[go: up one dir, main page]

CN103667716B - A kind of at C2H2O4-NH3The method simultaneously reclaiming neodymium, praseodymium, dysprosium, cobalt, ferrum under system from neodymium iron boron greasy filth - Google Patents

A kind of at C2H2O4-NH3The method simultaneously reclaiming neodymium, praseodymium, dysprosium, cobalt, ferrum under system from neodymium iron boron greasy filth Download PDF

Info

Publication number
CN103667716B
CN103667716B CN201310692780.6A CN201310692780A CN103667716B CN 103667716 B CN103667716 B CN 103667716B CN 201310692780 A CN201310692780 A CN 201310692780A CN 103667716 B CN103667716 B CN 103667716B
Authority
CN
China
Prior art keywords
neodymium
praseodymium
dysprosium
cobalt
ndfeb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310692780.6A
Other languages
Chinese (zh)
Other versions
CN103667716A (en
Inventor
刘敏
赖伟鸿
李春燕
尹小文
金琼花
岳明
索红莉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ganzhou Xihong Permanent Magnet Technology Co ltd
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN201310692780.6A priority Critical patent/CN103667716B/en
Publication of CN103667716A publication Critical patent/CN103667716A/en
Application granted granted Critical
Publication of CN103667716B publication Critical patent/CN103667716B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Compounds Of Iron (AREA)
  • Catalysts (AREA)

Abstract

一种在C2H2O4-NH3体系下从钕铁硼油泥中同时回收钕、镨、镝、钴、铁的方法,属于钕铁硼油泥回收技术领域。C2H2O4-NH3体系热力学研究以及模拟,建立热力学模型,确定可适用的工艺及工艺参数。并在C2H2O4-NH3体系下调节并选取两次pH为:(0.5~2.5)-9进行“配合-沉淀”,可达到同时回收钕、镨、镝、钴、铁的效果。该流程可以有效缩短前期工艺探索,操作简单,工艺简洁,有效减少废物排放,并且实现钕铁硼油泥中钕、镨、镝、钴、铁的全回收。其中,钕的回收率>=99%;镨的回收率>=99%;钴的回收率>=79%;镝的回收率>=99%;铁的回收率>=99%。 The invention discloses a method for simultaneously recovering neodymium, praseodymium, dysprosium, cobalt and iron from NdFeB oil sludge under the C2H2O4 - NH3 system, belonging to the technical field of NdFeB oil sludge recovery. Thermodynamic research and simulation of C 2 H 2 O 4 -NH 3 system, establishment of thermodynamic model, determination of applicable process and process parameters. And under the C 2 H 2 O 4 -NH 3 system, adjust and select the pH twice: (0.5-2.5)-9 for "combination-precipitation", which can achieve the effect of simultaneous recovery of neodymium, praseodymium, dysprosium, cobalt, and iron . This process can effectively shorten the early process exploration, simple operation, simple process, effectively reduce waste discharge, and realize the full recovery of neodymium, praseodymium, dysprosium, cobalt, and iron in NdFeB sludge. Among them, the recovery rate of neodymium>=99%; the recovery rate of praseodymium>=99%; the recovery rate of cobalt>=79%; the recovery rate of dysprosium>=99%; the recovery rate of iron>=99%.

Description

一种在C2H2O4-NH3体系下从钕铁硼油泥中同时回收钕、镨、镝、钴、铁的方法A method for simultaneously recovering neodymium, praseodymium, dysprosium, cobalt, and iron from NdFeB sludge under C2H2O4-NH3 system

技术领域technical field

本发明涉及一种在C2H2O4-NH3体系下从钕铁硼油泥中提取钕、镨、镝、钴、铁的方法,属于钕铁硼油泥回收技术领域。 The invention relates to a method for extracting neodymium, praseodymium, dysprosium, cobalt and iron from NdFeB oil sludge under a C2H2O4 - NH3 system, belonging to the technical field of NdFeB oil sludge recovery.

背景技术Background technique

1983年日本与美国科学家几乎同时发现以钕铁硼为基体的(第三代)稀土永磁合金以来,其巨大的磁能积刷新了已有的永磁材料记录,引起了世界永磁材料市场巨大的变化。国内钕铁硼开发非常快,全国近百家企业的年生产能力达将近10万多吨。众所周知,在钕铁硼材料的生产过程中,有许多边角料、残次品和切磨下来的废料,总损耗高达30%以上,因此,加强钕铁硼废料回收的研究与生产,有着重要的现实意义。Since Japanese and American scientists discovered the (third-generation) rare earth permanent magnet alloy based on NdFeB almost simultaneously in 1983, its huge magnetic energy product has refreshed the existing permanent magnet material record, causing a huge market for permanent magnet materials in the world. The change. The domestic development of NdFeB is very fast, and the annual production capacity of nearly 100 enterprises in the country has reached nearly 100,000 tons. As we all know, in the production process of NdFeB materials, there are many scraps, defective products and scraps from cutting and grinding, and the total loss is as high as more than 30%. Therefore, it is important to strengthen the research and production of NdFeB waste recycling. significance.

随着从钕铁硼废料中回收稀土的技术日益成熟,越来越多的商家看到了其中的丰厚利润。据资料显示,在浙江和广东一带,大大小小的回收钕铁硼废料的厂家就有几千家。而这其中就有不少没有生产资格的地下黑作坊,他们将获取来的钕铁硼废料,特别是打磨和线切割后的油泥,仅仅是进行粗糙的氧化焙烧,再经过酸溶等流程,从而来提取当中的稀土元素。由于这些商家既没有生产许可,也没有正规生产流程。所以这种方法不仅仅对稀土资源的极大浪费,而且还会对当地的环境形成巨大的污染。As the technology of recovering rare earths from NdFeB waste becomes more and more mature, more and more businesses see the huge profits. According to data, in Zhejiang and Guangdong, there are thousands of large and small manufacturers recycling NdFeB waste. Among them, there are many underground black workshops without production qualifications. They only use the NdFeB waste obtained, especially the oil sludge after grinding and wire cutting, for rough oxidation and roasting, and then through acid dissolution and other processes. In order to extract the rare earth elements. Because these businesses have neither production license nor formal production process. Therefore, this method is not only a great waste of rare earth resources, but also causes huge pollution to the local environment.

针对本专利的研究对象钕铁硼油泥,如何从钕铁硼油泥中重新制备再生的钕铁硼磁粉是本次课题的研究核心。有文献报道,有人就利用Fe-Pr和Fe-Nd相用快速淬火工艺成功制备出磁积能高达40KOe的硬磁相。国内肖耀福和周寿增等人曾经运用还原扩散法成功制取出钕铁硼。该方法通过将NdO粉、Fe粉、Ca粉混合压制成型后,在860℃-1180℃下进行还原扩散,之后再进行成型、烧结,获得了磁能积(BH)max=200-238KJ/m3的NdFeB合金。孙广飞、陈菊芳通过运用还原融合法也制备出了NdFeB合金。还原融合法是通过金属钙还原氯化钕,然后在高温条件下被还原的金属钕与合金元素铁、硼融合而制得NdFeB合金。而AngshumanPal,AlexanderGabay,GeorgeC.Hadjipanayis等人曾经通过将氧化钕粉、铁硼合金、钙粉球磨、热处理的方法制备出NdFeB合金和富钕相,其中NdFeB合金的矫顽力超过12KOe。也有人通过在高能球磨中通过添加表面活性剂成功制备出了NdFeB纳米晶和纳米片。因此,通过机械化学合成这种方法制备NdFeB合金是值得借鉴的。For the research object of this patent, NdFeB sludge, how to re-prepare regenerated NdFeB magnetic powder from NdFeB sludge is the research core of this subject. It has been reported in the literature that someone has successfully prepared a hard magnetic phase with a magnetic product energy of up to 40KOe by using the Fe-Pr and Fe-Nd phases with a rapid quenching process. Domestic Xiao Yaofu, Zhou Shouzeng and others have successfully produced NdFeB by reduction diffusion method. In this method, NdO powder, Fe powder, and Ca powder are mixed and compacted, then reduced and diffused at 860°C-1180°C, and then formed and sintered to obtain a magnetic energy product (BH) max=200-238KJ/m 3 NdFeB alloy. Sun Guangfei and Chen Jufang also prepared NdFeB alloys by using the reduction fusion method. The reduction fusion method is to reduce neodymium chloride by metal calcium, and then fuse the reduced metal neodymium with alloying elements iron and boron under high temperature conditions to obtain NdFeB alloy. AngshumanPal, Alexander Gabay, GeorgeC.Hadjipanayis and others have prepared NdFeB alloy and Nd-rich phase by ball milling NdO powder, iron-boron alloy, calcium powder and heat treatment, and the coercive force of NdFeB alloy exceeds 12KOe. It was also successfully prepared NdFeB nanocrystals and nanosheets by adding surfactants in high energy ball milling. Therefore, the preparation of NdFeB alloys by mechanochemical synthesis is worthy of reference.

本申请人拟采用NdFeB油泥-物理方法分离油泥中固液相-固相酸溶-钕铁共沉淀-高温煅烧-机械化学法合成NdFeB磁粉工艺,和酸溶沉淀法、硫酸复盐沉淀法、全萃取法这些通过分离-提纯的方法相比,直接通过NdFeB油泥-物理方法分离油泥中固液相-固相酸溶-钕铁共沉淀-高温煅烧-机械化学法合成NdFeB磁粉工艺制备出NdFeB合金的方法可以进一步降低成本,减少繁杂的化学过程,节约了人力资源和物力资源,同时也减少了废水废液的排放,并且实现全元素的回收和真正意义上的循环经济。The applicant intends to use NdFeB oil sludge-physical method to separate solid-liquid phase in oil sludge-solid phase acid solution-NdFe co-precipitation-high temperature calcination-mechanochemical method to synthesize NdFeB magnetic powder process, and acid-soluble precipitation method, sulfuric acid double salt precipitation method, Compared with the separation-purification method of the total extraction method, NdFeB is prepared directly through the NdFeB sludge-physical method to separate the solid-liquid phase in the sludge-solid phase acid solution-NdFe co-precipitation-high temperature calcination-mechanochemical method to synthesize NdFeB magnetic powder The alloy method can further reduce costs, reduce complicated chemical processes, save human resources and material resources, and also reduce the discharge of waste water and liquid, and realize the recovery of all elements and a true circular economy.

钕铁硼油泥中含有钕、镨、镝、钴、铁这五种具备可回收再生产价值的元素,要制备钕铁硼再生磁粉,同时高回收率沉淀出钕、镨、镝、钴、铁成为关键。NdFeB oil sludge contains five elements that can be recycled and reproduced: neodymium, praseodymium, dysprosium, cobalt, and iron. To prepare NdFeB regenerated magnetic powder, at the same time, neodymium, praseodymium, dysprosium, cobalt, and iron are precipitated at a high recovery rate to become The essential.

