CN103668472A - 利用CRISPR/Cas9系统构建真核基因敲除文库的方法 - Google Patents
利用CRISPR/Cas9系统构建真核基因敲除文库的方法 Download PDFInfo
- Publication number
- CN103668472A CN103668472A CN201310751755.0A CN201310751755A CN103668472A CN 103668472 A CN103668472 A CN 103668472A CN 201310751755 A CN201310751755 A CN 201310751755A CN 103668472 A CN103668472 A CN 103668472A
- Authority
- CN
- China
- Prior art keywords
- cell
- sgrna
- library
- cas9
- sequence
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/10—Processes for the isolation, preparation or purification of DNA or RNA
- C12N15/102—Mutagenizing nucleic acids
Landscapes
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Zoology (AREA)
- General Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Biotechnology (AREA)
- Wood Science & Technology (AREA)
- Biomedical Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Plant Pathology (AREA)
- Physics & Mathematics (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
本发明提供一种利用CRISPR/Cas9系统构建真核基因敲除文库的方法,先将编码Cas9和OCT1蛋白的基因表达于真核细胞系中,筛选获得稳定表达Cas9的细胞系,再进行文库构建和功能筛选。其最大的优点在于:可将此方法应用于绝大多数真核细胞系中,不受特定细胞系的限制。另外,进行功能性筛选阳性率高,背景值低。大规模的筛选方法极大降低了成本,克服了单个制备基因敲除细胞,所导致的时间和劳动成本高的问题。
Description
技术领域
本发明涉及基因体学及基因工程领域,具体地说,涉及一种利用CRISPR/Cas9系统构建真核基因敲除文库的方法。
背景技术
基因敲除,即针对某个特定的基因,通过破坏或改变其基因序列令其功能丧失的一种技术手段。常用的基因敲除方法包括:锌指核酸酶(ZFNs)(Miller etal.,2007;Porteus and Baltimore,2003;Wood et al.,2011)、类转录因子活化因子核酸酶(TALEN)(Miller et al.,2011;Wood et al.,2011;Zhang et al.,2011),以及最近发现的原核生物第二类适应性免疫系统CRISPER/Cas9系统(Cong et al.,2013;Mali et al.,2013)等。CRISPER/Cas9系统原本被细菌免疫系统用来抵御外源病毒或质粒。在第二类CRISPER系统中,Cas9核酸内切酶在sgRNA的引导下切割双链DNA,造成基因组双链断裂,利用细胞基因组修复的不稳定性产生修复错误(碱基的缺失或插入),从而可能造成基因功能的丧失,实现基因敲除的目的。
在基因敲除文库产生之前,基于慢病毒载体的RNA干扰文库成为研究基因功能的有效工具。由于其便利性,近年来shRNA文库得以普遍应用,利用这类shRNA干扰文库寻找与某特定功能相关的基因,方法概括如下:使用慢病毒包装系统包装病毒;使用病毒感染靶细胞;利用抗生素或流式细胞仪富集病毒感染并整合的细胞,即为文库细胞;筛选具有待研究功能相关性状的细胞;提取筛选出的细胞和未作处理的文库细胞的基因组DNA;通过PCR扩增shRNA整合的区段或扩增shRNA文库设计时自带的条码(barcodes),利用深度测序技术进行测序;将测序结果与已知shRNA进行匹配;分析计算不同shRNA的富集程度,从而进一步研究被高度富集的shRNA所对应基因的功能。
然而,shRNA文库并不是基因敲除文库,只能部分沉默基因表达。存在许多不足,例如对特定基因表达的影响往往不能导致表型的改变;可能错误地抑制不相关基因表达等。虽然有一些基因敲除文库已被报道,特别是KBM7细胞,它是部分单倍体细胞,可用于构建敲除文库,但其稳定性和效率都存在问题,而且该系统局限于特定细胞系,应用范围受限。
发明内容
本发明旨在构建真核基因敲除文库,以及基于功能性筛选高效快速鉴定基因功能的方法学,并能够达到大规模、高通量及覆盖全基因组的目的。
为了实现本发明目的,本发明首先提供一种利用CRISPR/Cas9系统构建真核基因敲除文库的方法,包括以下步骤:
1)构建稳定表达OCT1蛋白和Cas9蛋白的真核细胞系:将编码蛋白OCT1和Cas9的DNA序列通过柔性Linker连接,然后克隆至慢病毒载体pOCT1-2A-Cas9-IRES-BSD(SEQ ID No.1,图8)上;用构建好的载体转染真核宿主细胞;筛选稳定表达OCT1蛋白和Cas9蛋白的真核细胞系;
2)sgRNA质粒文库的构建:
i.根据sgRNA作用位点的DNA序列5’-G-Nx-NGG-3’,其中19≤x≤22,设计并合成针对上述作用位点的sgRNA单体,针对同一个sgRNA作用位点设计两个sgRNA单体,其序列分别为正向单体:5’-ACCG-Nx-3’,反向单体:5’-AAAC-N’x-3’,其中N’x为Nx的反向互补序列,N和N’表示碱基A、T、G或C;
ii.将上述合成的针对同一个sgRNA作用位点的两个sgRNA单体退火形成具有粘性末端的双链DNA,并将针对所有基因合成的sgRNA单体经退火形成的双链DNA等量混合;
iii.将人U6启动子连接ccdB序列以及序列5’-G-Nx-NGG-3’之后,连入PLL3.7载体中替换原载体上的U6启动子,将构建好的载体与ii中得到的混合物混合,加入BsmBI限制性内切酶和T4连接酶,37℃ 5min,16℃ 5min,重复10个循环;
iv.将上述产物转化至Trans1-T1感受态细胞中,提取质粒,即构建得到sgRNA质粒文库;
3)将上述质粒与质粒psPAX2和PMD2.G共转染至HEK293T细胞中,培养细胞,收获病毒液;
4)用收获的病毒液按MOI=0.05接种步骤1)中构建得到的真核细胞系,细胞经培养后,使用流式细胞仪分选带有绿色荧光的细胞,即获得真核基因敲除的细胞文库。
前述的方法,步骤1)中所述真核宿主细胞包括但不限于HEK293T、HT1080、HeLa细胞等。
前述的方法,步骤1)中所述柔性Linker序列为p2A:5′-GGAAGCGGAGCTACTAACTTCAGCCTGCTGAAGCAGGCTGGAGACGTGGAGGAGAACCCTGGACCT-3′。
本发明还提供由上述方法构建的真核基因敲除细胞文库。
本发明进一步提供一种研究基因功能的方法,基于所述真核基因敲除细胞文库,提取细胞的基因组DNA,设计引物,PCR扩增含有sgRNA序列的DNA片段,利用深度测序技术(Deep Sequencing)对扩增产物进行测序,分析测序结果,通过比较sgRNA的富集程度,来确定sgRNA所对应基因的功能。
其中,引物序列为正向引物:5’-TATCTTGTGGAAAGGACGAAACACC-3’,反向引物:5’-AATACGGTTATCCACGCGGC-3’。扩增的循环数为25-30个。
本发明提供的真核基因敲除文库的构建方法,先将编码Cas9和OCT1蛋白的基因表达于真核细胞系中,筛选获得稳定表达Cas9的细胞系,再进行文库构建和功能筛选。其最大的优点在于:可将此方法应用于绝大多数真核细胞系中,不受特定细胞系的限制。另外,进行功能性筛选阳性率高,背景值低。大规模的筛选方法极大降低了成本,克服了单个制备基因敲除细胞,所导致的时间和劳动成本高的问题。
附图说明
图1为本发明Cas9表达载体(a)和sgRNA表达载体(b)的结构示意图。
图2为本发明利用CRISPR/Cas系统构建真核基因敲除文库,并用于基因功能筛选的高通量方法学的实施流程图。
图3为本发明方法所涉及的系统在HEK293T、HT1080、HeLa三个细胞系中均可有效的造成基因组修复错误以达到基因敲除目的。
