CN103626167A - Preparation method for graphene - Google Patents
Preparation method for graphene Download PDFInfo
- Publication number
- CN103626167A CN103626167A CN201310364515.5A CN201310364515A CN103626167A CN 103626167 A CN103626167 A CN 103626167A CN 201310364515 A CN201310364515 A CN 201310364515A CN 103626167 A CN103626167 A CN 103626167A
- Authority
- CN
- China
- Prior art keywords
- reaction system
- add
- preparation
- graphene
- hours
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 81
- 229910021389 graphene Inorganic materials 0.000 title claims abstract description 56
- 238000002360 preparation method Methods 0.000 title claims abstract description 24
- 238000006243 chemical reaction Methods 0.000 claims abstract description 44
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 43
- 238000003756 stirring Methods 0.000 claims abstract description 32
- 239000006185 dispersion Substances 0.000 claims abstract description 23
- 229910002804 graphite Inorganic materials 0.000 claims abstract description 23
- 239000010439 graphite Substances 0.000 claims abstract description 23
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims abstract description 16
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 claims abstract description 16
- 239000008367 deionised water Substances 0.000 claims abstract description 15
- 229910021641 deionized water Inorganic materials 0.000 claims abstract description 15
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid Substances OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims abstract description 14
- 239000003960 organic solvent Substances 0.000 claims abstract description 10
- 238000009835 boiling Methods 0.000 claims abstract description 9
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims abstract description 8
- 239000012153 distilled water Substances 0.000 claims abstract description 8
- 239000012044 organic layer Substances 0.000 claims abstract description 8
- 239000012286 potassium permanganate Substances 0.000 claims abstract description 8
- 239000004317 sodium nitrate Substances 0.000 claims abstract description 8
- 235000010344 sodium nitrate Nutrition 0.000 claims abstract description 8
- 239000003638 chemical reducing agent Substances 0.000 claims abstract description 6
- 238000000034 method Methods 0.000 claims description 34
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims description 14
- 239000000203 mixture Substances 0.000 claims description 14
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims description 12
- CXWXQJXEFPUFDZ-UHFFFAOYSA-N tetralin Chemical compound C1=CC=C2CCCCC2=C1 CXWXQJXEFPUFDZ-UHFFFAOYSA-N 0.000 claims description 9
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 claims description 8
- 239000010410 layer Substances 0.000 claims description 8
- 238000010992 reflux Methods 0.000 claims description 7
- 229910000029 sodium carbonate Inorganic materials 0.000 claims description 7
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 claims description 6
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 6
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 claims description 5
- YNQLUTRBYVCPMQ-UHFFFAOYSA-N Ethylbenzene Chemical compound CCC1=CC=CC=C1 YNQLUTRBYVCPMQ-UHFFFAOYSA-N 0.000 claims description 4
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 claims description 4
- ZZZCUOFIHGPKAK-UHFFFAOYSA-N D-erythro-ascorbic acid Natural products OCC1OC(=O)C(O)=C1O ZZZCUOFIHGPKAK-UHFFFAOYSA-N 0.000 claims description 3
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 claims description 3
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 claims description 3
- 229930003268 Vitamin C Natural products 0.000 claims description 3
- 239000012279 sodium borohydride Substances 0.000 claims description 3
- 229910000033 sodium borohydride Inorganic materials 0.000 claims description 3
- 235000019154 vitamin C Nutrition 0.000 claims description 3
- 239000011718 vitamin C Substances 0.000 claims description 3
- 239000008096 xylene Substances 0.000 claims description 3
- 239000012467 final product Substances 0.000 claims description 2
- 239000002245 particle Substances 0.000 claims description 2
- 238000013517 stratification Methods 0.000 claims description 2
- 238000005406 washing Methods 0.000 abstract description 6
- 238000000926 separation method Methods 0.000 abstract description 5
- 230000009467 reduction Effects 0.000 abstract description 4
- 238000001914 filtration Methods 0.000 abstract description 3
- 238000001035 drying Methods 0.000 abstract description 2
- 238000010907 mechanical stirring Methods 0.000 description 10
- 238000006722 reduction reaction Methods 0.000 description 9
- 239000000463 material Substances 0.000 description 5
- 239000013078 crystal Substances 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 2
- 150000001721 carbon Chemical group 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 239000002041 carbon nanotube Substances 0.000 description 2
- 229910021393 carbon nanotube Inorganic materials 0.000 description 2
- 238000000407 epitaxy Methods 0.000 description 2
- 238000004299 exfoliation Methods 0.000 description 2
- 239000012074 organic phase Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical compound C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 1
- 230000005355 Hall effect Effects 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910003472 fullerene Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
- 238000001947 vapour-phase growth Methods 0.000 description 1
Images
Landscapes
- Carbon And Carbon Compounds (AREA)
Abstract
本发明公开了一种石墨烯的制备方法,包括以下步骤:1)将石墨加入浓硫酸中并分散,后依次加入高锰酸钾和硝酸钠;2)加入蒸馏水,搅拌均匀后加入双氧水,得亮黄色的反应体系A;3)调节反应体系A的pH为6,超声分散2~5h,得分散体系;4)向分散体系中加入高沸点有机溶剂和还原剂,搅拌反应5~10h,得反应体系B;5)将反应体系B静置分层,用去离子水将有机层洗涤至无硫酸根离子,过滤并冷冻干燥,即得。本发明的石墨烯的制备方法,省去了氧化石墨过滤、洗涤、干燥等步骤,节省大量的分离时间和洗涤用水,具有省时、省工、节约用水、减少污染、成本低、制备量大的优点。
The invention discloses a preparation method of graphene, which comprises the following steps: 1) adding graphite into concentrated sulfuric acid and dispersing it, and then sequentially adding potassium permanganate and sodium nitrate; 2) adding distilled water, stirring evenly, and then adding hydrogen peroxide to obtain Bright yellow reaction system A; 3) adjust the pH of reaction system A to 6, and ultrasonically disperse for 2 to 5 hours to obtain a dispersion system; 4) add a high boiling point organic solvent and a reducing agent to the dispersion system, and stir for 5 to 10 hours to obtain Reaction system B; 5) The reaction system B was left to stand and separated, and the organic layer was washed with deionized water until sulfate ions were free, filtered and freeze-dried to obtain the obtained product. The preparation method of graphene of the present invention saves graphite oxide filtration, washing, drying and other steps, saves a lot of separation time and washing water, has the advantages of time saving, labor saving, water saving, pollution reduction, low cost and large amount of preparation The advantages.
Description
技术领域technical field
本发明属于石墨烯材料技术领域,涉及一种石墨烯的制备方法。The invention belongs to the technical field of graphene materials, and relates to a preparation method of graphene.
背景技术Background technique
石墨烯是由单层sp2碳原子组成的六方蜂巢状二维结构,其结构分解可以变成零维的富勒烯,卷曲可以形成一维的碳纳米管,叠加可以形成三维石墨。石墨烯的每个碳原子通过σ键与其它三个碳原子相连形成六元环结构,这些C-C键致使石墨烯片层具有优异的结构刚性;同时,每个碳原子都贡献一个未成键的π电子,这些π电子在与石墨层平行的方向上形成π轨道,赋予石墨烯良好的导电、导热性能、超常的比表面积、杨氏模量和断裂强度,也可与碳纳米管媲美,还具有一些独特的性能,如完美的量子隧道效应、半整数量子霍尔效应、永不消失的电导率等一系列性质,并且价格便宜。正是由于石墨烯材料具有如此众多奇特的性质,其引起了物理、化学、材料等不同领域科学家的极大研究兴趣,也使得石墨烯在电子、信息、能源、材料和生物医药等领域具有重大的应用前景。Graphene is a hexagonal honeycomb two-dimensional structure composed of a single layer of sp2 carbon atoms. Its structure can be decomposed into zero-dimensional fullerene, curled to form one-dimensional carbon nanotubes, and superimposed to form three-dimensional graphite. Each carbon atom of graphene is connected to other three carbon atoms through a σ bond to form a six-membered ring structure. These CC bonds make the graphene sheet have excellent structural rigidity; at the same time, each carbon atom contributes an unbonded π Electrons, these π electrons form π orbitals in the direction parallel to the graphite layer, endowing graphene with good electrical conductivity, thermal conductivity, extraordinary specific surface area, Young's modulus and fracture strength, which are also comparable to carbon nanotubes, and also have Some unique properties, such as a series of properties such as perfect quantum tunneling effect, half-integer quantum Hall effect, never-disappearing conductivity, and cheap. It is precisely because graphene materials have so many unique properties that they have aroused great research interests of scientists in different fields such as physics, chemistry, and materials, and also make graphene play an important role in the fields of electronics, information, energy, materials, and biomedicine. application prospects.
目前,石墨烯的制备方法主要有机械剥离法、外延生长法、取向附生法、气相沉积法和氧化还原法。机械剥离法是通过机械力从体相石墨晶体的表面剥离出石墨烯片的方法,此法原料易得,操作相对简单,合成的石墨烯的纯度高、缺陷较少,但此法操作费时、产率低下,不适于大规模生产。外延生长法是通过加热单晶6H-SiC脱除Si,在单晶SiC面上分解出石墨烯片层,这种方法条件苛刻(高温、高真空),且制造的石墨烯不易从衬底上分离出来,难以大量制造石墨烯。取向附生法是利用生长基质的原子结构“种”出石墨烯,该方法制备的石墨烯往往厚度不均匀,且石墨烯和基质之间的相互作用会影响石墨烯的特性。化学气相沉积是反应物质在相当高的温度、气态条件下发生化学反应,生成的固态物质沉积在加热的固态基体表面,进而制得固体材料的工艺技术。该方法是工业上应用最广泛的一种大规模制备半导体薄膜材料的方法,也是目前制备石墨烯的一条有效途径,可用于制备大面积的电子器件(如电极、显示器等),为石墨烯的商业化应用提供了一条有效的途径,但现阶段较高的成本、复杂的工艺以及精确的控制加工条件制约了该方法的发展。At present, the preparation methods of graphene mainly include mechanical exfoliation method, epitaxial growth method, epitaxy method, vapor phase deposition method and redox method. The mechanical exfoliation method is a method of exfoliating graphene sheets from the surface of bulk graphite crystals by mechanical force. The raw materials of this method are easy to obtain, the operation is relatively simple, and the synthesized graphene has high purity and fewer defects, but this method is time-consuming and labor-intensive. The yield is low and not suitable for large-scale production. The epitaxial growth method removes Si by heating single crystal 6H-SiC, and decomposes graphene sheets on the surface of single crystal SiC. Separated, it is difficult to manufacture graphene in large quantities. The epitaxy method uses the atomic structure of the growth substrate to "plant" graphene. The thickness of graphene prepared by this method is often uneven, and the interaction between graphene and the substrate will affect the characteristics of graphene. Chemical vapor deposition is a process technology in which the reacting substances react chemically under relatively high temperature and gaseous conditions, and the generated solid substances are deposited on the surface of the heated solid substrate to obtain solid materials. This method is the most widely used method for large-scale preparation of semiconductor thin film materials in industry, and it is also an effective way to prepare graphene. It can be used to prepare large-area electronic devices (such as electrodes, displays, etc.). Commercial application provides an effective way, but at this stage, high cost, complicated process and precise control of processing conditions restrict the development of this method.
氧化还原法(含氧化-修饰-还原法)分为Standenmaier法、Brodie法和Hummers法,其中Hummers法应用较广泛。该方法涉及的化学反应有两个:1)用强质子酸处理石墨,形成石墨层间化合物,然后加入强氧化剂对其进行氧化;2)对氧化石墨烯分离后进行还原,较有效的是化学还原剂还原。氧化还原法制备的石墨烯成本较低,操作简便,产量大,最有可能实现石墨烯规模化制备,而且也便于石墨烯的进一步修饰、加工、成型,这种方法为人们制备大量单层石墨烯带来了希望。但是,该方法产物的分离困难,洗涤要用大量的水,整个制备过程冗长等,因此效率较低,环境不友好,这些不利因素限制了石墨烯的大量制备及其应用研究。Redox method (including oxidation-modification-reduction method) is divided into Standenmaier method, Brodie method and Hummers method, among which Hummers method is widely used. There are two chemical reactions involved in this method: 1) treating graphite with a strong protonic acid to form a graphite interlayer compound, and then adding a strong oxidant to oxidize it; 2) reducing the graphene oxide after separation, the more effective chemical Reductant reduction. Graphene prepared by the redox method is low in cost, easy to operate, and large in output. It is most likely to achieve large-scale preparation of graphene, and it is also convenient for further modification, processing, and molding of graphene. This method can prepare a large number of single-layer graphite for people. Alkenes offer hope. However, the separation of the product of this method is difficult, a large amount of water is used for washing, and the entire preparation process is lengthy, so the efficiency is low and the environment is not friendly. These unfavorable factors limit the large-scale preparation of graphene and its application research.
发明内容Contents of the invention
本发明的目的是提供一种高效、环保的石墨烯的制备方法。The purpose of the present invention is to provide a kind of efficient, environment-friendly preparation method of graphene.
为了实现以上目的,本发明所采用的技术方案是:一种石墨烯的制备方法,包括下列步骤:In order to achieve the above object, the technical solution adopted in the present invention is: a kind of preparation method of graphene, comprises the following steps:
1)在搅拌条件下,将1重量份的石墨加入浓硫酸中并分散,后依次加入3重量份的高锰酸钾和0.5重量份的硝酸钠,持续搅拌2~5h,得混合物;1) Under stirring conditions, add 1 weight part of graphite into concentrated sulfuric acid and disperse it, then add 3 weight parts of potassium permanganate and 0.5 weight part of sodium nitrate in sequence, and continue stirring for 2 to 5 hours to obtain a mixture;
2)将步骤1)所得混合物升温至30~50℃,保温1h后,加入45重量份的蒸馏水,继续升温至95℃,反应1~2h后,再加入70重量份的去离子水,保持温度为70~90℃,搅拌均匀后加入5~8重量份的双氧水,得亮黄色的反应体系A;2) Heat the mixture obtained in step 1) to 30-50°C, keep it warm for 1 hour, add 45 parts by weight of distilled water, continue to heat up to 95°C, and react for 1-2 hours, then add 70 parts by weight of deionized water to keep the temperature 70-90°C, stir evenly and add 5-8 parts by weight of hydrogen peroxide to obtain bright yellow reaction system A;
3)在搅拌条件下,调节步骤2)所得反应体系A的pH为6,后升温至90~100℃,超声分散2~5h,得分散体系;3) Under stirring conditions, adjust the pH of the reaction system A obtained in step 2) to 6, then raise the temperature to 90-100°C, and ultrasonically disperse for 2-5 hours to obtain a dispersion system;
4)将步骤3)所得分散体系冷却至80℃,加入高沸点有机溶剂,后加入15~50重量份的还原剂,升温至回流温度,搅拌反应5~10h,得反应体系B;4) Cool the dispersion system obtained in step 3) to 80°C, add a high-boiling point organic solvent, and then add 15-50 parts by weight of a reducing agent, heat up to reflux temperature, and stir for 5-10 hours to obtain a reaction system B;
5)将步骤4)所得反应体系B静置分层,去除水层后,用去离子水将有机层洗涤至无硫酸根离子,过滤并冷冻干燥,即得。5) The reaction system B obtained in step 4) was allowed to stand for stratification, and after the water layer was removed, the organic layer was washed with deionized water until sulfate ions were free, filtered and freeze-dried to obtain the final product.
步骤1)中所述石墨为粒度大于300目的天然鳞片石墨。The graphite described in step 1) is natural flake graphite with a particle size greater than 300 mesh.
步骤1)中所述浓硫酸的用量为:1g石墨分散于25ml的浓硫酸。The amount of concentrated sulfuric acid described in step 1) is: 1g of graphite dispersed in 25ml of concentrated sulfuric acid.
所述浓硫酸的温度为5~15℃。The temperature of the concentrated sulfuric acid is 5-15°C.
步骤3)中调节反应体系A的pH的方法为:向反应体系A中加入碳酸钠。The method for adjusting the pH of the reaction system A in step 3) is: adding sodium carbonate to the reaction system A.
步骤4)中所述高沸点有机溶剂为甲苯、二甲苯、一氯代苯、乙苯或四氢化萘。The high-boiling organic solvent described in step 4) is toluene, xylene, monochlorobenzene, ethylbenzene or tetralin.
所述高沸点有机溶剂的加入量为:高沸点有机溶剂与分散体系的体积为1:2~4。The addition amount of the high boiling point organic solvent is: the volume of the high boiling point organic solvent and the dispersion system is 1:2-4.
步骤4)中所述还原剂为肼、对苯二酚、硼氢化钠、柠檬酸、维生素C或乙二胺。The reducing agent in step 4) is hydrazine, hydroquinone, sodium borohydride, citric acid, vitamin C or ethylenediamine.
本发明的石墨烯的制备方法,利用氧化石墨烯亲水性强,易于在水中分散,还原石墨烯憎水而易于在有机溶剂中分散的原理,直接在氧化石墨体系种进行还原,省去了氧化石墨过滤、洗涤、干燥等步骤,节省大量的分离时间和洗涤用水,具有省时、省工、节约用水、减少污染、成本低、制备量大的优点。The preparation method of graphene of the present invention utilizes the principle that graphene oxide is highly hydrophilic and easy to disperse in water, and the principle that reduced graphene is hydrophobic and easy to disperse in organic solvents is directly reduced in the graphite oxide system, eliminating the need for Graphite oxide filtration, washing, drying and other steps save a lot of separation time and washing water, and have the advantages of time saving, labor saving, water saving, pollution reduction, low cost and large amount of preparation.
附图说明Description of drawings
图1为实施例2所得石墨烯的SEM图;Fig. 1 is the SEM figure of the obtained Graphene of embodiment 2;
图2为实施例5所得石墨烯的SEM图。Fig. 2 is the SEM figure of the graphene obtained in embodiment 5.
具体实施方式Detailed ways
下面结合具体实施方式对本发明作进一步的说明。The present invention will be further described below in combination with specific embodiments.
实施例1Example 1
本实施例的石墨烯的制备方法,包括下列步骤:The preparation method of the graphene of the present embodiment, comprises the following steps:
1)在机械搅拌条件下,将1g天然鳞片石墨(>300目)分散于25ml、温度保持在5℃的浓硫酸中,然后依次缓慢加入3g高锰酸钾和0.5g硝酸钠,搅拌反应2小时,得混合物;1) Under the condition of mechanical stirring, disperse 1g of natural flake graphite (>300 mesh) in 25ml of concentrated sulfuric acid at a temperature of 5°C, then slowly add 3g of potassium permanganate and 0.5g of sodium nitrate in sequence, and stir for reaction 2 hours, a mixture is obtained;
2)将步骤1)所得混合物升温至30℃,保温1h后,缓慢加入45g的蒸馏水,控制加水的速度使温度上升至95℃,保持机械搅拌1小时后,再加入70g去离子水,保持温度为70℃,搅拌均匀之后加入5g双氧水,得亮黄色的反应体系A;2) Heat the mixture obtained in step 1) to 30°C, keep it warm for 1 hour, slowly add 45g of distilled water, control the speed of adding water to raise the temperature to 95°C, keep mechanical stirring for 1 hour, then add 70g of deionized water to maintain the temperature at 70°C, after stirring evenly, add 5g of hydrogen peroxide to obtain a bright yellow reaction system A;
3)在搅拌条件下,向步骤2)所得反应体系A中加入碳酸钠调节反应体系A的pH为6,然后升温到95℃,在超声波器中超声分散、反应2h,得分散体系;3) Under stirring conditions, add sodium carbonate to the reaction system A obtained in step 2) to adjust the pH of the reaction system A to 6, then raise the temperature to 95°C, ultrasonically disperse in an ultrasonic device, and react for 2 hours to obtain a dispersion system;
4)将步骤3)所得分散体系冷却至80℃,加入体积为分散体系体积的1/4的甲苯和15g肼,升温至回流温度,在强力搅拌下进行还原反应5小时,得反应体系B;4) Cool the dispersion system obtained in step 3) to 80 °C, add toluene and 15 g of hydrazine whose volume is 1/4 of the volume of the dispersion system, raise the temperature to reflux temperature, and perform a reduction reaction for 5 hours under vigorous stirring to obtain a reaction system B;
5)将步骤4)所得反应体系B静置分层,去除水层后,用去离子水将有机层洗涤至无硫酸根离子,过滤并冷冻干燥,即得石墨烯。5) The reaction system B obtained in step 4) was allowed to stand and layered, and after removing the water layer, the organic layer was washed with deionized water until sulfate ions were free, filtered and freeze-dried to obtain graphene.
实施例2Example 2
本实施例的石墨烯的制备方法,包括下列步骤:The preparation method of the graphene of the present embodiment, comprises the following steps:
1)在机械搅拌条件下,将1g天然鳞片石墨(>300目)分散于25ml、温度保持在10℃的浓硫酸中,然后依次缓慢加入3g高锰酸钾和0.5g硝酸钠,搅拌反应3小时,得混合物;1) Under the condition of mechanical stirring, disperse 1g of natural flake graphite (>300 mesh) in 25ml of concentrated sulfuric acid at a temperature of 10°C, then slowly add 3g of potassium permanganate and 0.5g of sodium nitrate in sequence, and stir for 3 hours, a mixture is obtained;
2)将步骤1)所得混合物升温至35℃,保温1h后,缓慢加入45g的蒸馏水,控制加水的速度使温度上升至95℃,保持机械搅拌1小时后,再加入70g去离子水,保持温度为80℃,搅拌均匀之后加入5g双氧水,得亮黄色的反应体系A;2) Heat the mixture obtained in step 1) to 35°C, keep it warm for 1 hour, slowly add 45g of distilled water, control the speed of adding water to raise the temperature to 95°C, keep mechanical stirring for 1 hour, then add 70g of deionized water to maintain the temperature to 80°C, after stirring evenly, add 5g of hydrogen peroxide to obtain a bright yellow reaction system A;
3)在搅拌条件下,向步骤2)所得反应体系A中加入碳酸钠调节反应体系A的pH为6,然后升温到90℃,在超声波器中超声分散、反应3h,得分散体系;3) Under stirring conditions, add sodium carbonate to the reaction system A obtained in step 2) to adjust the pH of the reaction system A to 6, then raise the temperature to 90°C, ultrasonically disperse in an ultrasonic machine, and react for 3 hours to obtain a dispersion system;
4)将步骤3)所得分散体系冷却至80℃,加入体积为分散体系体积的1/3的甲苯和20g肼,升温至回流温度,在强力搅拌下进行还原反应8小时,得反应体系B;4) Cool the dispersion system obtained in step 3) to 80°C, add toluene and 20 g of hydrazine whose volume is 1/3 of the volume of the dispersion system, raise the temperature to the reflux temperature, and carry out the reduction reaction for 8 hours under vigorous stirring to obtain the reaction system B;
5)将步骤4)所得反应体系B静置分层,去除水层后,用去离子水将有机层洗涤至无硫酸根离子,过滤并冷冻干燥,即得石墨烯。5) The reaction system B obtained in step 4) was allowed to stand and layered, and after removing the water layer, the organic layer was washed with deionized water until sulfate ions were free, filtered and freeze-dried to obtain graphene.
实施例3Example 3
本实施例的石墨烯的制备方法,包括下列步骤:The preparation method of the graphene of the present embodiment, comprises the following steps:
1)在机械搅拌条件下,将1g天然鳞片石墨(>300目)分散于25ml、温度保持在15℃的浓硫酸中,然后依次缓慢加入3g高锰酸钾和0.5g硝酸钠,搅拌反应3小时,得混合物;1) Under the condition of mechanical stirring, disperse 1g of natural flake graphite (>300 mesh) in 25ml of concentrated sulfuric acid at a temperature of 15°C, then slowly add 3g of potassium permanganate and 0.5g of sodium nitrate in sequence, and stir for 3 hours, a mixture is obtained;
2)将步骤1)所得混合物升温至50℃,保温1h后,缓慢加入45g的蒸馏水,控制加水的速度使温度上升至95℃,保持机械搅拌2小时后,再加入70g去离子水,保持温度为90℃,搅拌均匀之后加入6g双氧水,得亮黄色的反应体系A;2) Heat the mixture obtained in step 1) to 50°C, keep it warm for 1 hour, slowly add 45g of distilled water, control the speed of adding water to raise the temperature to 95°C, keep mechanical stirring for 2 hours, then add 70g of deionized water to maintain the temperature at 90°C, after stirring evenly, add 6g of hydrogen peroxide to obtain a bright yellow reaction system A;
3)在搅拌条件下,向步骤2)所得反应体系A中加入碳酸钠调节反应体系A的pH为6,然后升温到95℃,在超声波器中超声分散、反应4h,得分散体系;3) Under stirring conditions, add sodium carbonate to the reaction system A obtained in step 2) to adjust the pH of the reaction system A to 6, then raise the temperature to 95°C, ultrasonically disperse in an ultrasonic device, and react for 4 hours to obtain a dispersion system;
4)将步骤3)所得分散体系冷却至80℃,加入体积为分散体系体积的1/2的二甲苯和20g硼氢化钠,升温至回流温度,在强力搅拌下进行还原反应8小时,得反应体系B;4) Cool the dispersion system obtained in step 3) to 80°C, add xylene and 20g sodium borohydride whose volume is 1/2 of the volume of the dispersion system, raise the temperature to reflux temperature, and carry out the reduction reaction for 8 hours under vigorous stirring to obtain the reaction System B;
5)将步骤4)所得反应体系B静置分层,去除水层后,用去离子水将有机层洗涤至无硫酸根离子,过滤并冷冻干燥,即得石墨烯。5) The reaction system B obtained in step 4) was allowed to stand and layered, and after removing the water layer, the organic layer was washed with deionized water until sulfate ions were free, filtered and freeze-dried to obtain graphene.
实施例4Example 4
本实施例的石墨烯的制备方法,包括下列步骤:The preparation method of the graphene of the present embodiment, comprises the following steps:
1)在机械搅拌条件下,将1g天然鳞片石墨(>300目)分散于25ml、温度保持在15℃的浓硫酸中,然后依次缓慢加入3g高锰酸钾和0.5g硝酸钠,搅拌反应5小时,得混合物;1) Under the condition of mechanical stirring, disperse 1g of natural flake graphite (>300 mesh) in 25ml of concentrated sulfuric acid at a temperature of 15°C, then slowly add 3g of potassium permanganate and 0.5g of sodium nitrate in sequence, and stir for 5 hours, a mixture is obtained;
2)将步骤1)所得混合物升温至45℃,保温1h后,缓慢加入45g的蒸馏水,控制加水的速度使温度上升至95℃,保持机械搅拌1.5小时后,再加入70g去离子水,保持温度为70℃,搅拌均匀之后加入8g双氧水,得亮黄色的反应体系A;2) Heat the mixture obtained in step 1) to 45°C, keep it warm for 1 hour, slowly add 45g of distilled water, control the speed of adding water to raise the temperature to 95°C, keep mechanical stirring for 1.5 hours, then add 70g of deionized water to maintain the temperature to 70°C, after stirring evenly, add 8g of hydrogen peroxide to obtain a bright yellow reaction system A;
3)在搅拌条件下,向步骤2)所得反应体系A中加入碳酸钠调节反应体系A的pH为6,然后升温到95℃,在超声波器中超声分散、反应5h,得分散体系;3) Under stirring conditions, add sodium carbonate to the reaction system A obtained in step 2) to adjust the pH of the reaction system A to 6, then raise the temperature to 95°C, ultrasonically disperse in an ultrasonic device, and react for 5 hours to obtain a dispersion system;
4)将步骤3)所得分散体系冷却至80℃,加入体积为分散体系体积的1/2的氯苯和20g维生素C,升温至回流温度,在强力搅拌下进行还原反应10小时,得反应体系B;4) Cool the dispersion system obtained in step 3) to 80°C, add chlorobenzene and 20g vitamin C whose volume is 1/2 of the volume of the dispersion system, raise the temperature to reflux temperature, and carry out the reduction reaction for 10 hours under vigorous stirring to obtain the reaction system B;
5)将步骤4)所得反应体系B静置分层,去除水层后,用去离子水将有机层洗涤至无硫酸根离子,过滤并冷冻干燥,即得石墨烯。5) The reaction system B obtained in step 4) was allowed to stand and layered, and after removing the water layer, the organic layer was washed with deionized water until sulfate ions were free, filtered and freeze-dried to obtain graphene.
实施例5Example 5
本实施例的石墨烯的制备方法,包括下列步骤:The preparation method of the graphene of the present embodiment, comprises the following steps:
1)在机械搅拌条件下,将1g天然鳞片石墨(>300目)分散于25ml、温度保持在5℃的浓硫酸中,然后依次缓慢加入3g高锰酸钾和0.5g硝酸钠,搅拌反应2小时,得混合物;1) Under the condition of mechanical stirring, disperse 1g of natural flake graphite (>300 mesh) in 25ml of concentrated sulfuric acid at a temperature of 5°C, then slowly add 3g of potassium permanganate and 0.5g of sodium nitrate in sequence, and stir for reaction 2 hours, a mixture is obtained;
2)将步骤1)所得混合物升温至45℃,保温1h后,缓慢加入45g的蒸馏水,控制加水的速度使温度上升至95℃,保持机械搅拌1.5小时后,再加入70g去离子水,保持温度为70℃,搅拌均匀之后加入7g双氧水,得亮黄色的反应体系A;2) Heat the mixture obtained in step 1) to 45°C, keep it warm for 1 hour, slowly add 45g of distilled water, control the speed of adding water to raise the temperature to 95°C, keep mechanical stirring for 1.5 hours, then add 70g of deionized water to maintain the temperature to 70°C, after stirring evenly, add 7g of hydrogen peroxide to obtain a bright yellow reaction system A;
3)在搅拌条件下,向步骤2)所得反应体系A中加入碳酸钠调节反应体系A的pH为6,然后升温到95℃,在超声波器中超声分散、反应5h,得分散体系;3) Under stirring conditions, add sodium carbonate to the reaction system A obtained in step 2) to adjust the pH of the reaction system A to 6, then raise the temperature to 95°C, ultrasonically disperse in an ultrasonic device, and react for 5 hours to obtain a dispersion system;
4)将步骤3)所得分散体系冷却至80℃,加入体积为分散体系体积的1/4的四氢化萘和50g的乙二胺,升温至回流温度,在强力搅拌下进行还原反应10小时,得反应体系B;4) Cool the dispersion system obtained in step 3) to 80°C, add tetralin and 50g of ethylenediamine whose volume is 1/4 of the volume of the dispersion system, raise the temperature to reflux temperature, and carry out the reduction reaction under strong stirring for 10 hours, Obtain reaction system B;
5)将步骤4)所得反应体系B静置分层,去除水层后,用去离子水将有机层洗涤至无硫酸根离子,过滤并冷冻干燥,即得石墨烯。5) The reaction system B obtained in step 4) was allowed to stand and layered, and after removing the water layer, the organic layer was washed with deionized water until sulfate ions were free, filtered and freeze-dried to obtain graphene.
实验例Experimental example
本实验例将实施例2和实施例5所得石墨烯进行了扫描电镜检测,结果如图1、2所示。从图1、2可以看出,本发明的方法所得石墨烯片面积较大,具有较小的厚度。In this experimental example, the graphene obtained in Example 2 and Example 5 was detected by a scanning electron microscope, and the results are shown in Figures 1 and 2. As can be seen from Figures 1 and 2, the obtained graphene sheet of the method of the present invention has a larger area and a smaller thickness.
本发明的石墨烯的制备方法,由于采用了双相(水相、有机相)体系,还原后的石墨烯立即转移到有机相中,与水相中的无机物完全脱离,分离后只需几次洗涤、过滤就可得到纯净的石墨烯;而现有技术则需要4-5天的时间。In the preparation method of graphene of the present invention, due to the adoption of a two-phase (water phase, organic phase) system, the graphene after reduction is immediately transferred to the organic phase, completely separated from the inorganic matter in the water phase, and only a few minutes are needed after separation. Pure graphene can be obtained by washing and filtering for only one time; while the prior art requires 4-5 days.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310364515.5A CN103626167B (en) | 2013-08-20 | 2013-08-20 | A kind of preparation method of Graphene |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310364515.5A CN103626167B (en) | 2013-08-20 | 2013-08-20 | A kind of preparation method of Graphene |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103626167A true CN103626167A (en) | 2014-03-12 |
CN103626167B CN103626167B (en) | 2015-08-12 |
Family
ID=50207674
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310364515.5A Expired - Fee Related CN103626167B (en) | 2013-08-20 | 2013-08-20 | A kind of preparation method of Graphene |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103626167B (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104118868A (en) * | 2014-07-07 | 2014-10-29 | 苏州世优佳电子科技有限公司 | Preparation method for graphene |
CN105197921A (en) * | 2015-10-19 | 2015-12-30 | 南京润屹电子科技有限公司 | Preparation method of high-purity graphene |
CN105845907A (en) * | 2016-04-11 | 2016-08-10 | 河南工程学院 | Preparation method for lithium titanate-graphene composite negative electrode material |
CN106810818A (en) * | 2015-11-30 | 2017-06-09 | 航天特种材料及工艺技术研究所 | A kind of Graphene modified epoxy and preparation method thereof |
CN107161984A (en) * | 2017-06-28 | 2017-09-15 | 华南理工大学 | The method that a kind of ascorbic acid/Tea Polyphenols synergy prepares graphene |
CN109133044A (en) * | 2018-09-28 | 2019-01-04 | 台州学院 | A kind of preparation method of water-soluble graphene material |
CN110171819A (en) * | 2019-06-11 | 2019-08-27 | 北京鼎臣石墨科技有限公司 | A method of efficiently preparing graphene |
WO2021097660A1 (en) * | 2019-11-19 | 2021-05-27 | 南京先进生物材料与过程装备研究院有限公司 | Method for preparing graphene composite coating |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101602504A (en) * | 2009-07-16 | 2009-12-16 | 上海交通大学 | Graphene preparation method based on ascorbic acid |
-
2013
- 2013-08-20 CN CN201310364515.5A patent/CN103626167B/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101602504A (en) * | 2009-07-16 | 2009-12-16 | 上海交通大学 | Graphene preparation method based on ascorbic acid |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104118868A (en) * | 2014-07-07 | 2014-10-29 | 苏州世优佳电子科技有限公司 | Preparation method for graphene |
CN105197921A (en) * | 2015-10-19 | 2015-12-30 | 南京润屹电子科技有限公司 | Preparation method of high-purity graphene |
CN106810818A (en) * | 2015-11-30 | 2017-06-09 | 航天特种材料及工艺技术研究所 | A kind of Graphene modified epoxy and preparation method thereof |
CN106810818B (en) * | 2015-11-30 | 2019-09-13 | 航天特种材料及工艺技术研究所 | A kind of graphene modified epoxy resin and preparation method thereof |
CN105845907A (en) * | 2016-04-11 | 2016-08-10 | 河南工程学院 | Preparation method for lithium titanate-graphene composite negative electrode material |
CN107161984A (en) * | 2017-06-28 | 2017-09-15 | 华南理工大学 | The method that a kind of ascorbic acid/Tea Polyphenols synergy prepares graphene |
CN109133044A (en) * | 2018-09-28 | 2019-01-04 | 台州学院 | A kind of preparation method of water-soluble graphene material |
CN110171819A (en) * | 2019-06-11 | 2019-08-27 | 北京鼎臣石墨科技有限公司 | A method of efficiently preparing graphene |
WO2021097660A1 (en) * | 2019-11-19 | 2021-05-27 | 南京先进生物材料与过程装备研究院有限公司 | Method for preparing graphene composite coating |
Also Published As
Publication number | Publication date |
---|---|
CN103626167B (en) | 2015-08-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103626167B (en) | A kind of preparation method of Graphene | |
CN102020270B (en) | Macro-preparation for big size graphene | |
CN103361637B (en) | A kind of preparation method of chemical nickel plating Graphene | |
CN108117065B (en) | Method for preparing graphene by adopting alternate current stripping | |
CN105293483B (en) | A kind of method that original position prepares transient metal doped porous graphene | |
Cui et al. | Low-temperature synthesis of multilayer graphene/amorphous carbon hybrid films and their potential application in solar cells | |
CN102153077A (en) | Method for preparing single-layer graphene with high carbon-oxygen ratio | |
CN108499588A (en) | A kind of g-C3N4The preparation method of/MXene composite materials | |
US9249026B2 (en) | Method for preparing graphene from biomass-derived carbonaceous mesophase | |
CN103833008A (en) | Method for preparing graphene at normal temperature | |
CN107481871A (en) | A kind of preparation method of graphene-hexagonal boron nitride heterostructure material | |
CN103337611A (en) | Preparation method of graphene-titanium dioxide composite material | |
CN103736993B (en) | Preparation method of graphene/copper composite material | |
CN103801298A (en) | Hydrothermal rapid synthesis method of graphene load nickel nanoparticle composite material | |
CN104163423A (en) | Method for preparing spongy graphene by freeze drying | |
CN103570010A (en) | Preparation method of graphene powder material | |
CN106495221B (en) | A kind of preparation method of single layer molybdenum disulfide nano sheet | |
CN106335925B (en) | A kind of method for preparing individual layer 2H phases molybdenum disulfide/graphene composite material | |
CN103408003B (en) | Method for preparing graphene | |
CN105036175B (en) | Method of preparing copper sulfide-zinc sulfide heterojunction three-dimensional nanostructure by using solid phase method | |
CN105502370A (en) | Solid phase reduction method of graphene oxide | |
CN103482617B (en) | A kind of preparation method of tindioxide/graphene composite material | |
CN113173579B (en) | Macroscopic quantity preparation method of graphene | |
CN106298259B (en) | A kind of preparation method of 2H phases individual layer molybdenum disulfide nano sheet | |
CN106315678B (en) | A kind of preparation method of 1T phases individual layer tungsten disulfide nano slices |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20150812 Termination date: 20160820 |