发明内容Contents of the invention

在本专利中,将首先通过钕、镨、镝、钴、铁这五种元素通过计算模拟,建立热力学模型,通过热力学模型确定并优化钕、镨、镝、钴、铁同时回收的最佳工艺以及工艺的最佳参数。In this patent, the five elements of neodymium, praseodymium, dysprosium, cobalt and iron will be calculated and simulated first to establish a thermodynamic model, and the optimal process for simultaneous recovery of neodymium, praseodymium, dysprosium, cobalt and iron will be determined and optimized through the thermodynamic model and the optimum parameters of the process.

本发明旨在在C2H2O4-NH3体系下建立钕、镨、镝、钴、铁五种元素的热力学模型,借鉴模拟的结果确定钕、镨、镝、钴、铁回收的配合-沉淀工艺选择,通过确定的工艺方案同时回收钕、镨、镝、钴、铁这五种元素的化合物,回收产物可用于再生钕铁硼的制备。The present invention aims to establish a thermodynamic model of the five elements of neodymium, praseodymium, dysprosium, cobalt and iron under the C 2 H 2 O 4 -NH 3 system, and determine the coordination of neodymium, praseodymium, dysprosium, cobalt and iron recovery by referring to the simulation results -Precipitation process selection, through the determined process plan to simultaneously recover the compounds of the five elements of neodymium, praseodymium, dysprosium, cobalt, and iron, and the recovered products can be used for the preparation of recycled NdFeB.

本发明确定在C2H2O4-NH3体系下从钕铁硼油泥中同时回收钕、镨、镝、钴、铁工艺的方法,所采用的技术方案是:首先,通过查找各个元素在C2H2O4-NH3体系下可能发生的配合反应以及反应平衡常数,建立热力学模型(优选通过MATLAB计算软件);然后,通过已经建立起的热力学模型确定回收钕、镨、镝、钴、铁的工艺以及工艺中参数的选择:在C2H2O4-NH3体系下,确定工艺为:钕铁硼油泥蒸馏、酸溶、氧化、配合沉淀得产物。The present invention determines the method for simultaneously recovering neodymium, praseodymium, dysprosium, cobalt, and iron from NdFeB oil sludge under the C2H2O4 - NH3 system . The complexation reactions that may occur in the C 2 H 2 O 4 -NH 3 system and the reaction equilibrium constants, establish a thermodynamic model (preferably through MATLAB calculation software); then, determine the recovery of neodymium, praseodymium, dysprosium, and cobalt through the established thermodynamic model 1. The process of iron and the selection of parameters in the process: under the C 2 H 2 O 4 -NH 3 system, the determined process is: NdFeB sludge distillation, acid dissolution, oxidation, and complex precipitation to obtain products.

上述热力学模型(即沉淀平衡后的热力学模型)的建立包括以下步骤:首先,查阅在C2H2O4-NH3体系下钕、镨、镝、钴、铁可能发生的反应以及每个反应的平衡常数,由水的电离平衡可得到等式:The establishment of the above thermodynamic model (that is, the thermodynamic model after precipitation equilibrium) includes the following steps: First, review the possible reactions of neodymium, praseodymium, dysprosium, cobalt, and iron under the C 2 H 2 O 4 -NH 3 system and the possible reactions of each reaction. The equilibrium constant of , the equation can be obtained from the ionization balance of water:

[H+]=10-pH(1-1)[H + ]=10 -pH (1-1)

[OH-]=Kw*10pH(1-2)[OH-]=Kw*10 pH (1-2)

在C2H2O4-OH体系中,溶液中的游离金属离子浓度为:In the C 2 H 2 O 4 -OH system, the concentration of free metal ions in the solution is:

[Nd3+]=min{(Kspnac/[C2O4 2-]3)1/2,Kspnh/[OH-]3}(1-3)[Nd 3+ ]=min{(Kspnac/[C 2 O 4 2- ] 3 ) 1/2 ,Kspnh/[OH - ] 3 }(1-3)

[Pr3+]==min{(Ksppac/[C2O4 2-]3)1/2,KsppH/[OH-]3}(1-4)[Pr 3+ ]==min{(Ksppac/[C 2 O 4 2- ] 3 ) 1/2 ,KsppH/[OH - ] 3 }(1-4)

[Dy3+]=min{(Kspdac/[C2O4 2-]3)1/2,Kspdh/[OH-]3}(1-5)[Dy 3+ ]=min{(Kspdac/[C 2 O 4 2- ] 3 ) 1/2 ,Kspdh/[OH - ] 3 }(1-5)

[Fe3+]=Kspf3h/[OH-]3(1-6)[Fe 3+ ]=Kspf3h/[OH - ] 3 (1-6)

[Fe2+]=min{Kspf2ac/[C2O4 2-],Kspf3h/[OH-]2}(1-7)[Fe 2+ ]=min{Kspf2ac/[C 2 O 4 2- ],Kspf3h/[OH - ] 2 }(1-7)

[Co2+]=Kspch/[OH-]2(1-8)[Co 2+ ]=Kspch/[OH - ] 2 (1-8)

[H2C2O4]=[C2O4 2-]+[HC2O4 -]+[C2H2O4](1-9)[H 2 C 2 O 4 ]=[C 2 O 4 2- ]+[HC 2 O 4 - ]+[C 2 H 2 O 4 ](1-9)

[H2C2O4]=[C2O4 2-]{1+10-pH/Kaac2+10-2pH/(Kaac2*Kaac1)}(1-10)[H 2 C 2 O 4 ]=[C 2 O 4 2- ]{1+10 -pH /K aac2 +10 -2pH /(K aac2 *K aac1 )}(1-10)

由于各金属离子跟[OH-]、[NH3]、[C2O4 2-]发生配合反应,因此根据质量守恒定律得到溶液中各金属离子的总浓度:Since each metal ion reacts with [OH - ], [NH 3 ], [C 2 O 4 2- ], the total concentration of each metal ion in the solution is obtained according to the law of conservation of mass:

[Nd]=[Nd3+]+[Nd(OH)2+]+[Nd(C2O4)+]+[Nd(C2O4)2 -]+[Nd]=[Nd 3+ ]+[Nd(OH) 2+ ]+[Nd(C 2 O 4 ) + ]+[Nd(C 2 O 4 ) 2 - ]+

[Nd(C2O4)3 3-][Nd(C 2 O 4 ) 3 3- ]

=[Nd3+]+Knh*[Nd3+]*[OH-]+Knac11*[Nd3+]*[C2O4 2-]=[Nd 3+ ]+K nh *[Nd 3+ ]*[OH-]+K nac11 *[Nd 3+ ]*[C 2 O 4 2- ]

+Knac12*[Nd3+]*[C2O4 2-]2+Knac13*[Nd3+]*[C2O4 2-]3(1-11)+K nac12 *[Nd 3+ ]*[C 2 O 4 2- ] 2 +K nac13 *[Nd 3+ ]*[C 2 O 4 2- ] 3 (1-11)

[Pr]=[Pr3+]+[Pr(OH)2+]+[Pr(C2O4)+]+[Pr(C2O4)2 -][Pr]=[Pr 3+ ]+[Pr(OH) 2+ ]+[Pr(C 2 O 4 ) + ]+[Pr(C 2 O 4 ) 2 - ]

+[Pr(C2O4)3 3-](1-12)+[Pr(C 2 O 4 ) 3 3- ](1-12)

[Dy]=[Dy3+]+[Dy(OH)2+]+[Dy(C2O4)+]+[Dy(C2O4)2 -]+[Dy]=[Dy 3+ ]+[Dy(OH) 2+ ]+[Dy(C 2 O 4 ) + ]+[Dy(C 2 O 4 ) 2 - ]+

[Dy(C2O4)3 3-](1-13)[D y (C 2 O 4 ) 3 3- ](1-13)

[Fe2]=[Fe2+]+[Fe(OH)+]+[Fe(OH)2 0]+[Fe(OH)3 -]+[Fe(OH)4 2-][Fe2]=[Fe 2+ ]+[Fe(OH) + ]+[Fe(OH) 2 0 ]+[Fe(OH) 3 - ]+[Fe(OH) 4 2- ]

+[Fe(C2O4)0]+[Fe(C2O4)2 2-]+[Fe(C2O4)3 4-]+[Fe(NH3)2+]+[Fe(C 2 O 4 ) 0 ]+[Fe(C 2 O 4 ) 2 2- ]+[Fe(C 2 O 4 ) 3 4- ]+[Fe(NH 3 ) 2+ ]

+[Fe(NH3)2 2+]+[Fe(NH3)4 2+]+[Fe(NH 3 ) 2 2+ ]+[Fe(NH 3 ) 4 2+ ]

=[Fe2+]{1+Kf2h1*[OH-]+Kf2h2*[OH-]2+Kf2h3*[OH-]3+Kf2h4*[OH-]4 =[Fe 2+ ]{1+K f2h1 *[OH - ]+K f2h2 *[OH - ] 2 +K f2h3 *[OH - ] 3 +K f2h4 *[OH - ] 4

+Knac11*[C2O4 2-]+Knac12*[C2O4 2-]2+Knac13*[C2O4 2-]3 +K nac11 *[C 2 O 4 2- ]+K nac12 *[C 2 O 4 2- ] 2 +K nac13 *[C 2 O 4 2- ] 3

+Kf2am11*[NH3]+Kf2am12*[NH3]2+Kf2am14*[NH3]4}+K f2am11 *[NH 3 ]+K f2am12 *[NH 3 ] 2 +K f2am14 *[NH 3 ] 4 }

(1-14)(1-14)

[Fe3]=[Fe3+]+[Fe(OH)2+]+[Fe(OH)2 +]+[Fe(OH)3 0]+[Fe(OH)4 2-][Fe3]=[Fe 3+ ]+[Fe(OH) 2+ ]+[Fe(OH) 2 + ]+[Fe(OH) 3 0 ]+[Fe(OH) 4 2- ]

=[Fe3+]{1+Kf3h1*[OH-]+Kf3h2*[OH-]2+Kf3h3*[OH-]3}=[Fe 3+ ]{1+K f3h1 *[OH - ]+K f3h2 *[OH - ] 2 +K f3h3 *[OH - ] 3 }

(1-15)(1-15)

[Co]=[Co2+]+[Co(OH)+]+[Co(OH)2 0]+[Co(OH)3 -]+[Co(OH)4 2-][Co]=[Co 2+ ]+[Co(OH) + ]+[Co(OH) 2 0 ]+[Co(OH) 3 - ]+[Co(OH) 4 2- ]