图4为应用本发明所述方法分别使用炭疽毒素嵌合毒素和白喉毒素进行筛选后的候选阳性基因排序结果;其中,a:热图显示使用sgRNA文库结合深度测序分析筛选炭疽毒素及白喉毒素宿主相关基因的结果汇总;b和c:分别为炭疽毒素和白喉毒素筛选后所富集的sgRNAs以及它们所针对的基因。sgRNA的富集程度是通过计算标准化的平均实验读值除以对照值得到。图表数值表示三个值的平均值,按照从高到低排列。红色标记表示sgRNAs以及已知的毒素相关宿主基因。d和e:T7E1酶切法表示针对ANTXR1(d)或HBEGF(e)的各种不同sgRNAs所造成的特定DNA序列的插入或缺失突变率(indels)。
图5为本发明实施例1中炭疽毒素嵌合毒素筛选后被最大富集的ANTXR1基因对于炭疽毒素嵌合毒素具有较强抗性,对白喉毒素不具有抗性。
图6为本发明实施例1中炭疽毒素嵌合毒素筛选后候选基因中PECR基因对于炭疽毒素嵌合毒素具有一定的抗性,对白喉毒素不具有抗性。
图7为本发明实施例2中白喉毒素筛选后被最大富集的HBEGF基因对于白喉毒素具有较强抗性,对炭疽毒素嵌合毒素不具有抗性。
图8为本发明中载体pOCT1-2A-Cas9-IRES-BSD的结构示意图。
具体实施方式
以下实施例用于说明本发明,但不用来限制本发明的范围。若未特别指明,实施例均按照常规实验条件,如Sambrook等分子克隆实验手册(Sambrook J & Russell DW,Molecular cloning:a laboratory manual,2001),或按照制造厂商说明书建议的条件。
实施例1构建CRISPER/Cas9基因敲除文库并筛选与炭疽毒素(anthrax toxin)细胞毒性相关的基因
1.文库sgRNA的设计
针对296个基因,每个基因找到2-3个sgRNA靶位点,详见表1。
表1sgRNA文库的基因组成、sgRNA靶位区域及用于构建sgRNA质粒的引物序列
2.高表达Cas9的HeLa细胞的筛选
(1)将OCT1和Cas9的DNA序列通过2A连接并通过Gibson克隆方法装载到慢病毒载体pLenti-CMV-MCSSV-Bsd上;
(2)将上述载体通过包装慢病毒感染的方法转入目标细胞;
(3)在上述细胞的培养液中加入杀稻瘟菌素(blasticidin)进行筛选,并挑取稳定表达Cas9的单克隆;
3.文库质粒的构建
(4)寻找sgRNA作用位点,序列为5’-G-Nx-NGG-3’,其中19≤x≤22;
(5)合成针对上述作用位点的sgRNA单体,针对每一个位点,其序列为,正向:5’-ACCG-Nx-3’,反向:5’-AAAC-N’x-3’,其中N’x为Nx的反向互补配对序列;
(6)sgRNA载体的构建,将人的U6启动子连接ccdB以及gRNA结构,用酶Xba1和Xho1连入PLL3.7载体中替换原载体上的U6启动子;
(7)将上述合成的针对同一个sgRNA位点的两个单体,用TE缓冲液稀释到10μM,各取22.5μl,加入5μl Taq Hifi Buffer,加热至95℃,然后自然冷却至室温;
(8)上述针对所有基因sgRNA的产物等量混合;
(9)上述混合物与(6)中构建的载体混合,加入BsmBI限制性内切酶和T4连接酶,37℃ 5min,16℃ 5min,重复10个循环;
(10)上述产物转化至Trans1-T1感受态细胞中;
(11)从上述转化产物中提取质粒,构建文库质粒;
4.文库病毒的包装
将293T细胞以3×106的密度平铺于4个10cm直径的细胞培养板中,使用聚氮丙啶(PEI)将文库质粒和其它两种病毒包装质粒psPAX2和PMD2.G转入细胞,70小时后,收获病毒液;
5.文库细胞的构建
将筛选出的表达Cas9的HeLa细胞以4×106的密度平铺于10个15cm直径的细胞培养板中,用上述病毒液按MOI=0.05进行感染,感染48小时后,使用流式细胞仪筛选出表达绿色荧光的细胞;
6.使用炭疽毒素进行筛选
将筛选出的细胞以1×106的密度平铺于10个10cm的细胞培养板,共三组平行实验,在培养液中加入PA蛋白70ng/mL,LFn-DTA蛋白50ng/mL,培养48小时,更换新鲜培养液,重复此过程三次;
7.提取基因组DNA并扩增
提取存活的细胞和另外三组未作任何处理的文库细胞的基因组DNA,使用上述引物进行PCR扩增,每组作为模板的基因组DNA总量为8μg,PCR进行26个循环,纯化PCR产物;
8.测序并分析
纯化后的PCR产物使用HiSeq2500进行测序,并根据sgRNA在毒素处理前后的丰度变化进行排序,排在前三位的均为已知的炭疽毒素的受体。并寻找到一个新的可能与炭疽毒素毒性作用有关的基因PECR。
实施例2构建CRISPER/Cas9基因敲除文库并筛选与白喉毒素(diphtheriatoxin)细胞毒性相关的基因
1.文库sgRNA的设计
针对296个基因,每个基因找到2-3个sgRNA靶位点,详见表1。
2.高表达Cas9的HeLa细胞的筛选
(1)将OCT1和Cas9的DNA序列通过2A连接并通过Gibson克隆方法装载到慢病毒载体pLenti-CMV-MCSSV-Bsd上;
(2)将上述载体通过包装慢病毒感染的方法转入目标细胞;
(3)在上述细胞的培养液中加入杀稻瘟菌素(blasticidin)进行筛选,并挑取稳定表达Cas9的单克隆;
3.文库质粒的构建
(4)寻找sgRNA作用位点,序列为5’-G-Nx-NGG-3’,其中19≤x≤22;
(5)合成针对上述作用位点的sgRNA单体,针对每一个位点,其序列为,正向:5’-ACCG-Nx-3’,反向:5’-AAAC-N’x-3’,其中N’x为Nx的反向互补配对序列;
(6)sgRNA载体的构建,将人的U6启动子连接ccdB以及gRNA结构,用酶Xba1和Xho1连入PLL3.7载体中替换原载体上的U6启动子;
(7)将上述合成的针对同一个sgRNA位点的两个单体,用TE缓冲液稀释到10μM,各取22.5μl,加入5μl Taq Hifi Buffer,加热至95℃,然后自然冷却至室温;
(8)上述针对所有基因sgRNA的产物等量混合;
(9)上述混合物与(6)中构建的载体混合,加入BsmBI限制性内切酶和T4连接酶,37℃ 5min,16℃ 5min,重复10个循环;
(10)上述产物转化至Trans1-T1感受态细胞中;
(11)从上述转化产物中提取质粒,构建文库质粒;
4.文库病毒的包装
将293T细胞以3×106的密度平铺于4个10cm直径的细胞培养板中,使用聚氮丙啶(PEI)将文库质粒和其它两种病毒包装质粒psPAX2和PMD2.G转入细胞,70小时后,收获病毒液;
5.文库细胞的构建
将筛选出的表达Cas9的HeLa细胞以4×106的密度平铺于10个15cm直径的细胞培养板中,用上述病毒液按MOI=0.05进行感染,感染48小时后,使用流式细胞仪筛选出表达绿色荧光的细胞;
6.使用白喉毒素进行筛选
将筛选出的细胞以1×106的密度平铺于10个10cm的细胞培养板,共三组平行实验,在培养液中加入DT蛋白7.5ng/mL,培养48小时,更换新鲜培养液,重复此过程三次;
7.提取基因组DNA并扩增
提取存活的细胞和另外三组未作任何处理的文库细胞的基因组DNA,使用上述引物进行PCR扩增,每组作为模板的基因组DNA总量为8μg,PCR进行26个循环,纯化PCR产物;
8.测序并分析
纯化后的PCR产物使用HiSeq2500进行测序,并根据sgRNA在毒素处理前后的丰度变化进行排序,排在第一位的为已知的白喉毒素的受体。
图1为本发明Cas9表达载体(a)和sgRNA表达载体(b)结构示意图。
图2为本发明利用CRISPR/Cas系统构建真核基因敲除文库,并用于基因功能筛选的高通量方法学的实施流程图。
图3为本编码方法所涉及的系统在HEK293T、HT1080、HeLa三个细胞系中均可有效的造成基因组修复错误以达到基因敲除目的。
图4为应用本发明所述方法分别使用炭疽毒素嵌合毒素和白喉毒素进行筛选后的候选阳性基因排序结果。
图5为本发明实施例1中炭疽毒素嵌合毒素筛选后被最大富集的ANTXR1基因对于炭疽毒素嵌合毒素具有较强抗性,对白喉毒素不具有抗性。
图6为本发明实施例1中炭疽毒素嵌合毒素筛选后候选基因中PECR基因对于炭疽毒素嵌合毒素具有一定的抗性,对白喉毒素不具有抗性。
图7为本发明实施例2中白喉毒素筛选后被最大富集的HBEGF基因对于白喉毒素具有较强抗性,对炭疽毒素嵌合毒素不具有抗性。
虽然,上文中已经用一般性说明及具体实施方案对本发明作了详尽的描述,但在本发明基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。
参考文献
Cong,L.,Ran,F.A.,Cox,D.,Lin,S.,Barretto,R.,Habib,N.,Hsu,P.D.,Wu,X.,Jiang,W.,Marraffini,L.A.,et al.(2013).Multiplex Genome Engineering Using CRISPR/Cas Systems.Science.
