CN103618898A - Complexity image lossless compression method supporting random access - Google Patents
Complexity image lossless compression method supporting random access Download PDFInfo
- Publication number
- CN103618898A CN103618898A CN201310657826.0A CN201310657826A CN103618898A CN 103618898 A CN103618898 A CN 103618898A CN 201310657826 A CN201310657826 A CN 201310657826A CN 103618898 A CN103618898 A CN 103618898A
- Authority
- CN
- China
- Prior art keywords
- block
- prediction
- fritter
- lossless compression
- pixel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000007906 compression Methods 0.000 title claims abstract description 34
- 230000006835 compression Effects 0.000 title claims abstract description 34
- 238000000034 method Methods 0.000 title claims abstract description 29
- 238000009826 distribution Methods 0.000 claims description 6
- 238000010586 diagram Methods 0.000 claims description 3
- 238000005192 partition Methods 0.000 claims description 3
- 238000004458 analytical method Methods 0.000 claims description 2
- 238000013144 data compression Methods 0.000 abstract description 4
- 230000000694 effects Effects 0.000 abstract description 2
- 238000001514 detection method Methods 0.000 abstract 1
- 230000003044 adaptive effect Effects 0.000 description 9
- 238000005516 engineering process Methods 0.000 description 9
- 238000013461 design Methods 0.000 description 6
- 238000012545 processing Methods 0.000 description 3
- 238000003860 storage Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 208000037170 Delayed Emergence from Anesthesia Diseases 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000013139 quantization Methods 0.000 description 1
Images
Landscapes
- Compression Or Coding Systems Of Tv Signals (AREA)
- Compression, Expansion, Code Conversion, And Decoders (AREA)
Abstract
Description
技术领域 technical field
本发明属于视频图像压缩技术领域,具体涉及为一种支持随机访问的复杂度图像无损压缩方法。 The invention belongs to the technical field of video image compression, and in particular relates to a lossless compression method for complex images supporting random access.
背景技术 Background technique
随着视频编解码技术、集成电路设计制造和网络通信技术的飞速发展,数字媒体(如数字电视、激光视盘、视频监控等)的应用逐渐向高清、超高清方向发展,高清、超高清视频编解码器设计面临着计算资源和访存带宽两个方面的巨大挑战。 With the rapid development of video codec technology, integrated circuit design and manufacturing, and network communication technology, the application of digital media (such as digital TV, laser disc, video surveillance, etc.) Decoder design faces huge challenges in terms of computing resources and memory access bandwidth.
高清、超高清视频编解码芯片结构中,原始图像帧和解码图像参考帧都存在外部存储器中,外存访问带宽是结构设计的瓶颈。目前工业界逐渐向4K分辨率演进,基本上超高清(4Kx2K)图像像素数是1080P分辨率图像像素的4倍,这意味着和1080P相比,超高清(4Kx2K)会占用四倍的带宽。对于4Kx2K(4096X2304)像素30fps的视频,数据访问将消耗巨大带宽,比如仅仅每帧回写就需要近13.5Mbyte的内存带宽。工业界非常需要无损数据压缩技术,能对这些存储在外存的图像数据在写入外存前进行压缩,读出后进行解压缩重建数据,从而在完全不影响视频编解码器性能的前提下,降低外存数据访问的总线带宽。 In the high-definition and ultra-high-definition video codec chip structure, the original image frame and the decoded image reference frame are stored in the external memory, and the external memory access bandwidth is the bottleneck of the structural design. At present, the industry is gradually evolving to 4K resolution. Basically, the pixels of ultra-high-definition (4Kx2K) images are four times that of 1080P resolution images, which means that compared with 1080P, ultra-high-definition (4Kx2K) will occupy four times the bandwidth. For a video with 4Kx2K (4096X2304) pixels and 30fps, data access will consume a huge amount of bandwidth. For example, only writing back each frame requires nearly 13.5Mbyte of memory bandwidth. The industry is in great need of lossless data compression technology, which can compress the image data stored in the external storage before writing to the external storage, and decompress and reconstruct the data after reading, so that the performance of the video codec is not affected at all. Reduce bus bandwidth for external memory data access.
针对720p分辨率以上视频,设计无损压缩算法,如果能达到节省50%左右外存访问带宽,那么可以大大缓解高清视频编解码芯片结构设计的巨大挑战,大大降低因外部存储器频繁访问导致的系统功耗,为高性能低功耗结构设计提供支持,这是非常有意义的工作。 For videos above 720p resolution, a lossless compression algorithm is designed. If it can save about 50% of the external memory access bandwidth, it can greatly alleviate the huge challenge of high-definition video codec chip structure design, and greatly reduce the system performance caused by frequent external memory access. It is very meaningful work to provide support for high-performance and low-power structure design.