+2*[Co2(OH)3 3-]+4*[Co4(OH)4 4-]+[Co(NH3)]+2*[Co 2 (OH) 3 3- ]+4*[Co 4 (OH) 4 4- ]+[Co(NH 3 )]

+[Co(NH3)2+]+[Co(NH3)2 2+]+[Co(NH3)3 2+]+[Co(NH3)4 2+]+[Co(NH 3 ) 2+ ]+[Co(NH 3 ) 2 2+ ]+[Co(NH 3 ) 3 2+ ]+[Co(NH 3 ) 4 2+ ]

+[Co(NH3)5 2+]+[Co(NH3)6 2+]+[Co(NH 3 ) 5 2+ ]+[Co(NH 3 ) 6 2+ ]

=[Co2+]{1+Kch1*[OH-]+Kch2*[OH-]2+Kch3*[OH-]3 =[Co 2+ ]{1+K ch1 *[OH - ]+K ch2 *[OH - ] 2 +K ch3 *[OH - ] 3

+Kch4*[OH-]4+2*Kch21*[Co2+]*[OH-]+4*Kch44*[Co2+]3*[OH-]4 +K ch4 *[OH - ] 4 +2*K ch21 *[Co 2+ ]*[OH - ]+4*K ch44 *[Co 2+ ] 3 *[OH - ] 4

+Kcam11*[NH3]+Kcam12*[NH3]2+Kcam13*[NH3]3 +K cam11 *[NH 3 ]+K cam12 *[NH 3 ] 2 +K cam13 *[NH 3 ] 3

+Kcam14*[NH3]4+Kcam15*[NH3]5+Kcam16*[NH3]6}(1-16)+K cam14 *[NH 3 ] 4 +K cam15 *[NH 3 ] 5 +K cam16 *[NH 3 ] 6 }(1-16)

[NH4 +]=Kam*[NH3]*[H+](1-17)[NH 4 + ]=K am *[NH 3 ]*[H + ](1-17)

[N]=[NH3]+[NH4 +]+[Fe(NH3)2+]+[Fe(NH3)2 2+]+[Fe(NH3)4 2+ [N]=[NH 3 ]+[NH 4 + ]+[Fe(NH 3 ) 2+ ]+[Fe(NH 3 ) 2 2+ ]+[Fe(NH 3 ) 4 2+

+[Co(NH3)]+[Co(NH3)2+]+[Co(NH3)2 2+]+[Co(NH3)3 2+]++[Co(NH 3 )]+[Co(NH 3 ) 2+ ]+[Co(NH 3 ) 2 2+ ]+[Co(NH 3 ) 3 2+ ]+

[Co(NH3)4 2+]+[Co(NH3)5 2+]+[Co(NH3)6 2+](1-18)[Co(NH 3 ) 4 2+ ]+[Co(NH 3 ) 5 2+ ]+[Co(NH 3 ) 6 2+ ](1-18)

将表1中参数用于上述(1-1)-(1-18)式子,通过变换[OH-]的量,通过化学平衡、质量平衡、电荷守恒建立在C2H2O4-NH3体系下的热力学模型。Use the parameters in Table 1 for the above formulas (1-1)-(1-18), by changing the amount of [OH - ], through chemical balance, mass balance, and charge conservation to establish in C 2 H 2 O 4 -NH 3 Thermodynamic model under the system.

优选模型通过MATLAB汇编语言计算:The optimal model is calculated by MATLAB assembly language:

x=0:0.5:14;x=0:0.5:14;

u=0.1u=0.1

p=u./(1+10.^(1.23-x)+10.^(5.42-2.*x))p=u./(1+10.^(1.23-x)+10.^(5.42-2.*x))

P=1./(1+10.^(9.244-x))P=1./(1+10.^(9.244-x))

a=min(2*sqrt(10^(-27.68)./p.^3),10.^(20.5-3*x))a=min(2*sqrt(10^(-27.68)./p.^3),10.^(20.5-3*x))

b=10.^(11.69-2.*x);b=10.^(11.69-2.*x);

c=10.^(3.45-3.*x);c=10.^(3.45-3.*x);

w=10.^(13.77-2*x);w=10.^(13.77-2*x);

e=min(2*sqrt(10^(-27.68)./p.^3),10.^(21.17-3*x));e=min(2*sqrt(10^(-27.68)./p.^3),10.^(21.17-3*x));

i=min(2*sqrt(10^(-28.8)./p.^3),10.^(21.85-3*x));i=min(2*sqrt(10^(-28.8)./p.^3),10.^(21.85-3*x));

j=a.*[1+10^7.21.*p+10^11.5.*p.^2+10^14.*p.^3+10.^(x-8.5)];j=a.*[1+10^7.21.*p+10^11.5.*p.^2+10^14.*p.^3+10.^(x-8.5)];

g=b.*[1+10^2.9.*p+10^4.52.*p.^2+10^5.22.*p.^3+10.^(x-8.44)+10.^(2*x-18.23)+10.^(3*x-32.33)+10.^(4*x-47.72)+10^1.4.*P+10^2.2.*P.^2+10^3.74.*P.^4];g=b.*[1+10^2.9.*p+10^4.52.*p.^2+10^5.22.*p.^3+10.^(x-8.44)+10.^(2* x-18.23)+10.^(3*x-32.33)+10.^(4*x-47.72)+10^1.4.*P+10^2.2.*P.^2+10^3.74.*P .^4];

h=c.*[1+10^9.4.*p+10^16.2.*p.^2+10^20.2.*p.^3+10.^(x-2.13)+10.^(2*x-6.83)+10.^(3*x-12.33)];h=c.*[1+10^9.4.*p+10^16.2.*p.^2+10^20.2.*p.^3+10.^(x-2.13)+10.^(2* x-6.83)+10.^(3*x-12.33)];

q=w.*(1+10.^(x-10.7)+10.^(2.*x-18.8)+10.^(3.*x-31.5)+10.^(4.*x-45.8)+2.*10.^(x-11.3).*w+4.*10.^(4.*x-30.4).^(w.^3)+10^4.79.^p+10^6.7.*p.^2+10^9.7.*p.^3+10^2.11.^P+10^3.74.*P.^2+10^4.99.*P.^3+10^5.55.*P.^4+10^5.73.*P.^5+10^5.11.*P.^6);q=w.*(1+10.^(x-10.7)+10.^(2.*x-18.8)+10.^(3.*x-31.5)+10.^(4.*x- 45.8)+2.*10.^(x-11.3).*w+4.*10.^(4.*x-30.4).^(w.^3)+10^4.79.^p+10^ 6.7.*p.^2+10^9.7.*p.^3+10^2.11.^P+10^3.74.*P.^2+10^4.99.*P.^3+10^5.55.* P.^4+10^5.73.*P.^5+10^5.11.*P.^6);

r=e.*(1+10^7.21.*p+10^10.5.*p.^2+10^14.*p.^3+10.^(x-9.7));r=e.*(1+10^7.21.*p+10^10.5.*p.^2+10^14.*p.^3+10.^(x-9.7));

l=i.*(1+10^7.21.*p+10^11.9.*p.^2+10^14.*p.^3+10.^(x-8.8));l=i.*(1+10^7.21.*p+10^11.9.*p.^2+10^14.*p.^3+10.^(x-8.8));

y=log10(j);y=log10(j);

m=log10(g);m=log10(g);

n=log10(h);n=log10(h);

o=log10(q)o=log10(q)

t=log10(r)t=log10(r)

z=log10(l)z=log10(l)

plot(x,y,x,m,x,n,x,o,x,t,x,z)plot(x,y,x,m,x,n,x,o,x,t,x,z)

其中,x代表pH值;u代表总草酸[H2C2O4]的浓度;p代表溶液中C2O4 2-的浓度;a,b,c,w,e,i分别代表[Nd]、[Fe2]、[Fe3]、[Co]、[Dy]、[Pr]的游离金属离子浓度值;P代表游离态[NH3]的值;j,g,h,q,r,l分别代表[Nd]、[Fe2]、[Fe3]、[Co]、[Dy]、[Pr]溶液中剩余的总浓度;y,m,n,o,t,z则分别代表的是[Nd]、[Fe2]、[Fe3]、[Co]、[Dy]、[Pr]溶液中剩余的总浓度以10为底的对数值。Among them, x represents the pH value; u represents the concentration of total oxalic acid [H 2 C 2 O 4 ]; p represents the concentration of C 2 O 4 2- in the solution; a, b, c, w, e, i represent [Nd ], [Fe2], [Fe3], [Co], [Dy], [Pr] free metal ion concentration values; P represents the value of free state [NH 3 ]; j, g, h, q, r, l respectively Represents the remaining total concentration of [Nd], [Fe2], [Fe3], [Co], [Dy], [Pr] solution; y, m, n, o, t, z respectively represent [Nd] , [Fe2], [Fe3], [Co], [Dy], [Pr] The remaining total concentration in the solution is logarithmic value with base 10.

本发明采用上述方法确定一种在C2H2O4-NH3体系下从钕铁硼油泥中同时回收钕、镨、镝、钴、铁的方法,其特征在于,包括以下步骤:将钕铁硼油泥进行蒸馏预处理后,取盐酸将预处理后的钕铁硼油泥溶解并过滤,加入H2O2,搅拌充分氧化后,添加NH4OH调节pH=0.5-2.5,并加入C2H2O4溶液,充分搅拌后,再次添加NH4OH调节pH为9,将获得的沉淀过滤、洗涤三次、烘干,即获得了可用于制备再生的钕铁硼的产物。 The present invention uses the above method to determine a method for simultaneously recovering neodymium, praseodymium, dysprosium, cobalt, and iron from NdFeB sludge under the C2H2O4 - NH3 system, which is characterized in that it comprises the following steps: After the iron-boron sludge is pretreated by distillation, take hydrochloric acid to dissolve the pretreated NdFeB sludge and filter it, add H 2 O 2 , stir and oxidize fully, add NH 4 OH to adjust the pH=0.5-2.5, and add C 2 After fully stirring the H 2 O 4 solution, NH 4 OH was added again to adjust the pH to 9, and the obtained precipitate was filtered, washed three times, and dried to obtain a product that could be used to prepare regenerated NdFeB.

上述优选每5g将钕铁硼油泥对应4mol/L的盐酸75ml、3mlH2O2、NH4OH的浓度为1mol/L、1mol/L的C2H2O4溶液32ml。For each 5 g of the above, preferably, the NdFeB oil sludge corresponds to 75 ml of 4 mol/L hydrochloric acid, 3 ml of H 2 O 2 , 1 mol/L of NH 4 OH, and 32 ml of 1 mol/L of C 2 H 2 O 4 solution.