Mali,P.,Yang,L.,Esvelt,K.M.,Aach,J.,Guell,M.,DiCarlo,J.E.,Norville,J.E.,and Church,G.M.(2013).RNA-guided human genome engineering via Cas9.Science339,823-826.
Miller,J.C.,Holmes,M.C.,Wang,J.,Guschin,D.Y.,Lee,Y.L.,Rupniewski,I.,Beausejour,C.M.,
Waite,A.J.,Wang,N.S.,Kim,K.A.,et al.(2007).An improved zinc-finger nuclease architecture forhighly specific genome editing.Nat Biotechnol25,778-785.
Miller,J.C.,Tan,S.,Qiao,G.,Barlow,K.A.,Wang,J.,Xia,D.F.,Meng,X.,Paschon,D.E.,Leung,E.,Hinkley,S.J.,et al.(2011).A TALE nuclease architecture for efficient genome editing.Naturebiotechnology29,143-148.
Porteus,M.H.,and Baltimore,D.(2003).Chimeric nucleases stimulate gene targeting in human cells.Science300,763.
Wood,A.J.,Lo,T.W.,Zeitler,B.,Pickle,C.S.,Ralston,E.J.,Lee,A.H.,Amora,R.,Miller,J.C.,Leung,E.,Meng,X.,et al.(2011).Targeted genome editing across species using ZFNs and TALENs.Science333,307.
Zhang,F.,Cong,L.,Lodato,S.,Kosuri,S.,Church,G.M.,and Arlotta,P.(2011).Efficient constructionof sequence-specific TAL effectors for modulating mammalian transcription.Nature biotechnology29,149-153.
Claims (6)
1.一种利用CRISPR/Cas9系统构建真核基因敲除文库的方法,其特征在于,包括以下步骤:
1)构建稳定表达OCT1蛋白和Cas9蛋白的真核细胞系:将编码蛋白OCT1和Cas9的DNA序列通过柔性Linker连接,然后克隆至慢病毒载体pOCT1-2A-Cas9-IRES-BSD上;用构建好的载体转染真核宿主细胞;筛选稳定表达OCT1蛋白和Cas9蛋白的真核细胞系;其中,载体pOCT1-2A-Cas9-IRES-BSD的序列如SEQ ID No.1所示;
2)sgRNA质粒文库的构建:
i.根据sgRNA作用位点的DNA序列5’-G-Nx-NGG-3’,其中19≤x≤22,设计并合成针对上述作用位点的sgRNA单体,针对同一个sgRNA作用位点设计两个sgRNA单体,其序列分别为正向单体:5’-ACCG-Nx-3’,反向单体:5’-AAAC-N’x-3’,其中N’x为Nx的反向互补序列,N和N’表示碱基A、T、G或C;
ii.将上述合成的针对同一个sgRNA作用位点的两个sgRNA单体退火形成具有粘性末端的双链DNA,并将针对所有基因合成的sgRNA单体经退火形成的双链DNA等量混合;
iii.将人U6启动子连接ccdB序列以及序列5’-G-Nx-NGG-3’之后,连入PLL3.7载体中替换原载体上的U6启动子,将构建好的载体与ii中得到的混合物混合,加入BsmBI限制性内切酶和T4连接酶,37℃ 5min,16℃ 5min,重复10个循环;
iv.将上述产物转化至Trans1-T1感受态细胞中,提取质粒,即构建得到sgRNA质粒文库;
3)将上述质粒文库中的质粒与质粒psPAX2和PMD2.G共转染至HEK293T细胞中,培养细胞,收获病毒液;
4)用收获的病毒液按MOI=0.05接种步骤1)中构建得到的真核细胞系,细胞经培养后,使用流式细胞仪分选带有绿色荧光的细胞,即获得真核基因敲除的细胞文库。
2.根据权利要求1所述的方法,其特征在于,步骤1)中所述真核宿主细胞包括但不限于HEK293T、HT1080、HeLa细胞。
3.根据权利要求1所述的方法,其特征在于,步骤1)中所述柔性Linker序列为p2A:5′-GGAAGCGGAGCTACTAACTTCAGCCTGCTGAAGCAGGCTGGAGACGTGGAGGAGAACCCTGGACCT-3′。
4.根据权利要求1-3任一项所述方法构建的真核基因敲除细胞文库。
5.一种研究基因功能的方法,其特征在于,基于权利要求4所述的细胞文库,提取细胞的基因组DNA,设计引物,PCR扩增含有sgRNA序列的DNA片段,利用深度测序技术对扩增产物进行测序,分析测序结果,从而确定sgRNA所对应基因的功能。
6.根据权利要求5所述的方法,其特征在于,所述引物序列为正向引物:5’-TATCTTGTGGAAAGGACGAAACACC-3’,反向引物:5’-AATACGGTTATCCACGCGGC-3’。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310751755.0A CN103668472B (zh) | 2013-12-31 | 2013-12-31 | 利用CRISPR/Cas9系统构建真核基因敲除文库的方法 |
PCT/CN2014/078586 WO2015100929A1 (zh) | 2013-12-31 | 2014-05-28 | 利用CRISPR/Cas9系统构建真核基因敲除文库的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310751755.0A CN103668472B (zh) | 2013-12-31 | 2013-12-31 | 利用CRISPR/Cas9系统构建真核基因敲除文库的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103668472A true CN103668472A (zh) | 2014-03-26 |
CN103668472B CN103668472B (zh) | 2014-12-24 |
Family
ID=50307222
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310751755.0A Active CN103668472B (zh) | 2013-12-31 | 2013-12-31 | 利用CRISPR/Cas9系统构建真核基因敲除文库的方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN103668472B (zh) |
WO (1) | WO2015100929A1 (zh) |
Cited By (74)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103911376A (zh) * | 2014-04-03 | 2014-07-09 | 南京大学 | CRISPR-Cas9靶向敲除乙肝病毒cccDNA及其特异性sgRNA |
CN103981216A (zh) * | 2014-05-23 | 2014-08-13 | 安徽省农业科学院水稻研究所 | 一种骨干质粒载体及应用 |
CN104178512A (zh) * | 2014-05-30 | 2014-12-03 | 广州辉园苑医药科技有限公司 | 一种雄激素受体基因敲除试剂盒 |
CN104450774A (zh) * | 2014-12-04 | 2015-03-25 | 中国农业科学院作物科学研究所 | 一种大豆CRISPR/Cas9体系的构建及其在大豆基因修饰中的应用 |
CN104560864A (zh) * | 2014-12-22 | 2015-04-29 | 中国科学院微生物研究所 | 利用CRISPR-Cas9系统构建的敲除IFN-β基因的293T细胞系 |
WO2015089462A1 (en) * | 2013-12-12 | 2015-06-18 | The Broad Institute Inc. | Delivery, use and therapeutic applications of the crispr-cas systems and compositions for genome editing |
US9068179B1 (en) | 2013-12-12 | 2015-06-30 | President And Fellows Of Harvard College | Methods for correcting presenilin point mutations |
WO2015100929A1 (zh) * | 2013-12-31 | 2015-07-09 | 北京大学 | 利用CRISPR/Cas9系统构建真核基因敲除文库的方法 |
CN104894071A (zh) * | 2015-06-08 | 2015-09-09 | 东华大学 | 一种对gt1-7细胞进行基因编辑的方法 |
US9163284B2 (en) | 2013-08-09 | 2015-10-20 | President And Fellows Of Harvard College | Methods for identifying a target site of a Cas9 nuclease |
US9228207B2 (en) | 2013-09-06 | 2016-01-05 | President And Fellows Of Harvard College | Switchable gRNAs comprising aptamers |
US9322006B2 (en) | 2011-07-22 | 2016-04-26 | President And Fellows Of Harvard College | Evaluation and improvement of nuclease cleavage specificity |
US9322037B2 (en) | 2013-09-06 | 2016-04-26 | President And Fellows Of Harvard College | Cas9-FokI fusion proteins and uses thereof |
CN105567692A (zh) * | 2016-02-26 | 2016-05-11 | 浙江大学 | 一种特异性靶向QKI基因的sgRNA及其应用 |
US9359599B2 (en) | 2013-08-22 | 2016-06-07 | President And Fellows Of Harvard College | Engineered transcription activator-like effector (TALE) domains and uses thereof |
WO2016109840A2 (en) | 2014-12-31 | 2016-07-07 | Synthetic Genomics, Inc. | Compositions and methods for high efficiency in vivo genome editing |
WO2016187904A1 (zh) * | 2015-05-22 | 2016-12-01 | 深圳市第二人民医院 | CRISPR-Cas9特异性敲除猪CMAH基因的方法及用于特异性靶向CMAH基因的sgRNA |
US9526784B2 (en) | 2013-09-06 | 2016-12-27 | President And Fellows Of Harvard College | Delivery system for functional nucleases |
CN106399361A (zh) * | 2015-07-30 | 2017-02-15 | 聂凌云 | 一种筛选线粒体基因组编辑工具靶向目标序列的方法 |
CN106399377A (zh) * | 2016-09-07 | 2017-02-15 | 同济大学 | 一种基于CRISPR/Cas9高通量技术筛选药物靶点基因的方法 |
CN106637421A (zh) * | 2016-10-28 | 2017-05-10 | 北京大学 | 双sgRNA文库的构建及其应用于高通量功能性筛选研究的方法 |
CN106795522A (zh) * | 2014-10-17 | 2017-05-31 | 上海斯丹赛生物技术有限公司 | 定向克隆的方法 |
