CN103643085B - Embed type film resistor material and preparation method thereof - Google Patents
Embed type film resistor material and preparation method thereof Download PDFInfo
- Publication number
- CN103643085B CN103643085B CN201310566007.5A CN201310566007A CN103643085B CN 103643085 B CN103643085 B CN 103643085B CN 201310566007 A CN201310566007 A CN 201310566007A CN 103643085 B CN103643085 B CN 103643085B
- Authority
- CN
- China
- Prior art keywords
- carbon
- nickel
- substrate
- tungsten
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000463 material Substances 0.000 title claims abstract description 71
- 238000002360 preparation method Methods 0.000 title claims abstract description 9
- 239000000758 substrate Substances 0.000 claims abstract description 83
- 229910018487 Ni—Cr Inorganic materials 0.000 claims abstract description 54
- VNNRSPGTAMTISX-UHFFFAOYSA-N chromium nickel Chemical compound [Cr].[Ni] VNNRSPGTAMTISX-UHFFFAOYSA-N 0.000 claims abstract description 54
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 52
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 52
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 50
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 44
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims abstract description 42
- 239000010937 tungsten Substances 0.000 claims abstract description 41
- 239000011651 chromium Substances 0.000 claims abstract description 28
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 26
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 24
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims abstract description 23
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 22
- OKTJSMMVPCPJKN-YPZZEJLDSA-N carbon-10 atom Chemical compound [10C] OKTJSMMVPCPJKN-YPZZEJLDSA-N 0.000 claims abstract description 4
- 238000004544 sputter deposition Methods 0.000 claims description 66
- 238000000137 annealing Methods 0.000 claims description 21
- 239000000203 mixture Substances 0.000 claims description 4
- 229910001120 nichrome Inorganic materials 0.000 claims 2
- 239000013077 target material Substances 0.000 claims 2
- 229910052802 copper Inorganic materials 0.000 claims 1
- 239000010949 copper Substances 0.000 claims 1
- 239000010409 thin film Substances 0.000 abstract description 99
- 239000010408 film Substances 0.000 abstract description 74
- 239000011889 copper foil Substances 0.000 abstract description 21
- 238000000034 method Methods 0.000 abstract description 10
- 238000001755 magnetron sputter deposition Methods 0.000 abstract description 7
- 238000002474 experimental method Methods 0.000 abstract description 3
- XIIKVXRUEJZVOS-UHFFFAOYSA-N [W].[C].[Cr].[Ni] Chemical compound [W].[C].[Cr].[Ni] XIIKVXRUEJZVOS-UHFFFAOYSA-N 0.000 description 54
- 230000000052 comparative effect Effects 0.000 description 25
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 24
- 239000007789 gas Substances 0.000 description 18
- 229910000623 nickel–chromium alloy Inorganic materials 0.000 description 17
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 16
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 14
- SYCBLWWKDXQZRR-UHFFFAOYSA-N [Ni].[W].[Cr] Chemical compound [Ni].[W].[Cr] SYCBLWWKDXQZRR-UHFFFAOYSA-N 0.000 description 14
- 229910052757 nitrogen Inorganic materials 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- 230000007797 corrosion Effects 0.000 description 11
- 238000005260 corrosion Methods 0.000 description 11
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 8
- 229910052786 argon Inorganic materials 0.000 description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 7
- 239000008367 deionised water Substances 0.000 description 7
- 229910021641 deionized water Inorganic materials 0.000 description 7
- 239000011521 glass Substances 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 238000005086 pumping Methods 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 5
- 230000001681 protective effect Effects 0.000 description 5
- 229910000599 Cr alloy Inorganic materials 0.000 description 4
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- 239000000788 chromium alloy Substances 0.000 description 4
- 235000011149 sulphuric acid Nutrition 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 230000010287 polarization Effects 0.000 description 3
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- QZPSXPBJTPJTSZ-UHFFFAOYSA-N aqua regia Chemical compound Cl.O[N+]([O-])=O QZPSXPBJTPJTSZ-UHFFFAOYSA-N 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 238000009776 industrial production Methods 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229940117975 chromium trioxide Drugs 0.000 description 1
- WGLPBDUCMAPZCE-UHFFFAOYSA-N chromium trioxide Inorganic materials O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 1
- GAMDZJFZMJECOS-UHFFFAOYSA-N chromium(6+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Cr+6] GAMDZJFZMJECOS-UHFFFAOYSA-N 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- ZOMNIUBKTOKEHS-UHFFFAOYSA-L dimercury dichloride Chemical class Cl[Hg][Hg]Cl ZOMNIUBKTOKEHS-UHFFFAOYSA-L 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012776 electronic material Substances 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
Landscapes
- Physical Vapour Deposition (AREA)
Abstract
Description
技术领域technical field
本发明涉及电子材料与电子元器件技术领域,特别是涉及一种埋入式薄膜电阻材料及其制备方法。The invention relates to the technical field of electronic materials and electronic components, in particular to an embedded thin film resistance material and a preparation method thereof.
背景技术Background technique
电子元器件高性能、小型化的发展趋势,要求印刷电路板单位面积贴装的电子元器件数量不断增加,造成印刷电路板表面积超饱和。与传统分立式电阻相比,埋入式薄膜电阻器件(埋阻)能节省布线距离,减少贴装元器件数量,降低电路板尺寸与重量;能减小信号传输过程中的寄生电感和表面贴装或插件加工中产生的感抗;能提高线路的阻抗匹配能力;能降低信号串扰、噪声和电磁干扰。埋入式薄膜电阻器件可靠性高,电阻值稳定,损耗小。埋入式薄膜电阻器件是把薄膜电阻材料压贴在专用半固化树脂板上,经蚀刻后形成薄膜电阻,然后层压入到印刷电路板内部。The development trend of high performance and miniaturization of electronic components requires that the number of electronic components mounted per unit area of printed circuit boards continues to increase, resulting in supersaturation of the surface area of printed circuit boards. Compared with traditional discrete resistors, embedded thin film resistors (buried resistors) can save wiring distance, reduce the number of mounted components, reduce the size and weight of circuit boards; and can reduce parasitic inductance and surface resistance during signal transmission. Inductive reactance generated during placement or plug-in processing; can improve the impedance matching ability of the line; can reduce signal crosstalk, noise and electromagnetic interference. The embedded thin film resistor device has high reliability, stable resistance value and low loss. The embedded thin film resistor device is to press and paste the thin film resistor material on a special semi-cured resin board, form a thin film resistor after etching, and then laminate it into the inside of the printed circuit board.
国外现代表性的埋入式薄膜电阻材料有:Ohmega Ply公司采用电镀法生产的NiP埋阻材料,GOULD Electronics公司采用磁控溅射法生产的NiCr,这些材料方阻值公差小,电性能稳定,但方阻值偏小,使用范围有限,各方面性能也还有提升的空间。国内,埋入式薄膜电阻材料多处于研发阶段,还没完全进入产业化。Representative embedded thin film resistor materials abroad include: Ohmega Ply’s NiP buried resistor material produced by electroplating, and GOULD Electronics’ NiCr produced by magnetron sputtering. These materials have small square resistance tolerances and stable electrical properties. , but the square resistance value is too small, the scope of use is limited, and there is still room for improvement in all aspects of performance. Domestically, embedded thin film resistor materials are mostly in the research and development stage, and have not yet fully entered industrialization.
发明内容Contents of the invention
基于此,有必要提供一种能够提高埋入式薄膜电阻器件的电性能稳定性和提高方阻值的埋入式薄膜电阻材料。Based on this, it is necessary to provide an embedded thin film resistor material capable of improving the electrical performance stability of the embedded thin film resistor device and increasing the square resistance value.
一种埋入式薄膜电阻材料,按原子百分比计,包括:An embedded thin film resistive material comprising, by atomic percent:
镍50~76%、铬10~18%、碳10~30%和钨0.5~5%。50-76% nickel, 10-18% chromium, 10-30% carbon and 0.5-5% tungsten.
一种埋入式薄膜电阻材料,包括镍铬碳钨薄膜,所述镍铬碳钨薄膜的元素按原子百分比计,包括镍50~76%、铬10~18%、碳10~30%和钨0.5~5%。An embedded thin-film resistance material, comprising a nickel-chromium-carbon-tungsten film, and the elements of the nickel-chromium-carbon-tungsten film include 50-76% of nickel, 10-18% of chromium, 10-30% of carbon and tungsten 0.5~5%.