应尽量选择3价铁离子,并且通过模型可以看出钕、镨、镝稀土盐的最佳回收pH值应在0.5~2.5内,而铁和钴的回收应在高pH值下,因此,本专利设计工艺通过两次调节pH完成,最佳沉淀钕、镨、镝、钴、铁的pH范围应该在(0.5~2.5)-9内,并且可以通过一步工艺获得钕、镨、镝、钴、铁配合沉淀产物。钕的回收率>=99%;镨的回收率>=99%;钴的回收率>=79%;镝的回收率>=99%;铁的回收率>=99%。Trivalent iron ions should be selected as much as possible, and it can be seen from the model that the optimal recovery pH value of neodymium, praseodymium and dysprosium rare earth salt should be within 0.5 to 2.5, and the recovery of iron and cobalt should be at a high pH value. Therefore, this The patented design process is completed by adjusting the pH twice. The pH range for the optimal precipitation of neodymium, praseodymium, dysprosium, cobalt, and iron should be within (0.5-2.5)-9, and neodymium, praseodymium, dysprosium, cobalt, and Iron complex precipitation product. The recovery rate of neodymium>=99%; the recovery rate of praseodymium>=99%; the recovery rate of cobalt>=79%; the recovery rate of dysprosium>=99%; the recovery rate of iron>=99%.

本发明的有益效果在于:The beneficial effects of the present invention are:

(1)克服了同时回收钕、镨、镝、钴、铁五种元素的前期复杂探索,提供了一种简便的模拟方法。(1) It overcomes the previous complex exploration of simultaneously recovering five elements of neodymium, praseodymium, dysprosium, cobalt, and iron, and provides a simple simulation method.

(2)使钕铁硼油泥中有价元素都得到了较好的回收,减少了元素的浪费;通过一次工艺回收,使回收多种元素需要多次工艺的现状得到改观和优化,操作简单,方法可行。(2) The valuable elements in the NdFeB oil sludge are better recovered, reducing the waste of elements; through one-time process recovery, the current situation that multiple processes are required to recover multiple elements is improved and optimized, and the operation is simple. The method works.

附图说明Description of drawings

图1C2H2O4-NH3体系中钕、铁、钴、镨、镝浓度受pH值变化的影响;Figure 1C 2 H 2 O 4 -NH 3 system in the neodymium, iron, cobalt, praseodymium, dysprosium concentration is affected by the change of pH value;

图2C2H2O4-NH3体系中钕、铁、钴、镨、镝的回收率随pH值的变化。Figure 2C 2 H 2 O 4 -NH 3 system in the recovery of neodymium, iron, cobalt, praseodymium, dysprosium as a function of pH value.

具体实施方式detailed description

下面结合实例对本发明进行进一步说明。Below in conjunction with example the present invention is further described.

实施例1Example 1

表1“C2H2O4-NH3”体系中涉及到的主要化学反应及平衡常数Table 1 The main chemical reactions and equilibrium constants involved in the "C 2 H 2 O 4 -NH3" system

NO.No. ReactionsReactions logKlogK NO.No. ReactionsReactions logKlogK 11 H2O=H++OH H 2 O=H + +OH logKw=-14logK w =-14 2525 Fe2++4OH=Fe(OH)4 2— Fe 2+ +4OH =Fe(OH) 4 2— logKf2h4=18.58logK f2h4 =18.58 22 Co2++OH=Co(OH)+ Co 2+ +OH =Co(OH) + logKch1=3.3logK ch1 =3.3 2626 Fe3++OH=Fe(OH)2+ Fe 3+ +OH =Fe(OH) 2+ logKf3h1=11.87logK f3h1 =11.87 33 Co2++2OH=Co(OH)2 0 Co 2+ +2OH =Co(OH) 2 0 logKch2=9.2logK ch2 =9.2 2727 Fe3++2OH=Fe(OH)2 + Fe 3+ +2OH =Fe(OH) 2 + logKf3h2=21.17logK f3h2 =21.17 44 Co2++3OH=Co(OH)3 - Co 2+ +3OH =Co(OH) 3 logKch3=10.5logK ch3 =10.5 2828 Fe3++3OH=Fe(OH)3 0 Fe 3+ +3OH =Fe(OH) 3 0 logKf3h3=29.67logK f3h3 =29.67 55 Co2++4OH=Co(OH)4 2- Co 2+ +4OH =Co(OH) 4 2- logKch4=10.2logK ch4 =10.2 2929 Co2++NH3=Co(NH3)2+ Co 2+ +NH 3 =Co(NH 3 ) 2+ logKcam11=2.11logK cam11 =2.11 66 2Co2++OH=Co2(OH)3+ 2Co 2+ +OH =Co 2 (OH) 3+ logKch21=2.7logK ch21 =2.7 3030 Co2++2NH3=Co(NH3)2 2+ Co 2+ +2NH 3 =Co(NH 3 ) 2 2+ logKcam12=3.74logK cam12 =3.74 77 4Co2++4OH=Co4(OH)4 4+ 4Co 2+ +4OH =Co 4 (OH) 4 4+ logKch44=25.6logK ch44 =25.6 3131 Co2++3NH3=Co(NH3)3 2+ Co 2+ +3NH 3 =Co(NH 3 ) 3 2+ logKcam13=4.79logK cam13 =4.79 88 Fe2++OH=Fe(OH)+ Fe 2+ +OH =Fe(OH) + logKf2h1=5.56logK f2h1 =5.56 3232 Co2++4NH3=Co(NH3)4 2+ Co 2+ +4NH 3 =Co(NH 3 ) 4 2+ logKcam14=5.55logK cam14 =5.55 99 Fe2++2OH=Fe(OH)2 0 Fe 2+ +2OH =Fe(OH) 2 0 logKf2h2=9.77logK f2h2 =9.77 3333 Co2++5NH3=Co(NH3)5 2+ Co 2+ +5NH 3 =Co(NH 3 ) 5 2+ logKcam15=5.73logK cam15 =5.73 1010 Fe2++3OH=Fe(OH)3 Fe 2+ +3OH =Fe(OH) 3 logKf2h3=9.67logK f2h3 =9.67 3434 Co2++6NH3=Co(NH3)6 2+ Co 2+ +6NH 3 =Co(NH 3 ) 6 2+ logKcam16=5.11logK cam16 =5.11 1111 Nd+OH=Nd(OH)2+ Nd+OH =Nd(OH) 2+ logKnh=5.5logK nh =5.5 3535 Fe2++NH3=Fe(NH3)2+ Fe 2+ +NH 3 =Fe(NH 3 ) 2+ logKf2am11=1.4logK f2am11 =1.4 1212 Pr+OH=Pr(OH)2+ Pr+OH =Pr(OH) 2+ logKpH=4.3logK pH =4.3 3636 Fe2++2NH3=Fe(NH3)2 2+ Fe 2+ +2NH 3 =Fe(NH 3 ) 2 2+ logKf2am12=2.2logK f2am12 =2.2 1313 Dy+OH=Dy(OH)2+ Dy+OH =Dy(OH) 2+ logKdh=5.2logK dh =5.2 3737 Fe2++4NH3=Fe(NH3)4 2+ Fe 2+ +4NH 3 =Fe(NH 3 ) 4 2+ logKf2am13=3.74logK f2am13 =3.74 1414 Co(OH)2(s)=Co2++2OH Co(OH) 2 (s)=Co 2+ +2OH logKspch=-14.23logKspch=-14.23 3838 Fe C2O4(s)=Fe2++C2O4 2— Fe C 2 O 4 (s)=Fe 2+ +C 2 O 4 2— logKspf2ac=-6.5logKspf2ac=-6.5 1515 Fe(OH)2(s)=Fe2++2OH Fe(OH) 2 (s)=Fe 2+ +2OH logKspf2h=-16.31logKspf2h=-16.31 3939 Fe2++C2O4 2—=Fe(C2O4)0 Fe 2+ +C 2 O 4 2— =Fe(C 2 O 4 ) 0 logKf2ac11=2.9logK f2ac11 =2.9 1616 Fe(OH)3(s)=Fe3++3OH Fe(OH) 3 (s)=Fe 3+ +3OH logKspf3h=-38.55logKspf3h=-38.55 4040 Fe2++2C2O2—=Fe(C2O4)2 2— Fe 2+ +2C 2 O 2— =Fe(C 2 O 4 ) 2 2— logKf2ac12=4.52logK f2ac12 =4.52 1717 Nd(OH)3(s)=Nd3++3OH Nd(OH) 3 (s)=Nd 3+ +3OH logKspnh=-21.49logKspnh=-21.49 4141 Fe2++3C2O4 2-=Fe(C2O4)3 4— Fe 2+ +3C 2 O 4 2- =Fe(C 2 O 4 ) 3 4— logKf2ac13=5.22logK f2ac13 =5.22 1818 Pr(OH)3(s)=Pr3++3OH Pr(OH) 3 (s)=Pr 3+ +3OH logKsppH=-21.17logKsppH=-21.17 4242 Fe3++C2O4 2—=Fe(C2O4)+ Fe 3+ +C 2 O 4 2— =Fe(C 2 O 4 ) + logKf3ac11=9.4logK f3ac11 =9.4 1919 Dy(OH)3(s)=Dy3++3OH Dy(OH) 3 (s)=Dy 3+ +3OH logKspdh=-21.85logKspdh=-21.85 4343 Fe3++2C2O4 2—=Fe(C2O4)2 Fe 3+ +2C 2 O 4 2— =Fe(C 2 O 4 ) 2 logKf3ac12=16.2logK f3ac12 =16.2 2020 Nd+OH=Nd(OH)2+ Nd+OH =Nd(OH) 2+ logKnh=5.5logK nh =5.5 4444 Fe3++3C2O4 2-=Fe(C2O4)3 3— Fe 3+ +3C 2 O 4 2- =Fe(C 2 O 4 ) 3 3— logKf3ac13=20.2logK f3ac13 =20.2 21twenty one NH3+H+=NH4 + NH 3 +H + =NH 4 + logKam=9.246log K am =9.246 4545 H2C2O4=H++H C2O4 H 2 C 2 O 4 =H + +HC 2 O 4 logKac1=1.23logK ac1 =1.23 22twenty two Nd2(C2O4)3(s)=2Nd2++3C2O4 2— Nd 2 (C 2 O 4 ) 3 (s)=2Nd 2+ +3C 2 O 4 2— logKspdac=-27.68logKspdac=-27.68 4646 H C2O4 =H++C2O4 2— HC 2 O 4 =H + +C 2 O 4 2— logKac2=-5.42logK ac2 =-5.42 23twenty three Nd3++C2O4 2—=Nd(C2O4)+ Nd 3+ +C 2 O 4 2— =Nd(C 2 O 4 ) + logKnac11=7.21logK nac11 =7.21 4747 Co2++C2O4 2—=Co(C2O4)0 Co 2+ +C 2 O 4 2— =Co(C 2 O 4 ) 0 logKcac11=4.79logKcac11=4.79 24twenty four Nd3++2C2O4 2—=Nd(C2O4)2 Nd 3+ +2C 2 O 4 2— =Nd(C 2 O 4 ) 2 logKnac12=11.5logK nac12 =11.5 4848 Co2++2C2O4 2—=Co(C2O4)2 2— Co 2+ +2C 2 O 4 2— =Co(C 2 O 4 ) 2 2— logKcac12=6.7logKcac12=6.7 2525 Nd3++3C2O4 2—=Nd(C2O4)3 3— Nd 3+ +3C 2 O 4 2— =Nd(C 2 O 4 ) 3 3— logKnac13=17logK nac13 =17 4949 Co2++3C2O4 2—=Co(C2O4)3 4— Co 2+ +3C 2 O 4 2— =Co(C 2 O 4 ) 3 4— logKcac13=9.7 logKcac13=9.7