CN106755026A (zh) * | 2016-12-18 | 2017-05-31 | 吉林大学 | sgRNA表达载体的构建及牙釉质钙化不全模型的建立 |
CN106939317A (zh) * | 2017-03-24 | 2017-07-11 | 华南农业大学 | 一种提高植物抵御rna病毒的能力的方法 |
CN106978399A (zh) * | 2017-02-16 | 2017-07-25 | 华中农业大学 | nlrp3基因敲除的小鼠巨噬细胞系及构建方法 |
CN107099850A (zh) * | 2017-06-19 | 2017-08-29 | 东北农业大学 | 一种通过酶切基因组构建CRISPR/Cas9基因组敲除文库的方法 |
CN107236763A (zh) * | 2017-06-26 | 2017-10-10 | 中南民族大学 | 一种基于流式细胞术的构建基因敲除细胞系的方法 |
US9834791B2 (en) | 2013-11-07 | 2017-12-05 | Editas Medicine, Inc. | CRISPR-related methods and compositions with governing gRNAS |
WO2017215648A1 (zh) * | 2016-06-17 | 2017-12-21 | 北京大学 | 基因敲除方法 |
CN107784200A (zh) * | 2016-08-26 | 2018-03-09 | 深圳华大基因研究院 | 一种筛选新型CRISPR‑Cas系统的方法和装置 |
CN108148866A (zh) * | 2018-01-19 | 2018-06-12 | 中国人民解放军第三0二医院 | 一种hcbp6基因敲除细胞系及其构建方法 |
US10077453B2 (en) | 2014-07-30 | 2018-09-18 | President And Fellows Of Harvard College | CAS9 proteins including ligand-dependent inteins |
US10113163B2 (en) | 2016-08-03 | 2018-10-30 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
CN108728476A (zh) * | 2017-04-14 | 2018-11-02 | 复旦大学 | 一种利用crispr系统产生多样性抗体文库的方法 |
US10167457B2 (en) | 2015-10-23 | 2019-01-01 | President And Fellows Of Harvard College | Nucleobase editors and uses thereof |
WO2019006833A1 (zh) * | 2017-07-03 | 2019-01-10 | 华中农业大学 | 猪全基因组特异性sgrna文库及其制备方法和应用 |
WO2019028686A1 (zh) * | 2017-08-08 | 2019-02-14 | 北京大学 | 基因敲除方法 |
CN109385421A (zh) * | 2017-08-08 | 2019-02-26 | 北京大学 | 基因敲除方法 |
CN110373430A (zh) * | 2018-04-13 | 2019-10-25 | 青岛清原化合物有限公司 | 一种随机突变的基因编辑系统及其应用 |
CN110402305A (zh) * | 2016-11-30 | 2019-11-01 | 中国农业大学 | 一种crispr文库筛选的方法 |
US10494621B2 (en) | 2015-06-18 | 2019-12-03 | The Broad Institute, Inc. | Crispr enzyme mutations reducing off-target effects |
US10550372B2 (en) | 2013-12-12 | 2020-02-04 | The Broad Institute, Inc. | Systems, methods and compositions for sequence manipulation with optimized functional CRISPR-Cas systems |
US10577630B2 (en) | 2013-06-17 | 2020-03-03 | The Broad Institute, Inc. | Delivery and use of the CRISPR-Cas systems, vectors and compositions for hepatic targeting and therapy |
US10696986B2 (en) | 2014-12-12 | 2020-06-30 | The Board Institute, Inc. | Protected guide RNAS (PGRNAS) |
US10711285B2 (en) | 2013-06-17 | 2020-07-14 | The Broad Institute, Inc. | Optimized CRISPR-Cas double nickase systems, methods and compositions for sequence manipulation |
CN111549052A (zh) * | 2020-05-07 | 2020-08-18 | 西南大学 | 一种真核生物CRISPR/Cas全基因组编辑载体文库及构建方法 |
US10745677B2 (en) | 2016-12-23 | 2020-08-18 | President And Fellows Of Harvard College | Editing of CCR5 receptor gene to protect against HIV infection |
US10781444B2 (en) | 2013-06-17 | 2020-09-22 | The Broad Institute, Inc. | Functional genomics using CRISPR-Cas systems, compositions, methods, screens and applications thereof |
US10851357B2 (en) | 2013-12-12 | 2020-12-01 | The Broad Institute, Inc. | Compositions and methods of use of CRISPR-Cas systems in nucleotide repeat disorders |
US10930367B2 (en) | 2012-12-12 | 2021-02-23 | The Broad Institute, Inc. | Methods, models, systems, and apparatus for identifying target sequences for Cas enzymes or CRISPR-Cas systems for target sequences and conveying results thereof |
US10946108B2 (en) | 2013-06-17 | 2021-03-16 | The Broad Institute, Inc. | Delivery, use and therapeutic applications of the CRISPR-Cas systems and compositions for targeting disorders and diseases using viral components |
US11008588B2 (en) | 2013-06-17 | 2021-05-18 | The Broad Institute, Inc. | Delivery, engineering and optimization of tandem guide systems, methods and compositions for sequence manipulation |
CN112941065A (zh) * | 2014-07-21 | 2021-06-11 | 亿明达股份有限公司 | 使用crispr-cas系统的多核苷酸富集 |
CN113122578A (zh) * | 2019-12-30 | 2021-07-16 | 博雅缉因(北京)生物科技有限公司 | 一种高效构建细胞文库的电击转化方法 |
US11155795B2 (en) | 2013-12-12 | 2021-10-26 | The Broad Institute, Inc. | CRISPR-Cas systems, crystal structure and uses thereof |
CN113748205A (zh) * | 2019-04-12 | 2021-12-03 | 阿斯利康(瑞典)有限公司 | 用于改进的基因编辑的组合物和方法 |
US11268082B2 (en) | 2017-03-23 | 2022-03-08 | President And Fellows Of Harvard College | Nucleobase editors comprising nucleic acid programmable DNA binding proteins |
US11306324B2 (en) | 2016-10-14 | 2022-04-19 | President And Fellows Of Harvard College | AAV delivery of nucleobase editors |
US11319532B2 (en) | 2017-08-30 | 2022-05-03 | President And Fellows Of Harvard College | High efficiency base editors comprising Gam |
US11447770B1 (en) | 2019-03-19 | 2022-09-20 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
US11542496B2 (en) | 2017-03-10 | 2023-01-03 | President And Fellows Of Harvard College | Cytosine to guanine base editor |
US11542509B2 (en) | 2016-08-24 | 2023-01-03 | President And Fellows Of Harvard College | Incorporation of unnatural amino acids into proteins using base editing |
US11560566B2 (en) | 2017-05-12 | 2023-01-24 | President And Fellows Of Harvard College | Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation |
US11578312B2 (en) | 2015-06-18 | 2023-02-14 | The Broad Institute Inc. | Engineering and optimization of systems, methods, enzymes and guide scaffolds of CAS9 orthologs and variants for sequence manipulation |
US11661590B2 (en) | 2016-08-09 | 2023-05-30 | President And Fellows Of Harvard College | Programmable CAS9-recombinase fusion proteins and uses thereof |
US11732274B2 (en) | 2017-07-28 | 2023-08-22 | President And Fellows Of Harvard College | Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE) |
US11795443B2 (en) | 2017-10-16 | 2023-10-24 | The Broad Institute, Inc. | Uses of adenosine base editors |
US11898179B2 (en) | 2017-03-09 | 2024-02-13 | President And Fellows Of Harvard College | Suppression of pain by gene editing |