在其中一个实施例中,还包括衬底,所述镍铬碳钨薄膜沉积于所述衬底上。In one of the embodiments, a substrate is also included, and the nickel-chromium-tungsten carbon thin film is deposited on the substrate.
在其中一个实施例中,所述衬底为低轮廓柔性铜箔。In one embodiment, the substrate is a low-profile flexible copper foil.
在其中一个实施例中,所述镍铬碳钨薄膜的厚度为85纳米~200纳米。In one embodiment, the nickel-chromium-tungsten film has a thickness of 85 nm to 200 nm.
一种埋入式薄膜电阻材料的制备方法,包括如下步骤:A method for preparing an embedded thin film resistance material, comprising the steps of:
提供衬底;及provide the substrate; and
采用溅射法在所述衬底上形成镍铬碳钨薄膜,得到埋入式薄膜电阻材料,其中,所述镍铬碳钨薄膜的元素按原子百分比计,包括镍50~76%、铬10~18%、碳10~30%和钨0.5~5%。A nickel-chromium-carbon-tungsten thin film is formed on the substrate by a sputtering method to obtain an embedded thin-film resistance material, wherein the elements of the nickel-chromium-carbon-tungsten thin film include nickel 50-76%, chromium 10 ~18%, carbon 10~30% and tungsten 0.5~5%.
在其中一个实施例中,所述采用溅射法在所述衬底上形成镍铬碳钨薄膜的步骤后,还包括将所述镍铬碳钨薄膜进行高温退火的步骤。In one embodiment, after the step of forming the nickel-chromium-tungsten-carbon thin film on the substrate by sputtering, the step of annealing the nickel-chromium-tungsten carbon thin film at high temperature is further included.
在其中一个实施例中,所述高温退火的步骤是在保护气体氛围中,于250℃~400℃下退火480秒~720秒。In one embodiment, the high-temperature annealing step is annealing at 250° C. to 400° C. for 480 seconds to 720 seconds in a protective gas atmosphere.
在其中一个实施例中,所述采用溅射法在所述衬底上形成镍铬碳钨薄膜的步骤是采用镍铬合金靶材、碳靶材和钨靶材,将镍铬、碳和钨溅射至所述衬底上,在所述衬底上沉积镍铬碳钨薄膜。In one of the embodiments, the step of forming a nickel-chromium-carbon-tungsten film on the substrate by sputtering is to use a nickel-chromium alloy target, a carbon target and a tungsten target, and combine nickel-chromium, carbon and tungsten sputtering onto the substrate, and depositing a nickel-chromium-tungsten carbon thin film on the substrate.
在其中一个实施例中,所述采用溅射法在所述衬底上形成镍铬碳钨薄膜的步骤中,所述镍铬合金靶材的电流为2~5安,所述碳靶材的电流为1安~1.5安,所述钨靶材的电流为0.1安~0.3安。In one of the embodiments, in the step of forming a nickel-chromium-carbon-tungsten film on the substrate by sputtering, the current of the nickel-chromium alloy target is 2-5 amps, and the current of the carbon target is The current is 1-1.5 A, and the current of the tungsten target is 0.1-0.3 A.
在其中一个实施例中,所述采用溅射法在所述衬底上形成镍铬碳钨薄膜的步骤中,在所述衬底上施加30伏~120伏的偏压。In one of the embodiments, in the step of forming a nickel-chromium-tungsten thin film on the substrate by sputtering, a bias voltage of 30 volts to 120 volts is applied to the substrate.
在其中一个实施例中,所述采用溅射法在所述衬底上形成镍铬碳钨薄膜的步骤中,所述衬底旋转,所述旋转的速度为4转/分钟。In one embodiment, in the step of forming a nickel-chromium-tungsten thin film on the substrate by sputtering, the substrate is rotated at a speed of 4 revolutions per minute.
上述埋入式薄膜电阻材料,按原子百分比计,包括镍50~76%、铬10~18%、碳10~30%和钨0.5~5%。通过磁控溅射技术把镍、铬、碳和钨原子沉积于铜箔衬底上得到镍铬碳钨薄膜,经实验表明,使用该镍铬碳钨薄膜的埋入式薄膜电阻器件的电性能较稳定,方阻值较高。The embedded thin-film resistor material includes 50-76% nickel, 10-18% chromium, 10-30% carbon and 0.5-5% tungsten in atomic percentage. Nickel, chromium, carbon, and tungsten atoms are deposited on a copper foil substrate by magnetron sputtering technology to obtain a nickel-chromium-carbon-tungsten film. Experiments show that the electrical properties of the embedded thin-film resistance device using the nickel-chromium-carbon-tungsten film More stable, higher square resistance.
附图说明Description of drawings
图1为一实施方式的埋入式薄膜电阻材料的制备方法的流程图;Fig. 1 is the flow chart of the preparation method of the embedded type thin film resistive material of an embodiment;
图2为实施例1的埋入式薄膜电阻材料和对比例1的埋入式薄膜电阻材料的电阻温度系数(TCR)随温度的变化曲线;Fig. 2 is the variation curve of temperature coefficient of resistance (TCR) of the embedded type thin film resistance material of embodiment 1 and the embedded type thin film resistance material of comparative example 1 (TCR) with temperature;
图3为实施例2的埋入式薄膜电阻材料和对比例2的埋入式薄膜电阻材料的电阻温度系数(TCR)随温度的变化曲线;Fig. 3 is the variation curve of temperature coefficient of resistance (TCR) of the buried type thin film resistance material of embodiment 2 and the buried type thin film resistance material of comparative example 2 with temperature;
图4为实施例3的埋入式薄膜电阻材料和对比例1的埋入式薄膜电阻材料的电阻温度系数(TCR)随温度的变化曲线;Fig. 4 is the variation curve of temperature coefficient of resistance (TCR) of the buried type thin film resistance material of embodiment 3 and the buried type thin film resistance material of comparative example 1 with temperature;
图5为实施例4的埋入式薄膜电阻材料和对比例2的埋入式薄膜电阻材料的电阻温度系数(TCR)随温度的变化曲线;Fig. 5 is the variation curve of temperature coefficient of resistance (TCR) of the buried type thin film resistance material of embodiment 4 and the buried type thin film resistance material of comparative example 2 with temperature;
图6为实施例1的埋入式薄膜电阻材料和对比例1的埋入式薄膜电阻材料的极化曲线;Fig. 6 is the polarization curve of the buried type thin film resistance material of embodiment 1 and the buried type thin film resistance material of comparative example 1;
图7为实施例2的埋入式薄膜电阻材料和对比例2的埋入式薄膜电阻材料的极化曲线;Fig. 7 is the polarization curve of the buried type thin film resistance material of embodiment 2 and the buried type thin film resistance material of comparative example 2;
图8为实施例1制备的镍铬碳钨(NiCrCW)薄膜在质量百分比浓度为60%的H2SO4中浸泡85小时以后SEM形貌图;Fig. 8 is the SEM topography figure of the nickel-chromium-carbon-tungsten (NiCrCW) film prepared in Example 1 immersed in 60% H2SO4 for 85 hours;
图9为对比例1中制备的镍铬(NiCr)薄膜在质量百分比浓度为60%的H2SO4中浸泡85小时以后SEM形貌图。FIG. 9 is a SEM image of the nickel-chromium (NiCr) film prepared in Comparative Example 1 soaked in H2SO4 with a concentration of 60% by mass for 85 hours.
具体实施方式Detailed ways
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本发明。但是本发明能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似改进,因此本发明不受下面公开的具体实施的限制。In order to make the above objects, features and advantages of the present invention more comprehensible, specific implementations of the present invention will be described in detail below in conjunction with the accompanying drawings. In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. However, the present invention can be implemented in many other ways different from those described here, and those skilled in the art can make similar improvements without departing from the connotation of the present invention, so the present invention is not limited by the specific implementations disclosed below.
一实施方式的埋入式薄膜电阻材料,按原子百分比计,包括镍50~76%、铬10~18%、碳10~30%和钨0.5~5%。An embedded thin film resistor material according to one embodiment includes 50-76% nickel, 10-18% chromium, 10-30% carbon, and 0.5-5% tungsten in atomic percent.