在理论部分:首先,查阅在C2H2O4-NH3体系下钕、镨、镝、钴、铁可能发生的反应以及每个反应的平衡常数,如表1所示。通过化学平衡、质量平衡、电荷守恒建立在C2H2O4-NH3体系下的热力学模型,由水的电离平衡可得到等式:In the theoretical part: First, check the possible reactions of neodymium, praseodymium, dysprosium, cobalt, and iron under the C 2 H 2 O 4 -NH 3 system and the equilibrium constants of each reaction, as shown in Table 1. The thermodynamic model under the C 2 H 2 O 4 -NH 3 system is established through chemical balance, mass balance and charge conservation, and the equation can be obtained from the ionization balance of water:

[H+]=10-pH(1-1)[H + ]=10 -pH (1-1)

[OH-]=Kw*10pH(1-2)[OH - ]=Kw*10 pH (1-2)

在C2H2O4-OH体系中,溶液中的游离金属离子浓度为:In the C 2 H 2 O 4 -OH system, the concentration of free metal ions in the solution is:

[Nd3+]=min{(Kspnac/[C2O4 2-]3)1/2,Kspnh/[OH-]3}(1-3)[Nd 3+ ]=min{(Kspnac/[C 2 O 4 2- ] 3 ) 1 / 2 ,Kspnh/[OH - ] 3 }(1-3)

[Pr3+]==min{(Ksppac/[C2O4 2-]3)1/2,KsppH/[OH-]3}(1-4)[Pr 3+ ]==min{(Ksppac/[C 2 O 4 2- ] 3 ) 1/2 ,KsppH/[OH - ] 3 }(1-4)

[Dy3+]=min{(Kspdac/[C2O4 2-]3)1/2,Kspdh/[OH-]3}(1-5)[Dy 3+ ]=min{(Kspdac/[C 2 O 4 2- ] 3 ) 1/2 ,Kspdh/[OH - ] 3 }(1-5)

[Fe3+]=Kspf3h/[OH-]3(1-6)[Fe 3+ ]=Kspf3h/[OH - ] 3 (1-6)

[Fe2+]=min{Kspf2ac/[C2O4 2-],Kspf3h/[OH-]2}(1-7)[Fe 2+ ]=min{Kspf2ac/[C 2 O 4 2- ],Kspf3h/[OH - ] 2 }(1-7)

[Co2+]=Kspch/[OH-]2(1-8)[Co 2+ ]=Kspch/[OH - ] 2 (1-8)

[H2C2O4]=[C2O4 2-]+[HC2O4 -]+[C2H2O4](1-9)[H 2 C 2 O 4 ]=[C 2 O 4 2- ]+[HC 2 O 4 - ]+[C 2 H 2 O 4 ](1-9)

[H2C2O4]=[C2O4 2-]{1+10-pH/Kaac2+10-2pH/(Kaac2*Kaac1)}(1-10)[H 2 C 2 O 4 ]=[C 2 O 4 2- ]{1+10 -pH /K aac2 +10 -2pH /(K aac2 *K aac1 )}(1-10)

由于各金属离子跟[OH-]、[NH3]、[C2O4 2-]发生配合反应,因此根据质量守恒定律得到溶液中各金属离子的总浓度:Since each metal ion reacts with [OH - ], [NH 3 ], [C 2 O 4 2- ], the total concentration of each metal ion in the solution is obtained according to the law of conservation of mass:

[Nd]=[Nd3+]+[Nd(OH)2+]+[Nd(C2O4)+]+[Nd(C2O4)2 -]+[Nd]=[Nd 3+ ]+[Nd(OH) 2+ ]+[Nd(C 2 O 4 ) + ]+[Nd(C 2 O 4 ) 2 - ]+

[Nd(C2O4)3 3-][Nd(C 2 O 4 ) 3 3- ]

=[Nd3+]+Knh*[Nd3+]*[OH-]+Knac11*[Nd3+]*[C2O4 2-]=[Nd 3+ ]+K nh *[Nd 3+ ]*[OH-]+K nac11 *[Nd 3+ ]*[C 2 O 4 2- ]

+Knac12*[Nd3+]*[C2O4 2-]2+Knac13*[Nd3+]*[C2O4 2-]3(1-11)+K nac12 *[Nd 3+ ]*[C 2 O 4 2- ] 2 +K nac13 *[Nd 3+ ]*[C 2 O 4 2- ] 3 (1-11)

[Pr]=[Pr3+]+[Pr(OH)2+]+[Pr(C2O4)+]+[Pr(C2O4)2 -][Pr]=[Pr 3+ ]+[Pr(OH) 2+ ]+[Pr(C 2 O 4 ) + ]+[Pr(C 2 O 4 ) 2 - ]

+[Pr(C2O4)3 3-](1-12)+[Pr(C 2 O 4 ) 3 3- ](1-12)

[Dy]=[Dy3+]+[Dy(OH)2+]+[Dy(C2O4)+]+[Dy(C2O4)2 -]+[Dy]=[Dy 3+ ]+[Dy(OH) 2+ ]+[Dy(C 2 O 4 ) + ]+[Dy(C 2 O 4 ) 2 - ]+

[Dy(C2O4)3 3-](1-13)[Dy(C 2 O 4 ) 3 3- ](1-13)

[Fe2]=[Fe2+]+[Fe(OH)+]+[Fe(OH)2 0]+[Fe(OH)3 -]+[Fe(OH)4 2-][Fe2]=[Fe 2+ ]+[Fe(OH) + ]+[Fe(OH) 2 0 ]+[Fe(OH) 3 - ]+[Fe(OH) 4 2- ]

+[Fe(C2O4)0]+[Fe(C2O4)2 2-]+[Fe(C2O4)3 4-]+[Fe(NH3)2+]+[Fe(C 2 O 4 ) 0 ]+[Fe(C 2 O 4 ) 2 2- ]+[Fe(C 2 O 4 ) 3 4- ]+[Fe(NH 3 ) 2+ ]

+[Fe(NH3)2 2+]+[Fe(NH3)4 2+]+[Fe(NH 3 ) 2 2+ ]+[Fe(NH 3 ) 4 2+ ]

=[Fe2+]{1+Kf2h1*[OH-]+Kf2h2*[OH-]2+Kf2h3*[OH-]3+Kf2h4*[OH-]4 =[Fe 2+ ]{1+K f2h1 *[OH - ]+K f2h2 *[OH - ] 2 +K f2h3 *[OH - ] 3 +K f2h4 *[OH - ] 4

+Knac11*[C2O4 2-]+Knac12*[C2O4 2-]2+Knac13*[C2O4 2-]3 +K nac11 *[C 2 O 4 2- ]+K nac12 *[C 2 O 4 2- ] 2 +K nac13 *[C 2 O 4 2- ] 3

+Kf2am11*[NH3]+Kf2am12*[NH3]2+Kf2am14*[NH3]4}+K f2am11 *[NH 3 ]+K f2am12 *[NH 3 ] 2 +K f2am14 *[NH 3 ] 4 }

(1-14)(1-14)

[Fe3]=[Fe3+]+[Fe(OH)2+]+[Fe(OH)2 +]+[Fe(OH)3 0]+[Fe(OH)4 2-][Fe3]=[Fe 3+ ]+[Fe(OH) 2+ ]+[Fe(OH) 2 + ]+[Fe(OH) 3 0 ]+[Fe(OH) 4 2- ]

=[Fe3+]{1+Kf3h1*[OH-]+Kf3h2*[OH-]2+Kf3h3*[OH-]3}=[Fe 3+ ]{1+K f3h1 *[OH - ]+K f3h2 *[OH - ] 2 +K f3h3 *[OH - ] 3 }

(1-15)(1-15)

[Co]=[Co2+]+[Co(OH)+]+[Co(OH)2 0]+[Co(OH)3 -]+[Co(OH)4 2-][Co]=[Co 2+ ]+[Co(OH) + ]+[Co(OH) 2 0 ]+[Co(OH) 3 - ]+[Co(OH) 4 2- ]

+2*[Co2(OH)3 3-]+4*[Co4(OH)4 4-]+[Co(NH3)]+2*[Co 2 (OH) 3 3- ]+4*[Co 4 (OH) 4 4- ]+[Co(NH 3 )]

+[Co(NH3)2+]+[Co(NH3)2 2+]+[Co(NH3)3 2+]+[Co(NH3)4 2+]+[Co(NH 3 ) 2+ ]+[Co(NH 3 ) 2 2+ ]+[Co(NH 3 ) 3 2+ ]+[Co(NH 3 ) 4 2+ ]

+[Co(NH3)5 2+]+[Co(NH3)6 2+]+[Co(NH 3 ) 5 2+ ]+[Co(NH 3 ) 6 2+ ]

=[Co2+]{1+Kch1*[OH-]+Kch2*[OH-]2+Kch3*[OH-]3 =[Co 2+ ]{1+K ch1 *[OH - ]+K ch2 *[OH - ] 2 +K ch3 *[OH - ] 3

+Kch4*[OH-]4+2*Kch21*[Co2+]*[OH-]+4*Kch44*[Co2+]3*[OH-]4 +K ch4 *[OH - ] 4 +2*K ch21 *[Co 2+ ]*[OH - ]+4*K ch44 *[Co 2+ ] 3 *[OH - ] 4

+Kcam11*[NH3]+Kcam12*[NH3]2+Kcam13*[NH3]3 +K cam11 *[NH 3 ]+K cam12 *[NH 3 ] 2 +K cam13 *[NH 3 ] 3

+Kcam14*[NH3]4+Kcam15*[NH3]5+Kcam16*[NH3]6}(1-16)+K cam14 *[NH 3 ] 4 +K cam15 *[NH 3 ] 5 +K cam16 *[NH 3 ] 6 }(1-16)