US11897920B2 (en) | 2017-08-04 | 2024-02-13 | Peking University | Tale RVD specifically recognizing DNA base modified by methylation and application thereof |
CN117587013A (zh) * | 2023-11-27 | 2024-02-23 | 湖南师范大学 | 一种血管发育异常的斑马鱼模型的构建方法 |
US11912985B2 (en) | 2020-05-08 | 2024-02-27 | The Broad Institute, Inc. | Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence |
US12157760B2 (en) | 2018-05-23 | 2024-12-03 | The Broad Institute, Inc. | Base editors and uses thereof |
US12252707B2 (en) | 2012-12-12 | 2025-03-18 | The Broad Institute, Inc. | Delivery, Engineering and optimization of systems, methods and compositions for sequence manipulation and therapeutic applications |
US12251450B2 (en) | 2013-12-12 | 2025-03-18 | The Broad Institute, Inc. | Delivery, use and therapeutic applications of the CRISPR-Cas systems and compositions for HBV and viral diseases and disorders |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3219799A1 (en) | 2016-03-17 | 2017-09-20 | IMBA-Institut für Molekulare Biotechnologie GmbH | Conditional crispr sgrna expression |
WO2018020050A1 (en) * | 2016-07-29 | 2018-02-01 | MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. | Targeted in situ protein diversification by site directed dna cleavage and repair |
US10669539B2 (en) | 2016-10-06 | 2020-06-02 | Pioneer Biolabs, Llc | Methods and compositions for generating CRISPR guide RNA libraries |
KR101919240B1 (ko) * | 2017-06-19 | 2018-11-15 | 서울대학교병원 | 간 섬유화 유도 벡터 및 이를 이용한 동물모델 제조방법 |
CN108949774B (zh) * | 2018-07-04 | 2021-05-04 | 广东三杰牧草生物科技有限公司 | 一种利用MsPALM1 人工定点突变体获得多叶型紫花苜蓿材料的方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013141680A1 (en) * | 2012-03-20 | 2013-09-26 | Vilnius University | RNA-DIRECTED DNA CLEAVAGE BY THE Cas9-crRNA COMPLEX |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103668472B (zh) * | 2013-12-31 | 2014-12-24 | 北京大学 | 利用CRISPR/Cas9系统构建真核基因敲除文库的方法 |
-
2013
- 2013-12-31 CN CN201310751755.0A patent/CN103668472B/zh active Active
-
2014
- 2014-05-28 WO PCT/CN2014/078586 patent/WO2015100929A1/zh active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013141680A1 (en) * | 2012-03-20 | 2013-09-26 | Vilnius University | RNA-DIRECTED DNA CLEAVAGE BY THE Cas9-crRNA COMPLEX |
Non-Patent Citations (2)
Title |
---|
CHO, S. W. ET AL: "Heritable Gene Knockout in Caenorhabditis elegans by Direct Injection of Cas9–sgRNA Ribonucleoproteins", 《GENETICS》 * |
MIAO, J. ET AL: "Targeted mutagenesis in rice using CRISPR-Cas system Cell Res", 《CELL RES》 * |
Cited By (135)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9322006B2 (en) | 2011-07-22 | 2016-04-26 | President And Fellows Of Harvard College | Evaluation and improvement of nuclease cleavage specificity |
US12006520B2 (en) | 2011-07-22 | 2024-06-11 | President And Fellows Of Harvard College | Evaluation and improvement of nuclease cleavage specificity |
US10323236B2 (en) | 2011-07-22 | 2019-06-18 | President And Fellows Of Harvard College | Evaluation and improvement of nuclease cleavage specificity |
US10930367B2 (en) | 2012-12-12 | 2021-02-23 | The Broad Institute, Inc. | Methods, models, systems, and apparatus for identifying target sequences for Cas enzymes or CRISPR-Cas systems for target sequences and conveying results thereof |
US12252707B2 (en) | 2012-12-12 | 2025-03-18 | The Broad Institute, Inc. | Delivery, Engineering and optimization of systems, methods and compositions for sequence manipulation and therapeutic applications |
US12018275B2 (en) | 2013-06-17 | 2024-06-25 | The Broad Institute, Inc. | Delivery and use of the CRISPR-CAS systems, vectors and compositions for hepatic targeting and therapy |
US10781444B2 (en) | 2013-06-17 | 2020-09-22 | The Broad Institute, Inc. | Functional genomics using CRISPR-Cas systems, compositions, methods, screens and applications thereof |
US11597949B2 (en) | 2013-06-17 | 2023-03-07 | The Broad Institute, Inc. | Optimized CRISPR-Cas double nickase systems, methods and compositions for sequence manipulation |
US10577630B2 (en) | 2013-06-17 | 2020-03-03 | The Broad Institute, Inc. | Delivery and use of the CRISPR-Cas systems, vectors and compositions for hepatic targeting and therapy |
US11008588B2 (en) | 2013-06-17 | 2021-05-18 | The Broad Institute, Inc. | Delivery, engineering and optimization of tandem guide systems, methods and compositions for sequence manipulation |
US10946108B2 (en) | 2013-06-17 | 2021-03-16 | The Broad Institute, Inc. | Delivery, use and therapeutic applications of the CRISPR-Cas systems and compositions for targeting disorders and diseases using viral components |
US10711285B2 (en) | 2013-06-17 | 2020-07-14 | The Broad Institute, Inc. | Optimized CRISPR-Cas double nickase systems, methods and compositions for sequence manipulation |
US10954548B2 (en) | 2013-08-09 | 2021-03-23 | President And Fellows Of Harvard College | Nuclease profiling system |
US9163284B2 (en) | 2013-08-09 | 2015-10-20 | President And Fellows Of Harvard College | Methods for identifying a target site of a Cas9 nuclease |
US11920181B2 (en) | 2013-08-09 | 2024-03-05 | President And Fellows Of Harvard College | Nuclease profiling system |
US10508298B2 (en) | 2013-08-09 | 2019-12-17 | President And Fellows Of Harvard College | Methods for identifying a target site of a CAS9 nuclease |
US10227581B2 (en) | 2013-08-22 | 2019-03-12 | President And Fellows Of Harvard College | Engineered transcription activator-like effector (TALE) domains and uses thereof |
US11046948B2 (en) | 2013-08-22 | 2021-06-29 | President And Fellows Of Harvard College | Engineered transcription activator-like effector (TALE) domains and uses thereof |