使用上述的合金材料制备镍铬碳钨薄膜,该镍铬碳钨薄膜能够用于制备电性能较稳定、方阻值较高埋入式薄膜电阻器件。The nickel-chromium-tungsten-carbon thin film is prepared by using the above-mentioned alloy material, and the nickel-chromium-tungsten thin film can be used to prepare embedded thin-film resistance devices with relatively stable electrical properties and high square resistance.
另一实施方式的埋入式薄膜电阻材料,包括镍铬碳钨薄膜。Another embodiment of the embedded thin film resistor material includes nickel chromium tungsten carbon thin film.
镍铬碳钨薄膜的材料以镍(Ni)和铬(Cr)作为主体材料,掺杂适量的碳(C)和钨(W)。其中,按原子百分比计,镍占50~76%,铬占10~18%,碳占10~30%,钨占0.5%~5%。The material of nickel-chromium-tungsten carbon film is nickel (Ni) and chromium (Cr) as the main material, doped with an appropriate amount of carbon (C) and tungsten (W). Among them, by atomic percentage, nickel accounts for 50-76%, chromium accounts for 10-18%, carbon accounts for 10-30%, and tungsten accounts for 0.5%-5%.
优选地,镍铬碳钨薄膜的厚度为85纳米~200纳米。Preferably, the thickness of the nickel-chromium-tungsten carbon thin film is 85 nanometers to 200 nanometers.
该镍铬碳钨薄膜以Ni和Cr作为主体材料,掺杂适量的C元素和微量的W元素,使得该镍铬碳钨薄膜具有稳定的电性能,大的方阻值,高的硬度,好的耐腐蚀性和耐磨性,比现有的镍铬薄膜电阻材料具有更好的性能。The nickel-chromium-tungsten-carbide film uses Ni and Cr as the main materials, and is doped with an appropriate amount of C element and a small amount of W element, so that the nickel-chromium-carbide-tungsten film has stable electrical properties, large square resistance, high hardness, good Excellent corrosion resistance and wear resistance, better performance than existing nickel-chromium thin film resistor materials.
碳元素在镍铬碳钨薄膜主要以非晶和纳米晶的混合结构形式存在,它们的混合界面可以促进镍铬合金中铬元素的扩散,从而使铬更容易在表面形成致密的三氧化二铬保护膜,使镍铬碳钨薄膜的耐腐蚀性能较高。Carbon element exists in nickel-chromium-carbon-tungsten film mainly in the form of mixed structure of amorphous and nanocrystalline, and their mixed interface can promote the diffusion of chromium in nickel-chromium alloy, so that chromium is more likely to form dense chromium trioxide on the surface The protective film makes the nickel-chromium-tungsten film have higher corrosion resistance.
钨元素的化学性质稳定,即使在加热的情况下,也不会与盐酸、硫酸等强酸作用,甚至不会溶解在王水里,只有腐蚀性极强的氢氟酸和硝酸的混合物,才能溶解钨。钨元素进一步提高了镍铬碳钨薄膜的耐腐蚀性能。The chemical properties of tungsten element are stable. Even under the condition of heating, it will not interact with strong acids such as hydrochloric acid and sulfuric acid, and will not even dissolve in aqua regia. Only a mixture of highly corrosive hydrofluoric acid and nitric acid can dissolve tungsten. The tungsten element further improves the corrosion resistance of the nickel-chromium-tungsten carbon film.
优选地,埋入式薄膜电阻材料还包括衬底,镍铬碳钨薄膜沉积于衬底上。Preferably, the embedded thin-film resistance material further includes a substrate, on which the nickel-chromium-tungsten carbon thin film is deposited.
衬底为陶瓷衬底或金属衬底,优选为低轮廓(VLP)柔性铜箔。低轮廓柔性铜箔的相对的两个表面分别为光面和毛面,毛面的粗糙度较为均匀。The substrate is a ceramic substrate or a metal substrate, preferably a low profile (VLP) flexible copper foil. The two opposite surfaces of the low-profile flexible copper foil are a smooth surface and a rough surface respectively, and the roughness of the rough surface is relatively uniform.
优选地,镍铬碳钨薄膜沉积于低轮廓柔性铜箔的毛面上,不仅可以增加镍铬碳钨薄膜的方阻值,还可以提高镍铬碳钨薄膜与衬底的结合力,有利于制备方阻值高、稳定性好的埋入式薄膜电阻器件。Preferably, the nickel-chromium-tungsten-carbon thin film is deposited on the rough surface of the low-profile flexible copper foil, which can not only increase the square resistance of the nickel-chromium-tungsten thin film, but also improve the bonding force between the nickel-chromium-tungsten thin film and the substrate, which is beneficial to An embedded thin film resistor device with high square resistance and good stability is prepared.
经实验表明,上述埋入式薄膜电阻材料具有较高的电性能稳定性和较高的方阻值,并且,具有较高的硬度、较高的耐腐蚀性能和较高耐磨性,使得该埋入式薄膜电阻材料具有较高的应用价值,应用范围较宽。Experiments have shown that the above-mentioned embedded thin film resistance material has high electrical performance stability and high square resistance value, and has high hardness, high corrosion resistance and high wear resistance, making the material Embedded thin film resistor materials have high application value and wide application range.
应用该埋入式薄膜电阻材料时,将该埋入式薄膜电阻材料进行刻蚀得到需要的埋阻器件,然后层压到印刷电路板内部。When the embedded thin film resistance material is used, the embedded thin film resistance material is etched to obtain the required buried resistance device, and then laminated into the printed circuit board.
将镍铬碳钨薄膜刻蚀成埋阻器件后,埋阻两端所保留的低轮廓柔性铜箔可以作为埋阻的电极,省去了另外制备电极的步骤,有利于降低成本。After the nickel-chromium-tungsten carbon film is etched into a buried resistance device, the low-profile flexible copper foil retained at both ends of the buried resistance can be used as an electrode of the buried resistance, which saves the additional steps of preparing electrodes and is conducive to reducing costs.
并且,采用低轮廓(VLP)柔性铜箔为衬底,在制备镍铬碳钨薄膜时,可实现圈绕式镀膜,适合工业化生产。Moreover, using low-profile (VLP) flexible copper foil as a substrate, when preparing nickel-chromium-tungsten carbon thin films, coil-wound coatings can be realized, which is suitable for industrial production.
请参阅图1,一实施方式的埋入式薄膜电阻材料的制备方法,包括如下步骤:Please refer to FIG. 1, a method for preparing an embedded thin-film resistance material in an embodiment includes the following steps:
步骤S110:提供衬底。Step S110: providing a substrate.
衬底优选为低轮廓柔性铜箔。The substrate is preferably a low profile flexible copper foil.
将衬底依次在无水丙酮、无水乙醇和去离子水中各超声清洗10分钟,再用氮气枪吹干,然后用洁净的玻璃平板压平待用。The substrate was ultrasonically cleaned in anhydrous acetone, anhydrous ethanol, and deionized water for 10 minutes each, then blown dry with a nitrogen gun, and then flattened with a clean glass plate for use.
步骤S120:采用溅射法在衬底上形成镍铬碳钨薄膜,得到埋入式薄膜电阻材料,其中,镍铬碳钨薄膜的元素按原子百分比计,包括镍50~76%、铬10~18%、碳10~30%和钨0.5~5%。Step S120: Form a nickel-chromium-tungsten-carbon thin film on the substrate by sputtering to obtain an embedded thin-film resistance material, wherein the elements of the nickel-chromium-tungsten thin film include nickel 50-76%, chromium 10- 18%, carbon 10-30% and tungsten 0.5-5%.
将镍铬合金靶材(NiCr)置于真空溅射室的阴极靶位1,碳靶材(C)置于阴极靶位2,钨靶材(W)置于阴极靶位3,把衬底固定在旋转工件架上。Place the nickel-chromium alloy target (NiCr) in the cathode target position 1 of the vacuum sputtering chamber, the carbon target (C) in the cathode target position 2, and the tungsten target (W) in the cathode target position 3, and put the substrate Fixed on the rotating workpiece holder.
其中,镍铬合金靶材的镍和铬的原子比为4:1。镍铬合金靶材、碳靶材和钨靶材的纯度均为99.99%。Among them, the atomic ratio of nickel and chromium in the nickel-chromium alloy target is 4:1. The purity of nickel-chromium alloy target, carbon target and tungsten target is 99.99%.