[NH4 +]=Kam*[NH3]*[H+](1-17)[NH 4 + ]=K am *[NH 3 ]*[H + ](1-17)

[N]=[NH3]+[NH4 +]+[Fe(NH3)2+]+[Fe(NH3)2 2+]+[Fe(NH3)4 2+ [N]=[NH 3 ]+[NH 4 + ]+[Fe(NH 3 ) 2+ ]+[Fe(NH 3 ) 2 2+ ]+[Fe(NH 3 ) 4 2+

+[Co(NH3)]+[Co(NH3)2+]+[Co(NH3)2 2+]+[Co(NH3)3 2+]++[Co(NH 3 )]+[Co(NH 3 ) 2+ ]+[Co(NH 3 ) 2 2+ ]+[Co(NH 3 ) 3 2+ ]+

[Co(NH3)4 2+]+[Co(NH3)5 2+]+[Co(NH3)6 2+](1-18)[Co(NH 3 ) 4 2+ ]+[Co(NH 3 ) 5 2+ ]+[Co(NH 3 ) 6 2+ ](1-18)

联立式(1-1)~(1-18),并将表1中的数值带入(1-1)~(1-18),可转换成MATLAB汇编语言:Simultaneous formula (1-1)~(1-18), and bring the values in Table 1 into (1-1)~(1-18), which can be converted into MATLAB assembly language:

x=0:0.5:14;x=0:0.5:14;

u=0.1u=0.1

p=u./(1+10.^(1.23-x)+10.^(5.42-2.*x))p=u./(1+10.^(1.23-x)+10.^(5.42-2.*x))

P=1./(1+10.^(9.244-x))P=1./(1+10.^(9.244-x))

a=min(2*sqrt(10^(-27.68)./p.^3),10.^(20.5-3*x))a=min(2*sqrt(10^(-27.68)./p.^3),10.^(20.5-3*x))

b=10.^(11.69-2.*x);b=10.^(11.69-2.*x);

c=10.^(3.45-3.*x);c=10.^(3.45-3.*x);

w=10.^(13.77-2*x);w=10.^(13.77-2*x);

e=min(2*sqrt(10^(-27.68)./p.^3),10.^(21.17-3*x));e=min(2*sqrt(10^(-27.68)./p.^3),10.^(21.17-3*x));

i=min(2*sqrt(10^(-28.8)./p.^3),10.^(21.85-3*x));i=min(2*sqrt(10^(-28.8)./p.^3),10.^(21.85-3*x));

j=a.*[1+10^7.21.*p+10^11.5.*p.^2+10^14.*p.^3+10.^(x-8.5)];j=a.*[1+10^7.21.*p+10^11.5.*p.^2+10^14.*p.^3+10.^(x-8.5)];

g=b.*[1+10^2.9.*p+10^4.52.*p.^2+10^5.22.*p.^3+10.^(x-8.44)+10.^(2*x-18.23)+10.^(3*x-32.33)+10.^(4*x-47.72)+10^1.4.*P+10^2.2.*P.^2+10^3.74.*P.^4];g=b.*[1+10^2.9.*p+10^4.52.*p.^2+10^5.22.*p.^3+10.^(x-8.44)+10.^(2* x-18.23)+10.^(3*x-32.33)+10.^(4*x-47.72)+10^1.4.*P+10^2.2.*P.^2+10^3.74.*P .^4];

h=c.*[1+10^9.4.*p+10^16.2.*p.^2+10^20.2.*p.^3+10.^(x-2.13)+10.^(2*x-6.83)+10.^(3*x-12.33)];h=c.*[1+10^9.4.*p+10^16.2.*p.^2+10^20.2.*p.^3+10.^(x-2.13)+10.^(2* x-6.83)+10.^(3*x-12.33)];

q=w.*(1+10.^(x-10.7)+10.^(2.*x-18.8)+10.^(3.*x-31.5)+10.^(4.*x-45.8)+2.*10.^(x-11.3).*w+4.*10.^(4.*x-30.4).^(w.^3)+10^4.79.^p+10^6.7.*p.^2+10^9.7.*p.^3+10^2.11.^P+10^3.74.*P.^2+10^4.99.*P.^3+10^5.55.*P.^4+10^5.73.*P.^5+10^5.11.*P.^6);q=w.*(1+10.^(x-10.7)+10.^(2.*x-18.8)+10.^(3.*x-31.5)+10.^(4.*x- 45.8)+2.*10.^(x-11.3).*w+4.*10.^(4.*x-30.4).^(w.^3)+10^4.79.^p+10^ 6.7.*p.^2+10^9.7.*p.^3+10^2.11.^P+10^3.74.*P.^2+10^4.99.*P.^3+10^5.55.* P.^4+10^5.73.*P.^5+10^5.11.*P.^6);

r=e.*(1+10^7.21.*p+10^10.5.*p.^2+10^14.*p.^3+10.^(x-9.7));r=e.*(1+10^7.21.*p+10^10.5.*p.^2+10^14.*p.^3+10.^(x-9.7));

l=i.*(1+10^7.21.*p+10^11.9.*p.^2+10^14.*p.^3+10.^(x-8.8));l=i.*(1+10^7.21.*p+10^11.9.*p.^2+10^14.*p.^3+10.^(x-8.8));

y=log10(j);y=log10(j);

m=log10(g);m=log10(g);

n=log10(h);n=log10(h);

o=log10(q)o=log10(q)

t=log10(r)t=log10(r)

z=log10(l)z=log10(l)

plot(x,y,x,m,x,n,x,o,x,t,x,z)plot(x,y,x,m,x,n,x,o,x,t,x,z)

其中,x代表pH值;u代表总草酸[H2C2O4]的浓度;p代表溶液中C2O4 2-的浓度;a,b,c,w,e,i分别代表[Nd]、[Fe2]、[Fe3]、[Co]、[Dy]、[Pr]的游离金属离子浓度值;P代表游离态[NH3]的值;j,g,h,q,r,l分别代表[Nd]、[Fe2]、[Fe3]、[Co]、[Dy]、[Pr]溶液中剩余的总浓度;y,m,n,o,t,z则分别代表的是[Nd]、[Fe2]、[Fe3]、[Co]、[Dy]、[Pr]溶液中剩余的总浓度以10为底的对数值。通过变化pH的值即得到lg[ME]-pH热力学模型(图1)。Among them, x represents the pH value; u represents the concentration of total oxalic acid [H 2 C 2 O 4 ]; p represents the concentration of C 2 O 4 2- in the solution; a, b, c, w, e, i represent [Nd ], [Fe2], [Fe3], [Co], [Dy], [Pr] free metal ion concentration values; P represents the value of free state [NH 3 ]; j, g, h, q, r, l respectively Represents the remaining total concentration of [Nd], [Fe2], [Fe3], [Co], [Dy], [Pr] solution; y, m, n, o, t, z respectively represent [Nd] , [Fe2], [Fe3], [Co], [Dy], [Pr] The remaining total concentration in the solution is logarithmic value with base 10. The lg[ME]-pH thermodynamic model is obtained by changing the value of pH (Figure 1).

如图1所示。根据图1,可以认为应尽量选择3价铁离子,并且可以看出钕、镨、镝稀土盐的最佳回收pH值应在0.5~2.5内,而铁和钴的回收应在高pH值下,因此,本专利设计工艺通过两次调节pH完成,最佳沉淀钕、镨、镝、钴、铁的pH范围应该在(0.5~2.5)-9内,并且可以通过一步工艺获得钕、镨、镝、钴、铁配合沉淀产物。As shown in Figure 1. According to Figure 1, it can be considered that trivalent iron ions should be selected as much as possible, and it can be seen that the optimal recovery pH value of neodymium, praseodymium and dysprosium rare earth salts should be within 0.5 to 2.5, while the recovery of iron and cobalt should be at a high pH value Therefore, the patent design process is completed by adjusting the pH twice. The pH range of the optimal precipitation of neodymium, praseodymium, dysprosium, cobalt, and iron should be within (0.5-2.5)-9, and neodymium, praseodymium, and Dysprosium, cobalt, iron complex precipitation product.

在实验部分:取五份分别为5g的钕铁硼油泥进行蒸馏预处理后,分别取4mol/L的盐酸75ml将预处理后的钕铁硼油泥溶解并过滤,加入3ml含量为30%.wt的H2O2,搅拌充分氧化后,添加1mol/L的NH4OH调节pH=0.5,并加入1mol/L的C2H2O4溶液32ml,充分搅拌后,再次添加1mol/L的NH4OH调节pH=9,将获得的沉淀过滤、洗涤三次、烘干,即获得了可用于制备再生的钕铁硼的产物。取上清液进行ICP-OES测试,获得的结果如图2所示:钕的回收率为:99%;铁的回收率为:99%;钴的回收率为:79%;镨的回收率为:99%;镝的回收率为:99%。In the experimental part: take five parts of 5g NdFeB sludge for distillation pretreatment, respectively take 75ml of 4mol/L hydrochloric acid to dissolve and filter the pretreated NdFeB sludge, add 3ml content to 30%.wt After fully oxidizing the H 2 O 2 , add 1 mol/L NH 4 OH to adjust the pH=0.5, and add 32ml of 1 mol/L C 2 H 2 O 4 solution, stir well, add 1 mol/L NH 4 OH to adjust the pH to 9, filter the obtained precipitate, wash it three times, and dry it to obtain a product that can be used to prepare regenerated NdFeB. Get supernatant and carry out ICP-OES test, the result obtained is as shown in Figure 2: the recovery rate of neodymium: 99%; The recovery rate of iron: 99%; The recovery rate of cobalt: 79%; The recovery rate of praseodymium For: 99%; dysprosium recovery rate: 99%.

实施例2Example 2

表1“C2H2O4-NH3”体系中涉及到的主要化学反应及平衡常数Table 1 The main chemical reactions and equilibrium constants involved in the "C 2 H 2 O 4 -NH3" system

在理论部分:首先,查阅在C2H2O4-NH3体系下钕、镨、镝、钴、铁可能发生的反应以及每个反应的平衡常数,如表1所示。通过化学平衡、质量平衡、电荷守恒建立在C2H2O4-NH3体系下的热力学模型,如图1所示。根据图1,可以认为应尽量选择3价铁离子,并且可以看出钕、镨、镝稀土盐的最佳回收pH值应在0.5~2.5内,而铁和钴的回收应在高pH值下,因此,本专利设计工艺通过两次调节pH完成,最佳沉淀钕、镨、镝、钴、铁的pH范围应该在(0.5~2.5)-9内,并且可以通过一步工艺获得钕、镨、镝、钴、铁配合沉淀产物。In the theoretical part: First, check the possible reactions of neodymium, praseodymium, dysprosium, cobalt, and iron under the C 2 H 2 O 4 -NH 3 system and the equilibrium constants of each reaction, as shown in Table 1. The thermodynamic model under the C 2 H 2 O 4 -NH 3 system is established through chemical balance, mass balance and charge conservation, as shown in Figure 1. According to Figure 1, it can be considered that trivalent iron ions should be selected as much as possible, and it can be seen that the optimal recovery pH value of neodymium, praseodymium and dysprosium rare earth salts should be within 0.5 to 2.5, while the recovery of iron and cobalt should be at a high pH value Therefore, the patent design process is completed by adjusting the pH twice. The pH range of the optimal precipitation of neodymium, praseodymium, dysprosium, cobalt, and iron should be within (0.5-2.5)-9, and neodymium, praseodymium, and Dysprosium, cobalt, iron complex precipitation product.