US9359599B2 (en) | 2013-08-22 | 2016-06-07 | President And Fellows Of Harvard College | Engineered transcription activator-like effector (TALE) domains and uses thereof |
US10858639B2 (en) | 2013-09-06 | 2020-12-08 | President And Fellows Of Harvard College | CAS9 variants and uses thereof |
US10682410B2 (en) | 2013-09-06 | 2020-06-16 | President And Fellows Of Harvard College | Delivery system for functional nucleases |
US10597679B2 (en) | 2013-09-06 | 2020-03-24 | President And Fellows Of Harvard College | Switchable Cas9 nucleases and uses thereof |
US9526784B2 (en) | 2013-09-06 | 2016-12-27 | President And Fellows Of Harvard College | Delivery system for functional nucleases |
US9388430B2 (en) | 2013-09-06 | 2016-07-12 | President And Fellows Of Harvard College | Cas9-recombinase fusion proteins and uses thereof |
US10912833B2 (en) | 2013-09-06 | 2021-02-09 | President And Fellows Of Harvard College | Delivery of negatively charged proteins using cationic lipids |
US9999671B2 (en) | 2013-09-06 | 2018-06-19 | President And Fellows Of Harvard College | Delivery of negatively charged proteins using cationic lipids |
US11299755B2 (en) | 2013-09-06 | 2022-04-12 | President And Fellows Of Harvard College | Switchable CAS9 nucleases and uses thereof |
US9228207B2 (en) | 2013-09-06 | 2016-01-05 | President And Fellows Of Harvard College | Switchable gRNAs comprising aptamers |
US9322037B2 (en) | 2013-09-06 | 2016-04-26 | President And Fellows Of Harvard College | Cas9-FokI fusion proteins and uses thereof |
US9340800B2 (en) | 2013-09-06 | 2016-05-17 | President And Fellows Of Harvard College | Extended DNA-sensing GRNAS |
US9737604B2 (en) | 2013-09-06 | 2017-08-22 | President And Fellows Of Harvard College | Use of cationic lipids to deliver CAS9 |
US9340799B2 (en) | 2013-09-06 | 2016-05-17 | President And Fellows Of Harvard College | MRNA-sensing switchable gRNAs |
US11390887B2 (en) | 2013-11-07 | 2022-07-19 | Editas Medicine, Inc. | CRISPR-related methods and compositions with governing gRNAS |
US9834791B2 (en) | 2013-11-07 | 2017-12-05 | Editas Medicine, Inc. | CRISPR-related methods and compositions with governing gRNAS |
US10640788B2 (en) | 2013-11-07 | 2020-05-05 | Editas Medicine, Inc. | CRISPR-related methods and compositions with governing gRNAs |
US10190137B2 (en) | 2013-11-07 | 2019-01-29 | Editas Medicine, Inc. | CRISPR-related methods and compositions with governing gRNAS |
US9068179B1 (en) | 2013-12-12 | 2015-06-30 | President And Fellows Of Harvard College | Methods for correcting presenilin point mutations |
WO2015089462A1 (en) * | 2013-12-12 | 2015-06-18 | The Broad Institute Inc. | Delivery, use and therapeutic applications of the crispr-cas systems and compositions for genome editing |
US11155795B2 (en) | 2013-12-12 | 2021-10-26 | The Broad Institute, Inc. | CRISPR-Cas systems, crystal structure and uses thereof |
US11124782B2 (en) | 2013-12-12 | 2021-09-21 | President And Fellows Of Harvard College | Cas variants for gene editing |
US12215365B2 (en) | 2013-12-12 | 2025-02-04 | President And Fellows Of Harvard College | Cas variants for gene editing |
US11407985B2 (en) | 2013-12-12 | 2022-08-09 | The Broad Institute, Inc. | Delivery, use and therapeutic applications of the CRISPR-Cas systems and compositions for genome editing |
US10465176B2 (en) | 2013-12-12 | 2019-11-05 | President And Fellows Of Harvard College | Cas variants for gene editing |
US10851357B2 (en) | 2013-12-12 | 2020-12-01 | The Broad Institute, Inc. | Compositions and methods of use of CRISPR-Cas systems in nucleotide repeat disorders |
US11053481B2 (en) | 2013-12-12 | 2021-07-06 | President And Fellows Of Harvard College | Fusions of Cas9 domains and nucleic acid-editing domains |
US10550372B2 (en) | 2013-12-12 | 2020-02-04 | The Broad Institute, Inc. | Systems, methods and compositions for sequence manipulation with optimized functional CRISPR-Cas systems |
US12251450B2 (en) | 2013-12-12 | 2025-03-18 | The Broad Institute, Inc. | Delivery, use and therapeutic applications of the CRISPR-Cas systems and compositions for HBV and viral diseases and disorders |
US11597919B2 (en) | 2013-12-12 | 2023-03-07 | The Broad Institute Inc. | Systems, methods and compositions for sequence manipulation with optimized functional CRISPR-Cas systems |
US9840699B2 (en) | 2013-12-12 | 2017-12-12 | President And Fellows Of Harvard College | Methods for nucleic acid editing |
WO2015100929A1 (zh) * | 2013-12-31 | 2015-07-09 | 北京大学 | 利用CRISPR/Cas9系统构建真核基因敲除文库的方法 |
CN103911376B (zh) * | 2014-04-03 | 2017-02-15 | 黄行许 | CRISPR‑Cas9靶向敲除乙肝病毒cccDNA及其特异性sgRNA |
CN103911376A (zh) * | 2014-04-03 | 2014-07-09 | 南京大学 | CRISPR-Cas9靶向敲除乙肝病毒cccDNA及其特异性sgRNA |
CN103981216A (zh) * | 2014-05-23 | 2014-08-13 | 安徽省农业科学院水稻研究所 | 一种骨干质粒载体及应用 |
CN104178512A (zh) * | 2014-05-30 | 2014-12-03 | 广州辉园苑医药科技有限公司 | 一种雄激素受体基因敲除试剂盒 |
CN104178512B (zh) * | 2014-05-30 | 2017-07-21 | 广州辉园苑医药科技有限公司 | 一种雄激素受体基因敲除试剂盒 |
CN112941065A (zh) * | 2014-07-21 | 2021-06-11 | 亿明达股份有限公司 | 使用crispr-cas系统的多核苷酸富集 |
US10704062B2 (en) | 2014-07-30 | 2020-07-07 | President And Fellows Of Harvard College | CAS9 proteins including ligand-dependent inteins |
US10077453B2 (en) | 2014-07-30 | 2018-09-18 | President And Fellows Of Harvard College | CAS9 proteins including ligand-dependent inteins |
US11578343B2 (en) | 2014-07-30 | 2023-02-14 | President And Fellows Of Harvard College | CAS9 proteins including ligand-dependent inteins |
CN106795522A (zh) * | 2014-10-17 | 2017-05-31 | 上海斯丹赛生物技术有限公司 | 定向克隆的方法 |
CN104450774A (zh) * | 2014-12-04 | 2015-03-25 | 中国农业科学院作物科学研究所 | 一种大豆CRISPR/Cas9体系的构建及其在大豆基因修饰中的应用 |
US11624078B2 (en) | 2014-12-12 | 2023-04-11 | The Broad Institute, Inc. | Protected guide RNAS (pgRNAS) |
