CN103626300A - 使用超嗜热生物体产能 - Google Patents
使用超嗜热生物体产能 Download PDFInfo
- Publication number
- CN103626300A CN103626300A CN201310433718.5A CN201310433718A CN103626300A CN 103626300 A CN103626300 A CN 103626300A CN 201310433718 A CN201310433718 A CN 201310433718A CN 103626300 A CN103626300 A CN 103626300A
- Authority
- CN
- China
- Prior art keywords
- biomass
- thermophilic organisms
- super thermophilic
- energy
- product
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/34—Biological treatment of water, waste water, or sewage characterised by the microorganisms used
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B09—DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
- B09B—DISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
- B09B3/00—Destroying solid waste or transforming solid waste into something useful or harmless
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B09—DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
- B09C—RECLAMATION OF CONTAMINATED SOIL
- B09C1/00—Reclamation of contaminated soil
- B09C1/10—Reclamation of contaminated soil microbiologically, biologically or by using enzymes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M41/00—Means for regulation, monitoring, measurement or control, e.g. flow regulation
- C12M41/12—Means for regulation, monitoring, measurement or control, e.g. flow regulation of temperature
- C12M41/18—Heat exchange systems, e.g. heat jackets or outer envelopes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M43/00—Combinations of bioreactors or fermenters with other apparatus
- C12M43/08—Bioreactors or fermenters combined with devices or plants for production of electricity
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P3/00—Preparation of elements or inorganic compounds except carbon dioxide
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P5/00—Preparation of hydrocarbons or halogenated hydrocarbons
- C12P5/02—Preparation of hydrocarbons or halogenated hydrocarbons acyclic
- C12P5/023—Methane
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/02—Preparation of oxygen-containing organic compounds containing a hydroxy group
- C12P7/04—Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
- C12P7/06—Ethanol, i.e. non-beverage
- C12P7/065—Ethanol, i.e. non-beverage with microorganisms other than yeasts
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2301/00—General aspects of water treatment
- C02F2301/10—Temperature conditions for biological treatment
- C02F2301/106—Thermophilic treatment
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/10—Biofuels, e.g. bio-diesel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/30—Fuel from waste, e.g. synthetic alcohol or diesel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
- Y02P20/129—Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
- Y02P20/133—Renewable energy sources, e.g. sunlight
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/30—Wastewater or sewage treatment systems using renewable energies
- Y02W10/33—Wastewater or sewage treatment systems using renewable energies using wind energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/30—Wastewater or sewage treatment systems using renewable energies
- Y02W10/37—Wastewater or sewage treatment systems using renewable energies using solar energy
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Health & Medical Sciences (AREA)
- Microbiology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Health & Medical Sciences (AREA)
- Biotechnology (AREA)
- Biochemistry (AREA)
- Genetics & Genomics (AREA)
- General Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Biomedical Technology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Sustainable Development (AREA)
- Hydrology & Water Resources (AREA)
- Soil Sciences (AREA)
- Mycology (AREA)
- Biodiversity & Conservation Biology (AREA)
- Molecular Biology (AREA)
- Water Supply & Treatment (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Analytical Chemistry (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Processing Of Solid Wastes (AREA)
Abstract
本发明涉及使用超嗜热生物体降解的领域,并且特别涉及使用超嗜热降解以从生物质产生热量。在一些实施方案中,在超嗜热生物体存在下,将生物质进行发酵来产生热量。将该热量用来加热直接用于热泵或辐射热中的液体或用来产生电力或驱动蒸汽轮机。
Description