在实验部分:取五份分别为5g的钕铁硼油泥进行蒸馏预处理后,分别取4mol/L的盐酸75ml将预处理后的钕铁硼油泥溶解并过滤,加入3ml含量为30%.wt的H2O2,搅拌充分氧化后,添加1mol/L的NH4OH调节pH=1,并加入1mol/L的C2H2O4溶液32ml,充分搅拌后,再次添加1mol/L的NH4OH调节pH=9,将获得的沉淀过滤、洗涤三次、烘干,即获得了可用于制备再生的钕铁硼的产物。取上清液进行ICP-OES测试,获得的结果如图2所示:钕的回收率为:99%;铁的回收率为:99%;钴的回收率为:79%;镨的回收率为:99%;镝的回收率为:99%。In the experimental part: take five parts of 5g NdFeB sludge for distillation pretreatment, respectively take 75ml of 4mol/L hydrochloric acid to dissolve and filter the pretreated NdFeB sludge, add 3ml content to 30%.wt After fully oxidizing the H 2 O 2 , add 1mol/L NH 4 OH to adjust the pH=1, and add 32ml of 1mol/L C 2 H 2 O 4 solution, stir well, then add 1mol/L NH 4 OH to adjust the pH to 9, filter the obtained precipitate, wash it three times, and dry it to obtain a product that can be used to prepare regenerated NdFeB. Get supernatant and carry out ICP-OES test, the result obtained is as shown in Figure 2: the recovery rate of neodymium: 99%; The recovery rate of iron: 99%; The recovery rate of cobalt: 79%; The recovery rate of praseodymium For: 99%; dysprosium recovery rate: 99%.

实施例3Example 3

表1“C2H2O4-NH3”体系中涉及到的主要化学反应及平衡常数Table 1 The main chemical reactions and equilibrium constants involved in the "C 2 H 2 O 4 -NH3" system

在理论部分:首先,查阅在C2H2O4-NH3体系下钕、镨、镝、钴、铁可能发生的反应以及每个反应的平衡常数,如表1所示。通过化学平衡、质量平衡、电荷守恒建立在C2H2O4-NH3体系下的热力学模型,如图1所示。根据图1,可以认为应尽量选择3价铁离子,并且可以看出钕、镨、镝稀土盐的最佳回收pH值应在0.5~2.5内,而铁和钴的回收应在高pH值下,因此,本专利设计工艺通过两次调节pH完成,最佳沉淀钕、镨、镝、钴、铁的pH范围应该在(0.5~2.5)-9内,并且可以通过一步工艺获得钕、镨、镝、钴、铁配合沉淀产物。In the theoretical part: First, check the possible reactions of neodymium, praseodymium, dysprosium, cobalt, and iron under the C 2 H 2 O 4 -NH 3 system and the equilibrium constants of each reaction, as shown in Table 1. The thermodynamic model under the C 2 H 2 O 4 -NH 3 system is established through chemical balance, mass balance and charge conservation, as shown in Figure 1. According to Figure 1, it can be considered that trivalent iron ions should be selected as much as possible, and it can be seen that the optimal recovery pH value of neodymium, praseodymium and dysprosium rare earth salts should be within 0.5 to 2.5, while the recovery of iron and cobalt should be at a high pH value Therefore, the patent design process is completed by adjusting the pH twice. The pH range of the optimal precipitation of neodymium, praseodymium, dysprosium, cobalt, and iron should be within (0.5-2.5)-9, and neodymium, praseodymium, and Dysprosium, cobalt, iron complex precipitation product.

在实验部分:取五份分别为5g的钕铁硼油泥进行蒸馏预处理后,分别取4mol/L的盐酸75ml将预处理后的钕铁硼油泥溶解并过滤,加入3ml含量为30%.wt的H2O2,搅拌充分氧化后,添加1mol/L的NH4OH调节pH=1.5,并加入1mol/L的C2H2O4溶液32ml,充分搅拌后,再次添加1mol/L的NH4OH调节pH=9,将获得的沉淀过滤、洗涤三次、烘干,即获得了可用于制备再生的钕铁硼的产物。取上清液进行ICP-OES测试,获得的结果如图2所示:钕的回收率为:99%;铁的回收率为:99%;钴的回收率为:78%;镨的回收率为:99%;镝的回收率为:99%。In the experimental part: take five parts of 5g NdFeB sludge for distillation pretreatment, respectively take 75ml of 4mol/L hydrochloric acid to dissolve and filter the pretreated NdFeB sludge, add 3ml content to 30%.wt After fully oxidizing the H 2 O 2 , add 1mol/L NH 4 OH to adjust the pH=1.5, and add 32ml of 1mol/L C 2 H 2 O 4 solution, after fully stirring, add 1mol/L NH 4 OH to adjust the pH to 9, filter the obtained precipitate, wash it three times, and dry it to obtain a product that can be used to prepare regenerated NdFeB. Get supernatant and carry out ICP-OES test, the result obtained is as shown in Figure 2: the recovery rate of neodymium: 99%; The recovery rate of iron: 99%; The recovery rate of cobalt: 78%; The recovery rate of praseodymium For: 99%; dysprosium recovery rate: 99%.

实施例4Example 4

表1“C2H2O4-NH3”体系中涉及到的主要化学反应及平衡常数Table 1 The main chemical reactions and equilibrium constants involved in the "C 2 H 2 O 4 -NH3" system

在理论部分:首先,查阅在C2H2O4-NH3体系下钕、镨、镝、钴、铁可能发生的反应以及每个反应的平衡常数,如表1所示。通过化学平衡、质量平衡、电荷守恒建立在C2H2O4-NH3体系下的热力学模型,如图1所示。根据图1,可以认为应尽量选择3价铁离子,并且可以看出钕、镨、镝稀土盐的最佳回收pH值应在0.5~2.5内,而铁和钴的回收应在高pH值下,因此,本专利设计工艺通过两次调节pH完成,最佳沉淀钕、镨、镝、钴、铁的pH范围应该在(0.5~2.5)-9内,并且可以通过一步工艺获得钕、镨、镝、钴、铁配合沉淀产物。In the theoretical part: First, check the possible reactions of neodymium, praseodymium, dysprosium, cobalt, and iron under the C 2 H 2 O 4 -NH 3 system and the equilibrium constants of each reaction, as shown in Table 1. The thermodynamic model under the C 2 H 2 O 4 -NH 3 system is established through chemical balance, mass balance and charge conservation, as shown in Figure 1. According to Figure 1, it can be considered that trivalent iron ions should be selected as much as possible, and it can be seen that the optimal recovery pH value of neodymium, praseodymium and dysprosium rare earth salts should be within 0.5 to 2.5, while the recovery of iron and cobalt should be at a high pH value Therefore, the patent design process is completed by adjusting the pH twice. The pH range of the optimal precipitation of neodymium, praseodymium, dysprosium, cobalt, and iron should be within (0.5-2.5)-9, and neodymium, praseodymium, and Dysprosium, cobalt, iron complex precipitation product.

在实验部分:取五份分别为5g的钕铁硼油泥进行蒸馏预处理后,分别取4mol/L的盐酸75ml将预处理后的钕铁硼油泥溶解并过滤,加入3ml含量为30%.wt的H2O2,搅拌充分氧化后,添加1mol/L的NH4OH调节pH=2,并加入1mol/L的C2H2O4溶液32ml,充分搅拌后,再次添加1mol/L的NH4OH调节pH=9,将获得的沉淀过滤、洗涤三次、烘干,即获得了可用于制备再生的钕铁硼的产物。取上清液进行ICP-OES测试,获得的结果如图2所示:钕的回收率为:99%;铁的回收率为:99%;钴的回收率为:85%;镨的回收率为:99%;镝的回收率为:99%。In the experimental part: take five parts of 5g NdFeB sludge for distillation pretreatment, respectively take 75ml of 4mol/L hydrochloric acid to dissolve and filter the pretreated NdFeB sludge, add 3ml content to 30%.wt After fully oxidizing the H 2 O 2 , add 1 mol/L NH 4 OH to adjust the pH=2, and add 32ml of 1 mol/L C 2 H 2 O 4 solution, after fully stirring, add 1 mol/L NH 4 OH to adjust the pH to 9, filter the obtained precipitate, wash it three times, and dry it to obtain a product that can be used to prepare regenerated NdFeB. Get supernatant and carry out ICP-OES test, the result obtained is as shown in Figure 2: the recovery rate of neodymium: 99%; The recovery rate of iron: 99%; The recovery rate of cobalt: 85%; The recovery rate of praseodymium For: 99%; dysprosium recovery rate: 99%.

实施例5Example 5

表1“C2H2O4-NH3”体系中涉及到的主要化学反应及平衡常数Table 1 The main chemical reactions and equilibrium constants involved in the "C 2 H 2 O 4 -NH3" system

在理论部分:首先,查阅在C2H2O4-NH3体系下钕、镨、镝、钴、铁可能发生的反应以及每个反应的平衡常数,如表1所示。通过化学平衡、质量平衡、电荷守恒建立在C2H2O4-NH3体系下的热力学模型,如图1所示。根据图1,可以认为应尽量选择3价铁离子,并且可以看出钕、镨、镝稀土盐的最佳回收pH值应在0.5~2.5内,而铁和钴的回收应在高pH值下,因此,本专利设计工艺通过两次调节pH完成,最佳沉淀钕、镨、镝、钴、铁的pH范围应该在(0.5~2.5)-9内,并且可以通过一步工艺获得钕、镨、镝、钴、铁配合沉淀产物。In the theoretical part: First, check the possible reactions of neodymium, praseodymium, dysprosium, cobalt, and iron under the C 2 H 2 O 4 -NH 3 system and the equilibrium constants of each reaction, as shown in Table 1. The thermodynamic model under the C 2 H 2 O 4 -NH 3 system is established through chemical balance, mass balance and charge conservation, as shown in Figure 1. According to Figure 1, it can be considered that trivalent iron ions should be selected as much as possible, and it can be seen that the optimal recovery pH value of neodymium, praseodymium and dysprosium rare earth salts should be within 0.5 to 2.5, while the recovery of iron and cobalt should be at a high pH value Therefore, the patent design process is completed by adjusting the pH twice. The pH range of the optimal precipitation of neodymium, praseodymium, dysprosium, cobalt, and iron should be within (0.5-2.5)-9, and neodymium, praseodymium, and Dysprosium, cobalt, iron complex precipitation product.