将真空溅射室密封,通过抽真空系统使得真空溅射室的真空度达到3.0×10-5~4.5×10-5托斯拉。通入氩气,气体流量为25~30sccm,当真空溅射室压强达到1.1×10-3~1.5×10-3托斯拉时,启动电离电源,对衬底表面进行电离清洗,清洗时间为5~10分钟,然后在室温下同时开启镍铬合金靶材、碳靶材和钨靶材三靶的溅射电源,预溅射5~10分钟后,开启旋转工件架的旋转开关,使旋转工件架旋转并带动衬底旋转,溅射4~16分钟,镍铬碳钨沉积在衬底上,从而在衬底上形成镍铬碳钨薄膜。The vacuum sputtering chamber is sealed, and the vacuum degree of the vacuum sputtering chamber reaches 3.0×10 -5 to 4.5×10 -5 Torsola through a vacuum pumping system. Introduce argon gas, the gas flow rate is 25-30 sccm, when the pressure of the vacuum sputtering chamber reaches 1.1×10 -3 ~1.5×10 -3 Torsla, start the ionization power supply, ionize and clean the substrate surface, and the cleaning time is 5 to 10 minutes, then turn on the sputtering power supply of the three targets of nickel-chromium alloy target, carbon target and tungsten target at room temperature, and after 5 to 10 minutes of pre-sputtering, turn on the rotary switch of the rotary The workpiece holder rotates and drives the substrate to rotate, sputtering for 4 to 16 minutes, nickel-chromium-tungsten carbon is deposited on the substrate, thereby forming a nickel-chromium-carbon-tungsten film on the substrate.
先预溅射5~10分钟后再进行溅射,除去各个靶材表面的灰尘,有利于得到质量好的镍铬碳钨薄膜。Pre-sputter for 5 to 10 minutes before sputtering to remove dust on the surface of each target, which is conducive to obtaining a good quality nickel-chromium-carbon-tungsten film.
优选地,溅射过程中,镍铬合金靶材的电流为2~5安,碳靶材的电流为1~1.5安,钨靶材的电流为0.1~0.3安。Preferably, during the sputtering process, the current of the nickel-chromium alloy target is 2-5 amps, the current of the carbon target is 1-1.5 amps, and the current of the tungsten target is 0.1-0.3 amps.
优选地,溅射过程中,在衬底上施加30伏~120伏的偏压。Preferably, during the sputtering process, a bias voltage of 30 volts to 120 volts is applied to the substrate.
优选地,溅射过程中,衬底的旋转速度为4转/分钟。Preferably, during the sputtering process, the rotation speed of the substrate is 4 rpm.
镍铬合金靶材的电流为2~5安,碳靶材的电流为1~1.5安,钨靶材的电流为0.1~0.3安、在衬底上施加30伏~120伏的偏压及衬底的旋转速度为4转/分钟的溅射条件下溅射镍铬、碳和钨,有利于形成致密性较高、缺陷少的镍铬碳钨薄膜。The current of the nickel-chromium alloy target is 2-5 amps, the current of the carbon target is 1-1.5 amps, the current of the tungsten target is 0.1-0.3 amps, and a bias voltage of 30 volts to 120 volts is applied on the substrate and the lining Sputtering nickel-chromium, carbon and tungsten under the sputtering condition with the rotation speed of the bottom being 4 revolutions per minute is conducive to forming a nickel-chromium-carbon-tungsten thin film with high density and few defects.
优选地,采用闭合场非平衡磁控溅射技术进行溅射。相对于传统的平衡磁控溅射,闭合场非平衡磁控溅射形成的镍铬碳钨薄膜更致密、缺陷少,质量高。并且,采用闭合场非平衡磁控溅射技术进行溅射,有利于提高镍铬碳钨薄膜与衬底的结合力。Preferably, the closed-field unbalanced magnetron sputtering technique is used for sputtering. Compared with the traditional balanced magnetron sputtering, the nickel-chromium-tungsten-carbon thin film formed by closed-field unbalanced magnetron sputtering is denser, has fewer defects, and has higher quality. Moreover, the closed-field unbalanced magnetron sputtering technology is used for sputtering, which is conducive to improving the bonding force between the nickel-chromium-tungsten film and the substrate.
优选地,采用溅射法在衬底上形成镍铬碳钨薄膜后,还包括将镍铬碳钨薄膜进行高温退火的步骤。Preferably, after the nickel-chromium-tungsten-carbon thin film is formed on the substrate by the sputtering method, the step of annealing the nickel-chromium-tungsten thin film at high temperature is also included.
高温退火的步骤优选为在保护气体氛围中,于250℃~400℃下退火480秒~720秒。The step of high-temperature annealing is preferably annealing at 250° C. to 400° C. for 480 seconds to 720 seconds in a protective gas atmosphere.
溅射完毕,经循环水冷却后,从真空溅射室取出沉积于衬底上的镍铬碳钨薄膜,并放入RTP-500型快速热处理设备中进行退火处理。退火条件为在保护气体氛围下,于250℃~400℃下快速退火480秒~720秒,冷却后取出退火后的埋入式薄膜电阻材料。After sputtering is completed and cooled by circulating water, the nickel-chromium-tungsten-carbon film deposited on the substrate is taken out from the vacuum sputtering chamber, and put into RTP-500 rapid thermal processing equipment for annealing treatment. The annealing condition is rapid annealing at 250° C. to 400° C. for 480 seconds to 720 seconds under a protective gas atmosphere, and the annealed embedded thin film resistor material is taken out after cooling.
其中,镍铬碳钨薄膜的元素按原子百分比计,包括镍50~76%、铬10~18%、碳10~30%和钨0.5~5%。Among them, the elements of the nickel-chromium-tungsten carbon thin film are calculated by atomic percentage, including 50-76% nickel, 10-18% chromium, 10-30% carbon and 0.5-5% tungsten.
保护气体为氮气、氩气、氦气等惰性气体,优选为氮气。The shielding gas is an inert gas such as nitrogen, argon, helium, etc., preferably nitrogen.
于250℃~400℃下退火480秒~720秒,所得到的镍铬碳钨薄膜的应力小、缺陷少,电性能稳定。Annealing at 250° C. to 400° C. for 480 seconds to 720 seconds, the obtained nickel-chromium-carbon-tungsten thin film has small stress, few defects, and stable electrical properties.
上述埋入式薄膜电阻材料的制备方法工艺简单,所制备得到埋入式薄膜电阻材料的镍铬碳钨薄膜的致密性高、均匀性好,并与衬底的结合力较高。并且,这种制备方法适合于大面积镀膜生产,有利于工业化生产。The preparation method of the embedded thin film resistance material has a simple process, and the prepared nickel-chromium-tungsten carbon thin film of the embedded thin film resistance material has high compactness, good uniformity, and high bonding force with the substrate. Moreover, this preparation method is suitable for large-area coating production and is beneficial to industrial production.
以下通过具体实施例进一步阐述。Further elaborate below by specific embodiment.
实施例1Example 1
制备埋入式薄膜电阻材料Fabrication of embedded thin film resistor materials
(1)把面积为9cm×9cm低轮廓柔性铜箔依次在无水丙酮、无水酒精和去离子水中各超声清洗10分钟,再用氮气枪吹干,然后用洁净的玻璃板压平待用;(1) Ultrasonic clean the low-profile flexible copper foil with an area of 9cm×9cm in anhydrous acetone, anhydrous alcohol and deionized water for 10 minutes, then blow dry with a nitrogen gun, and then flatten it with a clean glass plate for use ;
(2)将压平的低轮廓柔性铜箔置于真空溅射室的旋转工件架上,并关闭真空溅射室。打开抽真空系统,当真空溅射室的真空度达到4.0×10-5托斯拉时,通入氩气,气体流量为25sccm,启动电离电源,对衬底表面电离清洗10分钟,立即开启镍铬合金靶材、碳靶材和钨靶材三靶的溅射电源,溅射4分钟,形成沉积于衬底上的镍铬碳钨薄膜。其中,镍铬合金靶材、碳靶材和钨靶材的靶电流分别设为3安、1安和0.1安,施加在衬底上的偏压为90伏,衬底温度为室温,旋转工件架的转速设为4转/分钟;(2) Place the flattened low-profile flexible copper foil on the rotating workpiece holder in the vacuum sputtering chamber, and close the vacuum sputtering chamber. Turn on the vacuum pumping system, when the vacuum degree of the vacuum sputtering chamber reaches 4.0×10 -5 Torsla, introduce argon gas, the gas flow rate is 25 sccm, start the ionization power supply, ionize and clean the substrate surface for 10 minutes, and immediately turn on the nickel The sputtering power supply of the three targets of chromium alloy target, carbon target and tungsten target is sputtered for 4 minutes to form a nickel-chromium-carbon-tungsten film deposited on the substrate. Among them, the target current of nickel-chromium alloy target, carbon target and tungsten target is set to 3A, 1A and 0.1A respectively, the bias voltage applied to the substrate is 90V, the substrate temperature is room temperature, and the workpiece is rotated The rotating speed of frame is set to 4 revolutions/minute;
(3)溅射完成后,经循环水冷却后,从真空溅射室取出沉积于衬底上的镍铬碳钨薄膜,镍铬碳钨薄膜的厚度约为91纳米。镍铬碳钨薄膜的元素按原子百分比包括镍65.0at.%、铬16.5at.%、碳17.6at.%、钨0.9at.%。(3) After the sputtering is completed and cooled by circulating water, take out the nickel-chromium-carbon-tungsten film deposited on the substrate from the vacuum sputtering chamber. The thickness of the nickel-chromium-carbon-tungsten film is about 91 nanometers. The elements of nickel-chromium-tungsten carbon film include nickel 65.0at.%, chromium 16.5at.%, carbon 17.6at.%, tungsten 0.9at.%.
实施例2Example 2
制备埋入式薄膜电阻材料Fabrication of embedded thin film resistor materials
(1)把面积为9cm×9cm低轮廓柔性铜箔依次在无水丙酮、无水酒精和去离子水中各超声清洗10分钟,再用氮气枪吹干,然后用洁净的玻璃板压平待用;(1) Ultrasonic clean the low-profile flexible copper foil with an area of 9cm×9cm in anhydrous acetone, anhydrous alcohol and deionized water for 10 minutes, then blow dry with a nitrogen gun, and then flatten it with a clean glass plate for use ;
(2)将压平的低轮廓柔性铜箔置于真空溅射室的旋转工件架上,并关闭真空溅射室。打开抽真空系统,当真空溅射室的真空度达到4.0×10-5托斯拉时,通入氩气,气体流量为25sccm,启动电离电源,对衬底表面电离清洗10分钟,立即开启镍铬合金靶材、碳靶材和钨靶材三靶的溅射电源,溅射4分钟,形成沉积于衬底上的沉积态镍铬碳钨薄膜。其中,镍铬合金靶材、碳靶材和钨靶材的靶电流分别设为3安、1安和0.1安,施加在衬底上的偏压为90伏,衬底温度为室温,旋转工件架的转速设为4转/分钟;(2) Place the flattened low-profile flexible copper foil on the rotating workpiece holder in the vacuum sputtering chamber, and close the vacuum sputtering chamber. Turn on the vacuum pumping system, when the vacuum degree of the vacuum sputtering chamber reaches 4.0×10 -5 Torsla, introduce argon gas, the gas flow rate is 25 sccm, start the ionization power supply, ionize and clean the substrate surface for 10 minutes, and immediately turn on the nickel The sputtering power supply of the three targets of chromium alloy target, carbon target and tungsten target is sputtered for 4 minutes to form a deposited nickel-chromium-carbon-tungsten film deposited on the substrate. Among them, the target current of nickel-chromium alloy target, carbon target and tungsten target is set to 3A, 1A and 0.1A respectively, the bias voltage applied to the substrate is 90V, the substrate temperature is room temperature, and the workpiece is rotated The rotating speed of frame is set to 4 revolutions/minute;
(3)溅射完成后,经循环水冷却后,从真空溅射室取出沉积于衬底的镍铬碳钨薄膜。将该沉积于衬底的镍铬碳钨薄膜放入RTP-500型快速热处理设备中进行退火处理,退火条件为:在氮气保护下,于300℃下退火540秒,所获得的退火后的镍铬碳钨薄膜电阻材料。其中,镍铬碳钨薄膜的厚度为88.9纳米。镍铬碳钨薄膜的元素按原子百分比包括镍62.7at.%、铬17.1at.%、碳19.4at.%、钨0.8at.%。(3) After the sputtering is completed and cooled by circulating water, take out the nickel-chromium-tungsten carbon film deposited on the substrate from the vacuum sputtering chamber. Put the nickel-chromium-carbon-tungsten thin film deposited on the substrate into RTP-500 type rapid heat treatment equipment for annealing treatment. The annealing conditions are: under nitrogen protection, anneal at 300°C for 540 seconds, and the obtained annealed nickel Chromium Carbon Tungsten Thin Film Resistor Material. Wherein, the thickness of the nickel-chromium-tungsten carbon film is 88.9 nanometers. The elements of the nickel-chromium-tungsten carbon film include nickel 62.7at.%, chromium 17.1at.%, carbon 19.4at.%, and tungsten 0.8at.%.
实施例3Example 3
制备埋入式薄膜电阻材料Fabrication of embedded thin film resistor materials
(1)把面积为9cm×9cm低轮廓柔性铜箔依次在无水丙酮、无水酒精和去离子水中各超声清洗10分钟,再用氮气枪吹干,然后用洁净的玻璃板压平待用;(1) Ultrasonic clean the low-profile flexible copper foil with an area of 9cm×9cm in anhydrous acetone, anhydrous alcohol and deionized water for 10 minutes, then blow dry with a nitrogen gun, and then flatten it with a clean glass plate for use ;
(2)将压平的低轮廓柔性铜箔置于真空溅射室的旋转工件架上,并关闭真空溅射室。打开抽真空系统,当真空溅射室的真空度达到4.0×10-5托斯拉时,通入氩气,气体流量为25sccm,启动电离电源,对衬底表面电离清洗10分钟,立即开启镍铬合金靶材、碳靶材和钨靶材三靶的溅射电源,溅射4分钟,形成沉积于衬底上的沉积态镍铬碳钨薄膜,得到埋入式薄膜电阻材料。其中,镍铬合金靶材、碳靶材和钨靶材的靶电流分别设为3安、1.5安和0.1安,施加在衬底上的偏压为90伏,衬底温度为室温,旋转工件架的转速设为4转/分钟。其中,镍铬碳钨薄膜的厚度为93.7纳米。镍铬碳钨薄膜的元素按原子百分比包括镍60.4at.%、铬14.6at.%、碳24.1at.%、钨0.9at.%。(2) Place the flattened low-profile flexible copper foil on the rotating workpiece holder in the vacuum sputtering chamber, and close the vacuum sputtering chamber. Turn on the vacuum pumping system, when the vacuum degree of the vacuum sputtering chamber reaches 4.0×10 -5 Torsla, introduce argon gas, the gas flow rate is 25 sccm, start the ionization power supply, ionize and clean the substrate surface for 10 minutes, and immediately turn on the nickel The sputtering power supply of the chromium alloy target, the carbon target and the tungsten target is sputtered for 4 minutes to form a deposited nickel-chromium-carbon-tungsten film deposited on the substrate to obtain an embedded thin film resistance material. Among them, the target currents of nickel-chromium alloy target, carbon target and tungsten target are respectively set to 3 amps, 1.5 amps and 0.1 amps, the bias voltage applied to the substrate is 90 volts, the substrate temperature is room temperature, and the workpiece is rotated The rack speed was set at 4 rpm. Wherein, the thickness of the nickel-chromium-tungsten carbon film is 93.7 nanometers. The elements of nickel-chromium-tungsten carbon film include nickel 60.4at.%, chromium 14.6at.%, carbon 24.1at.%, tungsten 0.9at.%.
实施例4Example 4
制备埋入式薄膜电阻材料Fabrication of embedded thin film resistor materials
(1)把面积为9cm×9cm低轮廓柔性铜箔依次在无水丙酮、无水酒精和去离子水中各超声清洗10分钟,再用氮气枪吹干,然后用洁净的玻璃板压平待用;(1) Ultrasonic clean the low-profile flexible copper foil with an area of 9cm×9cm in anhydrous acetone, anhydrous alcohol and deionized water for 10 minutes, then blow dry with a nitrogen gun, and then flatten it with a clean glass plate for use ;
(2)将压平的低轮廓柔性铜箔置于真空溅射室的旋转工件架上,并关闭真空溅射室。打开抽真空系统,当真空溅射室的真空度达到4.0×10-5托斯拉时,通入氩气,气体流量为25sccm,启动电离电源,对衬底表面电离清洗10分钟,立即开启镍铬合金靶材、碳靶材和钨靶材三靶的溅射电源,溅射4分钟,形成沉积于衬底上的沉积态镍铬碳钨薄膜,得到埋入式薄膜电阻材料。其中,镍铬合金靶材、碳靶材和钨靶材的靶电流分别设为3安、1.5安和0.1安,施加在衬底上的偏压为90伏,衬底温度为室温,旋转工件架的转速设为4转/分钟。将该沉积于衬底的镍铬碳钨薄膜放入RTP-500型快速热处理设备中进行退火处理,退火条件为:在氮气保护下,于300℃下退火540秒,所获得的退火后的镍铬碳钨薄膜电阻材料。其中,镍铬碳钨薄膜的厚度为91.5纳米。镍铬碳钨薄膜的元素按原子百分比包括镍60.1at.%、铬13.8at.%、碳25.3at.%、钨0.8at.%。(2) Place the flattened low-profile flexible copper foil on the rotating workpiece holder in the vacuum sputtering chamber, and close the vacuum sputtering chamber. Turn on the vacuum pumping system, when the vacuum degree of the vacuum sputtering chamber reaches 4.0×10 -5 Torsla, introduce argon gas, the gas flow rate is 25 sccm, start the ionization power supply, ionize and clean the substrate surface for 10 minutes, and immediately turn on the nickel The sputtering power supply of the chromium alloy target, the carbon target and the tungsten target is sputtered for 4 minutes to form a deposited nickel-chromium-carbon-tungsten film deposited on the substrate to obtain an embedded thin film resistance material. Among them, the target currents of nickel-chromium alloy target, carbon target and tungsten target are respectively set to 3 amps, 1.5 amps and 0.1 amps, the bias voltage applied to the substrate is 90 volts, the substrate temperature is room temperature, and the workpiece is rotated The rack speed was set at 4 rpm. Put the nickel-chromium-carbon-tungsten thin film deposited on the substrate into RTP-500 type rapid heat treatment equipment for annealing treatment. The annealing conditions are: under nitrogen protection, anneal at 300°C for 540 seconds, and the obtained annealed nickel Chromium Carbon Tungsten Thin Film Resistor Material. Wherein, the thickness of the nickel-chromium-tungsten carbon film is 91.5 nanometers. The elements of nickel-chromium-tungsten carbon film include nickel 60.1at.%, chromium 13.8at.%, carbon 25.3at.%, tungsten 0.8at.%.
对比例1Comparative example 1
制备埋入式薄膜电阻材料Fabrication of embedded thin film resistor materials
(1)把面积为9cm×9cm低轮廓柔性铜箔依次在无水丙酮、无水酒精和去离子水中各超声清洗10分钟,再用氮气枪吹干,然后用洁净的玻璃板压平待用;(1) Ultrasonic clean the low-profile flexible copper foil with an area of 9cm×9cm in anhydrous acetone, anhydrous alcohol and deionized water for 10 minutes, then blow dry with a nitrogen gun, and then flatten it with a clean glass plate for use ;
(2)将压平的低轮廓柔性铜箔置于真空溅射室的旋转工件架上,并关闭真空溅射室。打开抽真空系统,当真空溅射室的真空度达到4.0×10-5托斯拉时,通入氩气,气体流量为25sccm,启动电离电源,对衬底表面电离清洗10分钟,立即开启镍铬合金靶材溅射电源,溅射4分钟,形成沉积于衬底上的沉积态镍铬薄膜。镍铬合金靶材的靶电流设为3安,施加在衬底上的偏压为90伏,衬底温度为室温,旋转工件架的转速设为4转/分钟;(2) Place the flattened low-profile flexible copper foil on the rotating workpiece holder in the vacuum sputtering chamber, and close the vacuum sputtering chamber. Turn on the vacuum pumping system, when the vacuum degree of the vacuum sputtering chamber reaches 4.0×10 -5 Torsla, introduce argon gas, the gas flow rate is 25 sccm, start the ionization power supply, ionize and clean the substrate surface for 10 minutes, and immediately turn on the nickel Chromium alloy target sputtering power supply, sputtering for 4 minutes to form a deposited nickel-chromium film deposited on the substrate. The target current of the nickel-chromium alloy target is set to 3 amps, the bias voltage applied to the substrate is 90 volts, the substrate temperature is room temperature, and the rotating speed of the rotating workpiece holder is set to 4 revolutions per minute;
(3)溅射完成后,经循环水冷却后,从真空溅射室取出沉积于衬底的镍铬薄膜。镍铬薄膜的厚度约为94.8纳米。镍铬薄膜的元素按原子百分比包括镍78.9at.%和铬21.1at.%。(3) After the sputtering is completed, after cooling by circulating water, take out the nickel-chromium film deposited on the substrate from the vacuum sputtering chamber. The thickness of the NiCr thin film is about 94.8 nm. The elements of the nickel-chromium thin film include nickel 78.9 at.% and chromium 21.1 at.% by atomic percentage.
对比例2Comparative example 2
制备埋入式薄膜电阻材料Fabrication of embedded thin film resistor materials
(1)把面积为9cm×9cm低轮廓柔性铜箔依次在无水丙酮、无水酒精和去离子水中各超声清洗10分钟,再用氮气枪吹干,然后用洁净的玻璃板压平待用;(1) Ultrasonic clean the low-profile flexible copper foil with an area of 9cm×9cm in anhydrous acetone, anhydrous alcohol and deionized water for 10 minutes, then blow dry with a nitrogen gun, and then flatten it with a clean glass plate for use ;
(2)将压平的低轮廓柔性铜箔置于真空溅射室的旋转工件架上,并关闭真空溅射室。打开抽真空系统,当真空溅射室的真空度达到4.0×10-5托斯拉时,通入氩气,气体流量为25sccm,启动电离电源,对衬底表面电离清洗10分钟,立即开启镍铬合金靶材溅射电源,溅射4分钟,形成沉积于衬底上的沉积态镍铬薄膜。镍铬合金靶材的靶电流设为3安,施加在衬底上的偏压为90伏,衬底温度为室温,旋转工件架的转速设为4转/分钟;(2) Place the flattened low-profile flexible copper foil on the rotating workpiece holder in the vacuum sputtering chamber, and close the vacuum sputtering chamber. Turn on the vacuum pumping system, when the vacuum degree of the vacuum sputtering chamber reaches 4.0×10 -5 Torsla, introduce argon gas, the gas flow rate is 25 sccm, start the ionization power supply, ionize and clean the substrate surface for 10 minutes, and immediately turn on the nickel Chromium alloy target sputtering power supply, sputtering for 4 minutes to form a deposited nickel-chromium film deposited on the substrate. The target current of the nickel-chromium alloy target is set to 3 amps, the bias voltage applied to the substrate is 90 volts, the substrate temperature is room temperature, and the rotating speed of the rotating workpiece holder is set to 4 revolutions per minute;
(3)溅射完成后,经循环水冷却后,从真空溅射室取出沉积于衬底的镍铬薄膜。将该沉积于衬底的镍铬碳钨薄膜的放入RTP-500型快速热处理设备中进行退火处理,退火条件为:在氮气保护下,于300℃下退火540秒,所获得的退火后的镍铬薄膜电阻材料。其中,镍铬薄膜的厚度为92.6纳米。镍铬薄膜的元素按原子百分比包括镍77.3at.%和铬22.7at.%。(3) After the sputtering is completed and cooled by circulating water, the nickel-chromium film deposited on the substrate is taken out from the vacuum sputtering chamber. Put the nickel-chromium-carbon-tungsten thin film deposited on the substrate into RTP-500 type rapid heat treatment equipment for annealing treatment, the annealing conditions are: under the protection of nitrogen, anneal at 300 ° C for 540 seconds, the obtained annealed Nickel-chromium thin film resistor material. Wherein, the thickness of the nickel-chromium thin film is 92.6 nanometers. The elements of the nickel-chromium thin film include nickel 77.3 at.% and chromium 22.7 at.% in atomic percentage.