本申请是申请日为2007年7月18日、申请号为200780030825.6的同名申请的分案申请。本申请要求2006年7月18日提交的美国临时申请60/831,635的权益,在此以其整体引入作为参考。
发明领域
本发明涉及使用超嗜热(hyperthermophilic)生物体降解的领域,特别是涉及使用超嗜热降解,以从生物质产热。
发明背景
常规能源的成本在过去几年中剧增,并且已经证明了许多常规能源如石油,煤炭和核能的使用对环境是有害的。
已经研发或提出了许多清洁的可替换的能源。这样的能源包括太阳能,地热能,风能,水电能,氢反应器和燃料电池。然而,这些能源中的许多是昂贵的(太阳能)或受到地理问题(地热,风和水能)的限制。
其他可替换的能源利用生物质。然而,那些系统通常涉及次生产物如乙醇的产生,或涉及原料的燃烧。这些方法遇到的问题包括环境的污染以及需要使用贵重的农田来产生生物质。
因此,本领域需要的是能利用废弃生物质原料或天然可获得的生物质原料来产生热或电的可替换的系统。
发明概述
本发明涉及使用超嗜热生物体降解的领域,特别是涉及使用超嗜热降解,以从生物质产生热。在一些实施方案中,本发明提供了一种系统,其包括:生物反应器,该生物反应器含有生物质和一群至少一个属的超嗜热生物体;和能量转移系统。在一些实施方案中,超嗜热生物体是厌氧超嗜热生物体。在一些优选的实施方案中,该厌氧超嗜热生物体选自火球菌属(Pyrococcus),热球菌属(Thermococcus),古老球菌属(Palaeococcus),酸菌属(Acidianus),热棒菌属(Pyrobaculum),热网菌属(Pyrodictium),火叶菌属(Pyrolobus),甲烷嗜热菌属(Methanopyrus),甲烷嗜热菌属(Methanothermus),超嗜热甲烷球菌,如詹氏甲烷球菌(Mc.Jannaschii),闪烁杆菌属(Fervidobacterium)和栖热袍菌属(Thermotoga),及其组合。在其他实施方案中,该超嗜热生物体是需氧超嗜热生物体,选自栖热菌属(Thermus),芽孢杆菌属(Bacillus)和高温放线菌属(Thermoactinomyces)。仍然在其他实施方案中,该需氧超嗜热生物体选自Aeropyrum pernix,勤奋生金球菌(Metallosphaera sedula)以及其他生金球菌属(Metallosphaera)物种,硫磺矿硫化叶菌(Sulfolobus solfataricus),Sulfobus tokodaii,嗜酸热原体(Thermoplasma acidophilum)和火山热原体(Thermoplasmavolcanium),及其组合。在一些实施方案中,给该生物质补充选自矿物质来源,维生素,氨基酸,能量来源和微生物提取物的细胞培养基成分。
在一些实施方案中,该能量转移系统选自燃料电池,燃烧装置,热电偶和热转移系统。在进一步的实施方案中,该燃烧装置包括蒸汽动力系统。仍然在进一步的实施方案中,该蒸汽动力系统是蒸汽涡轮或发生器。在一些实施方案中,该热转移系统包括热泵。在一些实施方案中,该能量转移系统是热电偶,并且其中能量转移系统进一步包括将水转化成氢和氧的电解系统。在一些优选的实施方案中,该生物质选自污水,农业废产物,如玉米浆和豆壳,啤酒厂谷物副产物,食品废料,有机工业废料,林业废料,作物,草,海藻,浮游生物,藻类,鱼,鱼废料,及其组合。
在一些实施方案中,本发明提供了一种方法,其包括:a)提供生物质和一群至少一个属的超嗜热生物体;b)在使得产热的条件下,在该群至少一个属的超嗜热生物体的存在下发酵生物质;c)使用该热来产生电或加热液体。在一些实施方案中,该超嗜热生物体是厌氧超嗜热生物体。
在一些优选的实施方案中,该厌氧超嗜热生物体选自火球菌属,热球菌属,古老球菌属,酸菌属(Aeropyrum和生金球菌不是厌氧的!),热棒菌属,热网菌属,火叶菌属,甲烷嗜热菌属,甲烷嗜热菌属,超嗜热甲烷球菌,如詹氏甲烷球菌,闪烁杆菌属和栖热袍菌属,及其组合。在其他实施方案中,该超嗜热生物体是选自栖热菌属,芽孢杆菌属和高温放线菌属的需氧超嗜热生物体。仍然在其他实施方案中,该需氧超嗜热生物体选自Aeropyrum pernix,硫磺矿硫化叶菌,勤奋生金球菌,Sulfobus tokodaii,嗜酸热原体和火山热原体,及其组合。在一些优选的实施方案中,该生物质选自污水,农业废产物,如玉米浆和豆壳,啤酒厂谷物副产物,食品废料,有机工业废料,林业废料,作物,草,海藻,浮游生物,藻类,鱼,鱼废料,及其组合。在一些实施方案中,给该生物质补充选自矿物质来源,维生素,氨基酸,能量来源和微生物提取物的细胞培养基成分。
在一些实施方案中,该液体是水,并且加热产生蒸汽。在一些实施方案中,该蒸汽用来驱动蒸汽轮机来产生电。在进一步的实施方案中,将该加热的液体转移至用于辐射热的建筑中。在一些实施方案中,通过热电偶产生电。在进一步的实施方案中,该电用于水的电解。在一些实施方案中,将该液体转移至热泵。
在一些实施方案中,本发明进一步提供了一种方法,包括:a)提供生物体和一群至少一个属的超嗜热微生物;和b)在使得产生降解产物的条件下,在该群至少一个属的超嗜热生物体的存在下降解生物质。在一些优选的实施方案中,该厌氧超嗜热生物体选自火球菌属,热球菌属,古老球菌属,酸菌属,热棒菌属,热网菌属,火叶菌属,甲烷嗜热菌属,甲烷嗜热菌属,超嗜热甲烷球菌,如詹氏甲烷球菌,闪烁杆菌属和栖热袍菌属,及其组合。在其他实施方案中,该超嗜热生物体是选自栖热菌属,芽孢杆菌属和高温放线菌属的需氧超嗜热生物体。仍然在其他实施方案中,该需氧超嗜热生物体选自Aeropyrumpernix,硫磺矿硫化叶菌,Sulfobus tokodaii,勤奋生金球菌,嗜酸热原体和火山热原体,及其组合。在一些优选的实施方案中,该生物质选自污水,农业废产物,如玉米浆和豆壳,啤酒厂谷物副产物,食品废料,有机工业废料,林业废料,作物,草,海藻,浮游生物,藻类,鱼,鱼废料,及其组合。在一些实施方案中,给该生物质补充选自矿物质来源,维生素,氨基酸,能量来源和微生物提取物的细胞培养基成分。在一些进一步优选的实施方案中,该降解产物选自氢,甲烷和乙醇。在一些实施方案中,该方法进一步包括将降解产物转化成能量的步骤。在一些实施方案中,该方法进一步包括在染料电池中使用氢的步骤。在一些实施方案中,该方法进一步包括在燃烧装置中使用甲烷或乙醇的步骤。
在一些实施方案中,本发明提供了减少二氧化碳排放的方法,包括:a)提供生物质和一群至少一个属的超嗜热生物体;b)在所述群的至少一个属的超嗜热生物体的存在下,厌氧降解所述生物质来产生用于产生能量的基质;和c)从所述基质产生能量,其中与所述生物质材料的需氧降解相比,减少了二氧化碳的排放。在进一步的实施方案中,本发明提供了产生碳信用的方法,包括:a)提供生物质和一群至少一个属的超嗜热生物体;b)在所述群的至少一个属的超嗜热生物体的存在下,厌氧降解所述生物质来产生用于产生能量的基质;和c)在使得产生碳信用的条件下从所述基质产生能量。
定义
如在此所用的,术语“生物质”指的是可以用作燃料或用于工业生产的生物材料。最常见的是,生物质指的是为用作生物燃料而生长的植物物质,但也包括为纤维,化学制品或热量生产而使用的植物或动物物质。生物质还可以包括可以用作染料的生物可降解废料。通常通过干重来测量。术语生物质对于植物是有用的,其中一些内部结构通常不认为是活的组织,如树的木材(次生木质部)。该生物质从植物产生,植物通过光合作用将日光转化成植物物质。生物质能量的来源导致农作物残余,能量种植园,以及市政和工业废弃物。如在此所用的,术语“生物质”排除了用于培养微生物的传统培养基的成分,如纯化淀粉,蛋白胨,酵母提取物,但包括为生产纯化淀粉而开发的工业方法过程中获得的废料。根据本发明,生物质可以源自单个来源,或生物质可以包括源自超过一种来源的混合物;例如,生物质可以包括玉米芯和玉米秸的混合物,或草和叶子的混合物。生物质包括,但不限于,生物能作物,农业残余,市政固体废弃物,工业固体废弃物,来自造纸的淤渣,草场废料,木材和林业废料。生物质的实例包括,但不限于,玉米粒,玉米芯,作物残余,如玉米壳,玉米秸,玉米浆液,草,小麦,小麦秆,大麦,大麦秆,来自啤酒酿造过程中大麦降解的谷物残余物,干草,稻草,柳枝稷,废纸,甘蔗渣,高粱,大豆,获自谷物加工中的成分,树木,枝条,根,叶,木屑,锯屑,灌木和矮树丛,豆壳,蔬菜,水果,花和动物肥料。在一个实施方案中,对于本发明有用的生物质包括具有相对高碳水化合物值,相对密集的和/或相对容易收集,运输,储存和/或处理的生物质。
如在此所用的,术语“生物质副产物”指的是产自生物质加工的生物质材料。
如在此所用的,术语“生物反应器”指的是用于容纳微生物和生物质材料的封闭或分离系统。“生物反应器”优选可以构造成用于微生物的厌氧生长。
如在此所用的,术语“超嗜热微生物”意指在80℃以上的温度下生长最佳的生物体。
如在此所用的,术语“降解”(“degrade”和“degradation”)指的是通过生化过程降低基质如生物质基质的复杂度的过程,优选通过微生物来促进(即,生物降解)。降解导致从复杂的化合物形成较简单的化合物如甲烷,乙醇,氢和其他相对简单的有机化合物(即,降解产物)。术语“降解”包括厌氧和需氧过程,包括发酵过程。
发明详述
本发明涉及使用超嗜热生物体的生物质降解的领域,并且特别涉及使用超嗜热降解,以从生物质产生热。为了方便,在以下章节中提供本发明的描述:A.超嗜热生物体;B.生物质;C.降解和能量产生;和D.碳信用产生。
A.超嗜热生物体
本发明考虑了使用超嗜热生物体来发酵生物质。嗜热细菌是能够在升高的温度下生长的生物体。与最佳生长温度范围为25-40℃的中温菌或最佳生长温度范围为15-20℃的低温菌不同,嗜热菌的最佳生长温度高于50℃。实际上,一些嗜热菌最佳在65-75℃下生长,并且一些超嗜热菌在高达113℃的温度下生长。(参见,例如,J.G.Black,Microbiology Principles and Applications(微生物学原理和应用),第2版,Prentice Hall,New Jersey,[1993]p.145-146;Dworkin,M.,Falkow,S.,Rosenberg,E,Schleifer,K-H.,Stackebarndt E.(编辑),The prokaryotes(原核生物),第三版,第3卷,p.3-28296和p.797-814和p.899-924;Madigan M.,Martinko,J.Brock Biology of Microorganisms(微生物生物学),第十一版,p.430-44和414-415。