在视频编码器中,运动估计所消耗的外存存储器访问带宽最大,是系统设计面临的最大挑战。一般来说,参考帧数据按照宏块内像素采用连续存储方式,所以希望无损压缩算法能支持宏块数据随机访问,从而最大限度利用外部SDRAM存储器的突发模式高效数据访问模式。支持宏块随机访问,访问到任何一个宏块,硬件能将该宏块数据重建,也就意味着宏块之间相邻像素点的相关性无法使用,在宏块之间无数据依赖。这个约束是无损压缩算法需要解决的一个问题,另外,压缩压缩效率、数据访问的规则性(地址控制相关)也是需要考虑的重要因素。 In video encoders, motion estimation consumes the largest external memory access bandwidth and is the biggest challenge for system design. Generally speaking, the reference frame data is stored continuously according to the pixels in the macroblock, so it is hoped that the lossless compression algorithm can support random access to the macroblock data, so as to maximize the use of the burst mode and high-efficiency data access mode of the external SDRAM memory. Supports random access to macroblocks. When any macroblock is accessed, the hardware can reconstruct the data of the macroblock, which means that the correlation between adjacent pixels between macroblocks cannot be used, and there is no data dependence between macroblocks. This constraint is a problem that the lossless compression algorithm needs to solve. In addition, compression efficiency and regularity of data access (related to address control) are also important factors to be considered.
早期出现了多种近无损压缩方法,基于预测、变换以及量化的组合编码方法,实现有损压缩,失真控制在40dB以上。该类方法部分像素失真相对较大,失真分布不均匀。这类接近无损压缩技术,实际上还是有损压缩,部分边缘像素失真绝对值可以达到3甚至更高,这种压缩失真对后续视频编码和处理非常不利。 A variety of near-lossless compression methods appeared in the early stage. Based on the combined coding method of prediction, transformation and quantization, lossy compression is realized, and the distortion is controlled above 40dB. Some pixels of this type of method have relatively large distortion, and the distribution of distortion is uneven. This type of near-lossless compression technology is actually lossy compression, and the absolute value of some edge pixel distortion can reach 3 or even higher. This compression distortion is very unfavorable to subsequent video encoding and processing.
早稻田大学Dajiang Zhou提出的基于水平预测+半定长变长编码的无损压缩技术,以宏块为基本数据压缩处理单元,半定长变长编码基于大小为2x2的小块,计算小块的动态范围,根据动态范围将每个小块映射到8个小区间中的某一个,从而根据小区间进行定长编码。小区间自适应划分实现了变长编码。该技术压缩后数据率为未压缩的50%~70%。该类无损压缩技术,未达到平均50%的压缩效率,未能完全去除空域像素间冗余以及控制字符之间的统计冗余,压缩效率有进一步提升的空间。 The lossless compression technology based on horizontal prediction + semi-fixed-length variable-length coding proposed by Dajiang Zhou of Waseda University uses macroblocks as the basic data compression processing unit, and semi-fixed-length variable-length coding is based on small blocks with a size of 2x2 to calculate the dynamics of small blocks range, each small block is mapped to one of 8 sub-districts according to the dynamic range, so that fixed-length coding is performed according to the sub-district. The self-adaptive division between cells realizes the variable length coding. The compressed data rate of this technology is 50%~70% of the uncompressed. This type of lossless compression technology does not reach an average compression efficiency of 50%, and cannot completely remove the redundancy between spatial pixels and the statistical redundancy between control characters, and there is room for further improvement in compression efficiency.
发明内容 Contents of the invention
本发明的目的在于克服上述提到的缺陷和不足,而提供一种一种支持随机访问的复杂度图像无损压缩方法。 The purpose of the present invention is to overcome the above-mentioned defects and deficiencies, and provide a lossless compression method for complex images that supports random access.
本发明实现其目的采用的技术方案如下。 The technical scheme that the present invention realizes its object adopts is as follows.
一种支持随机访问的复杂度图像无损压缩方法,包括以下步骤: A method for lossless compression of complexity images supporting random access, comprising the following steps:
(1)、将图像分割为宏块,将宏块划分为三个区域:第一行、第一列以及15x15像素区域,并将15x15像素区域分为5x5个3x3的小块; (1) Divide the image into macroblocks, divide the macroblock into three areas: the first row, the first column, and a 15x15 pixel area, and divide the 15x15 pixel area into 5x5 small blocks of 3x3;
(2)、帧内预测:对于第一行,采用水平方向预测模式;对于第一列,采用垂直方向预测模式;对于每个小块,采用选择编码比特消耗最小的块级预测或像素级预测; (2) Intra-frame prediction: For the first row, use the horizontal direction prediction mode; for the first column, use the vertical direction prediction mode; for each small block, use the block-level prediction or pixel-level prediction that consumes the least coding bits ;
(3)、小块帧内预测模式选择:基于查表的编码比特估计模块为各种预测模式计算出编码比特消耗,选择编码比特代价最小的模式,得到最优预测模式的残差图像; (3) Small-block intra-frame prediction mode selection: The coded bit estimation module based on the look-up table calculates the coded bit consumption for various prediction modes, selects the mode with the smallest coded bit cost, and obtains the residual image of the optimal prediction mode;
(4)、将残差图像分割为不同小块进行自适应可变长编码,估计每个小块的动态范围,计算出相应控制字mm,得到相应的控制字M,由压缩码流生成模块得到无损压缩码流。 (4) Divide the residual image into different small blocks for adaptive variable length coding, estimate the dynamic range of each small block, calculate the corresponding control word mm, and obtain the corresponding control word M, which is generated by the compressed code stream generation module A lossless compressed code stream is obtained.
作为优选,步骤(2)中,对于每个小块,先计算块级预测,选择水平或垂直模式,确定block_pred_type(r,s),计算预测残差residue(r,s;m,n),采用半定长VLC编码,统计块编码比特数bits_block,选择最小编码代价的模式为块级模式;然后计算像素级预测,计算每个像素的水平垂直预测值,比较大小,选择预测误差小的模式pixel_pred_type,然后得到整个块的残差,采用半定长VLC编码,统计块编码比特数bits_block_pixel和前面bits_block比较,选择较小编码代价的模式,从而确定块级预测类型pred_type。 Preferably, in step (2), for each small block, first calculate the block-level prediction, select the horizontal or vertical mode, determine the block_pred_type (r, s), and calculate the prediction residual residue (r, s; m, n), Use semi-fixed-length VLC coding, count the number of bits_block coded in the block, and select the mode with the smallest coding cost as the block-level mode; then calculate the pixel-level prediction, calculate the horizontal and vertical prediction values of each pixel, compare the size, and select the mode with a small prediction error pixel_pred_type, and then obtain the residual of the entire block, use semi-fixed length VLC encoding, compare the number of bits_block_pixel of the statistical block encoding with the previous bits_block, and select a mode with a smaller encoding cost to determine the block-level prediction type pred_type.
作为优选,步骤(3)中,对于每个3x3小块,估计出小块内数据地动态范围,确定分区状态信息mm,根据每个小块的动态范围信息mm查表得到变长比特信息,实现基于控制字mm的半定长码表,然后由M字段柱状图分析及huffman编码离线构建得到编码控制字M的Huffman可变长码表,最后根据基于控制字mm的半定长码表以及编码控制字M的Huffman可变长码表,为各种预测模式计算出编码比特消耗。 Preferably, in step (3), for each 3x3 small block, estimate the dynamic range of the data in the small block, determine the partition state information mm, look up the table according to the dynamic range information mm of each small block to obtain variable length bit information, Realize the semi-fixed-length code table based on the control word mm, and then construct the Huffman variable-length code table of the coded control word M by analyzing the histogram of the M field and the huffman code off-line, and finally according to the semi-fixed-length code table based on the control word mm and The Huffman variable-length code table of the coding control word M calculates the coding bit consumption for various prediction modes.
作为优选,步骤(4)中,对于残差图像,分割为不同小块进行可变长编码:对于第一行、第一列残差,相邻4个数据构成一个大小为2x2的小块,对于其他15x15数据块,采用3x3数据小块。 Preferably, in step (4), the residual image is divided into different small blocks for variable-length coding: for the first row and first column residual, 4 adjacent data constitute a small block with a size of 2x2, For other 15x15 data blocks, 3x3 data blocks are used.
作为优选,对于预测残差,采用基于小块的半定长VLC编码技术:对于每个小块,计算小块内最大系数、最小系数,确定动态范围mm,根据mm将小块残差系数划分为8个区间,并用控制字段M标识,对于每个划分区间,采用定长编码。 As a preference, for the prediction residual, adopt small-block-based semi-fixed-length VLC coding technology: for each small block, calculate the maximum coefficient and minimum coefficient in the small block, determine the dynamic range mm, divide the small block residual coefficient according to mm There are 8 intervals, which are identified by the control field M, and fixed-length coding is used for each divided interval.
作为优选,对于控制字M信息,采用Huffman变长编码方法,统计M各种取值的柱状图,根据概率分布,得到M取0~7时可变长编码表,然后基于查表方法进行可变长编码。 Preferably, for the control word M information, the Huffman variable-length coding method is used to count the histograms of various values of M, and according to the probability distribution, a variable-length coding table is obtained when M is 0 to 7, and then the variable-length coding table is obtained based on the table look-up method. Variable length encoding.
本发明具有以下有益效果: The present invention has the following beneficial effects:
(1) 将宏块分割为三个区域,解决了宏块之间边界像素点数据依赖问题。采用块/像素自适应预测、差分编码、自适应可变长编码组合压缩方法,可以达到较高的数据压缩率,对于1080p分辨率无损压缩效果达到50%以上; (1) Divide the macroblock into three areas, which solves the data dependence problem of the border pixels between macroblocks. Using block/pixel adaptive prediction, differential coding, and adaptive variable-length coding combined compression method can achieve a high data compression rate, and the lossless compression effect for 1080p resolution can reach more than 50%;
(2) 块/像素级自适应预测,支持不同区域不同小块自适应编码,支持宏块级数据随机访问,并提高了预测效率,使得预测残差图像内包含较小的图像信息。基于编码比特消耗最小化的原则,在预测效率和预测残差编码比特效率之间平衡; (2) Block/pixel-level adaptive prediction, supports adaptive coding of different small blocks in different regions, supports random access to macroblock-level data, and improves prediction efficiency, so that the prediction residual image contains smaller image information. Based on the principle of minimizing coding bit consumption, balance between prediction efficiency and prediction residual coding bit efficiency;
(3) 基于小块动态范围,自适应划分区间,针对不同区间采用半定长变长编码;对于控制系数,采用基于概率分布的Huffman变长编码方法;最大限度利用符号存在的冗余,使得总体熵编码性能尽可能高,残差数据和控制字段的编码比特消耗尽可能小,提高压缩率。 (3) Based on the dynamic range of the small block, adaptively divide the interval, and use semi-fixed-length variable-length coding for different intervals; for the control coefficient, use the Huffman variable-length coding method based on probability distribution; maximize the use of redundancy in symbols, so that The overall entropy coding performance is as high as possible, the coding bit consumption of residual data and control field is as small as possible, and the compression rate is improved.
附图说明 Description of drawings
图1是本发明的流程图; Fig. 1 is a flow chart of the present invention;
图2是一个宏块256个像素分割为三个区域的示意图。 FIG. 2 is a schematic diagram of dividing 256 pixels of a macroblock into three regions.
具体实施方式 Detailed ways
下面结合附图,对本发明作进一步详细说明。 The present invention will be described in further detail below in conjunction with the accompanying drawings.
(1)将图像分割为宏块,将宏块划分为三个区域,第一行、第一列以及15x15像素区域。对于15x15像素区域,划分为5x5个3x3的小块。 (1) Divide the image into macroblocks, and divide the macroblock into three areas, the first row, the first column, and a 15x15 pixel area. For a 15x15 pixel area, it is divided into 5x5 small blocks of 3x3.
(2)帧内预测,用以去除宏块之间数据依赖。 (2) Intra-frame prediction is used to remove data dependence between macroblocks.
对于第一行,采用水平方向预测模式; For the first row, use the horizontal direction prediction mode;
对于第一列,采用垂直方向预测模式; For the first column, use the vertical direction prediction mode;
对于每个小块,采用块级预测,或采用对小块内3x3=9个像素进行像素级预测。块级预测和像素级预测均支持水平、垂直预测,以充分利用宏块内像素之间的水平或者垂直方向的相关性,最大限度提高预测效率。为了保证数据处理时不存在数据阻塞,小块内的像素级预测模式选择需要在小块级进行,即保证小块内所有像素总体编码比特数最小。 For each small block, block-level prediction is adopted, or pixel-level prediction is performed on 3×3=9 pixels in the small block. Both block-level prediction and pixel-level prediction support horizontal and vertical prediction to make full use of the horizontal or vertical correlation between pixels in a macroblock to maximize prediction efficiency. In order to ensure that there is no data congestion during data processing, the pixel-level prediction mode selection in the small block needs to be performed at the small block level, that is, to ensure that the total number of coding bits of all pixels in the small block is the smallest.
图2给出了一个宏块256个像素分割为三个区域的示意图: Figure 2 shows a schematic diagram of 256 pixels of a macroblock divided into three areas:
第一行:水平方向预测,deltaX(1,n) = X(1,n) - X(1, n-1); The first line: horizontal prediction, deltaX(1, n) = X(1, n) - X(1, n-1);
第一列:垂直方向预测,deltaX(n,1) = X(n,1) - X( n-1,1); The first column: vertical prediction, deltaX(n, 1) = X(n, 1) - X( n-1, 1);
其他15x15像素,分为5x5个大小为3x3的像素块,每个像素块(r,s)支持两种预测模式:块级预测或像素级预测,用1比特控制字 predmode(r,s)标识,1为块级预测;0为像素级预测。具体地: The other 15x15 pixels are divided into 5x5 pixel blocks with a size of 3x3. Each pixel block (r, s) supports two prediction modes: block-level prediction or pixel-level prediction, identified by the 1-bit control word predmode(r, s) , 1 is block-level prediction; 0 is pixel-level prediction. specifically:
a.块级预测:bits_block(r,s) = bit_residue_block(r,s) + 1 + 1。 a. Block-level prediction: bits_block(r, s) = bit_residue_block(r, s) + 1 + 1.
支持水平预测或垂直预测,类似于H.264/AVC帧内预测技术,水平或垂直预测模式用控制字block_pred_type(r,s)标识,1为水平预测模式,0为垂直预测模式。 Support horizontal prediction or vertical prediction, similar to the H.264/AVC intra prediction technology, the horizontal or vertical prediction mode is identified by the control word block_pred_type(r, s), 1 is the horizontal prediction mode, and 0 is the vertical prediction mode.
b.像素级预测:bits_block_pixel(r,s) = bit_residue_ block _pixel (r,s) + 1 + 9。 b. Pixel-level prediction: bits_block_pixel(r, s) = bit_residue_block_pixel (r, s) + 1 + 9.
支持3x3块内每个像素(r,s;m,n)进行水平或垂直预测模式,用控制字pixel_pred_type(r,s;m,n) 标识,1为水平预测模式,0为垂直预测模式;r=1~5, s=1~5, m=1~3, n=1~3。 Support horizontal or vertical prediction mode for each pixel (r, s; m, n) in a 3x3 block, identified by the control word pixel_pred_type(r, s; m, n), 1 is the horizontal prediction mode, 0 is the vertical prediction mode; r=1~5, s=1~5, m=1~3, n=1~3.
块级预测和像素级预测的选择,需要根据编码比特消耗代价进行最小化判断。对于每个3x3小块,估计各种预测模式的编码比特代价,选择编码比特消耗最小的模式为最优模式,计算预测残差。过程如下: The selection of block-level prediction and pixel-level prediction needs to be judged based on the minimization of coding bit consumption cost. For each 3x3 small block, estimate the coding bit cost of various prediction modes, select the mode with the least coding bit consumption as the optimal mode, and calculate the prediction residual. The process is as follows:
先计算块级预测:选择水平或垂直模式,确定block_pred_type(r,s),计算预测残差residue(r,s;m,n),采用半定长VLC编码,统计块编码比特数bits_block,选择最小编码代价的模式为块级模式block_pred_type; First calculate the block-level prediction: select horizontal or vertical mode, determine block_pred_type (r, s), calculate the prediction residual residue (r, s; m, n), use semi-fixed-length VLC encoding, count the number of block encoding bits bits_block, select The mode of minimum encoding cost is block-level mode block_pred_type;
然后计算像素级预测:计算每个像素的水平垂直预测值,采用SAD判据比较预测误差大小,选择预测误差小的模式pixel_block_type(r,s)。 Then calculate the pixel-level prediction: calculate the horizontal and vertical prediction values of each pixel, use the SAD criterion to compare the size of the prediction error, and select the mode pixel_block_type(r, s) with a small prediction error.
然后得到整个块的残差,采用半定长VLC编码,统计块编码比特数bits_block_pixel并和前面bits_block比较,选择较小编码代价的模式,从而确定块级预测类型pred_type (r,s)。 Then get the residual of the entire block, use semi-fixed-length VLC coding, count the number of bits_block_pixel of the block coding and compare it with the previous bits_block, select the mode with a smaller coding cost, so as to determine the block-level prediction type pred_type (r, s).
(3)小块帧内预测模式选择:根据编码比特代价最小判断。基于查表的编码比特估计模块为各种预测模式计算出编码比特消耗;而这个估计过程需要基于控制字mm的半定长码表以及编码控制字M的Huffman可变长码表。对于每个3x3小块,估计出小块内数据地动态范围,确定分区状态信息mm。 (3) Small-block intra-prediction mode selection: Judgment based on the minimum coding bit cost. The coded bit estimation module based on the look-up table calculates the coded bit consumption for various prediction modes; and this estimation process requires a semi-fixed-length code table based on the control word mm and a Huffman variable-length code table based on the coded control word M. For each 3x3 small block, the dynamic range of the data in the small block is estimated, and the partition state information mm is determined.
其中,基于控制字mm的半定长码表是实现确定的,根据每个小块的动态范围信息mm查表得到变长比特信息;而编码控制字M的Huffman可变长码表是由M字段柱状图分析及huffman编码离线构建得到。 Among them, the semi-fixed-length code table based on the control word mm is realized, and the variable-length bit information is obtained by looking up the dynamic range information mm of each small block; and the Huffman variable-length code table of the encoded control word M is determined by M Field histogram analysis and Huffman coding offline construction.
完成模式选择后,得到最优预测模式的残差图像, After completing the mode selection, the residual image of the optimal prediction mode is obtained,
(4)对于残差图像,分割为不同小块进行自适应可变长编码。第一行、第一列残差,相邻4个数据构成一个大小为2x2的小块,其他15x15数据块,采用3x3数据小块。估计每个小块的动态范围,计算出相应控制字mm,得到相应的控制字M,由压缩码流生成模块得到无损压缩码流。 (4) For the residual image, it is divided into different small blocks for adaptive variable length coding. In the first row and first column of residuals, 4 adjacent data form a small block with a size of 2x2, and other 15x15 data blocks use 3x3 small data blocks. The dynamic range of each small block is estimated, the corresponding control word mm is calculated, and the corresponding control word M is obtained, and the lossless compressed code stream is obtained by the compressed code stream generation module.
因为动态范围(minv,maxv)对于编码效率有直接影响,而水平第一行16个像素仅仅采用水平预测模式,垂直第一列仅仅采用垂直预测模式;这样对于一些存在复杂边缘和纹理的区域,单向预测模式的动态范围会较大;其他15x15像素采用了块、像素级自适应水平、垂直预测模式,动态范围相对会小点。为了避免这两种情况的互相影响,本发明采用自适应小块选择策略:为了保证和块级预测模式自适应选择中编码比特估计一致,对于15x15的残差块,分为5x5个大小为3x3的小块;对于水平第一行16个像素,将他们分为4个2x2小块;对于垂直第一列16个像素,将他们分为4个2x2小块。 Because the dynamic range (minv, maxv) has a direct impact on the coding efficiency, the 16 pixels in the first horizontal row only use the horizontal prediction mode, and the first vertical column only uses the vertical prediction mode; so for some areas with complex edges and textures, The dynamic range of the unidirectional prediction mode will be larger; the other 15x15 pixels adopt the block, pixel-level adaptive horizontal and vertical prediction mode, and the dynamic range will be relatively small. In order to avoid the mutual influence of these two situations, the present invention adopts an adaptive small block selection strategy: in order to ensure that the coding bit estimation is consistent with the block-level prediction mode adaptive selection, for the 15x15 residual block, it is divided into 5x5 blocks with a size of 3x3 For the 16 pixels in the first horizontal row, divide them into 4 small 2x2 blocks; for the 16 pixels in the first vertical column, divide them into 4 small 2x2 blocks.
对于预测残差residue,采用基于小块的半定长VLC编码技术。对于每个小块,计算小块内最大系数maxv、最小系数minv,根据minv 和maxv确定动态范围(用mm区分),根据mm将小块残差系数自适应划分为8个区间变长的编码区域,并用控制字段M标识。对于每个划分区间,采用定长编码,如表1所示。 For the prediction residual residue, a small-block-based semi-fixed-length VLC coding technique is used. For each small block, calculate the maximum coefficient maxv and minimum coefficient minv in the small block, determine the dynamic range according to minv and maxv (use mm to distinguish), and adaptively divide the residual coefficient of the small block into 8 codes with variable length according to mm area, and is identified by the control field M. For each division interval, a fixed-length code is used, as shown in Table 1.
表1 残差系数半定长编码码表 Table 1 Residual coefficient semi-fixed-length code table
对于控制字M信息,为了降低M字段编码比特,采用Huffman变长编码方法,统计M各种取值的柱状图,根据概率分布,得到M取0~7时可变长编码表。确定可变长编码码表,然后基于查表方法进行可变长编码。 For the control word M information, in order to reduce the encoding bits of the M field, the Huffman variable-length coding method is used, and the histograms of various values of M are counted. According to the probability distribution, the variable-length coding table when M is 0-7 is obtained. Determine the variable-length coding code table, and then perform variable-length coding based on the table look-up method.
mm = max (abs(maxv),abs(minv)) mm = max (abs(maxv), abs(minv))
if (maxv == -minv && max!=1) mm = mm+1 if (maxv == -minv && max!=1) mm = mm+1
注意,这里15x15区域5x5个3x3的小块,以及水平第一行、垂直第一行的4+4个2x2的块,因为动态范围不同,M字段概率分布也不同。对于3x3 和2x2小块采用独立的huffman码表,分别如表2中第2和3列所示 Note that there are 5x5 small 3x3 blocks in the 15x15 area, and 4+4 2x2 blocks in the first horizontal row and the first vertical row. Because the dynamic range is different, the probability distribution of the M field is also different. For 3x3 and 2x2 small blocks, independent huffman code tables are used, as shown in columns 2 and 3 in Table 2
表2 控制字段M的Huffma可变长编码码表 Table 2 Huffma variable-length code table of control field M
本发明按照实施例进行了说明,在不脱离本原理的前提下,本装置还可以作出若干变形和改进。应当指出,凡采用等同替换或等效变换等方式所获得的技术方案,均落在本发明的保护范围内。 The present invention has been described according to the embodiments. On the premise of not departing from the principle, the device can also be modified and improved. It should be pointed out that all technical solutions obtained by means of equivalent replacement or equivalent transformation fall within the protection scope of the present invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310657826.0A CN103618898B (en) | 2013-12-09 | 2013-12-09 | Complexity image lossless compression method supporting random access |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310657826.0A CN103618898B (en) | 2013-12-09 | 2013-12-09 | Complexity image lossless compression method supporting random access |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103618898A true CN103618898A (en) | 2014-03-05 |
CN103618898B CN103618898B (en) | 2017-01-25 |
Family
ID=50169602
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310657826.0A Expired - Fee Related CN103618898B (en) | 2013-12-09 | 2013-12-09 | Complexity image lossless compression method supporting random access |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103618898B (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106162168A (en) * | 2015-04-02 | 2016-11-23 | 北京君正集成电路股份有限公司 | Video frame compression method and device |
CN106878740A (en) * | 2015-12-10 | 2017-06-20 | 格科微电子(上海)有限公司 | Image compression method and image compression system suitable for liquid crystal display drive |
CN108347602A (en) * | 2017-01-22 | 2018-07-31 | 上海澜至半导体有限公司 | Method and apparatus for lossless compression video data |
CN109547791A (en) * | 2018-10-26 | 2019-03-29 | 西安科锐盛创新科技有限公司 | Image intra prediction method and its device |
CN110691242A (en) * | 2019-09-16 | 2020-01-14 | 华中科技大学 | Large-format remote sensing image lossless compression method |
CN112055223A (en) * | 2020-08-21 | 2020-12-08 | 浙江大华技术股份有限公司 | A kind of image coding and decoding method and codec |
WO2023000695A1 (en) * | 2021-07-22 | 2023-01-26 | 珠海市杰理科技股份有限公司 | Video encoding reference block compression method, encoding method, and apparatuses |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1965586A (en) * | 2004-06-07 | 2007-05-16 | 学校法人大洋学园 | Method of lossless encoding and decoding, and apparatus thereof |
US7345601B2 (en) * | 2005-12-21 | 2008-03-18 | Texas Instruments Incorporated | Variable length coding algorithm for multiple coding modes |
CN103248891A (en) * | 2013-04-24 | 2013-08-14 | 复旦大学 | N-bit truncation quantization and in-block two-dimensional prediction-based reference frame compression method |
-
2013
- 2013-12-09 CN CN201310657826.0A patent/CN103618898B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1965586A (en) * | 2004-06-07 | 2007-05-16 | 学校法人大洋学园 | Method of lossless encoding and decoding, and apparatus thereof |
US7345601B2 (en) * | 2005-12-21 | 2008-03-18 | Texas Instruments Incorporated | Variable length coding algorithm for multiple coding modes |
CN103248891A (en) * | 2013-04-24 | 2013-08-14 | 复旦大学 | N-bit truncation quantization and in-block two-dimensional prediction-based reference frame compression method |
Non-Patent Citations (2)
Title |
---|
LIU SONG等: "A CONSTANT RATE BANDWIDTH REDUCTION ARCHITECTURE WITH", 《18TH EUROPEAN SIGNAL PROCESSING CONFERENCE》 * |
MUCHEN LI等: "A CONSTANT RATE BANDWIDTH REDUCTION ARCHITECTURE WITH", 《IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS & COMPUTER SCIENCES》 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106162168A (en) * | 2015-04-02 | 2016-11-23 | 北京君正集成电路股份有限公司 | Video frame compression method and device |
CN106162168B (en) * | 2015-04-02 | 2019-09-17 | 北京君正集成电路股份有限公司 | Video frame compression method and device |
CN106878740A (en) * | 2015-12-10 | 2017-06-20 | 格科微电子(上海)有限公司 | Image compression method and image compression system suitable for liquid crystal display drive |
CN108347602A (en) * | 2017-01-22 | 2018-07-31 | 上海澜至半导体有限公司 | Method and apparatus for lossless compression video data |
CN109547791A (en) * | 2018-10-26 | 2019-03-29 | 西安科锐盛创新科技有限公司 | Image intra prediction method and its device |
CN110691242A (en) * | 2019-09-16 | 2020-01-14 | 华中科技大学 | Large-format remote sensing image lossless compression method |
CN112055223A (en) * | 2020-08-21 | 2020-12-08 | 浙江大华技术股份有限公司 | A kind of image coding and decoding method and codec |
WO2023000695A1 (en) * | 2021-07-22 | 2023-01-26 | 珠海市杰理科技股份有限公司 | Video encoding reference block compression method, encoding method, and apparatuses |
Also Published As
Publication number | Publication date |
---|---|
CN103618898B (en) | 2017-01-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103618898B (en) | Complexity image lossless compression method supporting random access | |
CN105578190B (en) | Lossless compression method and system applied to video hard decoder | |
CN102857764B (en) | The method and apparatus of intra prediction mode process | |
CN102547283B (en) | Device and method for dynamic video data compression | |
CN104349171B (en) | The compression of images coding/decoding device and coding and decoding method of a kind of virtually lossless | |
CN104243997B (en) | Method for quality scalable HEVC (high efficiency video coding) | |
CN105120276B (en) | Adaptive M otion JPEG coding methods and system | |
CN102984523B (en) | A kind of multidirectional infra-frame prediction decoding method and device | |
CN107105231A (en) | Video decoding method and system thereof | |
CN105681807A (en) | Method and device for calculating sub pixel motion vector based on H264 protocol | |
US9351004B2 (en) | Multiview video coding reference picture selection under a one reference picture constraint | |
CN104333754A (en) | SHVC (scalable high efficiency video coding) enhancement layer video coding method based on rapid prediction mode selection | |
Wang et al. | Efficient compression-based line buffer design for image/video processing circuits | |
Sampaio et al. | Energy-efficient memory hierarchy for motion and disparity estimation in multiview video coding | |
CN102075759B (en) | Low-power consumption encoding method for dynamic memory in video decoding application | |
Liu et al. | An 865-μW H. 264/AVC video decoder for mobile applications | |
CN101790096A (en) | Encoding and decoding method and device based on double prediction | |
CN103974072A (en) | Frame storage method based on block compression during video decoding | |
Lee et al. | Lossless frame memory recompression for video codec preserving random accessibility of coding unit | |
TWI418219B (en) | Data-mapping method and cache system for use in a motion compensation system | |
CN117579842A (en) | Lossless ARGB compression method based on intra-block prediction | |
CN101304520A (en) | Image decoding system and adaptive fast access method for motion compensation thereof | |
WO2022206199A1 (en) | Method and apparatus for performing image processing in video decoding apparatus, and system | |
WO2022206217A1 (en) | Method and apparatus for performing image processing in video encoder, and medium and system | |
CN115190307B (en) | Method, device and system for image processing in video encoding device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20170125 Termination date: 20211209 |
|
CF01 | Termination of patent right due to non-payment of annual fee |