US10696986B2 (en) | 2014-12-12 | 2020-06-30 | The Board Institute, Inc. | Protected guide RNAS (PGRNAS) |
CN104560864A (zh) * | 2014-12-22 | 2015-04-29 | 中国科学院微生物研究所 | 利用CRISPR-Cas9系统构建的敲除IFN-β基因的293T细胞系 |
US11339399B2 (en) | 2014-12-31 | 2022-05-24 | Viridos, Inc. | Compositions and methods for high efficiency in vivo genome editing |
EP3240889A4 (en) * | 2014-12-31 | 2018-06-20 | Synthetic Genomics, Inc. | Compositions and methods for high efficiency in vivo genome editing |
US12043836B2 (en) | 2014-12-31 | 2024-07-23 | Viridos, Inc. | RNA-guided endonuclease expressing algal strain for high efficiency in vivo genome editing |
WO2016109840A2 (en) | 2014-12-31 | 2016-07-07 | Synthetic Genomics, Inc. | Compositions and methods for high efficiency in vivo genome editing |
WO2016187904A1 (zh) * | 2015-05-22 | 2016-12-01 | 深圳市第二人民医院 | CRISPR-Cas9特异性敲除猪CMAH基因的方法及用于特异性靶向CMAH基因的sgRNA |
CN104894071A (zh) * | 2015-06-08 | 2015-09-09 | 东华大学 | 一种对gt1-7细胞进行基因编辑的方法 |
US10876100B2 (en) | 2015-06-18 | 2020-12-29 | The Broad Institute, Inc. | Crispr enzyme mutations reducing off-target effects |
US12168789B2 (en) | 2015-06-18 | 2024-12-17 | The Broad Institute, Inc. | Engineering and optimization of systems, methods, enzymes and guide scaffolds of CAS9 orthologs and variants for sequence manipulation |
US11578312B2 (en) | 2015-06-18 | 2023-02-14 | The Broad Institute Inc. | Engineering and optimization of systems, methods, enzymes and guide scaffolds of CAS9 orthologs and variants for sequence manipulation |
US10494621B2 (en) | 2015-06-18 | 2019-12-03 | The Broad Institute, Inc. | Crispr enzyme mutations reducing off-target effects |
US12123032B2 (en) | 2015-06-18 | 2024-10-22 | The Broad Institute, Inc. | CRISPR enzyme mutations reducing off-target effects |
CN106399361A (zh) * | 2015-07-30 | 2017-02-15 | 聂凌云 | 一种筛选线粒体基因组编辑工具靶向目标序列的方法 |
US10167457B2 (en) | 2015-10-23 | 2019-01-01 | President And Fellows Of Harvard College | Nucleobase editors and uses thereof |
US11214780B2 (en) | 2015-10-23 | 2022-01-04 | President And Fellows Of Harvard College | Nucleobase editors and uses thereof |
US12043852B2 (en) | 2015-10-23 | 2024-07-23 | President And Fellows Of Harvard College | Evolved Cas9 proteins for gene editing |
CN105567692A (zh) * | 2016-02-26 | 2016-05-11 | 浙江大学 | 一种特异性靶向QKI基因的sgRNA及其应用 |
CN105567692B (zh) * | 2016-02-26 | 2018-08-14 | 浙江大学 | 一种特异性靶向QKI基因的sgRNA及其应用 |
WO2017215648A1 (zh) * | 2016-06-17 | 2017-12-21 | 北京大学 | 基因敲除方法 |
US10947530B2 (en) | 2016-08-03 | 2021-03-16 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
US11999947B2 (en) | 2016-08-03 | 2024-06-04 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
US10113163B2 (en) | 2016-08-03 | 2018-10-30 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
US11702651B2 (en) | 2016-08-03 | 2023-07-18 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
US11661590B2 (en) | 2016-08-09 | 2023-05-30 | President And Fellows Of Harvard College | Programmable CAS9-recombinase fusion proteins and uses thereof |
US11542509B2 (en) | 2016-08-24 | 2023-01-03 | President And Fellows Of Harvard College | Incorporation of unnatural amino acids into proteins using base editing |
US12084663B2 (en) | 2016-08-24 | 2024-09-10 | President And Fellows Of Harvard College | Incorporation of unnatural amino acids into proteins using base editing |
CN107784200B (zh) * | 2016-08-26 | 2020-11-06 | 深圳华大生命科学研究院 | 一种筛选新型CRISPR-Cas系统的方法和装置 |
CN107784200A (zh) * | 2016-08-26 | 2018-03-09 | 深圳华大基因研究院 | 一种筛选新型CRISPR‑Cas系统的方法和装置 |
CN106399377A (zh) * | 2016-09-07 | 2017-02-15 | 同济大学 | 一种基于CRISPR/Cas9高通量技术筛选药物靶点基因的方法 |
US11306324B2 (en) | 2016-10-14 | 2022-04-19 | President And Fellows Of Harvard College | AAV delivery of nucleobase editors |
CN106637421B (zh) * | 2016-10-28 | 2019-12-27 | 博雅缉因(北京)生物科技有限公司 | 双sgRNA文库的构建及其应用于高通量功能性筛选研究的方法 |
CN106637421A (zh) * | 2016-10-28 | 2017-05-10 | 北京大学 | 双sgRNA文库的构建及其应用于高通量功能性筛选研究的方法 |
CN110402305B (zh) * | 2016-11-30 | 2023-07-21 | 北京复昇生物科技有限公司 | 一种crispr文库筛选的方法 |
CN110402305A (zh) * | 2016-11-30 | 2019-11-01 | 中国农业大学 | 一种crispr文库筛选的方法 |
CN106755026A (zh) * | 2016-12-18 | 2017-05-31 | 吉林大学 | sgRNA表达载体的构建及牙釉质钙化不全模型的建立 |
US11820969B2 (en) | 2016-12-23 | 2023-11-21 | President And Fellows Of Harvard College | Editing of CCR2 receptor gene to protect against HIV infection |
US10745677B2 (en) | 2016-12-23 | 2020-08-18 | President And Fellows Of Harvard College | Editing of CCR5 receptor gene to protect against HIV infection |
CN106978399A (zh) * | 2017-02-16 | 2017-07-25 | 华中农业大学 | nlrp3基因敲除的小鼠巨噬细胞系及构建方法 |
US11898179B2 (en) | 2017-03-09 | 2024-02-13 | President And Fellows Of Harvard College | Suppression of pain by gene editing |
US11542496B2 (en) | 2017-03-10 | 2023-01-03 | President And Fellows Of Harvard College | Cytosine to guanine base editor |
US11268082B2 (en) | 2017-03-23 | 2022-03-08 | President And Fellows Of Harvard College | Nucleobase editors comprising nucleic acid programmable DNA binding proteins |
CN106939317A (zh) * | 2017-03-24 | 2017-07-11 | 华南农业大学 | 一种提高植物抵御rna病毒的能力的方法 |
CN108728476A (zh) * | 2017-04-14 | 2018-11-02 | 复旦大学 | 一种利用crispr系统产生多样性抗体文库的方法 |
US11560566B2 (en) | 2017-05-12 | 2023-01-24 | President And Fellows Of Harvard College | Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation |
CN107099850A (zh) * | 2017-06-19 | 2017-08-29 | 东北农业大学 | 一种通过酶切基因组构建CRISPR/Cas9基因组敲除文库的方法 |
CN107099850B (zh) * | 2017-06-19 | 2018-05-04 | 东北农业大学 | 一种通过酶切基因组构建CRISPR/Cas9基因组敲除文库的方法 |
CN107236763A (zh) * | 2017-06-26 | 2017-10-10 | 中南民族大学 | 一种基于流式细胞术的构建基因敲除细胞系的方法 |
US11898270B2 (en) | 2017-07-03 | 2024-02-13 | Huazhong Agricultural University | Pig genome-wide specific sgRNA library, preparation method therefor and application thereof |
CN109207515A (zh) * | 2017-07-03 | 2019-01-15 | 华中农业大学 | 一种设计和构建猪全基因组CRISPR/Cas9敲除文库的方法 |
WO2019006833A1 (zh) * | 2017-07-03 | 2019-01-10 | 华中农业大学 | 猪全基因组特异性sgrna文库及其制备方法和应用 |
US11732274B2 (en) | 2017-07-28 | 2023-08-22 | President And Fellows Of Harvard College | Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE) |
US11897920B2 (en) | 2017-08-04 | 2024-02-13 | Peking University | Tale RVD specifically recognizing DNA base modified by methylation and application thereof |
CN109385421A (zh) * | 2017-08-08 | 2019-02-26 | 北京大学 | 基因敲除方法 |
US11624077B2 (en) | 2017-08-08 | 2023-04-11 | Peking University | Gene knockout method |
WO2019028686A1 (zh) * | 2017-08-08 | 2019-02-14 | 北京大学 | 基因敲除方法 |
CN111278983A (zh) * | 2017-08-08 | 2020-06-12 | 北京大学 | 基因敲除方法 |
US11319532B2 (en) | 2017-08-30 | 2022-05-03 | President And Fellows Of Harvard College | High efficiency base editors comprising Gam |
US11932884B2 (en) | 2017-08-30 | 2024-03-19 | President And Fellows Of Harvard College | High efficiency base editors comprising Gam |
US11795443B2 (en) | 2017-10-16 | 2023-10-24 | The Broad Institute, Inc. | Uses of adenosine base editors |
CN108148866B (zh) * | 2018-01-19 | 2020-09-01 | 中国人民解放军第三0二医院 | 一种hcbp6基因敲除细胞系及其构建方法 |
CN108148866A (zh) * | 2018-01-19 | 2018-06-12 | 中国人民解放军第三0二医院 | 一种hcbp6基因敲除细胞系及其构建方法 |
CN110373430A (zh) * | 2018-04-13 | 2019-10-25 | 青岛清原化合物有限公司 | 一种随机突变的基因编辑系统及其应用 |
US12157760B2 (en) | 2018-05-23 | 2024-12-03 | The Broad Institute, Inc. | Base editors and uses thereof |
US11643652B2 (en) | 2019-03-19 | 2023-05-09 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
US11795452B2 (en) | 2019-03-19 | 2023-10-24 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
US11447770B1 (en) | 2019-03-19 | 2022-09-20 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
CN113748205A (zh) * | 2019-04-12 | 2021-12-03 | 阿斯利康(瑞典)有限公司 | 用于改进的基因编辑的组合物和方法 |
CN113122578A (zh) * | 2019-12-30 | 2021-07-16 | 博雅缉因(北京)生物科技有限公司 | 一种高效构建细胞文库的电击转化方法 |
CN111549052A (zh) * | 2020-05-07 | 2020-08-18 | 西南大学 | 一种真核生物CRISPR/Cas全基因组编辑载体文库及构建方法 |
US12031126B2 (en) | 2020-05-08 | 2024-07-09 | The Broad Institute, Inc. | Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence |
US11912985B2 (en) | 2020-05-08 | 2024-02-27 | The Broad Institute, Inc. | Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence |
CN117587013A (zh) * | 2023-11-27 | 2024-02-23 | 湖南师范大学 | 一种血管发育异常的斑马鱼模型的构建方法 |
Also Published As
Publication number | Publication date |
---|---|
WO2015100929A1 (zh) | 2015-07-09 |
CN103668472B (zh) | 2014-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103668472A (zh) | 利用CRISPR/Cas9系统构建真核基因敲除文库的方法 | |
Lu et al. | Epiphytic common core bacteria in the microbiomes of co-located green (Ulva), brown (Saccharina) and red (Grateloupia, Gelidium) macroalgae | |
CN104178461A (zh) | 携带cas9的重组腺病毒及其应用 | |
CN107365793A (zh) | 一种适用于植物的大规模基因组编辑的方法 | |
Garrett et al. | CRISPR-based immune systems of the Sulfolobales: complexity and diversity | |
Chang et al. | Identification and characterization of microRNAs in the white‐backed planthopper, Sogatella furcifera | |
Morimoto et al. | Cooccurrence of broad-and narrow-host-range viruses infecting the bloom-forming toxic cyanobacterium Microcystis aeruginosa | |
Malina et al. | Adapting CRISPR/Cas9 for functional genomics screens | |
Zink et al. | Heavily armed ancestors: CRISPR immunity and applications in archaea with a comparative analysis of CRISPR types in sulfolobales | |
JP2023506631A (ja) | 共有結合で閉端された核酸分子末端を使用したngsライブラリー調製 | |
CN106480081A (zh) | 一种单质粒系统的CRISPRi载体及其制备方法 | |
Li et al. | Establishment of a Cuscuta campestris‐mediated enrichment system for genomic and transcriptomic analyses of ‘Candidatus Liberibacter asiaticus’ | |
Grant et al. | Gene discovery from a pilot study of the transcriptomes from three diverse microbial eukaryotes: Corallomyxa tenera, Chilodonella uncinata, and Subulatomonas tetraspora | |
CN104388456A (zh) | 一种同时表达两条sgRNA的载体的构建方法 | |
Du et al. | Host and geographic range extensions of Melanconiella, with a new species M. cornuta in China | |
Liu et al. | The immune system of prokaryotes: potential applications and implications for gene editing | |
CN109610009A (zh) | 一种烟草抗病毒调控基因筛选方法及应用 | |
Wang et al. | PAM-interacting domain swapping is extensively utilized in nature to evolve CRISPR-Cas9 nucleases with altered PAM specificities | |
Ganger et al. | Clustered regularly interspaced short palindromic repeats/CRISPR-associated (CRISPR/Cas) systems: Discovery, structure, classification, and general mechanism | |
CN102206634A (zh) | Dna分子克隆快速连接载体的构建方法及其涉及的dna分子 | |
Guesdon et al. | Combining fusion of cells with CRISPR-Cas9 editing for the cloning of large DNA fragments or complete bacterial genomes in yeast | |
Halweg-Edwards et al. | The emergence of commodity-scale genetic manipulation | |
De la Cruz-Rodríguez et al. | Biosynthetic gene clusters in sequenced genomes of four contrasting rhizobacteria in phytopathogen inhibition and interaction with Capsicum annuum roots | |
AU2013361289A1 (en) | Compositions and methods for creating altered and improved cells and organisms | |
Lakota | Synthetic Biology-Friend or Foe? What Kind of Threats Should We Expect? |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20161223 Address after: 102206 Beijing City, Changping District Zhongguancun Life Science Park Science Park Road No. 22 Building 2 floor 201-203 room 2 Patentee after: Because Ji Boya (Beijing) Biotechnology Co. Ltd. Address before: 100871 Beijing the Summer Palace Road, Haidian District, No. 5 Patentee before: Beijing Univ. |
|
TR01 | Transfer of patent right |