在实验部分:取五份分别为5g的钕铁硼油泥进行蒸馏预处理后,分别取4mol/L的盐酸75ml将预处理后的钕铁硼油泥溶解并过滤,加入3ml含量为30%.wt的H2O2,搅拌充分氧化后,添加1mol/L的NH4OH调节pH=2.5,并加入1mol/L的C2H2O4溶液32ml,充分搅拌后,再次添加1mol/L的NH4OH调节pH=9,将获得的沉淀过滤、洗涤三次、烘干,即获得了可用于制备再生的钕铁硼的产物。取上清液进行ICP-OES测试,获得的结果如图2所示:钕的回收率为:99%;铁的回收率为:99%;钴的回收率为:87%;镨的回收率为:99%;镝的回收率为:99%。In the experimental part: take five parts of 5g NdFeB sludge for distillation pretreatment, respectively take 75ml of 4mol/L hydrochloric acid to dissolve and filter the pretreated NdFeB sludge, add 3ml content to 30%.wt After fully oxidizing the H 2 O 2 , add 1 mol/L NH 4 OH to adjust the pH=2.5, and add 32ml of 1 mol/L C 2 H 2 O 4 solution, after fully stirring, add 1 mol/L NH 4 OH to adjust the pH to 9, filter the obtained precipitate, wash it three times, and dry it to obtain a product that can be used to prepare regenerated NdFeB. Get supernatant and carry out ICP-OES test, the result obtained is as shown in Figure 2: the recovery rate of neodymium: 99%; The recovery rate of iron: 99%; The recovery rate of cobalt: 87%; The recovery rate of praseodymium For: 99%; dysprosium recovery rate: 99%.

Claims (1)

1.一种在C2H2O4-NH3体系下从钕铁硼油泥中同时回收钕、镨、镝、钴、铁的方法,其特征在于,包括以下步骤:将钕铁硼油泥进行蒸馏预处理后,取盐酸将预处理后的钕铁硼油泥溶解并过滤,加入H2O2,搅拌充分氧化后,添加NH4OH调节pH=0.5-2.5,并加入C2H2O4溶液,充分搅拌后,再次添加NH4OH调节pH为9,将获得的沉淀过滤、洗涤三次、烘干,即获得了可用于制备再生钕铁硼的钕、镨、镝、钴、铁;1. A method for simultaneously recovering neodymium, praseodymium, dysprosium, cobalt, and iron from NdFeB oil sludge under C2H2O4 - NH3 system, is characterized in that, comprises the following steps: carrying out NdFeB oil sludge After distillation pretreatment, take hydrochloric acid to dissolve and filter the pretreated NdFeB oil sludge, add H 2 O 2 , stir to fully oxidize, add NH 4 OH to adjust pH=0.5-2.5, and add C 2 H 2 O 4 After the solution is fully stirred, NH 4 OH is added again to adjust the pH to 9, and the obtained precipitate is filtered, washed three times, and dried to obtain neodymium, praseodymium, dysprosium, cobalt, and iron that can be used to prepare regenerated NdFeB; 每5g将钕铁硼油泥对应4mol/L的盐酸75ml、3mlH2O2、NH4OH的浓度为1mol/L、1mol/L的C2H2O4溶液32ml。For every 5g of NdFeB sludge, 75ml of 4mol/L hydrochloric acid, 3ml of H 2 O 2 , 1mol/L of NH 4 OH, and 32ml of C 2 H 2 O 4 solution of 1mol/L.
CN201310692780.6A 2013-12-17 2013-12-17 A kind of at C2H2O4-NH3The method simultaneously reclaiming neodymium, praseodymium, dysprosium, cobalt, ferrum under system from neodymium iron boron greasy filth Active CN103667716B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310692780.6A CN103667716B (en) 2013-12-17 2013-12-17 A kind of at C2H2O4-NH3The method simultaneously reclaiming neodymium, praseodymium, dysprosium, cobalt, ferrum under system from neodymium iron boron greasy filth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310692780.6A CN103667716B (en) 2013-12-17 2013-12-17 A kind of at C2H2O4-NH3The method simultaneously reclaiming neodymium, praseodymium, dysprosium, cobalt, ferrum under system from neodymium iron boron greasy filth

Publications (2)

Publication Number Publication Date
CN103667716A CN103667716A (en) 2014-03-26
CN103667716B true CN103667716B (en) 2016-06-29

Family

ID=50306486

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310692780.6A Active CN103667716B (en) 2013-12-17 2013-12-17 A kind of at C2H2O4-NH3The method simultaneously reclaiming neodymium, praseodymium, dysprosium, cobalt, ferrum under system from neodymium iron boron greasy filth

Country Status (1)

Country Link
CN (1) CN103667716B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102206755A (en) * 2011-03-06 2011-10-05 林剑 Method for separating and recovering valuable elements from neodymium-iron-boron wastes
CN103343233A (en) * 2013-07-19 2013-10-09 北京工业大学 Method for recovering neodymium and iron from neodymium iron boron oil sludge
CN103343234A (en) * 2013-07-19 2013-10-09 北京工业大学 Method for preparing neodymium and iron oxides by using neodymium iron boron oil sludge through regeneration and co-precipitation
CN103343235A (en) * 2013-07-19 2013-10-09 北京工业大学 Method for recovering neodymium and iron from neodymium iron boron oil sludge through two-step co-precipitation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102206755A (en) * 2011-03-06 2011-10-05 林剑 Method for separating and recovering valuable elements from neodymium-iron-boron wastes
CN103343233A (en) * 2013-07-19 2013-10-09 北京工业大学 Method for recovering neodymium and iron from neodymium iron boron oil sludge
CN103343234A (en) * 2013-07-19 2013-10-09 北京工业大学 Method for preparing neodymium and iron oxides by using neodymium iron boron oil sludge through regeneration and co-precipitation
CN103343235A (en) * 2013-07-19 2013-10-09 北京工业大学 Method for recovering neodymium and iron from neodymium iron boron oil sludge through two-step co-precipitation

Also Published As

Publication number Publication date
CN103667716A (en) 2014-03-26

Similar Documents

Publication Publication Date Title
Kumari et al. A comprehensive review on recycling of critical raw materials from spent neodymium iron boron (NdFeB) magnet
Habibzadeh et al. Review on the parameters of recycling NdFeB magnets via a hydrogenation process
Akcil et al. Hydrometallurgical recycling strategies for recovery of rare earth elements from consumer electronic scraps: a review
CN104690270B (en) A short process method for preparing high-performance sintered NdFeB magnets from sintered NdFeB sludge waste
Bian et al. Recovery of rare earth elements from NdFeB magnet by VIM-HMS method
Lai et al. Recovery of a composite powder from NdFeB slurry by co-precipitation
CN104690277A (en) Method for recycling NdFeB oil sludge according to reduction-diffusion technology
CN107424700B (en) The method for preparing recycled sinter neodymium iron boron magnetic body using two-sided mill processing neodymium iron boron greasy filth waste material
Zhang et al. Recovery of rare earth metals and synthesis of Ni0. 6Co0. 2Mn0. 2 (OH) 2 from spent asymmetric-capacitance power batteries
CN114405456B (en) Gamma-Fe for uranium removal 2 O 3 Preparation method of @ HAP magnetic composite material
CN104036946A (en) Method for using magnetic steel of waste permanent magnet motor to prepare high-performance high-coercivity regenerated sintered neodymium iron boron (NdFeB) magnet
CN113184926A (en) Method for preparing Ni-Cu LDH material by using electroplating sludge and application
CN103667715B (en) A kind of at C2H2O4Under-OH system, from neodymium iron boron greasy filth, reclaim the method for neodymium, praseodymium, dysprosium, cobalt, iron simultaneously
CN103667718B (en) A kind of at CO 3-NH 3from neodymium iron boron greasy filth, reclaim the method for neodymium, praseodymium, dysprosium, cobalt, iron under system simultaneously
CN114621080B (en) Method for preparing iron manganese oxalate by using high-iron manganese oxide ore
Zhu et al. Review on the sustainable recycling of spent ternary lithium-ion batteries: From an eco-friendly and efficient perspective
CN103667716B (en) A kind of at C2H2O4-NH3The method simultaneously reclaiming neodymium, praseodymium, dysprosium, cobalt, ferrum under system from neodymium iron boron greasy filth
CN103667717B (en) A kind of at CO3The method simultaneously reclaiming neodymium, praseodymium, dysprosium, cobalt, ferrum under-OH system from neodymium iron boron greasy filth
CN103789549B (en) A kind of at NH3From neodymium iron boron greasy filth, reclaim the method for neodymium, praseodymium, dysprosium, cobalt, iron under-OH system simultaneously
CN103667719B (en) A kind of method simultaneously reclaiming neodymium, praseodymium, dysprosium, cobalt, ferrum under OH-OH system from neodymium iron boron greasy filth
CN110592378B (en) Method for recovering rare earth and iron from ultrafine powder waste generated during NdFeB production process
CN104250691B (en) A kind of recoverying and utilizing method of semimetal mixture type brake block
Yao et al. Recycling of rare earth element from nickel metal hydride battery utilizing supercritical fluid extraction
CN113265540B (en) Method for extracting uranium from low-grade uranium ores through microwave activation roasting reinforcement
CN114075626B (en) Method for integrally recovering rare earth metals in rare earth permanent magnet waste by utilizing hydrothermal method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230703

Address after: 315301 369 Branch Road 878, Zhouhu Road, Zhouxiang Town, Cixi City, Ningbo City, Zhejiang Province

Patentee after: Ningbo Zhihe Zhiyuan Enterprise Management Partnership (L.P.)

Address before: 100124 No. 100 Chaoyang District Ping Tian Park, Beijing

Patentee before: Beijing University of Technology

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20231204

Address after: No. 4, High end Equipment Industrial Park, No. 12 Xijin Road, Ganzhou High tech Industrial Development Zone, Ganxian District, Ganzhou City, Jiangxi Province, 341108

Patentee after: Ganzhou Xihong Permanent Magnet Technology Co.,Ltd.

Address before: 315301 369 Branch Road 878, Zhouhu Road, Zhouxiang Town, Cixi City, Ningbo City, Zhejiang Province

Patentee before: Ningbo Zhihe Zhiyuan Enterprise Management Partnership (L.P.)