嗜热菌包括多个属和种。光养菌(即,紫色细菌,绿色细菌和蓝细菌),细菌(即,芽孢杆菌属,梭菌属(Clostridium),硫杆菌属(Thiobacillus),Desulfotomaculum,栖热菌属,乳酸菌,放线菌属(Actinomycetes),螺旋菌属(Spirochetes),和多种其他的属),以及许多超嗜热目(即,火球菌属,热球菌属,栖热袍菌属,硫化叶菌属(Sulfolobus)和一些产甲烷菌)中包括嗜热的代表性菌。存在需氧以及厌氧的嗜热生物体。因此,其中可以分离嗜热菌的环境差异很大,尽管所有这些生物体分离自与高温相关的区域。天然的地温生境具有遍布全世界的分布,并且主要与地壳构造活动带相关,在这些活动带中发生着主要的地壳运动。已经从所有各种不同的地热生境中分离出了嗜热菌,包括具有中性pH范围的沸泉,富含硫的酸性温泉和深海烟囱。通常,使生物体最佳地适应它们生活在这些地热生境中的温度(T.D.Brock,“Introduction:An overview of thethermophiles”(介绍:嗜热菌的综述),在T.D.Brock(编辑),Thermophiles:General,Molecular and Applied Microbiology(嗜热菌:普通,分子和应用微生物学),John Wiley&Sons,New York[1986],pp.1-16;Madigan M.,Martinko,J.Brock,Biology ofMicroorganisms(微生物学),第十一版,p.442-446和p.299-328)。对嗜热菌的基础以及应用研究已经提供了一些对这些生物体的生理学的了解,以及预示了这些生物体在工业和生物技术中的用途。
本发明不限于使用任何特定的超嗜热生物体。在一些实施方案中,使用了超嗜热生物体的混合物。在一些实施方案中,该超嗜热菌来自古菌(archaeal)热球菌目(Thermococcales),包括但不限于火球菌属,热球菌属和古老球菌属的超嗜热菌。这些属内的特定生物体的实例包括,但不限于,激烈火球菌(Pyrococcus furiosus),Thermococcus barophilus,T.aggregans,T.aegaeicus,T.litoralis,T.alcaliphilus,T.sibiricus,T.atlanticus,T.siculi,T.pacificus,T.waiotapuensis,T zilligi,T.guaymasensis,T.fumicolans,T.gorgonarius,速生热球菌(T.celer),T.barossii,T.hydrothermalis,T.acidaminovorans,T.prfundus,斯氏热球菌(T.stetteri),T.kodakaraenis,T.peptonophilis。在一些实施方案中,使用了需氧超嗜热生物体,如Aeropyrum pernix,硫磺矿硫化叶菌,Sulfobus tokodaii,勤奋生金球菌,Sulfobus tokodaii,嗜酸热原体和火山热原体。同时在其他实施方案中,使用了厌氧或兼性需氧生物体,如Pyrobaculumcalidifontis和Pyrobaculum oguniense。其他有用的古菌生物体包括,但不限于,嗜酸热硫化叶菌(Sulfolobus acidocaldarius)和Acidianus ambivalens。在一些实施方案中,该超嗜热生物体是细菌,如水生栖热菌(Thermus aquaticus),嗜热栖热菌(Thermusthermophilus),黄栖热菌(Thermus flavu),红栖热菌(Thermusruber),热坚芽孢杆菌(Bacillus caldotenax),嗜热脂肪芽孢杆菌(Bacillus stearothermophilus),Anaerocellum thermophilus,普通高温放线菌(Thermoactinomyces vulgaris),和栖热袍菌目(Thermotogales),包括但不限于,埃氏热袍菌(Thermotoga elfeii),Thermotoga hypogea,海栖热袍菌(Thermotoga maritima),那不勒斯栖热袍菌(Thermotoga neapolitana),Thermotogasubterranean,温泉栖热袍菌(Thermotoga thermarum),Petrotogamiotherma,Petrotoga mobilis,非洲栖热腔菌(Thermosiphoafricanus),Thermosipho melanesiensis,海岛闪烁杆菌(Fervidobacterium islandicum),多节闪烁杆菌(Fervidobacterium nodosum),Fervidobacterium pennavorans,Fervidobacterium gondwanense,Geotoga petraea,Geotogasubterranea。
在一些实施方案中,通过筛选和选择合适的菌株来选择适于发酵生物质的上述生物体的超嗜热菌株。仍然在进一步的实施方案中,将合适的菌株通过基因修饰来包括理想的代谢酶,包括但不限于,水解酶,蛋白酶,醇脱氢酶和丙酮酸脱羧酶。参见,例如,(Bra/u,B.和H.Sahm[1986]Arch.Microbiol.146:105-110;Bra/u,B.andH.Sahm[1986]Arch.Microbiol.144:296-301;Conway,T.,Y.A.Osman,J.I.Konnan,E.M.Hoffmann和L.O.Ingram[1987]J.Bacteriol.169:949-954;Conway,T.,G.W.Sewell,Y.A.Osman和L.O.Ingram[1987]J.Bacteriol.169:2591-2597;Neale,A.D.,R.K.Scopes,R.E.H.Wettenhall和N.J.Hoogenraad[1987]Nucleic Acid.Res.15:1753-1761;Ingram,L.O.和T.Conway[1988]Appl.Environ.Microbiol.54:397-404;Ingram,L.O.,T.Conway,D.P.Clark,G.W.Sewell,和J.F.Preston[1987]Appl.Environ.Microbiol.53:2420-2425)。在一些实施方案中,将PET操纵子引入超嗜热菌中。参见美国专利US5,000,000,在此以其整体引入作为参考。
在一些实施方案中,选择通过降解产生乙醇的超嗜热菌。在一些实施方案中,在含有递增含量乙醇的培养基中选择这样的超嗜热菌,以选择具有增加的乙醇耐受性的菌株。因此,本发明的一些实施方案提供了具有增加的乙醇耐受性或提高的产乙醇能力的超嗜热菌。在一些优选的实施方案中,该超嗜热菌利用木质纤维素生物质。在进一步优选的实施方案中,该超嗜热菌利用葡萄糖,木糖,阿拉伯糖,半乳糖和甘露糖。
B.生物质
本发明考虑了用超嗜热生物体降解生物质。本发明不限于使用任何特定的生物质。合适的生物质包括,但不限于,污水,农业废产物,啤酒厂谷物副产物,食物废料,有机工业废料,林业废料,作物,草,海藻,浮游生物,藻类,鱼,鱼废料,及其组合。在一些实施方案中,收集该生物质特别用于超嗜热降解方法中,而在其他实施方案中,利用了来自先前存在的工业中的废料或副产物材料。
在一些优选的实施方案中,该生物质是木质纤维的。在一些实施方案中,用纤维素酶或其他酶预先处理生物质以消化纤维素。在一些实施方案中,通过在无机酸或碱催化剂的存在下加热来预处理生物质以完全或部分水解半纤维素,使纤维素消除结晶和除去木质素。这使得纤维素酶能接近该纤维素。
仍然在其他优选的实施方案中,给该生物质补充矿物质,能量来源或其他有机物质。矿物质的实例包括,但不限于,海水中发现的那些,如NaCl,MgSO4x7H2O,MgCl2x6H2O,CaCl2x2H2O,KCl,NaBr,H3BO3和SrCl2x6H2O,以及其他矿物质,如MnSO4xH2O,FeSO4x7H2O,CoSO4x7H2O,ZnSO4x7H2O,CuSO4x5H2O,KAl(SO4)2x12H2O,Na2MoOSO4x2H2O,(NHSO4)2Ni(SO4)2x6H2O,Na2WO4x2H2O和Na2SeO4。能量来源和其他基质的实例包括,但不限于,精制蔗糖,果糖,葡萄糖,淀粉,蛋白胨,酵母提取物,氨基酸,核苷酸,核苷,和细胞培养基中通常包括的其他成分。
C.降解和能量产生
在本发明优选的实施方案中,使用一群或多群超嗜热生物体来降解生物质。在一些实施方案中,将该生物质转移至容器如生物反应器中,并接种一株或多株超嗜热生物体。在一些实施方案中,将该容器的环境维持在足以使菌株代谢给料的温度,压力和pH下。在一些优选的实施方案中,该环境没有添加的硫或无机硫化物盐,或被处理以除去或抵消这样的化合物。在一些优选的实施方案中,将该环境维持在高于45℃的温度下。仍然在进一步的实施方案中,将该环境维持在55℃至90℃之间。在一些优选的实施方案中,将糖,淀粉,木聚糖,纤维素,油,石油,沥青,氨基酸,长链脂肪酸,蛋白质,或其组合加入到生物质中。在一些实施方案中,将水加入到生物质中,以形成至少部分含水的培养基。在一些实施方案中,含水培养基具有约0.2mg/升至2.8mg/升的溶解氧气浓度。在一些实施方案中,将该环境维持在大约4至10的pH下。在一些实施方案中,用选自氮,二氧化碳,氦,氖,氩,氪,氙及其组合的惰性气体预先处理该环境。而在其他实施方案中,将氧气加入到该环境中以支持需氧降解。
在一些实施方案中,在使用木质纤维素材料的情况下,如上所述将纤维素预先处理。在连续糖化和降解中的降解之前或通过一起加入纤维素和超嗜热菌接种物用于同时糖化和降解,将预先处理过的纤维素酶促水解。
预期生物质的降解将直接产生热形式的能量以及产生可以用于随后过程,包括能量的产生中的产物。在一些实施方案中,通过降解产生氢,甲烷和乙醇,并用于能量产生。在优选的实施方案中,从容器中移出这些产物。预期通过培养容器中的高温来促进气相中这些物质的移出。这些产物可以通过标准的方法被转化成能量,包括燃烧和/或蒸汽的形成,以驱动蒸汽轮机或发生器。在一些实施方案中,将氢用于燃料电池中。在一些实施方案中,形成了蛋白质,酸和甘油,可以将其纯化用于其他用途中,或例如,用作动物饲料。
在一些实施方案中,从容器中移出降解产物。预期可以进行降解的高温促进从容器气相中移出有价值的降解产物。在一些实施方案中,从容器中移出甲烷,氢和/或乙醇。在一些实施方案中,通过管导系统从容器中移出这些物质,使得产物可以用于产生动力或电。例如,在一些实施方案中,将甲烷或乙醇用于燃烧电池中,以产生动力或电。在一些实施方案中,通过蒸汽轮机或发生器产生蒸汽动力。在一些实施方案中,将产物包装使用。例如,可以将乙醇,甲烷或氢包装于罐或油罐车中并运输至远离发酵容器的场所。在其他实施方案中,将产物输入管道系统中。
仍然在其他实施方案中,使用容器中产生的热。在一些实施方案中,将产生的热用于辐射系统中,在其中将液体加热,然后在需要加热的区域中通过管子或管道循环。在一些实施方案中,将热用于热泵系统中。仍然在其他实施方案中,将热用于通过热电偶来产生电。在一些实施方案中,将产生的电用于通过电解反应来产生氢。
D.碳信用贸易
在一些实施方案中,本发明提供了产生碳信用的方法,该碳信用用于在已建立的碳信用贸易程序中的贸易,如依据Kyoto草案建立的那些贸易程序。于2005年1月开始运作的欧盟排放贸易体系(EU ETS)是全世界最大的跨国多地区的温室气体排放贸易计划。由于EU对联合国气候变化纲要公约(1997年商定,2005年批准)的Kyoto草案的响应,设立了该体系。这是参与通过减少六种温室气体,包括二氧化碳,甲烷,一氧化二氮,六氟化硫,全氟化碳(PFC)和氢氟碳(HFC)的排放抑制全球气温升高的工业化国家之间的协议。迄今为止,162个国家已经认可了该协议。值得注意的例外是美国和澳大利亚。此外,最快增长的经济体中的两个,印度和中国,没有被要求依据目前的协议来减少它们的碳排放。
Kyoto草案提供了三个执行机制来管理温室气体排放。第一个,国际排放贸易(IET),允许低于目前排放限制的国家在开放市场上将它们超额的定量出售给其他国家。第二个,跨国联合减量(JI),允许在其他工业化国家中投资温室气体排放减少项目的工业化国家的投资者接受称为“减排单位”(ERU)的排放信用。第三个,清洁发展机制(CDM),让来自工业化国家的投资者累积“核证的减排单位”(CER),用于帮助投资发展中国家的碳减排项目。
EU ETS存在于两个阶段,并包括所有高使用能量和动力的地区。第一个阶段,开始于2005年,结束于2007年,允许CO2许可权的贸易,具有扩展到其他五种温室气体的可能。迄今为止,在整个欧洲已经对12,000至15,000个工业生产设备的排放设定了上限。涵盖了45%的排放活动,包括动力,混凝土,纸浆,纸板和黑色金属。第二个阶段,从2008年至2012年,可能涵盖所有温室气体和生产设备,并将在市场种包括JI和CDM信用。重要的是注意到在第一个阶段中,实施了称为关联指南的修正案,这使得生产设备能够使用来自JI和CDM的CER和ERU以满足它们的排放目标。
EU ETS受EU委员会(EUC)的监管。在两个阶段中,EUC提出对GHG的限制,这通过EU排放许可权(EUA)的贸易来满足。目标是强迫公司通过在内部降低它们的GHG以及将任何未使用的EUA出售给市场来找到最低的减排成本。在第一个阶段的过程中,EUC对排放超过目标限制的生产设备征收€40/吨CO2。此外,这些生产设备必需在市场中获得它们过量的排放。在第二个阶段中,这种惩罚将为€100/吨CO2。
EU ETS中参与的国家通过国家分配计划(NAP)提交它们的目标GHG减少,然后由EUC来批准。根据挪威碳点顾问(Norwegianconsultant Point Carbon),在EU ETS的第一个阶段的过程中,EUC批准大约63亿许可权并允许每年分配另外21亿。
作为以建立体系的一个实例,欧洲重建和发展银行(EBRD)和欧洲投资银行(EIB)建立了多边碳信用基金(MCCF),用于中欧至中亚的国家。
通过加入MCCF,私人和上市公司以及EBRD和EIB股东国家可以从EIB或EBRD投资的排放减量计划购买碳信用以满足它们强制性的或自愿的温室气体(GHG)排放减量目标。
除了项目信用外,这些国家还可以通过MCCF参与绿色投资计划。这是一条促进政府与政府间的碳信用贸易的创新途径,由此出售国家使用来自碳信用销售的收入来支持有利于气候的项目的投资。可以从各种项目类型中产生碳信用,所有这些项目都减少或避免了GHG排放。这些包括从可再生能量如风,水,生物气体(来自垃圾填埋/废水)和生物质产生的信用。
在一些实施方案中,本发明通过利用生物质产生了用于贸易的碳信用。在其他实施方案中,本发明通过利用将另外形成甲烷的原料产生了用于贸易的碳信用,甲烷随后将释放至大气中,这些原料如肥料,污水,废水,垃圾填埋物质等。本发明不限于任何特定的作用机理。实际上,对于实施本发明不需要对作用机理的了解。不管怎样,预期在厌氧降解过程中使用超嗜热生物体对于减少碳排放是非常有效的,并且特别是二氧化碳的排放。特别地,与需氧降解或发酵过程相比较,使用厌氧降解将从生物质释放出来的二氧化碳含量减少了六倍。
在一些实施方案中,本发明提供了一种系统,其中使用超嗜热生物体降解生物质来产生能量,并且将通过使用该系统而产生得到的碳信用用于抵消由常规产能系统如煤,天然气和油的燃烧产生的温室气体排放。在一些实施方案中,产能系统是在单个实体的控制下,而在其他实施方案中,产能系统是在分开的实体的控制下,由使用矿物燃料的常规手段产生动力的实体来购买碳信用或进行贸易。
实验性的
1.选择用于降解方法中的超嗜热生物体
在该实施例中,选择来自火球菌属,热球菌属,古老球菌属,Aeropyrum pernix,硫化叶菌属,热棒菌属,火叶菌属,热网菌属,栖热菌属,嗜热脂肪芽孢杆菌,生金球菌属,Anaerocellum,高温放线菌属,栖热袍菌属,闪烁杆菌属和Geotoga的超嗜热生物体菌株并针对其产生发酵副产物乙醇,甲醇和氢的能力进行筛选。简而言之,通过在YT培养基(酵母提取物[2.0g/升],胰蛋白胨[4.0g/升],Na2S2O3[0.61g/升]和ASN-III盐)中培养细胞48h来制备种子接种物。给含有补充了特定碳水化合物(葡萄糖,木糖,阿拉伯糖,半乳糖和/或甘露糖)的基础培养基(胰蛋白胨(4.0g/升),Na2S2O3(0.61g/升)和ASN-III盐(人工海水盐,含有NaCl[29.8g/升],MgCl2[1.1g/升],MgSO4[2.0g/升],CaCl2[0.45g/升],KCl[0.g/升]和Na2CO3[0.024g/升])(pH7.0))的烧瓶接种10%种子培养基。然后用预先纯化的N2净化烧瓶并在150rpm的旋转摇床中于90℃-110℃进行孵育。通过监控660nm(OD660)处的光密度来观察细胞生长。从顶部空间和培养基中收集样品并通过GC分析发酵产物。
2.激烈火球菌和海栖热袍菌在废弃物和生物质基质上的生长
超嗜热古细菌激烈火球菌(生长范围67-103℃,最佳生长在100℃)使用简单和复杂的碳水化合物并将它们转化成乙酸盐,CO2和H2。只有在元素硫(S°)的存在下,H2用来将硫还原成H2S。指数生长的培养物产生~1μmol ml-1h-1H2(Schut等,2007,J.Bacteriol189,4431-4441)。实验室中的生长实验显示出对于良好的生长(2.2x108细胞/ml),菌株另外还需要蛋白胨和酵母提取物(如蛋白质和维生素来源)。淀粉作为唯一碳源时,只观察到差的生长(~5x107细胞/ml)。
海栖热袍菌是生长于55-90℃(在80℃生长最佳)之间的专性厌氧超嗜热细菌。和火球菌一样,它是海洋来源的并且在类似海水的培养基中培养。栖热袍菌是专性异养生物,优先发酵碳水化合物或复合的有机物质。通过栖热袍菌的细胞悬浮液的葡萄糖发酵产生了118molL-(+)乳酸盐,47mol乙酸盐,54mol CO2和9mol H2(Huber等,1986,Arch.Microbiol.144,324-333)。已经描述了栖热袍菌目的一些成员,如多节闪烁杆菌(Patel等,1985Arch.Microbiol.141,63-69)和海岛闪烁杆菌(Huber等,Arch.Microbiol.1990,154,105-111)还产生乙醇。在葡萄糖上生长13小时后,多节闪烁杆菌形成~25μmol乙醇/10ml培养液(Patel等,1985)。显示了在葡萄糖上生长的T.nodosum的发酵产物(每10ml培养物形成的微摩尔产物)的定量分析:乙醇10,乙酸盐115,乳酸盐162,CO2120和H2160/133微摩尔所消耗的葡萄糖。
两种生物体都没有将有机物完全氧化成CO2。基质中的碳被部分地转化成可溶性化合物,如乙酸盐和乳酸盐。两种生物体都产生少量的氢和可溶性化合物,乙酸盐。已经描述了热栖菌的一些成员还能产生乙醇(闪烁杆菌)。因此,这些厌氧生物体具有合成富含能量的化合物如H2和乙醇的能力。在生物质厌氧降解的过程中产生的CO2量显著低于需氧方法过程中释放的CO2,需氧方法将导致有机物完全氧化成CO2。使用纯培养物时或将废物灭菌时,在该方法过程中不产生甲烷的形成。通过栖热袍菌和火球菌(H2/CO2和乙酸盐)的有机物的降解形成的终产物可能形成了另外的甲烷。乙酸盐也可以转化成甲烷,但是没有描述过在乙酸盐上生长的超嗜热产甲烷菌。因此,不太可能的是在80至100℃进行发酵时从乙酸盐形成甲烷。
目的是研究激烈火球菌和海栖热袍菌作为降解废产物的模式系统的潜能,和研究它们在生长过程中产生和释放热量的能力。在1001批培养物中研究各种废产物的降解。在101个玻璃发酵罐中测量生长过程中的能量释放。将该发酵罐的加热系统进行改进来降低能量的输入。通过使用含铝外壳来隔开发酵罐并进一步通过苯乙烯来隔开。作为对照,还使用该系统测量了酿酒酵母的101个培养物的热量释放。
废物的利用
下面提供培养基的详细配制。
因为对于栖热袍菌目的一些成员已经描述了乙醇生产,我们还测定了在几种基质上的生长过程中乙醇的形成。对于乙醇生产,可以使用闪烁杆菌菌株(多节闪烁杆菌和海岛闪烁杆菌)。
生长过程中的产热
使用标准发酵罐来测量能量释放是困难的。当火球菌在发酵罐中生长时,在30h的培养时间过程中需要1060Wh输入来保持10升发酵罐的温度恒定在90℃。在生长的火球菌细胞不存在的情况下,30小时中的能量输入为1140Wh。这表明生长细胞不存在下的能量输入为35.5W/小时,生长细胞存在下的能量输入为32.5W/小时。在栖热袍菌生长过程中测量热量产生时,没有检测到由生长细胞产生的能量释放,尽管微生物生长非常好,在13.5个小时内达到4×108细胞/ml。
已知用于生物技术方法如通过酵母来进行乙醇发酵中的大发酵罐需要冷却,这是由于生长酵母释放的能量所引起的。为了控制用于检测产热的系统,我们将酵母在30℃下厌氧生长。在培养基接种后95小时的过程中,不需要外部能量输入来保持30℃的生长温度,并且培养基的温度甚至提高了0.5℃。这种发现表明检测系统适于测量由微生物产生的能量释放。为了证实我们测量的正确性,可取的是在空调房间里(室温固定在20℃)重复实验。
3.激烈火球菌1/2SME培养基
1/2SME
成分 | 含量 |
SME | 500.0ml |
KH2PO4 | 0.5g |
Wolfe′S矿物质elixir/10x/pH6,5/new+T | 1,0ml |
刃天青,0,1%溶液 | 1.0ml |
Na2Sx7-9H2O | 0.5g |
H2O2x蒸馏的,添加至最终体积 | 1000.0ml |
合成海水-SME
成分 | 含量 | 浓度 |
NaCl | 27.7g | 473.99mM |
MgSO4x7H2O | 7.0g | 28.4mM |
MgCl2x6H2O | 5.5g | 27.1mM |
CaCl2x2H2O | 0.75g | 5.1mM |
KCl | 0.65g | 8.7mM |
NaBr | 0.1g | 0.97mM |
H3BO3 | 0.03g | 0.49mM |
SrCl2x6H2O | 0.015g | 0.056mM |
KJ-Lsg.,0.05%ig | 0.1ml | 0.30μM |
H2O2x蒸馏的,添加至最终体积 | 1000.0ml |
Wolfe′s矿物质elixir10x/pH6,5/新+Titriplex
成分 | 含量 | 浓度 |
Titriplex1(亚硝基三乙酸) | 15.0g | 78.50mM |
MgSO4x7H2O | 30.0g | 121.70mM |
MnSO4xH2O | 5.0g | 29.60mM |
NaCl | 10.0g | 171.10mM |
FeSO4x7H2O | 1.0g | 3.60mM |
CoSO4x7H2O | 1.8g | 6.40mM |
CaCl2x2H2O | 1.0g | 6.80mM |
ZnSO4x7H2O | 1.8g | 6.30mM |
CuSO4x5H2O | 0.1g | 0.40mM |
KA1(SO4)2x12H2O | 0.18g | 0.38mM |
H3BO3 | 0.1g | 1.62mM |
Na2MOO4X2H2O | 0.1g | 0.41mM |
(NH4)2Ni(SO4)2x6H2O | 2.80g | 7.09mM |
Na2WO4x2H2O | 0.1g | 0.30mM |
Na2SeO4 | 0.1g | 0.53mM |
H2O,添加至最终体积 | 1000.0ml |
在标准培养基中,添加了以下的有机基质:
成分 | 含量 |
酵母提取物(Difco) | 0.1% |
来自酪蛋白的蛋白胨(Difco) | 0.1% |
淀粉(Merck) | 0.1% |
对于激烈火球菌:pH:7.0
顶部空间:N2/CO2
为了研究废物的利用,我们用各种废物:5%;乳清10%;鱼内脏0.95%替代了培养基的有机成分:谷物残余物。
4.栖热袍菌MM-I-培养基
MM-I-培养基
化合物 | 含量 |
SME | 250.0ml |
KH2PO4 | 0.5g |
(NH4)2SO4 | 0.5g |
NaHCO3 | 0.1g |
Wolfe,s矿物质elixir,10X/pH6.5/new+T | 1.5ml |
刃天青,0,1%溶液 | 1.0ml |
Na2Sx7-9H2O | 0.5g |
H2O2x蒸馏的,添加至最终体积 | 1000.0ml |
合成海水-SME
化合物 | 含量 | 浓度 |
NaCl | 27.7g | 473.99mM |
MgSO4x7H2O | 7.0g | 28.4mM |
MgCl2x6H2O | 5.5g | 27.1mM |
CaCl2x2H2O | 0.75g | 5.1mM |
KCl | 0.65g | 8.7mM |
NaBr | 0.1g | 0.97mM |
H3BO3 | 0.03g | 0.49mM |
SrCl2x6H2O | 0.015g | 0.056mM |
KJ-溶液,0.05%(w/v) | 0.1ml | 0.30μM |
H2O2x蒸馏的,添加至最终体积 | 1000.0ml |
Wolfe′s矿物质elixir10x/pH6.5/新+Titriplex
化合物 | 含量 | 浓度 |
Titriplex1(氨基三乙酸) | 15.0g | 78.50mM |
MgSO4x7H2O | 30.0g | 121.70mM |
MnSO4xH2O | 5.0g | 29.60mM |
NaCl | 10.0g | 171.10mM |
FeSO4x7H2O | 1.0g | 3.0mM |
CoSO4x7H2O | 1.8g | 6.40mM |
CaCl2x2H2O | 1.0g | 6.80mM |
ZnSO4x7H2O | 1.8g | 6.30mM |
CuSO4x5H2O | 0.1g | 0.40mM |
KA1(SO4)2x12H20 | 0.18g | 0.38mM |
H3BO3 | 0.1g | 1.62mM |
Na2MoO4x2H2O | 0.1g | 0.41mM |
(NH4)2Ni(SO4)2x6H2O | 2.80g | 7.09mM |
Na2WO4x2H2O | 0.1g | 0.30mM |
Na2SeO4 | 0.1g | 0.53mM |
H2O2x蒸馏的,添加至最终体积 | 1000.0ml |
为了海栖热袍菌的生长,添加了以下的有机基质:
化合物 | 含量 |
淀粉(Merck101252.1000) | 0.05% |
酵母提取物(Difco) | 0.05% |
为了研究在废物上的生长,有机基质由以下物质来替代:谷物残余物(5%w/w),乳清10%(v/v)和均质的鱼内脏0.9%(950g/100l)。
pH:7.0
顶部空间:N2
在一些实验中,在90℃研究了火球菌的初步生长,如果火球菌不能生长或火球菌生长至1×108细胞/ml培养基后,冷却至80℃,然后将相同的培养基接种栖热袍菌。在这些条件下观察到栖热袍菌在谷物残余物和鱼内脏的物质混合物上能良好生长;这表明栖热袍菌在火球菌培养基中生长良好。
Claims (23)
1.一种系统,包括:
生物反应器,所述生物反应器含有生物质和一群至少一个属的超嗜热生物体,其中所述生物质选自农业废产物,啤酒厂谷物副产物,食品废料,有机工业废料,林业废料,及其组合,并且所述超嗜热生物体选自火球菌属(Pyrococcus),热球菌属(Thermococcus),栖热袍菌属(Thermotoga),及其组合;
能量转移系统。
2.权利要求1的系统,其中所述能量转移系统选自燃料电池,燃烧装置,热电偶和热转移系统。
3.权利要求2的系统,其中所述燃烧装置包括蒸汽动力系统。
4.权利要求3的系统,其中所述蒸汽动力系统是蒸汽轮机或发生器。
5.权利要求2的系统,其中所述热转移系统包括热泵。
6.权利要求2的系统,其中所述能量转移系统是热电偶,并且其中所述能量转移系统进一步包括将水转化成氢和氧的电解系统。
7.权利要求1的系统,其中给所述的生物质补充选自矿物质源,维生素,氨基酸,能源和微生物提取物的细胞培养基成分。
8.权利要求7的系统,其中所述矿物质源选自NaCl,MgSO4,MgCl2,CaCl2,KCl,NaBr,H3BO3,SrCl2,MnSO4,FeSO4,CoSO4,ZnSO4,CuSO4,KAl(SO4)2,Na2WO4和Na2SeO4,及其组合。
9.权利要求7的系统,其中所述微生物提取物是酵母提取物。
10.权利要求7的系统,其中所述能源是淀粉。
11.一种方法,包括:
a)提供生物质和一群至少一个属的超嗜热生物体,其中所述生物质选自农业废产物,啤酒厂谷物副产物,食品废料,有机工业废料,林业废料,及其组合,并且所述超嗜热生物体选自火球菌属(Pyrococcus),热球菌属(Thermococcus),栖热袍菌属(Thermotoga),及其组合;
b)在使得产生热量的条件下,在所述那群至少一个属的超嗜热生物体的存在下,发酵所述生物质;
c)使用所述热量来产生电力或加热液体。
12.权利要求11的方法,其中所述液体是水,并且所述加热产生蒸汽。
13.权利要求12的方法,其中将所述蒸汽用来驱动蒸汽轮机,以产生电力。
14.权利要求11的方法,其中将所述加热过的液体转移至用于辐射热的建筑中。
15.权利要求11的方法,其中通过热电偶产生所述电力。
16.权利要求15的方法,其中将所述电力用于水的电解。
17.一种方法,包括:
a)提供生物质和一群至少一个属的超嗜热生物体,其中所述生物质选自农业废产物,啤酒厂谷物副产物,食品废料,有机工业废料,林业废料,及其组合,并且所述超嗜热生物体选自火球菌属(Pyrococcus),热球菌属(Thermococcus),栖热袍菌属(Thermotoga),及其组合;
b)在使得产生降解产物的条件下,在所述那群至少一个属的超嗜热生物体的存在下,降解所述生物质。
18.权利要求17的方法,其中所述降解产物选自氢,甲烷和乙醇。
19.权利要求17的方法,进一步包括将所述降解产物转化成能量的步骤。
20.权利要求19的方法,进一步包括在燃料电池中使用所述氢。
21.权利要求19的方法,进一步包括在燃烧装置中使用所述甲烷或乙醇。
22.用于减少二氧化碳排放的方法,包括:
a)提供生物质和一群至少一个属的超嗜热生物体,其中所述生物质选自农业废产物,啤酒厂谷物副产物,食品废料,有机工业废料,林业废料,及其组合,并且所述超嗜热生物体选自火球菌属(Pyrococcus),热球菌属(Thermococcus),栖热袍菌属(Thermotoga),及其组合;
b)在所述那群至少一个属的超嗜热生物体的存在下,厌氧降解所述生物质来产生用于产生能量的基质;
c)从所述基质产生能量,其中与所述生物质材料的需氧降解相比较,减少了二氧化碳排放。
23.用于产生碳信用的方法,包括:
a)提供生物质和一群至少一个属的超嗜热生物体,其中所述生物质选自农业废产物,啤酒厂谷物副产物,食品废料,有机工业废料,林业废料,及其组合,并且所述超嗜热生物体选自火球菌属(Pyrococcus),热球菌属(Thermococcus),栖热袍菌属(Thermotoga),及其组合;
b)在所述那群至少一个属的超嗜热生物体的存在下,厌氧降解所述生物质来产生用于产生能量的基质;
c)在使得产生碳信用的条件下,从所述基质产生能量。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US83163506P | 2006-07-18 | 2006-07-18 | |
US60/831,635 | 2006-07-18 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2007800308256A Division CN101506107B (zh) | 2006-07-18 | 2007-07-18 | 使用超嗜热生物体产能 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103626300A true CN103626300A (zh) | 2014-03-12 |
Family
ID=39344665
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2007800308256A Active CN101506107B (zh) | 2006-07-18 | 2007-07-18 | 使用超嗜热生物体产能 |
CN201310433718.5A Pending CN103626300A (zh) | 2006-07-18 | 2007-07-18 | 使用超嗜热生物体产能 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2007800308256A Active CN101506107B (zh) | 2006-07-18 | 2007-07-18 | 使用超嗜热生物体产能 |
Country Status (6)
Country | Link |
---|---|
US (2) | US9708208B2 (zh) |
EP (2) | EP2054351A2 (zh) |
CN (2) | CN101506107B (zh) |
AU (1) | AU2007315860B2 (zh) |
CA (1) | CA2657804C (zh) |
WO (1) | WO2008053353A2 (zh) |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8278087B2 (en) | 2006-07-18 | 2012-10-02 | The University of Regensburg | Energy production with hyperthermophilic organisms |
EP2054351A2 (en) | 2006-07-18 | 2009-05-06 | Hyperthermics Holding AS | Energy production with hyperthermophilic organisms |
WO2009149260A1 (en) * | 2008-06-04 | 2009-12-10 | Solix Biofuels, Inc. | Compositions, methods and uses for growth of microorganisms and production of their products |
US7927856B2 (en) * | 2008-08-15 | 2011-04-19 | Academia Sinica | Thermophilic endo-glucanase and uses thereof |
EP2342346B1 (en) * | 2008-09-24 | 2013-08-14 | Hyperthermics Holding AS | Thermotoga for treatment of biomass |
KR101094817B1 (ko) * | 2008-12-29 | 2011-12-16 | 한국에너지기술연구원 | 볏짚과 호열성 균주를 이용한 수소 생산 방법 |
US8889400B2 (en) | 2010-05-20 | 2014-11-18 | Pond Biofuels Inc. | Diluting exhaust gas being supplied to bioreactor |
US8969067B2 (en) | 2010-05-20 | 2015-03-03 | Pond Biofuels Inc. | Process for growing biomass by modulating supply of gas to reaction zone |
US20120156669A1 (en) | 2010-05-20 | 2012-06-21 | Pond Biofuels Inc. | Biomass Production |
US8940520B2 (en) | 2010-05-20 | 2015-01-27 | Pond Biofuels Inc. | Process for growing biomass by modulating inputs to reaction zone based on changes to exhaust supply |
US11512278B2 (en) | 2010-05-20 | 2022-11-29 | Pond Technologies Inc. | Biomass production |
US20120276633A1 (en) | 2011-04-27 | 2012-11-01 | Pond Biofuels Inc. | Supplying treated exhaust gases for effecting growth of phototrophic biomass |
US8903327B2 (en) * | 2011-09-15 | 2014-12-02 | Qualcomm Incorporated | Channel quality reporting using a dynamically adjusted measurement power offset |
US9534261B2 (en) | 2012-10-24 | 2017-01-03 | Pond Biofuels Inc. | Recovering off-gas from photobioreactor |
ITMI20130109A1 (it) * | 2013-01-24 | 2014-07-25 | Consiglio Nazionale Ricerche | Procedimento per il sequestro di anidride carbonica e la produzione fermentativa di composti organici |
US20160086275A1 (en) * | 2014-09-24 | 2016-03-24 | Sourcewater, Inc. | Computerized techniques for facilitating exchange of a water resource |
KR102210393B1 (ko) * | 2017-02-09 | 2021-02-01 | 어플라이드 머티어리얼스, 인코포레이티드 | 수증기 및 산소 시약을 이용하는 플라즈마 저감 기술 |
US20220000144A1 (en) * | 2018-10-11 | 2022-01-06 | Hyperthermics As | Protein concentration with hyperthermophilic organisms |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1343258A (zh) * | 1999-03-11 | 2002-04-03 | 丹·维瑟 | 一种生产乙醇的方法 |
CN1396955A (zh) * | 2000-01-18 | 2003-02-12 | 达戈控股公司 | 由有机物产生含甲烷的沼气的方法和装置 |
Family Cites Families (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3676363A (en) | 1969-09-04 | 1972-07-11 | Benjamin Mosier | Production of weighted microcapsular materials |
PH15950A (en) | 1981-08-13 | 1983-05-04 | Matshushita Electric Ind | Methane fermentation |
NO149108C (no) | 1981-10-21 | 1984-02-15 | Sintef | Fremgangsmaate for fremstilling av vandige dispersjoner av organisk materiale og eventuelt videre omdannelse til en polymerdispersjon naar det organiske materiale er en polymeriserbar monomer |
US4670166A (en) | 1985-02-27 | 1987-06-02 | Exxon Chemical Patents Inc. | Polymer article and its use for controlled introduction of reagent into a fluid |
US4787455A (en) | 1987-11-18 | 1988-11-29 | Mobil Oil Corporation | Method for scale and corrosion inhibition in a well penetrating a subterranean formation |
US5000000A (en) | 1988-08-31 | 1991-03-19 | University Of Florida | Ethanol production by Escherichia coli strains co-expressing Zymomonas PDC and ADH genes |
US4986354A (en) | 1988-09-14 | 1991-01-22 | Conoco Inc. | Composition and placement process for oil field chemicals |
US4986353A (en) | 1988-09-14 | 1991-01-22 | Conoco Inc. | Placement process for oil field chemicals |
US5624841A (en) | 1991-08-09 | 1997-04-29 | Microbiological Research Authority, Of Centre For Applied Microbiology & Research | Process for the production of thermophilic microorganisms in high yield |
DE4209779C1 (zh) | 1992-03-26 | 1993-07-15 | Oelmuehle Leer Connemann Gmbh & Co., 2950 Leer, De | |
JP2657763B2 (ja) * | 1993-09-07 | 1997-09-24 | 財団法人地球環境産業技術研究機構 | 微生物による水素製造法 |
US5661017A (en) | 1993-09-14 | 1997-08-26 | Dunahay; Terri Goodman | Method to transform algae, materials therefor, and products produced thereby |
US5486068A (en) | 1993-11-03 | 1996-01-23 | Soil And Water Management, Inc. | Process for treating waste materials with concentrated acid and the product produced thereby |
GB2284223B (en) | 1993-11-27 | 1996-10-09 | Atomic Energy Authority Uk | Oil well treatment |
US5525229A (en) | 1994-09-14 | 1996-06-11 | North Carolina State University | Process and apparatus for anaerobic digestion |
GB9503949D0 (en) | 1995-02-28 | 1995-04-19 | Atomic Energy Authority Uk | Oil well treatment |
JPH08308587A (ja) * | 1995-03-13 | 1996-11-26 | Osaka Gas Co Ltd | 水素供給設備およびコジェネレーション設備 |
GB9611422D0 (en) | 1996-05-31 | 1996-08-07 | Bp Exploration Operating | Coated scale inhibitors |
JPH1066996A (ja) * | 1996-08-28 | 1998-03-10 | Osaka Gas Co Ltd | メタン生成方法及びメタン生成装置 |
US6000551A (en) | 1996-12-20 | 1999-12-14 | Eastman Chemical Company | Method for rupturing microalgae cells |
US5910254A (en) | 1996-12-20 | 1999-06-08 | Eastman Chemical Company | Method for dewatering microalgae with a bubble column |
EP1023347B1 (en) | 1997-10-10 | 2004-12-29 | Polymer Systems AS | Method of production of particulate polymers |
GB9800954D0 (en) | 1998-01-17 | 1998-03-11 | Aea Technology Plc | Well treatment with micro-organisms |
GB9808490D0 (en) | 1998-04-22 | 1998-06-17 | Aea Technology Plc | Well treatment for water restriction |
EP1259466B1 (en) | 2000-02-17 | 2008-10-22 | Technical University of Denmark | A method for processing lignocellulosic material |
US6299774B1 (en) * | 2000-06-26 | 2001-10-09 | Jack L. Ainsworth | Anaerobic digester system |
WO2002006503A2 (en) | 2000-07-18 | 2002-01-24 | United States Department Of Energy | Process for generation of hydrogen gas from various feedstocks using thermophilic bacteria |
TW538005B (en) * | 2000-09-22 | 2003-06-21 | Shinko Pantec Co Ltd | Method to treat organic waste water and apparatus therefor |
US6524486B2 (en) | 2000-12-27 | 2003-02-25 | Sepal Technologies Ltd. | Microalgae separator apparatus and method |
JP3771475B2 (ja) | 2001-10-05 | 2006-04-26 | 忠行 今中 | 水素の製造法および製造装置 |
SE521571C2 (sv) * | 2002-02-07 | 2003-11-11 | Greenfish Ab | Integrerat slutet recirkulerande system för rening av spillvatten i vattenbruk. |
JP2003326237A (ja) * | 2002-03-05 | 2003-11-18 | Osaka Gas Co Ltd | 有機性廃棄物処理システム |
US20030211594A1 (en) | 2002-05-07 | 2003-11-13 | Rosebrook Donald Ian | Microalgae for remediation of waste and method of culturing the same |
US20050064577A1 (en) * | 2002-05-13 | 2005-03-24 | Isaac Berzin | Hydrogen production with photosynthetic organisms and from biomass derived therefrom |
CA2411383A1 (en) | 2002-11-07 | 2004-05-07 | Real Fournier | Method and apparatus for concentrating an aqueous suspension of microalgae |
US20050026262A1 (en) | 2003-07-30 | 2005-02-03 | Sonoenergy, Llc | Sonication-enhanced digestion process |
WO2005033020A1 (en) | 2003-09-19 | 2005-04-14 | Clemson University | Controlled eutrophication system and process |
HUP0402444A2 (en) * | 2004-11-26 | 2006-11-28 | Univ Szegedi | Process for enhancing the biogas production of thermophyl anaerobic fermenter |
WO2006119052A2 (en) * | 2005-05-03 | 2006-11-09 | Anaerobe Systems | Anaerobic production of hydrogen and other chemical products |
EP2054351A2 (en) | 2006-07-18 | 2009-05-06 | Hyperthermics Holding AS | Energy production with hyperthermophilic organisms |
-
2007
- 2007-07-18 EP EP07866561A patent/EP2054351A2/en not_active Ceased
- 2007-07-18 CN CN2007800308256A patent/CN101506107B/zh active Active
- 2007-07-18 EP EP13168386.4A patent/EP2657196B1/en active Active
- 2007-07-18 US US11/879,710 patent/US9708208B2/en active Active
- 2007-07-18 WO PCT/IB2007/003772 patent/WO2008053353A2/en active Application Filing
- 2007-07-18 AU AU2007315860A patent/AU2007315860B2/en active Active
- 2007-07-18 CN CN201310433718.5A patent/CN103626300A/zh active Pending
- 2007-07-18 CA CA2657804A patent/CA2657804C/en active Active
-
2017
- 2017-07-17 US US15/651,743 patent/US20170313609A1/en not_active Abandoned
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1343258A (zh) * | 1999-03-11 | 2002-04-03 | 丹·维瑟 | 一种生产乙醇的方法 |
CN1396955A (zh) * | 2000-01-18 | 2003-02-12 | 达戈控股公司 | 由有机物产生含甲烷的沼气的方法和装置 |
Non-Patent Citations (1)
Title |
---|
J.W.VAN GROENESTIJN ET AL.: "Energy aspects of biological hydrogen production in high rate bioreactors operated in the thermophilic temperature range", 《INTERNATIONAL JOURNAL OF HYDROGEN ENERGY》 * |
Also Published As
Publication number | Publication date |
---|---|
WO2008053353A2 (en) | 2008-05-08 |
CA2657804A1 (en) | 2008-05-08 |
US20080131958A1 (en) | 2008-06-05 |
EP2657196A2 (en) | 2013-10-30 |
AU2007315860A1 (en) | 2008-05-08 |
EP2657196B1 (en) | 2017-09-06 |
CN101506107A (zh) | 2009-08-12 |
CA2657804C (en) | 2016-01-05 |
US9708208B2 (en) | 2017-07-18 |
US20170313609A1 (en) | 2017-11-02 |
AU2007315860B2 (en) | 2011-12-01 |
WO2008053353A3 (en) | 2009-03-05 |
EP2054351A2 (en) | 2009-05-06 |
EP2657196A3 (en) | 2013-11-13 |
CN101506107B (zh) | 2013-10-30 |
WO2008053353A8 (en) | 2008-07-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101506107B (zh) | 使用超嗜热生物体产能 | |
US20210171990A1 (en) | Energy production with hyperthermophilic organisms | |
Zabed et al. | Biogas from microalgae: Technologies, challenges and opportunities | |
EP2679688B1 (en) | Biogas production with hyperthermophilic and methanogenic micro-organisms | |
US7888085B2 (en) | Method for increased production of biogas | |
Lavrič et al. | Thermal pretreatment and bioaugmentation improve methane yield of microalgal mix produced in thermophilic anaerobic digestate | |
US20220000144A1 (en) | Protein concentration with hyperthermophilic organisms | |
Katima | Production of biogas from water hyacinth: effect of subtrate concentration, particle size and incubation period. | |
Utami et al. | Conversion of palm oil mill effluent on biogas production with consortium bacteria | |
US20150232885A1 (en) | Production of biokerosene with hyperthermophilic organisms | |
AU2014240288B2 (en) | Energy production with hyperthermophilic organisms | |
Yang et al. | Sustainable waste management: valorization of waste for biohydrogen production | |
Green | The feasibility of using Fallopia japonica for biogas production | |
Klassen | Systematic analysis of anaerobic conversion of microalgal biomass into biomethane aiming for process efficiency optimization | |
BUDHA et al. | Energy Recovery And Solid Organic Waste Management Using Dry Anaerobic Digestion | |
Ivanova | Hydrogen production from biomaterials by the extreme thermophile Caldicellulosiruptor saccharolyticus | |
Utami | Effluent on Biogas Production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20140312 |