底部抗反射层、牺牲光刻胶层表面形成第一掩膜材料层,对所述第一掩膜材料层进行回刻蚀,在所述牺牲光刻胶层侧壁形成第一掩膜图形;Step S106, forming a first mask material layer on the surface of the bottom anti-reflection layer and the sacrificial photoresist layer, etching back the first mask material layer, forming the first mask pattern;
步骤S107,去除所述牺牲光刻胶层,以所述第一掩膜图形为掩膜,对所述底部抗反射层、第二掩膜材料层进行刻蚀,形成第二掩膜图形;Step S107, removing the sacrificial photoresist layer, using the first mask pattern as a mask to etch the bottom anti-reflection layer and the second mask material layer to form a second mask pattern;
步骤S108,去除所述第一掩膜图形,以所述第二掩膜图形为掩膜,对所述待刻蚀材料层进行刻蚀,形成刻蚀图形。Step S108 , removing the first mask pattern, and using the second mask pattern as a mask to etch the material layer to be etched to form an etching pattern.
具体的,请参考图8至图17,为本发明实施例的自对准双重图形的形成过程的结构示意图。Specifically, please refer to FIG. 8 to FIG. 17 , which are structural schematic diagrams of the formation process of the self-aligned double pattern according to the embodiment of the present invention.
请参考图8,提供半导体衬底100,在所述半导体衬底100表面形成待刻蚀材料层110。Referring to FIG. 8 , a
所述半导体衬底100为硅衬底、锗衬底、硅锗衬底、绝缘体上硅衬底(SOI)、绝缘体上锗(GOI)衬底、玻璃衬底等其中的一种。所述待刻蚀材料层110为氧化硅层、氮化硅层、多晶硅层、低K介质材料、无定形碳、金属层等其中的一种或几种。在本实施例中,所述待刻蚀材料层110为金属层,所述金属层的材料为铝,利用自对准双重图形为掩膜对所述金属层进行刻蚀形成金属互连线。在其他实施例中,所述待刻蚀材料层还可以为半导体衬底,利用自对准双重图形作为掩膜对所述半导体衬底进行刻蚀。The
请参考图9,在所述待刻蚀材料层110表面形成第二掩膜材料层120。Referring to FIG. 9 , a second
所述第二掩膜材料层120为单层结构或多层堆叠结构,所述第二掩膜材料层120的材料为氧化硅、氮化硅、碳化硅、氮氧化硅、无定形碳、多晶硅、氧化铪、氧化钛、氧化锆、氮化钛、氮化钽、钛其中的一种或几种,所述形成第二掩膜材料层120的工艺为化学气相沉积工艺或物理气相沉积工艺。所述第二掩膜材料层120的材料与待刻蚀材料层110的材料不同,两者具有高的刻蚀选择比,使得后续利用所述第二掩膜材料层120形成的第二掩膜图形对待刻蚀材料层110进行刻蚀时第二掩膜图形的损耗较小,有利于控制最终形成的刻蚀图形的形貌和大小。且由于后续回刻蚀形成的第一掩膜图形的上端往往不是规则的长方形,具有一定的弧度,直接利用所述第一掩膜图形为掩膜对待刻蚀材料层进行刻蚀会影响最终形成的刻蚀图形的侧壁形貌,因此,在本实施例中,在所述待刻蚀材料层110表面形成第二掩膜材料层120,后续利用第二掩膜材料层120形成第二掩膜图形后,去除位于其表面的第一掩膜图形,以所述上端形状为规则长方形的第二掩膜图形为掩膜,刻蚀所述待刻蚀材料层,有利于控制最终形成的刻蚀图形的形貌。且在本实施例中,所述第二掩膜材料层120包括无定形碳层和位于所述无定形碳层表面的氧化硅层,由于干法刻蚀工艺对无定形碳层进行刻蚀时无定形碳层侧壁形貌较佳,且所述氧化硅层与金属层的刻蚀选择比较大,有利于刻蚀厚度较大的金属层。The second
请参考图10,在所述第二掩膜材料层120表面形成底部抗反射层130,在所述底部抗反射层130表面形成光刻胶层140。Referring to FIG. 10 , a
为了防止曝光的光线通过光刻胶层后在光刻胶层与衬底之间的界面发生反射,使得光刻胶不能均匀曝光,在本实施例中,在所述第二掩膜材料层120表面先形成底部抗反射层(BARC)130,再在所述底部抗反射层130表面形成光刻胶层140。在其他实施例中,也可以直接在所述第二掩膜材料层表面形成光刻胶层。In order to prevent the exposed light from being reflected at the interface between the photoresist layer and the substrate after passing through the photoresist layer, so that the photoresist cannot be uniformly exposed, in this embodiment, the second mask material layer 120 A bottom anti-reflection layer (BARC) 130 is formed on the surface first, and then a
在本实施例中,所述底部抗反射层130为无机底部抗反射层,例如氮化硅、氮氧化硅等。在其他实施例中,所述底部抗反射层还可以为有机底部抗反射层,例如聚酰亚胺等。In this embodiment, the
上述无机底部抗反射层和有机底部抗反射层经过曝光工艺后不溶于显影液,在其他实施例中,所采用的底部抗反射层经过曝光后还可以溶于显影液,使得一步曝光显影工艺同时形成图形化的牺牲底部抗反射层和位于牺牲底部抗反射层表面的牺牲光刻胶层,节省了一步刻蚀去除牺牲底部抗反射层的工艺。The inorganic bottom anti-reflective layer and the organic bottom anti-reflective layer are insoluble in the developer after the exposure process. In other embodiments, the bottom anti-reflective layer used can also be dissolved in the developer after exposure, so that the one-step exposure and development process can simultaneously Forming a patterned sacrificial bottom anti-reflection layer and a sacrificial photoresist layer on the surface of the sacrificial bottom anti-reflection layer saves a process of etching and removing the sacrificial bottom anti-reflection layer.
在本实施例中,形成所述无机底部抗反射层的工艺为化学气相沉积工艺或物理气相沉积工艺,形成光刻胶层的工艺为旋转涂胶工艺。In this embodiment, the process for forming the inorganic bottom anti-reflection layer is a chemical vapor deposition process or physical vapor deposition process, and the process for forming the photoresist layer is a spin coating process.
在其他实施例中,形成所述底部抗反射层的工艺还可以为旋转涂胶工艺。In other embodiments, the process of forming the bottom anti-reflection layer may also be a spin coating process.
在其他实施例中,也可以不在所述待刻蚀材料层表面形成第二掩膜材料层,直接在所述待刻蚀材料层表面形成底部抗反射层,在所述底部抗反射层表面形成光刻胶层,并利用后续形成于待刻蚀材料层表面的第一掩膜图形为掩膜,对所述待刻蚀材料层进行刻蚀。In other embodiments, instead of forming a second mask material layer on the surface of the material layer to be etched, a bottom antireflection layer is directly formed on the surface of the material layer to be etched, and a bottom antireflection layer is formed on the surface of the bottom antireflection layer. the photoresist layer, and use the first mask pattern subsequently formed on the surface of the material layer to be etched as a mask to etch the material layer to be etched.
请参考图11,对所述光刻胶层140(参考图10)进行曝光显影,在所述底部抗反射层130表面形成图形化的牺牲光刻胶层145。Referring to FIG. 11 , the photoresist layer 140 (see FIG. 10 ) is exposed and developed to form a patterned
对所述光刻胶层140进行曝光后,利用显影液对所述曝光区域的光刻胶层进行显影,在本实施例中,所述显影液为四甲基氢氧化铵溶液。在本实施例中,形成所述图形化的牺牲光刻胶层145后,在所述图形化的牺牲光刻胶层145侧壁形成第一掩膜图形。After the
在其他实施例中,形成所述图形化的牺牲光刻胶层后,以所述图形化的牺牲光刻胶层为掩膜,对所述底部抗反射层进行刻蚀,形成图形化的牺牲底部抗反射层,后续在所述牺牲底部抗反射层、牺牲光刻胶层的侧壁表面形成第一掩膜图形。In other embodiments, after the patterned sacrificial photoresist layer is formed, the bottom antireflective layer is etched using the patterned sacrificial photoresist layer as a mask to form a patterned sacrificial photoresist layer. The bottom anti-reflection layer, followed by forming a first mask pattern on the side wall surfaces of the sacrificial bottom anti-reflection layer and the sacrificial photoresist layer.
在其他实施例中,当所述底部抗反射层经曝光后溶于显影液时,对所述光刻胶层、底部抗反射层进行曝光显影,同时获得图形化的牺牲底部抗反射层和位于牺牲底部抗反射层表面的牺牲光刻胶层,后续在所述牺牲底部抗反射层、牺牲光刻胶层的侧壁表面形成第一掩膜图形。In other embodiments, when the bottom anti-reflection layer is dissolved in the developer solution after exposure, the photoresist layer and the bottom anti-reflection layer are exposed and developed to obtain a patterned sacrificial bottom anti-reflection layer and the Sacrifice the sacrificial photoresist layer on the surface of the bottom antireflection layer, and subsequently form a first mask pattern on the sidewall surfaces of the sacrificial bottom antireflection layer and the sacrificial photoresist layer.
请参考图12,对所述牺牲光刻胶层145进行离子注入,将所述牺牲光刻胶层145中顶部和侧壁的光刻胶形成固化光刻胶外壳146。Referring to FIG. 12 , ion implantation is performed on the
所述离子注入固化工艺的具体参数包括:注入的离子为H、B、BF2、BF3、BF4、P、As、In、C、Ge其中的一种或几种的组合,离子注入的剂量范围为10E13atom/cm2~10E16atom/cm2,离子注入的能量范围为1KeV~500KeV,注入的角度范围为-70~70度,使得不仅在牺牲光刻胶层145的顶部,还在牺牲光刻胶层145的侧壁形成固化光刻胶外壳146。所述注入的离子会与光刻胶分子重新发生交联反应,使得光刻胶发生固化,且大剂量注入的离子会使牺牲光刻胶表面的温度升高,使得所述离子注入的牺牲光刻胶层脱水,甚至发生碳化反应。由于碳化的光刻胶的硬度远远大于未经过离子注入的光刻胶的硬度,在所述牺牲光刻胶层的顶部和侧壁形成固化光刻胶外壳146,后续形成的第一掩膜材料层产生的应力不会对所述固化光刻胶外壳产生形变,也就不会使得所述牺牲光刻胶层的侧壁变形发生倾斜或褶皱,所述牺牲光刻胶层的侧壁依然平整光滑且垂直于待刻蚀材料层表面,使得后续在所述牺牲光刻胶层侧壁表面形成的第一掩膜图形的侧壁也平整光滑且垂直于待刻蚀材料层表面。The specific parameters of the ion implantation curing process include: the implanted ions are one or a combination of H, B, BF 2 , BF 3 , BF 4 , P, As, In, C, Ge, and the ion implanted The dose range is 10E13atom/cm 2 ~10E16atom/cm 2 , the ion implantation energy range is 1KeV~500KeV, and the implantation angle range is -70~70 degrees, so that not only on the top of the
请参考图13,在所述底部抗反射层130表面、牺牲光刻胶层145的侧壁和顶部表面形成第一掩膜材料层150。Referring to FIG. 13 , a first
所述第一掩膜材料层150的材料为氧化硅、氮化硅、氮氧化硅、氮化钛、氮化钽其中的一种或几种。所述第一掩膜材料层150的材料与第二掩膜材料层120的材料不同,两者具有高的刻蚀选择比,使得后续利用所述第一掩膜材料层150形成的第一掩膜图形对第二掩膜材料层120进行刻蚀时第一掩膜图形的损耗较小,有利于控制最终形成的刻蚀图形的形貌和大小。The material of the first
在其他实施例中,当所述底部抗反射层直接形成在所述待刻蚀材料层表面时,所述第一掩膜材料层的材料与待刻蚀材料层的材料不同,两者具有高的刻蚀选择比,使得后续利用所述第一掩膜材料层形成的第一掩膜图形对待刻蚀材料层进行刻蚀时第一掩膜图形的损耗较小,有利于控制最终形成的刻蚀图形的形貌和大小。In other embodiments, when the bottom antireflection layer is directly formed on the surface of the material layer to be etched, the material of the first mask material layer is different from the material layer of the material layer to be etched, and both have high The etching selectivity ratio makes the loss of the first mask pattern when the first mask pattern formed by the first mask material layer is used to etch the material layer to be etched subsequently is small, which is beneficial to control the final formed etching pattern. The shape and size of the eclipse pattern.
由于所述第一掩膜材料层150用于形成自对准双重图形的第一掩膜图形,所述第一掩膜图形的宽度取决于牺牲光刻胶层145的侧壁表面的第一掩膜材料层150的厚度,因此,通过控制所述第一掩膜材料层150的厚度,就可以控制最终形成的刻蚀图形的宽度。本发明实施例形成的所述第一掩膜材料层的工艺为原子层沉积工艺、低压化学气相沉积工艺或亚常压化学气相沉积工艺,由于上述几种沉积工艺的沉积速率较慢,形成的第一掩膜材料层均匀性较佳,位于所述牺牲光刻胶层145的侧壁表面的第一掩膜材料层150的侧壁平整垂直,形貌较佳,使得后续形成的第一掩膜图形的侧壁形貌较佳,以所述第一掩膜图形为掩膜对第二掩膜材料层或待刻蚀材料层进行刻蚀时,刻蚀形成的图形的形貌较佳。Since the first
请参考图14,对所述第一掩膜材料层150(参考图13)进行回刻蚀,直到暴露出所述底部抗反射层130表面,位于所述牺牲光刻胶层145的侧壁表面的第一掩膜材料层150形成第一掩膜图形155。Please refer to FIG. 14 , etch back the first mask material layer 150 (refer to FIG. 13 ) until the surface of the
所述第一掩膜图形155的宽度与第一掩膜材料层150的厚度相对应。当所述牺牲光刻胶层145的俯视视角的形状为长条形时,所述第一掩膜图形155的形状为围绕牺牲光刻胶层145的环形掩膜图形,在本实施例中,由于最终形成的刻蚀图形为金属互连线,当后续去除所述牺牲底部抗反射层和牺牲光刻胶层后,再利用光刻胶覆盖长条形中间区域对应的第一掩膜图形,暴露出长条形两端对应的第一掩膜图形,以所述光刻胶为掩膜去除所述长条形两端对应的第一掩膜图形,使得所述第一掩膜图形变为条形的直线或折线。The width of the
请参考图15,利用灰化工艺去除所述牺牲光刻胶层145(参考图13)。Referring to FIG. 15 , the sacrificial photoresist layer 145 (refer to FIG. 13 ) is removed by an ashing process.
由于所述牺牲光刻胶层的材料由C、O、H、N等元素构成的有机物组成,所述灰化工艺的反应气体为O2,将所述氧气等离子体化,并利用所述氧气等离子体与碳化或未碳化的牺牲光刻胶层145发生反应,形成挥发性的一氧化碳、二氧化碳、水等主要生成物,从而去除所述牺牲光刻胶层145。在其他实施例中,所述灰化工艺的反应气体还可以包括N2或H2等,所述N2或H2有利于提高去除牺牲光刻胶层和残余聚合物的能力。Since the material of the sacrificial photoresist layer is composed of organic matter composed of C, O, H, N and other elements, the reaction gas of the ashing process is O 2 , and the oxygen is plasmatized, and the oxygen The plasma reacts with the carbonized or non-carbonized
在其他实施例中,也可以采用湿法刻蚀工艺或干法刻蚀工艺去除所述牺牲光刻胶层。In other embodiments, the sacrificial photoresist layer may also be removed by using a wet etching process or a dry etching process.
由于本发明实施例中的底部抗反射层的材料为无机底部抗反射层,不会被灰化工艺所除去,使得所述灰化工艺只除去了所述牺牲光刻胶层145。Since the material of the bottom anti-reflection layer in the embodiment of the present invention is an inorganic bottom anti-reflection layer, it will not be removed by the ashing process, so that the ashing process only removes the
在其他实施例中,当所述第一掩膜图形形成于所述牺牲底部抗反射层和牺牲光刻胶层侧壁时,利用灰化工艺、湿法刻蚀工艺或干法刻蚀工艺去除所述牺牲底部抗反射层和牺牲光刻胶层。In other embodiments, when the first mask pattern is formed on the sacrificial bottom antireflection layer and the sidewall of the sacrificial photoresist layer, the ashing process, wet etching process or dry etching process is used to remove The sacrificial bottom anti-reflection layer and the sacrificial photoresist layer.
请参考图16,以所述第一掩膜图形155为掩膜,对所述底部抗反射层130(参考图15)、第二掩膜材料层120(参考图15)进行干法刻蚀,形成第二掩膜图形125。由于回刻蚀形成的第一掩膜图形155的上端往往不是规则的长方形,具有一定的弧度,直接利用所述第一掩膜图形为掩膜对待刻蚀材料层进行刻蚀会影响最终形成的刻蚀图形的侧壁形貌,因此,在本实施例中,形成第二掩膜图形125后,去除位于其表面的第一掩膜图形155和剩余的底部抗反射层,以所述上端形状为规则长方形的第二掩膜图形125为掩膜,刻蚀所述待刻蚀材料层110,有利于控制最终形成的刻蚀图形的形貌。Please refer to FIG. 16 , using the
请参考图17,去除所述第一掩膜图形155(参考图16)和剩余的底部抗反射层,以所述第二掩膜图形125为掩膜,对所述待刻蚀材料层110进行刻蚀,形成自对准双重图形的刻蚀图形115。在本实施例中,去除所述第一掩膜图形155和剩余的底部抗反射层的工艺为湿法刻蚀。由于所述刻蚀图形115的宽度根据第一掩膜材料层的厚度决定,所述第一掩膜材料层的厚度可以小于现有工艺的光刻、刻蚀工艺的最小尺寸,使得所述刻蚀图形115的宽度小于利用光刻工艺形成的图形的宽度,有利于提高集成电路的集成度。Please refer to FIG. 17 , remove the first mask pattern 155 (refer to FIG. 16 ) and the remaining bottom anti-reflective layer, and use the
综上,本发明实施例在所述待刻蚀材料层上形成牺牲光刻胶层,将所述牺牲光刻胶层进行离子注入固化,然后在所述牺牲光刻胶层的侧壁表面形成第一掩膜图形,去除所述牺牲光刻胶层后,利用所述第一掩膜图形对待刻蚀材料层进行刻蚀。由于所述牺牲光刻胶层进行固化后,牺牲光刻胶层的硬度提高,形成第一掩膜图形过程中的第一掩膜材料层产生的应力不会使得牺牲光刻胶层发生形变,使得牺牲光刻胶层的侧壁依然垂直于待刻蚀材料层表面,使得后续形成于所述牺牲光刻胶层侧壁表面的第一掩膜图形的侧壁垂直于待刻蚀材料层表面,最终对待刻蚀材料层进行刻蚀形成的刻蚀图形的侧壁形貌较佳。To sum up, in the embodiment of the present invention, a sacrificial photoresist layer is formed on the material layer to be etched, and the sacrificial photoresist layer is ion-implanted and cured, and then formed on the sidewall surface of the sacrificial photoresist layer. A first mask pattern, after removing the sacrificial photoresist layer, use the first mask pattern to etch the material layer to be etched. Since the hardness of the sacrificial photoresist layer increases after the sacrificial photoresist layer is cured, the stress generated by the first mask material layer in the process of forming the first mask pattern will not cause the sacrificial photoresist layer to deform, Make the sidewall of the sacrificial photoresist layer still perpendicular to the surface of the material layer to be etched, so that the sidewall of the first mask pattern subsequently formed on the sidewall surface of the sacrificial photoresist layer is perpendicular to the surface of the material layer to be etched , the sidewall morphology of the etching pattern formed by etching the material layer to be etched finally is better.
本发明虽然已以较佳实施例公开如上,但其并不是用来限定本发明,任何本领域技术人员在不脱离本发明的精神和范围内,都可以利用上述揭示的方法和技术内容对本发明技术方案做出可能的变动和修改,因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化及修饰,均属于本发明技术方案的保护范围。Although the present invention has been disclosed as above with preferred embodiments, it is not intended to limit the present invention, and any person skilled in the art can use the methods disclosed above and technical content to analyze the present invention without departing from the spirit and scope of the present invention. Possible changes and modifications are made in the technical solution. Therefore, any simple modification, equivalent change and modification made to the above embodiments according to the technical essence of the present invention, which do not depart from the content of the technical solution of the present invention, all belong to the technical solution of the present invention. protected range.
Claims (17)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210333005.7A CN103681234B (en) | 2012-09-10 | 2012-09-10 | The formation method of self-alignment duplex pattern |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210333005.7A CN103681234B (en) | 2012-09-10 | 2012-09-10 | The formation method of self-alignment duplex pattern |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103681234A true CN103681234A (en) | 2014-03-26 |
CN103681234B CN103681234B (en) | 2016-03-16 |
Family
ID=50318448
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210333005.7A Active CN103681234B (en) | 2012-09-10 | 2012-09-10 | The formation method of self-alignment duplex pattern |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103681234B (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103972078A (en) * | 2014-05-20 | 2014-08-06 | 上海华力微电子有限公司 | Method for forming self-aligned double-layer graph |
CN103972076A (en) * | 2014-05-20 | 2014-08-06 | 上海华力微电子有限公司 | Method for forming self-aligned double-layer graph |
CN104064471A (en) * | 2014-05-21 | 2014-09-24 | 上海华力微电子有限公司 | A sidewall forming method for double patterning process flow |
CN107785242A (en) * | 2016-08-31 | 2018-03-09 | 中芯国际集成电路制造(上海)有限公司 | Triple patterned methods |
CN107978517A (en) * | 2016-10-21 | 2018-05-01 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor devices and preparation method thereof, electronic device |
CN109767976A (en) * | 2017-11-10 | 2019-05-17 | 中芯国际集成电路制造(上海)有限公司 | Pattern photoresist, the multiple pattern of autoregistration, semiconductor devices and manufacturing method |
CN110459465A (en) * | 2019-08-30 | 2019-11-15 | 上海华力微电子有限公司 | Formation method of self-aligned double-layer pattern |
CN110501871A (en) * | 2019-08-13 | 2019-11-26 | 上海华虹宏力半导体制造有限公司 | For defining the photoetching technological method of litho pattern sidewall profile |
CN111123641A (en) * | 2019-12-20 | 2020-05-08 | 上海华虹宏力半导体制造有限公司 | Gray scale mask pattern for changing photoetching sidewall morphology |
CN111640656A (en) * | 2019-03-01 | 2020-09-08 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor device and method of forming the same |
CN111696862A (en) * | 2019-03-12 | 2020-09-22 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor structure and forming method thereof |
CN111834214A (en) * | 2019-04-16 | 2020-10-27 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor structure and forming method thereof |
CN114093755A (en) * | 2021-11-15 | 2022-02-25 | 长鑫存储技术有限公司 | Semiconductor structure and forming method thereof |
CN114156173A (en) * | 2020-09-08 | 2022-03-08 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor structure and method of forming the same |
CN114640934A (en) * | 2022-04-20 | 2022-06-17 | 瑶芯微电子科技(上海)有限公司 | MEMS microphone and preparation method thereof |
CN117650043A (en) * | 2023-12-07 | 2024-03-05 | 芯联越州集成电路制造(绍兴)有限公司 | Method for manufacturing semiconductor device |
CN118352227A (en) * | 2024-04-18 | 2024-07-16 | 广州增芯科技有限公司 | A method for well region ion implantation |
US12106964B2 (en) | 2020-06-16 | 2024-10-01 | Winbond Electronics Corp. | Double-patterning method to improve sidewall uniformity |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS648676A (en) * | 1987-06-30 | 1989-01-12 | Mitsubishi Electric Corp | Manufacture of semiconductor device |
EP0753764A1 (en) * | 1995-07-14 | 1997-01-15 | Texas Instruments Incorporated | Improvements in or relating to semiconductor devices |
US5876903A (en) * | 1996-12-31 | 1999-03-02 | Advanced Micro Devices | Virtual hard mask for etching |
CN102439523A (en) * | 2009-07-23 | 2012-05-02 | 道康宁公司 | Methods and materials for double patterning |
-
2012
- 2012-09-10 CN CN201210333005.7A patent/CN103681234B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS648676A (en) * | 1987-06-30 | 1989-01-12 | Mitsubishi Electric Corp | Manufacture of semiconductor device |
EP0753764A1 (en) * | 1995-07-14 | 1997-01-15 | Texas Instruments Incorporated | Improvements in or relating to semiconductor devices |
US5876903A (en) * | 1996-12-31 | 1999-03-02 | Advanced Micro Devices | Virtual hard mask for etching |
CN102439523A (en) * | 2009-07-23 | 2012-05-02 | 道康宁公司 | Methods and materials for double patterning |
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103972078A (en) * | 2014-05-20 | 2014-08-06 | 上海华力微电子有限公司 | Method for forming self-aligned double-layer graph |
CN103972076A (en) * | 2014-05-20 | 2014-08-06 | 上海华力微电子有限公司 | Method for forming self-aligned double-layer graph |
CN104064471A (en) * | 2014-05-21 | 2014-09-24 | 上海华力微电子有限公司 | A sidewall forming method for double patterning process flow |
CN107785242A (en) * | 2016-08-31 | 2018-03-09 | 中芯国际集成电路制造(上海)有限公司 | Triple patterned methods |
CN107978517B (en) * | 2016-10-21 | 2020-07-07 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor device, manufacturing method thereof and electronic device |
CN107978517A (en) * | 2016-10-21 | 2018-05-01 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor devices and preparation method thereof, electronic device |
CN109767976A (en) * | 2017-11-10 | 2019-05-17 | 中芯国际集成电路制造(上海)有限公司 | Pattern photoresist, the multiple pattern of autoregistration, semiconductor devices and manufacturing method |
CN111640656B (en) * | 2019-03-01 | 2023-06-09 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor device and method of forming the same |
CN111640656A (en) * | 2019-03-01 | 2020-09-08 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor device and method of forming the same |
CN111696862A (en) * | 2019-03-12 | 2020-09-22 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor structure and forming method thereof |
CN111696862B (en) * | 2019-03-12 | 2023-07-18 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor structure and forming method thereof |
CN111834214B (en) * | 2019-04-16 | 2024-04-19 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor structure and forming method thereof |
CN111834214A (en) * | 2019-04-16 | 2020-10-27 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor structure and forming method thereof |
CN110501871A (en) * | 2019-08-13 | 2019-11-26 | 上海华虹宏力半导体制造有限公司 | For defining the photoetching technological method of litho pattern sidewall profile |
US11726400B2 (en) | 2019-08-13 | 2023-08-15 | Shanghai Huahong Grace Semiconductor Manufacturing Corporation | Lithography process method for defining sidewall morphology of lithography pattern |
CN110459465B (en) * | 2019-08-30 | 2022-03-04 | 上海华力微电子有限公司 | Forming method of self-aligned double-layer pattern |
CN110459465A (en) * | 2019-08-30 | 2019-11-15 | 上海华力微电子有限公司 | Formation method of self-aligned double-layer pattern |
CN111123641A (en) * | 2019-12-20 | 2020-05-08 | 上海华虹宏力半导体制造有限公司 | Gray scale mask pattern for changing photoetching sidewall morphology |
US12106964B2 (en) | 2020-06-16 | 2024-10-01 | Winbond Electronics Corp. | Double-patterning method to improve sidewall uniformity |
CN114156173A (en) * | 2020-09-08 | 2022-03-08 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor structure and method of forming the same |
CN114156173B (en) * | 2020-09-08 | 2025-03-25 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor structure and method of forming the same |
CN114093755A (en) * | 2021-11-15 | 2022-02-25 | 长鑫存储技术有限公司 | Semiconductor structure and forming method thereof |
CN114093755B (en) * | 2021-11-15 | 2024-05-03 | 长鑫存储技术有限公司 | Semiconductor structure and forming method thereof |
CN114640934A (en) * | 2022-04-20 | 2022-06-17 | 瑶芯微电子科技(上海)有限公司 | MEMS microphone and preparation method thereof |
CN114640934B (en) * | 2022-04-20 | 2024-04-02 | 瑶芯微电子科技(上海)有限公司 | MEMS microphone and preparation method thereof |
CN117650043A (en) * | 2023-12-07 | 2024-03-05 | 芯联越州集成电路制造(绍兴)有限公司 | Method for manufacturing semiconductor device |
CN117650043B (en) * | 2023-12-07 | 2024-10-22 | 芯联越州集成电路制造(绍兴)有限公司 | Method for manufacturing semiconductor device |
CN118352227A (en) * | 2024-04-18 | 2024-07-16 | 广州增芯科技有限公司 | A method for well region ion implantation |
CN118352227B (en) * | 2024-04-18 | 2025-07-25 | 广州增芯科技有限公司 | A method for well region ion implantation |
Also Published As
Publication number | Publication date |
---|---|
CN103681234B (en) | 2016-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103681234A (en) | Method for forming self-alignment duplex pattern | |
CN108321079B (en) | Semiconductor structure and forming method thereof | |
US7977242B2 (en) | Double mask self-aligned double patterning technology (SADPT) process | |
US8940642B2 (en) | Method of multiple patterning of a low-K dielectric film | |
CN104900495B (en) | The preparation method of self-alignment duplex pattern method and fin formula field effect transistor | |
US20150087150A1 (en) | Semiconductor structures and fabrication method thereof | |
US10170327B2 (en) | Fin density control of multigate devices through sidewall image transfer processes | |
US10354874B2 (en) | Directional processing to remove a layer or a material formed over a substrate | |
CN103839783B (en) | The forming method of self-alignment duplex pattern | |
TWI549162B (en) | Patterned structure of semiconductor storage device and method for manufacturing the same | |
CN103681293B (en) | Self-alignment duplex pattern method | |
US20090001044A1 (en) | Method for manufacturing a semiconductor device using a spacer as an etch mask for forming a fine pattern | |
CN107731666B (en) | Double patterning method | |
US20120028471A1 (en) | Method of manufacturing a semiconductor device | |
CN103871846A (en) | Self-alignment multiple patterning method and application of silicon-based hard mask composition | |
WO2022100070A1 (en) | Photoresist treatment method and self-aligned double patterning method | |
CN108091555A (en) | A kind of manufacturing method of semiconductor devices | |
CN108574010A (en) | Semiconductor structures and methods of forming them | |
CN107919387A (en) | A kind of semiconductor devices and its manufacture method | |
CN108573865B (en) | Semiconductor device and method of forming the same | |
JP5224919B2 (en) | Manufacturing method of semiconductor device | |
CN104637807B (en) | The method for making semiconductor devices using the double recompose-techniques of autoregistration | |
KR20160117818A (en) | Method of manufacturing semiconductor device | |
CN102099915A (en) | Method for manufacturing cmos image sensors using a double hard mask coating | |
KR100994714B1 (en) | Semiconductor device manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |