CN103630809A - Pulse discharge loop - Google Patents
Pulse discharge loop Download PDFInfo
- Publication number
- CN103630809A CN103630809A CN201310574872.4A CN201310574872A CN103630809A CN 103630809 A CN103630809 A CN 103630809A CN 201310574872 A CN201310574872 A CN 201310574872A CN 103630809 A CN103630809 A CN 103630809A
- Authority
- CN
- China
- Prior art keywords
- voltage
- electrode
- current
- pulse
- field electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005259 measurement Methods 0.000 claims abstract description 21
- 239000000523 sample Substances 0.000 claims abstract description 9
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 239000010949 copper Substances 0.000 claims description 4
- 239000011810 insulating material Substances 0.000 claims description 3
- 229910001220 stainless steel Inorganic materials 0.000 claims description 3
- 239000010935 stainless steel Substances 0.000 claims description 3
- 239000004020 conductor Substances 0.000 claims description 2
- 239000002184 metal Substances 0.000 description 21
- 229910052751 metal Inorganic materials 0.000 description 21
- 230000015556 catabolic process Effects 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 230000001939 inductive effect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Testing Relating To Insulation (AREA)
Abstract
一种脉冲放电回路,包括脉冲电源(1)、放电电极、限流电阻(4)和测量单元。脉冲电源(1)的高压输出端和放电电极的高压电极(2)相连,放电电极的低压电极(3)和限流电阻(4)的一端相连,限流电阻(4)的另一端与脉冲电源的接地端相连并接地。脉冲电源的输出电压采用高压探头在放电电极高压侧测量(5),脉冲回路的电流通过罗氏线圈在限流电阻和接地线之间测量(6)。本发明可产生单次及重复频率的毫安级纳秒放电脉冲,放电脉冲的幅值通过限流电阻(4)控制,可用于不同形式电晕放电的模拟场合。
A pulse discharge circuit, comprising a pulse power supply (1), a discharge electrode, a current limiting resistor (4) and a measurement unit. The high voltage output end of the pulse power supply (1) is connected to the high voltage electrode (2) of the discharge electrode, the low voltage electrode (3) of the discharge electrode is connected to one end of the current limiting resistor (4), and the other end of the current limiting resistor (4) is connected to the pulse The ground terminals of the power supply are connected and grounded. The output voltage of the pulse power supply is measured on the high-voltage side of the discharge electrode with a high-voltage probe (5), and the current of the pulse circuit is measured between the current-limiting resistor and the ground wire through the Rogowski coil (6). The invention can generate milliampere-level nanosecond discharge pulses with a single and repeated frequency, and the amplitude of the discharge pulse is controlled by the current-limiting resistor (4), and can be used for simulating occasions of different forms of corona discharge.
Description
技术领域technical field
本发明涉及脉冲放电领域,特别涉及能产生单次及重复频率毫安级纳秒脉冲放电的回路。The invention relates to the field of pulse discharge, in particular to a circuit capable of generating single-time and repetition frequency milliampere-level nanosecond pulse discharge.
背景技术Background technique
输电线路导线表面的电晕放电会产生较强的无线电干扰和可听噪声,对周围的电磁环境产生影响。目前国内外对输电线路可听噪声的研究主要集中在现场测量与预测公式上,而对输电线路可听噪声的产生机理未开展深入的研究。电晕放电由一系列单个的放电脉冲组成,放电脉冲的重复率很高,且单次放电脉冲的特性有一定的随机性。在交直流电晕试验平台下获得的电晕放电信号有一定的随机性,放电脉冲的重复率、单个放电脉冲的幅值、上升沿及脉宽等特性无法控制,同时这几个参数往往同时变化。因此,在交直流电晕试验平台下很难研究单个放电参数和声特性之间的关联特性,无法确定电晕放电参数对其产生可听噪声的影响规律。The corona discharge on the surface of the transmission line conductor will produce strong radio interference and audible noise, which will affect the surrounding electromagnetic environment. At present, the research on audible noise of transmission lines at home and abroad mainly focuses on on-site measurement and prediction formulas, but no in-depth research has been carried out on the generation mechanism of audible noise in transmission lines. Corona discharge consists of a series of single discharge pulses, the repetition rate of the discharge pulse is very high, and the characteristics of a single discharge pulse have certain randomness. The corona discharge signal obtained under the AC and DC corona test platform has certain randomness, and the characteristics such as the repetition rate of the discharge pulse, the amplitude, rising edge and pulse width of a single discharge pulse cannot be controlled, and these parameters often change at the same time . Therefore, it is difficult to study the correlation between individual discharge parameters and acoustic characteristics under the AC and DC corona test platform, and it is impossible to determine the influence of corona discharge parameters on the audible noise produced.
文献1(纳秒脉冲下SF6气体放电特性.高电压技术,38(7),2012,冉慧娟,王珏,王涛,严萍.)提出的放电回路通过负载盐水电阻调节电源输出电压,幅值0-200kV,放电间隙、限流电阻和分流器是在充满SF6气体的实验腔体里,电源和实验腔的连接采用同轴腔体,本放电回路的电流为几十至几百安培量级。上述放电回路结构复杂、电流较大,不能模拟毫安级的电晕放电电流,同时,放电腔的设计不便于开展放电产生声信号的测量。Document 1 (SF6 gas discharge characteristics under nanosecond pulse. High voltage technology, 38(7), 2012, Ran Huijuan, Wang Jue, Wang Tao, Yan Ping.) The discharge circuit proposed by the load salt water resistance adjusts the output voltage of the power supply, and the amplitude is 0- 200kV, the discharge gap, current limiting resistor and shunt are in the experimental chamber filled with SF6 gas. The connection between the power supply and the experimental chamber adopts a coaxial chamber. The current of this discharge circuit is on the order of tens to hundreds of amperes. The structure of the above-mentioned discharge circuit is complex and the current is relatively large, so it cannot simulate the corona discharge current at the milliampere level. At the same time, the design of the discharge chamber is not convenient for the measurement of the acoustic signal generated by the discharge.
发明内容Contents of the invention
本发明的目的是克服现有技术由于电晕放电的随机性及不可控性对可听噪声的产生机理研究带来的困难,提出一种脉冲放电回路。该脉冲放电回路可产生单次及重复频率的毫安级纳秒脉冲放电,放电幅值和重复频率可通过回路参数灵活控制,可模拟不同参数的电晕放电,实现了电晕放电参数的可控性。The purpose of the present invention is to overcome the difficulties brought by the randomness and uncontrollability of corona discharge to the research on the generation mechanism of audible noise in the prior art, and propose a pulse discharge circuit. The pulse discharge circuit can generate milliampere-level nanosecond pulse discharge with a single and repetition frequency. The discharge amplitude and repetition frequency can be flexibly controlled by the circuit parameters, which can simulate corona discharge with different parameters, and realize the control of corona discharge parameters. controlling.
本发明包括四个组成部分:脉冲电源、放电电极、限流电阻以及测量单元。脉冲电源的高压输出端和放电电极的高压端相连,放电电极的低压端和限流电阻的一端相连,限流电阻的另一端与脉冲电源的接地端相连并接地。测量单元包括电压测量单元和电流测量单元,电压测量单元采用高压探头在高压电极侧测量,高压探头与放电电极高压侧连接,电流测量单元通过罗氏线圈在限流电阻和接地线之间测量,连接限流电阻和接地的绝缘导线穿过罗氏线圈的中心圆孔。The invention includes four components: a pulse power supply, a discharge electrode, a current limiting resistor and a measuring unit. The high-voltage output end of the pulse power supply is connected to the high-voltage end of the discharge electrode, the low-voltage end of the discharge electrode is connected to one end of the current-limiting resistor, and the other end of the current-limiting resistor is connected to the ground end of the pulse power supply and grounded. The measurement unit includes a voltage measurement unit and a current measurement unit. The voltage measurement unit uses a high-voltage probe to measure on the high-voltage electrode side. The high-voltage probe is connected to the high-voltage side of the discharge electrode. The current-limiting resistor and the grounded insulated wire pass through the central hole of the Rogowski coil.
脉冲电源为输出脉冲幅值和重复频率连续可调的纳秒脉冲电源。脉冲电源的高压输出端采用电缆输出。放电电极包括高压电极、低压电极、金属杆、绝缘支架和固定螺钉。高压电极和低压电极和金属杆采用铜或不锈钢制成,绝缘支架采用绝缘材料制成。高压电极和低压电极带有内孔螺纹,通过内螺纹与带外螺纹的金属杆的一端连接,金属杆的另一端有内螺孔,可与其他器件连接;两根金属杆固定在绝缘支架的两侧,通过与高压电极连接的第一金属杆调节电极间距,通过固定螺钉将调整好电极间距的第一金属杆固定在绝缘支架上。所述的高压电极和低压电极是尖电极或板电极,其中高压电极采用尖电极形式,低压电极为板电极形式,或者高压电极和低压电极均采用尖电极形式。所述的限流电阻为高频高压无感电阻,电阻阻值为兆欧姆量级;限流电阻两端带有内螺孔,可与其他器件连接。脉冲电源的高压输出端和高压电极相连,低压电极和限流电阻的一端相连,限流电阻的另一端与脉冲电源的接地端相连并接地,高压电极和低压电极相对布置,两者的径向轴线共一条水平线。测量单元包括电压测量单元和电流测量单元;电压测量单元采用高压探头在高压电极侧测量,电流测量单元通过罗氏线圈在限流电阻和接地线之间测量电流。脉冲回路中的连接线均采用带有绝缘外皮的高压导线,连线尽量短。The pulse power supply is a nanosecond pulse power supply with continuously adjustable output pulse amplitude and repetition frequency. The high-voltage output end of the pulse power supply adopts cable output. The discharge electrodes include high-voltage electrodes, low-voltage electrodes, metal rods, insulating brackets and fixing screws. High-voltage electrodes and low-voltage electrodes and metal rods are made of copper or stainless steel, and insulating brackets are made of insulating materials. The high-voltage electrode and the low-voltage electrode have internal thread, which are connected with one end of the metal rod with external thread through the internal thread, and the other end of the metal rod has an internal screw hole, which can be connected with other devices; the two metal rods are fixed on the On both sides, the electrode spacing is adjusted through the first metal rod connected to the high-voltage electrode, and the first metal rod with the adjusted electrode spacing is fixed on the insulating support through fixing screws. The high-voltage electrode and the low-voltage electrode are pointed electrodes or plate electrodes, wherein the high-voltage electrode is in the form of a pointed electrode, and the low-voltage electrode is in the form of a plate electrode, or both the high-voltage electrode and the low-voltage electrode are in the form of a pointed electrode. The current-limiting resistor is a high-frequency, high-voltage non-inductive resistor, and its resistance is on the order of megohm; both ends of the current-limiting resistor have internal screw holes, which can be connected with other devices. The high-voltage output terminal of the pulse power supply is connected to the high-voltage electrode, the low-voltage electrode is connected to one end of the current-limiting resistor, and the other end of the current-limiting resistor is connected to the ground terminal of the pulse power supply and grounded. The high-voltage electrode and the low-voltage electrode are arranged oppositely. The axis is a horizontal line. The measurement unit includes a voltage measurement unit and a current measurement unit; the voltage measurement unit uses a high-voltage probe to measure on the high-voltage electrode side, and the current measurement unit measures the current between the current-limiting resistor and the ground wire through a Rogowski coil. The connecting wires in the pulse circuit are all high-voltage wires with insulating sheaths, and the connecting wires should be as short as possible.
控制脉冲电源输出的高压脉冲使放电间隙击穿,通过限流电阻控制回路的击穿电流,可获得毫安级的纳秒脉冲放电电流;放电脉冲的重复频率通过脉冲电源控制。利用传声器测量间隙击穿产生的可听噪声时的域波形,可研究不同放电参数及其产生声信号的关联特性。Control the high-voltage pulse output by the pulse power supply to break down the discharge gap, and control the breakdown current of the loop through the current-limiting resistor to obtain a milliampere-level nanosecond pulse discharge current; the repetition frequency of the discharge pulse is controlled by the pulse power supply. Using a microphone to measure the domain waveform of the audible noise generated by gap breakdown, the correlation characteristics of different discharge parameters and their generated acoustic signals can be studied.
本发明的积极效果是:可利用脉冲放电回路灵活改变和控制回路的放电脉冲参数,模拟不同参数的电晕放电,为电晕放电产生可听噪声的机理研究奠定理论和实验基础。The positive effect of the invention is that the pulse discharge circuit can be used to flexibly change and control the discharge pulse parameters of the circuit, simulate corona discharge with different parameters, and lay a theoretical and experimental foundation for the mechanism research of corona discharge to produce audible noise.
附图说明Description of drawings
图1为本发明一种脉冲放电回路示意图;Fig. 1 is a kind of pulse discharge circuit schematic diagram of the present invention;
图2为脉冲放电回路中放电电极的结构示意图。Fig. 2 is a schematic diagram of the structure of the discharge electrode in the pulse discharge circuit.
图中:1脉冲电源,2高压电极,3低压电极,4限流电阻,5电压测量单元,6电流测量单元,7与高压电极连接的金属杆,8与低压电极连接的金属杆,9绝缘支架,10固定螺钉。In the figure: 1 pulse power supply, 2 high voltage electrode, 3 low voltage electrode, 4 current limiting resistor, 5 voltage measurement unit, 6 current measurement unit, 7 metal rod connected with high voltage electrode, 8 metal rod connected with low voltage electrode, 9 insulation Bracket, 10 set screws.
具体实施方式Detailed ways
下面结合附图和具体实施方式对本发明做进一步描述。The present invention will be further described below in conjunction with the accompanying drawings and specific embodiments.
如图1所示,本发明包括脉冲电源1,放电电极,限流电阻4,测量单元5和6。脉冲电源1的高压输出端和放电电极的高压端2相连,放电电极的低压端3和限流电阻4的一端相连,限流电阻4的另一端与脉冲电源1的接地端相连并接地,电压测量单元5采用高压探头在放电电极高压侧测量电压,电流测量单元7通过罗氏线圈在限流电阻和接地线之间测量电流。脉冲电源1为输出脉冲幅值和重复频率连续可调的纳秒脉冲电源,脉冲电源的高压输出端采用电缆输出。As shown in FIG. 1 , the present invention includes a pulse power supply 1 , a discharge electrode, a current limiting resistor 4 , and measuring units 5 and 6 . The high-voltage output terminal of the pulse power supply 1 is connected to the high-voltage terminal 2 of the discharge electrode, the low-
放电电极的组成结构如图2所示。放电电极包括高压电极2、低压电极3、金属杆7和8、绝缘支架9、固定螺钉10。放电电极和金属杆采用铜或不锈钢制成,绝缘支架9采用绝缘材料制成。金属杆7、8分别固定在绝缘支架9的两侧。金属杆7、8的一端车有外螺纹,可与带有内孔螺纹的放电电极连接,金属杆7、8的另一端有内螺孔,可与其他器件连接。连接高压电极2的第一金属杆7可在绝缘支架9内部移动,以此来调节电极的间距。高压电极2和低压电极3之间的间距调整到位后,通过固定螺钉10固定第一金属杆7。第二金属杆8一端的外螺纹与车有内螺纹的绝缘支架9连接并固定。放电电极为尖电极或板电极两种形式,其中高压电极2采用尖电极,低压电极3为板电极,高压电极2和低压电极3也可都采用尖电极形式。高压电极2和低压电极3沿径向相对布置在同一水平线上。限流电阻4为高频高压无感电阻,电阻阻值为兆欧姆量级;限流电阻的两端带有内螺孔,可与其他器件连接。脉冲电源的高压输出端和高压电极2相连,低压电极3和限流电阻4的一端相连,限流电阻4的另一端与脉冲电源1的接地端相连并接地。测量系统包括电压单元5和电流测量单元6;电压测量单元5采用高压探头在高压电极侧测量电压,电流测量单元6通过罗氏线圈在限流电阻和接地线之间测量电流。脉冲回路中连接线均采用带有绝缘外皮的高压导线。The composition structure of the discharge electrode is shown in Fig. 2 . The discharge electrodes include high-voltage electrodes 2, low-
本发明具体实施以获得毫安级的纳秒脉冲电流为例。脉冲电源输出电压幅值0-30kV,输出脉冲的上升沿约30ns,脉宽约100ns,重复频率2kHz。放电电极中的高压电极为尖电极,低压电极为板电极。高压电极和低压电极分别与固定在绝缘支架两侧的两根金属杆连接,高、低压电极之间的间距通过与高压电极连接的金属杆调节,调节到位后,通过绝缘支架上方的固定螺钉固定。限流电阻为1MΩ的高频高压无感电阻,耐脉冲电压30kV,频率10MHz。脉冲电源的高压输出端通过高压导线和与高压电极相连的金属杆连接,与低压电极连接的金属杆通过高压导线和限流电阻的一端相连,限流电阻的另一端通过高压导线与脉冲电源的接地端相连并接地,接地线采用铜编织带,最后与实验室接地连接。电压采用高压探头在高压电极侧测量,电流通过罗氏线圈在限流电阻和接地线之间测量。The specific implementation of the present invention to obtain milliampere-level nanosecond pulse current is taken as an example. The output voltage amplitude of the pulse power supply is 0-30kV, the rising edge of the output pulse is about 30ns, the pulse width is about 100ns, and the repetition frequency is 2kHz. The high-voltage electrode in the discharge electrode is a pointed electrode, and the low-voltage electrode is a plate electrode. The high-voltage electrode and the low-voltage electrode are respectively connected to two metal rods fixed on both sides of the insulating support. The distance between the high-voltage and low-voltage electrodes is adjusted by the metal rod connected to the high-voltage electrode. After the adjustment is in place, it is fixed by the fixing screw above the insulating support. . The current-limiting resistance is a high-frequency and high-voltage non-inductive resistance of 1MΩ, with a pulse resistance of 30kV and a frequency of 10MHz. The high-voltage output end of the pulse power supply is connected to the metal rod connected to the high-voltage electrode through a high-voltage wire, and the metal rod connected to the low-voltage electrode is connected to one end of the current-limiting resistor through a high-voltage wire, and the other end of the current-limiting resistor is connected to the pulse power supply through a high-voltage wire. The ground terminal is connected and grounded, the ground wire adopts a copper braid, and finally connects with the laboratory ground. The voltage is measured on the high-voltage electrode side with a high-voltage probe, and the current is measured between the current-limiting resistor and the ground wire through the Rogowski coil.
本发明工作过程如下:控制脉冲电源,使其输出一定幅值的单次脉冲电压,电极没有发生击穿时,脉冲回路的电流为位移电流,电极发生击穿时,回路电流为击穿电流,击穿电流减去位移电流即为需要的单次毫安级纳秒脉冲电流。当脉冲电源输出重复频率的脉冲电压时,即可获得重复频率的毫安级纳秒脉冲电流。脉冲电流的幅值可通过脉冲电源的输出电压幅值及限流电阻来调控。放电产生的声信号可通过传声器采集,传声器距放电间隙约5cm之外,传声器直接朝向放电点测量。电压、电流及声信号的时域波形通过示波器采集,通过此回路及测量系统可获得不同放电参数和声信号之间的关联特性。The working process of the present invention is as follows: the pulse power supply is controlled to output a single pulse voltage of a certain amplitude. When the electrode does not break down, the current of the pulse loop is the displacement current. When the electrode breaks down, the loop current is the breakdown current. The breakdown current minus the displacement current is the required single milliampere nanosecond pulse current. When the pulse power supply outputs pulse voltage with repetition frequency, milliampere nanosecond pulse current with repetition frequency can be obtained. The amplitude of the pulse current can be adjusted by the output voltage amplitude of the pulse power supply and the current limiting resistor. The acoustic signal generated by the discharge can be collected by a microphone, the microphone is about 5cm away from the discharge gap, and the microphone is directly measured towards the discharge point. The time-domain waveforms of voltage, current and acoustic signals are collected by an oscilloscope, and the correlation characteristics between different discharge parameters and acoustic signals can be obtained through this loop and measurement system.
本发明可获得单次及重复频率的毫安级纳秒脉冲电流,且参数可控,可用于模拟不同参数的电晕放电。The invention can obtain milliampere-level nanosecond pulse current with single and repetition frequency, and the parameters are controllable, and can be used to simulate corona discharge with different parameters.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310574872.4A CN103630809A (en) | 2013-11-15 | 2013-11-15 | Pulse discharge loop |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310574872.4A CN103630809A (en) | 2013-11-15 | 2013-11-15 | Pulse discharge loop |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103630809A true CN103630809A (en) | 2014-03-12 |
Family
ID=50212063
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310574872.4A Pending CN103630809A (en) | 2013-11-15 | 2013-11-15 | Pulse discharge loop |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103630809A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105548626A (en) * | 2015-12-23 | 2016-05-04 | 国网重庆市电力公司电力科学研究院 | Pulse electric field generation apparatus |
CN106950525A (en) * | 2017-03-17 | 2017-07-14 | 中国科学院电工研究所 | A kind of pulse low current calibrating installation |
CN109510323A (en) * | 2018-12-17 | 2019-03-22 | 广东电网有限责任公司 | A kind of contactless electricity getting device |
CN119044296A (en) * | 2024-10-31 | 2024-11-29 | 西安爱邦电磁技术有限责任公司 | Device and method for judging damage of down conductor by charge pulse generation and collection |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000061291A1 (en) * | 1999-04-09 | 2000-10-19 | Jong Ha Do | Apparatus for experimenting on discharge phenomena using high voltages |
CN101620975A (en) * | 2008-07-02 | 2010-01-06 | 优志旺电机株式会社 | Discharge lamp |
-
2013
- 2013-11-15 CN CN201310574872.4A patent/CN103630809A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000061291A1 (en) * | 1999-04-09 | 2000-10-19 | Jong Ha Do | Apparatus for experimenting on discharge phenomena using high voltages |
CN101620975A (en) * | 2008-07-02 | 2010-01-06 | 优志旺电机株式会社 | Discharge lamp |
Non-Patent Citations (3)
Title |
---|
任成燕等: "直流电压下尖板电晕放电及其声特性试验分析", 《高电压技术》 * |
任成燕等: "直流电压下尖板电晕放电及其声特性试验分析", 《高电压技术》, vol. 39, no. 1, 31 January 2013 (2013-01-31) * |
许家雨等: "大气压空气中尖-尖间隙60kHz高压放电实验研究", 《高电压技术》 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105548626A (en) * | 2015-12-23 | 2016-05-04 | 国网重庆市电力公司电力科学研究院 | Pulse electric field generation apparatus |
CN105548626B (en) * | 2015-12-23 | 2018-11-27 | 国网重庆市电力公司电力科学研究院 | A kind of impulse electric field generation device |
CN106950525A (en) * | 2017-03-17 | 2017-07-14 | 中国科学院电工研究所 | A kind of pulse low current calibrating installation |
CN106950525B (en) * | 2017-03-17 | 2019-03-22 | 中国科学院电工研究所 | A kind of pulse low current calibrating installation |
CN109510323A (en) * | 2018-12-17 | 2019-03-22 | 广东电网有限责任公司 | A kind of contactless electricity getting device |
CN109510323B (en) * | 2018-12-17 | 2024-01-23 | 广东电网有限责任公司 | Non-contact electricity taking device |
CN119044296A (en) * | 2024-10-31 | 2024-11-29 | 西安爱邦电磁技术有限责任公司 | Device and method for judging damage of down conductor by charge pulse generation and collection |
CN119044296B (en) * | 2024-10-31 | 2025-02-07 | 西安爱邦电磁技术有限责任公司 | Device and method for generating and collecting charge pulses to judge down conductor damage |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101799488B (en) | Device and method for generating nominal voltage | |
Florkowska et al. | Measurement and analysis of surface partial discharges at semi-square voltage waveforms | |
CN102914731B (en) | Device for detecting point discharge in transformer oil under impulse voltage based on dual electrodes | |
CN103630809A (en) | Pulse discharge loop | |
JP2015021929A (en) | Partial discharge measurement instrument and calibrator for partial discharge measurement instrument | |
Huiskamp et al. | First implementation of a subnanosecond rise time, variable pulse duration, variable amplitude, repetitive, high-voltage pulse source | |
Zhao et al. | Partial discharge characteristics and development of typical XLPE power cable insulation defects | |
CN106950525B (en) | A kind of pulse low current calibrating installation | |
CN203811751U (en) | Power equipment partial discharge experimental system based on comparison fitting analysis | |
CN203191508U (en) | A GIS partial discharge detection test platform based on transient ground waves | |
CN105548626B (en) | A kind of impulse electric field generation device | |
Ren et al. | Experimental study on sound characteristics produced by DC corona and pulsed discharges | |
CN108710073A (en) | Partial discharge test system under the combination of gases electric appliance surge voltage of T-type structure | |
CN108710071A (en) | A kind of combination of gases electric appliance surge voltage propagation characteristic compact pilot system | |
CN106053993B (en) | Lightning Impulse Response Detection System for AC Line Tower | |
CN108710072B (en) | SF6 gas breakdown characteristic test system under actual impulse voltage waveform of electric appliance | |
Babicky et al. | Determination of electrical characteristics of nanosecond discharge in liquid | |
CN106771930A (en) | A kind of apparatus and method for observing drop bar surrounding soil impulsive discharge characteristic | |
Ardiansyah et al. | Surface Discharge Characteristics on the PCB Surface around the Edge of circle Plane-plane Electrode in Air Insulation | |
CN202886537U (en) | Double-electrode-based detection device for transformer oil point discharge under impulse voltage | |
Shen et al. | Partial discharge detection and characteristics of gas-insulated substation free metal particles based on acoustic emission | |
CN106841942A (en) | A kind of method for obtaining the lower grounding body surrounding soil ionic discharge starting field intensity of impact | |
Zhao et al. | Determining the resistance of X-pinch plasma | |
Yao et al. | Measurement and analysis of partial discharge on floating electrode defect in GIS | |
Dobrzycki et al. | Analysis of acoustic emission signals accompanying the process of electrical treeing of epoxy resins |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20140312 |