将实施例1~实施例4及对比例1~对比例2的镍铬碳钨薄膜和镍铬薄膜蚀刻成埋阻器件后,分别用HFSE-PB4型检测探针台快速加热到250℃,然后再逐渐均匀地冷却到10℃,用Keithley2410型数字源表测其在冷却过程中的电阻值,根据公式计算出埋阻的电阻温度系数,做出实施例1和对比例1的电阻温度系数关于温度的关系曲线(图2),实施例2和对比例2的电阻温度系数关于温度的关系曲线(图3),实施例3和对比例1的电阻温度系数关于温度的关系曲线(图4),实施例4和对比例2的电阻温度系数关于温度的关系曲线(图5)。After etching the nickel-chromium-carbon-tungsten thin films and nickel-chromium thin films of Examples 1 to 4 and Comparative Examples 1 to 2 to form buried resistance devices, they were rapidly heated to 250° C. with HFSE-PB4 type detection probe stations, and then Then gradually and uniformly cool down to 10°C, use Keithley2410 digital source meter to measure its resistance value during the cooling process, according to the formula Calculate the temperature coefficient of resistance of the buried resistance, and make the relationship curve of the temperature coefficient of resistance of Example 1 and Comparative Example 1 with respect to temperature (Figure 2), and the relationship curve of the temperature coefficient of resistance of Example 2 and Comparative Example 2 with respect to temperature (Figure 2 3), the relationship curve of the temperature coefficient of resistance of Example 3 and Comparative Example 1 with respect to temperature ( FIG. 4 ), the relationship curve of the temperature coefficient of resistance of Example 4 and Comparative Example 2 with respect to temperature ( FIG. 5 ).
由图2可看出,沉积态的NiCrCW薄膜(实例1)的电阻温度系数随温度的变化曲线比沉积态的NiCr薄膜(对比例1)曲线要平稳,二者的电阻温度系数变化范围分别为3.39≤|TCRNiCrCW|≤219.62ppm/K,165.72≤TCRNiCr≤378.97ppm/K,说明沉积态的NiCrCW薄膜比相应NiCr薄膜的电性能要稳定。As can be seen from Figure 2, the temperature coefficient of resistance temperature curve of the deposited NiCrCW film (Example 1) is more stable than that of the deposited NiCr film (Comparative Example 1). 3.39≤|TCR NiCrCW |≤219.62ppm/K, 165.72≤TCR NiCr ≤378.97ppm/K, indicating that the electrical properties of the deposited NiCrCW film are more stable than the corresponding NiCr film.
由图3可看出,经300℃退火后的NiCrCW薄膜电阻温度系数随温度的变化曲线比相同条件下退火后的NiCr薄膜的曲线要平稳。二者的电阻温度系数变化范围分别为2.86≤TCRNiCrCW≤199.97ppm/K,35.26≤TCRNiCr≤327.31ppm/K,说明300℃退火后NiCrCW薄膜比相同条件退火后的NiCr薄膜电性能要稳定。It can be seen from Figure 3 that the temperature coefficient of resistance temperature variation curve of NiCrCW film annealed at 300 ℃ is more stable than that of NiCr film annealed under the same conditions. The variation ranges of the temperature coefficient of resistance of the two are 2.86≤TCR NiCrCW ≤199.97ppm/K, 35.26≤TCR NiCr ≤327.31ppm/K, indicating that the NiCrCW film after annealing at 300°C is more stable than the NiCr film after annealing under the same conditions.
由图4可看出,沉积态的NiCrCW薄膜(实例3)的电阻温度系数随温度的变化曲线比沉积态的NiCr薄膜(对比例1)曲线要平稳,二者的电阻温度系数变化范围分别为5.69≤|TCRNiCrCW≤101.15ppm/K,165.72≤TCRNiCr≤378.97ppm/K,说明沉积态的NiCrCW薄膜的比沉积态的NiCr薄膜电性能要稳定。It can be seen from Fig. 4 that the temperature coefficient of resistance temperature curve of the as-deposited NiCrCW film (Example 3) is more stable than that of the deposited NiCr film (Comparative Example 1), and the variation range of the temperature coefficient of resistance of the two is 5.69≤|TCR NiCrCW ≤101.15ppm/K, 165.72≤TCR NiCr ≤378.97ppm/K, indicating that the deposited NiCrCW film has more stable electrical properties than the deposited NiCr film.
由图5可看出,经300℃退火后的NiCrCW薄膜(实施例4)电阻温度系数随温度的变化曲线比相同条件下退火后的NiCr薄膜(实施例2)的曲线要平稳。二者的电阻温度系数变化范围分别为3.87≤TCRNiCrCW≤98.15ppm/K,35.26≤TCRNiCr≤327.31ppm/K,说明300℃退火后NiCrCW薄膜比相同条件退火后的NiCr薄膜电性能要稳定。It can be seen from Figure 5 that the temperature coefficient of resistance temperature variation curve of the NiCrCW film annealed at 300°C (Example 4) is more stable than that of the NiCr film annealed under the same conditions (Example 2). The variation ranges of the temperature coefficient of resistance of the two are 3.87≤TCR NiCrCW ≤98.15ppm/K, 35.26≤TCR NiCr ≤327.31ppm/K, indicating that the electrical properties of NiCrCW films annealed at 300°C are more stable than those of NiCr films annealed under the same conditions.
从以上四组数据说明在NiCr埋阻材料中掺杂适量的C元素和W元素,有助于降低埋入式薄膜电阻材料的电阻温度系数,对提高埋入式薄膜电阻材料的电性能有促进作用。From the above four sets of data, it is shown that doping an appropriate amount of C and W elements in the NiCr buried resistance material can help reduce the temperature coefficient of resistance of the buried thin film resistance material, and promote the improvement of the electrical properties of the buried thin film resistance material. effect.
经测定,实施例1镍铬碳钨薄膜的方阻值为76.95Ω/Sq,实施例2镍铬碳钨薄膜的方阻值为59.87Ω/Sq,实施例3镍铬碳钨薄膜的方阻值为85.26Ω/Sq,实施例4镍铬碳钨薄膜的方阻值为73.48Ω/Sq,对比例1的方阻值为62.84Ω/Sq对比例2的方阻值为50.05Ω/Sq。这些数据说明在NiCr埋阻材料中掺杂适量的C元素和W元素可提高埋阻材料的方阻值。After measuring, the square resistance value of the nickel-chromium-tungsten thin film of embodiment 1 is 76.95Ω/Sq, the square resistance value of the nickel-chromium-tungsten thin film of embodiment 2 is 59.87Ω/Sq, and the square resistance value of the nickel-chromium-tungsten thin film of embodiment 3 The value is 85.26Ω/Sq, the square resistance value of the nickel-chromium-tungsten film in Example 4 is 73.48Ω/Sq, the square resistance value of Comparative Example 1 is 62.84Ω/Sq and the square resistance value of Comparative Example 2 is 50.05Ω/Sq. These data show that doping an appropriate amount of C and W elements in the NiCr buried resistance material can increase the square resistance of the buried resistance material.
采用质量百分比浓度为60%的H2SO4作为腐蚀液,铂片为辅助电极,标准饱和甘汞为参比电极,室温下,通过电化学工作站测试实施例1、实施例2、对比例1、对比例2的埋入式薄膜电阻材料的钝化阳极极化曲线,测试结果见图6和图7。 H2SO4 with a mass percent concentration of 60 % was used as the corrosion solution, the platinum sheet was used as the auxiliary electrode, and the standard saturated calomel was used as the reference electrode. At room temperature, the electrochemical workstation tested Example 1, Example 2, and Comparative Example 1. 1. The passivation anode polarization curve of the embedded thin film resistance material of Comparative Example 2, the test results are shown in Fig. 6 and Fig. 7 .
图6中,NiCr对应对比例1的沉积态的NiCr薄膜,NiCrCW对应实施例1的沉积态的NiCrCW薄膜。图7中,NiCr对应对比例2的经过退火后的NiCr薄膜,NiCrCW对应实施例2的经过退火的NiCrCW薄膜。In FIG. 6 , NiCr corresponds to the deposited NiCr film of Comparative Example 1, and NiCrCW corresponds to the deposited NiCrCW film of Example 1. In FIG. 7 , NiCr corresponds to the annealed NiCr film of Comparative Example 2, and NiCrCW corresponds to the annealed NiCrCW film of Example 2.
由图6和图7可知,不论在沉积态还是退火后,NiCrCW薄膜的腐蚀电流都比NiCr薄膜的小,并且NiCrCW薄膜过钝化电位偏右,这些现象都说明在NiCr薄膜中掺杂C元素和W元素有利于提高薄膜的耐腐蚀性。因为C在薄膜中主要以非晶和纳米晶的混合结构形式存在,它们的混合界面可以促进合金中Cr元素的扩散,从而使Cr更容易在表面形成致密的Cr2O3保护膜。W的化学性质很稳定,即使在加热的情况下,也不会与盐酸、硫酸作用,甚至不会溶解在王水里,只有腐蚀性极强的氢氟酸和硝酸的混合物,才能溶解钨。这说明,实施例1和实施例2分别比对比例1和对比例2的埋入式薄膜电阻的耐腐蚀性较高。It can be seen from Figure 6 and Figure 7 that the corrosion current of the NiCrCW film is smaller than that of the NiCr film no matter in the deposited state or after annealing, and the overpassivation potential of the NiCrCW film is to the right. These phenomena all indicate that the NiCr film is doped with C element and W elements are beneficial to improve the corrosion resistance of the film. Because C mainly exists in the mixed structure of amorphous and nanocrystalline in the film, their mixed interface can promote the diffusion of Cr element in the alloy, so that it is easier for Cr to form a dense Cr 2 O 3 protective film on the surface. The chemical properties of W are very stable. Even under the condition of heating, it will not interact with hydrochloric acid and sulfuric acid, and it will not even dissolve in aqua regia. Only the highly corrosive mixture of hydrofluoric acid and nitric acid can dissolve tungsten. This shows that the corrosion resistance of the embedded thin-film resistors of Example 1 and Example 2 is higher than that of Comparative Example 1 and Comparative Example 2, respectively.
采用质量百分比浓度为60%的H2SO4作为腐蚀液,将实施例1和对比例1的埋入式薄膜电阻材料于腐蚀液中浸泡85小时,然后用扫描电镜观察,分别如图8和图9所示。对比图8和图9可看出,从被腐蚀的面积大小看,NiCrCW薄膜明显要小,表明NiCrCW薄膜的耐腐蚀性能比NiCr薄膜强。Using H2SO4 with a mass percentage concentration of 60% as the corrosion solution, the embedded thin film resistance materials of Example 1 and Comparative Example 1 were soaked in the corrosion solution for 85 hours, and then observed with a scanning electron microscope, as shown in Figure 8 and Figure 9 shows. Comparing Figures 8 and 9, it can be seen that the NiCrCW film is obviously smaller in terms of the corroded area, indicating that the corrosion resistance of the NiCrCW film is stronger than that of the NiCr film.
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。The above-mentioned embodiments only express several implementation modes of the present invention, and the description thereof is relatively specific and detailed, but should not be construed as limiting the patent scope of the present invention. It should be pointed out that those skilled in the art can make several modifications and improvements without departing from the concept of the present invention, and these all belong to the protection scope of the present invention. Therefore, the protection scope of the patent for the present invention should be based on the appended claims.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310566007.5A CN103643085B (en) | 2013-11-13 | 2013-11-13 | Embed type film resistor material and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310566007.5A CN103643085B (en) | 2013-11-13 | 2013-11-13 | Embed type film resistor material and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103643085A CN103643085A (en) | 2014-03-19 |
CN103643085B true CN103643085B (en) | 2015-09-30 |
Family
ID=50248365
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310566007.5A Active CN103643085B (en) | 2013-11-13 | 2013-11-13 | Embed type film resistor material and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103643085B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104988358A (en) * | 2015-07-22 | 2015-10-21 | 宁波工程学院 | Thin film resistance material and preparation method thereof |
CN106435478A (en) * | 2016-07-01 | 2017-02-22 | 中国计量大学 | Preparation method of nickel-chromium-silicon film low in resistance temperature coefficient |
CN116137197A (en) * | 2023-04-20 | 2023-05-19 | 广州方邦电子股份有限公司 | Composite substrate and circuit board |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03124005A (en) * | 1989-10-06 | 1991-05-27 | Matsushita Electric Ind Co Ltd | Superstructure nitride alloy film |
CN1073547A (en) * | 1991-08-26 | 1993-06-23 | 古尔德公司 | Resistiue metal layers and preparation method thereof |
JP2006313785A (en) * | 2005-05-06 | 2006-11-16 | Sumitomo Metal Mining Co Ltd | Thin film resistor and its manufacturing method |
CN102136473A (en) * | 2010-01-25 | 2011-07-27 | 上海华虹Nec电子有限公司 | Metal film resistor on IC (Integrated Circuit) and manufacture method thereof |
CN202111940U (en) * | 2011-07-15 | 2012-01-11 | 深圳市星之光实业有限公司 | Embedded type component circuit board |
CN103184415A (en) * | 2011-12-28 | 2013-07-03 | 深南电路有限公司 | Target material, resistive film, thin-film resistor member, circuit board and manufacturing methods |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2002254580A1 (en) * | 2001-04-09 | 2002-10-21 | Morgan Chemical Products, Inc. | Thick film paste systems for circuits on diamonds substrates |
-
2013
- 2013-11-13 CN CN201310566007.5A patent/CN103643085B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03124005A (en) * | 1989-10-06 | 1991-05-27 | Matsushita Electric Ind Co Ltd | Superstructure nitride alloy film |
CN1073547A (en) * | 1991-08-26 | 1993-06-23 | 古尔德公司 | Resistiue metal layers and preparation method thereof |
JP2006313785A (en) * | 2005-05-06 | 2006-11-16 | Sumitomo Metal Mining Co Ltd | Thin film resistor and its manufacturing method |
CN102136473A (en) * | 2010-01-25 | 2011-07-27 | 上海华虹Nec电子有限公司 | Metal film resistor on IC (Integrated Circuit) and manufacture method thereof |
CN202111940U (en) * | 2011-07-15 | 2012-01-11 | 深圳市星之光实业有限公司 | Embedded type component circuit board |
CN103184415A (en) * | 2011-12-28 | 2013-07-03 | 深南电路有限公司 | Target material, resistive film, thin-film resistor member, circuit board and manufacturing methods |
Non-Patent Citations (1)
Title |
---|
高稳定Ni-Cr薄膜电阻的研究;张丽娟等;《微处理机》;20050830(第04期);7-8 * |
Also Published As
Publication number | Publication date |
---|---|
CN103643085A (en) | 2014-03-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3563730B2 (en) | Flexible printed circuit board | |
Zhang et al. | Highly stable and stretchable graphene–polymer processed silver nanowires hybrid electrodes for flexible displays | |
CN104388902A (en) | Carbon-based coating having high electrical conductivity on surface of substrate and preparation method of coating | |
JP4341023B2 (en) | Method for producing metal-coated liquid crystal polymer film | |
CN107039097B (en) | Sputtering target material is used in electronic component-use wiring multilayer film and coating formation | |
CN103643085B (en) | Embed type film resistor material and preparation method thereof | |
TWI601163B (en) | Substrate with transparent electrode and its manufacturing method | |
JP6267641B2 (en) | Manufacturing method of substrate with transparent electrode, and substrate with transparent electrode | |
CN113913769A (en) | Preparation method of nano conductive metal film applicable to multiple substrates | |
CN107740058A (en) | The preparation method of metal/non-metal laminated film with orthogonal array structure | |
CN110129732B (en) | High-resistivity high-entropy alloy film and preparation method thereof | |
CN113684453A (en) | A kind of film with low secondary electron emission coefficient and preparation method thereof | |
CN110184573B (en) | Binding material and binding method of sputtering target material | |
CN102792786B (en) | 2 layers of flexible substrate and manufacture method thereof | |
CN106338347A (en) | Interdigital electrode material for high temperature surface acoustic wave sensor and the preparation method thereof | |
JP2010277974A (en) | Conductive thin film substrate, and method of manufacturing the same | |
CN116623131A (en) | A kind of crystalline Cu/amorphous MgCuY anti-corrosion multilayer film and preparation method thereof | |
CN109811308A (en) | A kind of ITO process for making conducting membrane | |
Lai et al. | Processing technology of embedded thin-film resistor materials | |
CN113930733A (en) | Magnetron sputtering method for ferrite processing | |
JP2004241785A (en) | Manufacturing method of flexible printed circuit board | |
CN104124387A (en) | Flexible conductive electrode and preparation method thereof | |
KR102659491B1 (en) | Manufacturing method of a film for interconnection material having low-resitivity | |
JPH0723532B2 (en) | Method for forming transparent conductive film | |
JP2007328934A (en) | Substrate with transparent conductive film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |