CN103617547B - A kind of business recommended method and system - Google Patents
A kind of business recommended method and system Download PDFInfo
- Publication number
- CN103617547B CN103617547B CN201310648021.XA CN201310648021A CN103617547B CN 103617547 B CN103617547 B CN 103617547B CN 201310648021 A CN201310648021 A CN 201310648021A CN 103617547 B CN103617547 B CN 103617547B
- Authority
- CN
- China
- Prior art keywords
- user
- information
- model
- service
- location
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 19
- 238000004904 shortening Methods 0.000 abstract 1
- 238000004891 communication Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000005065 mining Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Landscapes
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明公开了一种业务推荐方法及系统,包括获取用户基本信息、用户使用互联网的原始信息,以及用户使用移动业务的位置情景信息;根据获得的用户使用互联网的原始信息建立用户兴趣模型;根据获得的用户使用移动业务的位置情景信息建立用户情景模型;建立用户兴趣模型、用户情景模型与业务信息之间的关联关系模型,根据关联关系模型,计算向用户推荐的各业务的推荐度,并将推荐度高的业务推送给用户。本发明提供的技术方案中,将用户位置情景引入到个性化业务推荐方法中,提升了个性化服务推荐精准度和用户体验;而且本发明基于云计算资源池的系统框架,实现了资源的弹性、动态扩展,缩短了系统响应时间,同时提升了用户体验。
The invention discloses a service recommendation method and system, which includes obtaining basic information of users, original information of users using the Internet, and location situation information of users using mobile services; establishing a user interest model according to the obtained original information of users using the Internet; Establish a user scenario model based on the obtained location scenario information of the user using the mobile service; establish a user interest model, a correlation model between the user scenario model and business information, and calculate the recommendation degree of each business recommended to the user according to the correlation model, and Push highly recommended services to users. In the technical solution provided by the present invention, the user location scenario is introduced into the personalized service recommendation method, which improves the accuracy of personalized service recommendation and user experience; moreover, the present invention realizes resource elasticity based on the system framework of cloud computing resource pool , Dynamic expansion, shortening the system response time, while improving the user experience.
Description
技术领域technical field
本发明涉及云计算技术,尤指一种基于位置服务(LBS)的云服务个性化的业务推荐方法及系统。The present invention relates to cloud computing technology, in particular to a location service (LBS)-based cloud service personalized service recommendation method and system.
背景技术Background technique
目前,分众服务、精细化经营已成为运营商发展业务、提升用户体验的一种重要手段。现有的精准营销系统主要基于对用户的基本信息、地理位置信息、通信行为等数据,从中发现业务运营规律,进而开展业务推荐。At present, focused services and refined operations have become an important means for operators to develop services and improve user experience. The existing precision marketing system is mainly based on the basic information of users, geographic location information, communication behavior and other data, from which business operation rules are discovered, and then business recommendations are carried out.
现有的基于LBS的业务推荐服务系统中,由于只考虑地理位置信息以及只有业务类别的通信行为信息,未考虑用户兴趣偏好及位置情景偏好,这样,向用户推荐的业务并不是用户最想要的,造成了用户体验较差的问题。In the existing LBS-based business recommendation service system, only the geographical location information and the communication behavior information of the business category are considered, and the user's interest preference and location situation preference are not considered. In this way, the business recommended to the user is not the user's most desired service , resulting in poor user experience.
发明内容Contents of the invention
为了解决上述技术问题,本发明提供了一种业务推荐方法及系统,能够实时响应用户需求,提升用户体验。In order to solve the above technical problems, the present invention provides a service recommendation method and system, which can respond to user needs in real time and improve user experience.
为了达到本发明目的,本发明提供了一种业务推荐方法,包括:获取用户基本信息、用户使用互联网的原始信息,以及用户使用移动业务的位置情景信息;In order to achieve the purpose of the present invention, the present invention provides a method for recommending services, including: acquiring basic user information, original information of the user using the Internet, and location context information of the user using mobile services;
根据获得的用户使用互联网的原始信息建立用户兴趣模型;根据获得的用户使用移动业务的位置情景信息建立用户情景模型;Establish a user interest model based on the obtained original information of the user using the Internet; establish a user scenario model based on the obtained location context information of the user using the mobile service;
建立用户兴趣模型、用户情景模型与业务信息之间的关联关系模型,根据关联关系模型,计算向用户推荐新业务的推荐度,并将推荐度高的业务推送给用户。Establish the relationship model between user interest model, user scenario model and business information, calculate the recommendation degree of recommending new services to users according to the relationship model, and push the highly recommended services to users.
所述用户基本信息至少包括:用户身份信息、订购业务信息;The basic user information includes at least: user identity information, order service information;
所述用户使用互联网的原始信息为URL日志信息。The original information of the user using the Internet is URL log information.
所述建立用户兴趣模型包括:Described establishment user interest model comprises:
通过对所述URL日志信息的分析,得到用户访问网页文档的主题类别;By analyzing the URL log information, the subject category of the web page document accessed by the user is obtained;
建立不同兴趣类别与兴趣度的对应关系;Establish the corresponding relationship between different interest categories and interest degrees;
其中,所述兴趣度与对应的兴趣类别所包含的类网页文档数成正比,与最近阅览的兴趣类别所包含的网页文档的时间差成反比。Wherein, the degree of interest is directly proportional to the number of webpage-like documents included in the corresponding interest category, and inversely proportional to the time difference of the recently viewed webpage documents included in the interest category.
该方法还包括:按照预先设置的定时时长,更新所述用户兴趣模型。The method also includes: updating the user interest model according to a preset timing period.
所述用户使用移动业务的位置情景信息包括:位置信息、时间信息、终端设备信息以及业务信息。The location context information of the user using the mobile service includes: location information, time information, terminal equipment information and service information.
所述建立用户情景模型包括:The establishment of the user scenario model includes:
按照不同的位置情景类型,建立位置、时间、终端、业务,以及位置情景的兴趣度之间的对应关系。According to different types of location scenarios, a corresponding relationship among location, time, terminal, service, and interest degree of location scenarios is established.
所述建立用户兴趣模型、用户情景模型与业务信息之间的关联关系模型包括:The establishment of the relationship model between the user interest model, the user situation model and the business information includes:
计算所述各用户的用户兴趣模型与用户情景模块性的矢量乘积,已得到关联关系模型。Calculate the vector product of the user interest model of each user and the modularity of the user scenario to obtain an association relationship model.
所述将推荐度高的业务推送给用户包括:The pushing of highly recommended services to users includes:
根据所述关联关系模型,计算向用户推荐新业务的推荐度;Calculating the degree of recommendation for recommending new services to users according to the relationship model;
将新业务的推荐度进行排序,根据系统预设的业务推荐数量阈值,将业务的推荐度排列在前业务推荐数量阈值项的业务推送给用户。The recommendation degree of the new business is sorted, and according to the business recommendation quantity threshold preset by the system, the business whose recommendation degree ranks first in the business recommendation quantity threshold item is pushed to the user.
本发明还推荐一种业务推荐系统,至少包括获取单元、第一建立单元、第二建立单元、第三建立单元,以及业务推荐单元;其中,The present invention also recommends a service recommendation system, which at least includes an acquisition unit, a first establishment unit, a second establishment unit, a third establishment unit, and a service recommendation unit; wherein,
获取模块,用于用户基本信息、用户使用互联网的原始信息,以及用户使用移动业务的位置情景信息;The acquisition module is used for the basic information of the user, the original information of the user using the Internet, and the location context information of the user using the mobile service;
第一建立单元,用于根据获得的用户使用互联网的原始信息建立用户兴趣模型;A first establishing unit, configured to establish a user interest model according to the obtained original information on the use of the Internet by the user;
第二建立单元,用于根据获得的用户使用移动业务的位置情景信息建立用户情景模型;The second establishing unit is used to establish a user scenario model according to the obtained location scenario information of the user using the mobile service;
第三建立单元,用于根据建立的用户兴趣模型和用户情景模型,建立用户兴趣模型、用户情景模型与业务信息之间的关联关系模型;The third establishment unit is used to establish a relationship model between the user interest model, the user situation model and the service information according to the established user interest model and user situation model;
业务推荐单元,用于根据关联关系模型,计算向用户推荐的各业务的推荐度,并根据用户基本信息将推荐度高的业务推送给用户。The service recommendation unit is configured to calculate the recommendation degree of each service recommended to the user according to the association relationship model, and push the service with a high recommendation degree to the user according to the basic information of the user.
所述业务推荐系统位于云计算资源池中。The service recommendation system is located in a cloud computing resource pool.
与现有技术相比,本发明包括获取用户基本信息、用户使用互联网的原始信息,以及用户使用移动业务的位置情景信息;根据获得的用户使用互联网的原始信息建立用户兴趣模型;根据获得的用户使用移动业务的位置情景信息建立用户情景模型;建立用户兴趣模型、用户情景模型与业务信息之间的关联关系模型,根据关联关系模型,计算向用户推荐的各业务的推荐度,并将推荐度高的业务推送给用户。本发明提供的技术方案中,将根据用户兴趣建立的用户位置情景引入到个性化业务推荐方法中,提升了个性化服务推荐精准度和用户体验;而且本发明基于云计算资源池的系统框架,实现了资源的弹性、动态扩展,缩短了系统响应时间,同时也提升了用户体验。Compared with the prior art, the present invention includes obtaining basic information of users, original information of users using the Internet, and location context information of users using mobile services; establishing a user interest model according to the obtained original information of users using the Internet; Use the location context information of the mobile service to establish a user context model; establish a user interest model, a correlation model between the user context model and business information, and calculate the recommendation degree of each business recommended to the user according to the correlation model, and calculate the recommendation degree High-quality services are pushed to users. In the technical solution provided by the present invention, the user location scenario established according to the user's interests is introduced into the personalized service recommendation method, which improves the accuracy of personalized service recommendation and user experience; and the present invention is based on the system framework of the cloud computing resource pool, It realizes the elasticity and dynamic expansion of resources, shortens the system response time, and improves the user experience at the same time.
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。Additional features and advantages of the invention will be set forth in the description which follows, and in part will be apparent from the description, or may be learned by practice of the invention. The objectives and other advantages of the invention may be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended drawings.
附图说明Description of drawings
附图用来提供对本发明技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本发明的技术方案,并不构成对本发明技术方案的限制。The accompanying drawings are used to provide a further understanding of the technical solution of the present invention, and constitute a part of the description, and are used together with the embodiments of the application to explain the technical solution of the present invention, and do not constitute a limitation to the technical solution of the present invention.
图1为本发明业务推荐方法的流程图;Fig. 1 is a flow chart of the service recommendation method of the present invention;
图2为本发明业务推荐系统的组成结构示意图。FIG. 2 is a schematic diagram of the composition and structure of the service recommendation system of the present invention.
具体实施方式detailed description
为使本发明的目的、技术方案和优点更加清楚明白,下文中将结合附图对本发明的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。In order to make the purpose, technical solution and advantages of the present invention more clear, the embodiments of the present invention will be described in detail below in conjunction with the accompanying drawings. It should be noted that, in the case of no conflict, the embodiments in the present application and the features in the embodiments can be combined arbitrarily with each other.
在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行。并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。The steps shown in the flowcharts of the figures may be performed in a computer system, such as a set of computer-executable instructions. Also, although a logical order is shown in the flowcharts, in some cases the steps shown or described may be performed in an order different from that shown or described herein.
图1为本发明业务推荐方法的流程图,如图1所示,包括以下步骤:Fig. 1 is a flowchart of the service recommendation method of the present invention, as shown in Fig. 1, comprising the following steps:
步骤100:获取用户基本信息、用户使用互联网的原始信息,以及用户使用移动业务的位置情景信息。Step 100: Obtain the basic information of the user, the original information of the user using the Internet, and the location context information of the user using the mobile service.
本步骤中,可以从业务支撑系统(BSS,Business Support System)/运营支撑系统(OSS,Operation Support System)采集用户基本信息如用户身份信息、订购业务信息等;In this step, basic user information such as user identity information, subscription service information, etc. can be collected from the Business Support System (BSS)/Operation Support System (OSS; Operation Support System);
从宽带接入服务器(BRAS,Broadband Remote Access Server)和远程用户拨号认证系统(RADIUS,Remote Authentication Dial In User Service)采集用户使用互联网的原始信息(访问的统一资源定位符(URL)日志信息),如(URL1;URL2;Λ);Collect the original information of users using the Internet (log information of the Uniform Resource Locator (URL) accessed) from the broadband access server (BRAS, Broadband Remote Access Server) and remote user dial-up authentication system (RADIUS, Remote Authentication Dial In User Service), Such as( URL1 ; URL2 ;Λ);
通过设置在移动基站的移动基站定位装置,获取用户使用移动业务的位置情景信息。用户使用移动业务的位置情景信息包括以下4类信息:(1)位置信息,包括位置名称LName,及其精确的经度信息LLongitude和纬度信息LLatitude;(2)时间信息,包括日期LDate和具体时间LTime;(3)终端设备信息,即移动终端设备的类型LTerminal;(4)业务信息LService,也就是说,用户使用移动业务的位置情景信息包括以下集合:(LName,LLongitude,LLatitude,LDate,LTime,LTerminal,LService)。Through the mobile base station positioning device installed in the mobile base station, the location situation information of the user using the mobile service is acquired. The location context information of the user using the mobile service includes the following four types of information: (1) location information, including location name L Name , and its precise longitude information L Longitude and latitude information L Latitude ; (2) time information, including date L Date and specific time L Time ; (3) terminal equipment information, i.e. the type L Terminal of the mobile terminal equipment; (4) business information L Service , that is to say, the location context information of the user using the mobile service includes the following sets: (L Name , L Longitude , L Latitude , L Date , L Time , L Terminal , L Service ).
本步骤的具体实现属于本领域技术人员的惯用技术手段,具体实现并不用于限定本发明的保护范围,这里不再赘述。The specific implementation of this step belongs to the usual technical means of those skilled in the art, and the specific implementation is not used to limit the protection scope of the present invention, and will not be repeated here.
步骤101:根据获得的用户使用互联网的原始信息建立用户兴趣模型;根据获得的用户使用移动业务的位置情景信息建立用户情景模型。Step 101: Establish a user interest model based on the obtained original information of the user using the Internet; establish a user scenario model based on the obtained location context information of the user using the mobile service.
本步骤中,根据获得的用户使用互联网的原始信息建立用户兴趣模型的具体实现包括:In this step, the specific realization of establishing the user interest model according to the obtained original information of the user using the Internet includes:
首先,通过对获得的用户使用互联网的原始信息(访问的URL日志信息)的分析,即使用现有文本挖掘技术,获取每个URL对应页面的主题类别如体育类,建立用户兴趣模型如公式(1)所示,First, through the analysis of the obtained original information of users using the Internet (accessed URL log information), that is, using the existing text mining technology, to obtain the subject category of the page corresponding to each URL, such as sports, and establish a user interest model As shown in formula (1),
在公式(1)中,m表示当前用户的兴趣数量,0<m≤|C|;|C|是系统主题类别总数,(ci,wi)是该用户的第(i+1)(0≤i<m)类兴趣项,ci表示兴趣类别名称,wi表示ci类兴趣的兴趣度。即建立了不同兴趣类别与兴趣度的对应关系。In formula (1), m represents the number of interests of the current user, 0<m≤|C|; |C| is the total number of system topic categories, (c i , w i ) is the user's (i+1)th ( 0≤i<m) category of interest items, ci indicates the name of the category of interest, and w i indicates the interest degree of the category of interest in ci . That is, a corresponding relationship between different interest categories and interest degrees is established.
由于用户的兴趣爱好会随时间的推移而动态变化,一些用户原本感兴趣的内容会随时间的推移而渐渐遗忘,新的兴趣会逐渐产生,因此,公式(1)中,用户的第(i+1)(0≤i<m)类兴趣的兴趣度wi与用户感兴趣的ci类网页文档数成正比,与最近阅览ci类网页文档的时间差成反比。因此,用户的第(i+1)(0≤i<m)类兴趣的兴趣度wi如公式(2)所示,Since the user's interests and hobbies will change dynamically over time, some content that the user is originally interested in will gradually be forgotten over time, and new interests will gradually emerge. Therefore, in formula (1), the user's first (i +1) (0≤i<m) The degree of interest w i of category interest is directly proportional to the number of webpage documents of category c i that the user is interested in, and inversely proportional to the time difference of recently browsing the webpage documents of category c i . Therefore, the interest degree w i of the user's (i+1)th (0≤i<m) type of interest is shown in formula (2),
在公式(2)中,ni表示当前用户URL日志信息中ci类URL日志的数量,ti表示当前用户URL日志信息中ci类URL日志的最近出现时间,T表示当前系统时间,α>0是一个调整系数,用于防止公式(2)中的f()函数的分母为0,同时,还可以调整兴趣度wi的衰减速度,α值越小,兴趣度wi的衰减速度越快,因此,可以根据具体需求确定α的取值。In formula (2), n i represents the number of URL logs of type c i in the URL log information of the current user, t i represents the latest appearance time of URL logs of type c i in the URL log information of the current user, T represents the current system time, α >0 is an adjustment coefficient, which is used to prevent the denominator of the f() function in formula (2) from being 0. At the same time, it can also adjust the decay speed of the interest degree w i . The smaller the value of α, the decay speed of the interest degree wi The faster, therefore, the value of α can be determined according to specific needs.
本步骤还包括:定期即按照预先设置的定时时长,周期性进行用户兴趣模型的更新。This step also includes: updating the user interest model periodically, that is, according to a preset timing period.
本步骤中,根据获得的用户使用移动业务的位置情景信息建立用户情景模型根据位置信息(包括位置名称LName,及其精确的经度信息LLongitude和纬度信息LLatitude)对位置进行分类,如餐饮、娱乐、酒店等,得到Lj;根据时间信息(包括日期LDate和具体时间LTime)对时间进行分类,如工作日/节假日、上午/下午/晚上等,得到Tj;Terminalj就是终端设备的类型LTerminal;根据业务信息LService对业务进行分类,得到Servicej。如公式(3)所示:In this step, a user scenario model is established according to the obtained location scenario information of the user using the mobile service According to the location information (including the location name L Name , and its precise longitude information L Longitude and latitude information L Latitude ), the location is classified, such as catering, entertainment, hotel, etc., and L j is obtained; according to the time information (including the date L Date and The specific time L Time ) classifies the time, such as working days/holidays, morning/afternoon/evening, etc., to obtain T j ; Terminal j is the type of terminal equipment L Terminal ; classify the business according to the business information L Service , and obtain Service j . As shown in formula (3):
在公式(3)中,p表示当前用户的位置情景类型的数量,(Lj,Tj,Terminalj,Servicej,ξj)表示当前该用户的第(j+1)(0≤j≤p-1)类位置情景项,Lj表示位置类别名称,Tj表示时间类别名称,Terminalj表示终端类别名称,Servicej表示业务类别名称,ξj是第(j+1)类位置情景的兴趣度。In formula (3), p represents the number of the current user’s location scenario types, (L j , T j , Terminal j , Service j , ξ j ) represents the current user’s (j+1)th (0≤j≤ p-1) type location scenario item, L j represents the location category name, T j represents the time category name, Terminal j represents the terminal category name, Service j represents the service category name, ξ j is the (j+1)th type of location scenario interest.
需要说明的是,针对系统中的各个用户u,其中,1≤u≤|U|,|U|是系统中的用户总数,都会分别根据获得的用户使用互联网的原始信息建立用户兴趣模型,根据获得的用户使用移动业务的位置情景信息建立用户情景模型。It should be noted that, for each user u in the system, where 1 ≤ u ≤ |U|, |U| The acquired user uses the location context information of the mobile service to establish a user context model.
步骤102:建立用户兴趣模型、用户情景模型与业务信息之间的关联关系模型。Step 102: Establish a relationship model among the user interest model, user scenario model and service information.
根据系统中各用户的用户兴趣模型用户情景模型与业务信息之间的关联关系模型如公式(4)所示:According to the user interest model of each user in the system User Scenario Model Relationship model with business information As shown in formula (4):
在公式(4)中,表示系统中的各个用户,1≤u≤|U|,|U|是用户总数。In formula (4), Represents individual users in the system, 1≤u≤|U|, where |U| is the total number of users.
步骤103:根据关联关系模型,计算向用户推荐新业务的推荐度,并将推荐度高的业务推送给用户。Step 103: According to the relationship model, calculate the degree of recommendation for recommending new services to users, and push services with high degrees of recommendation to users.
本步骤中,先根据关联关系模型计算向用户A(假设用户A有1~a个兴趣)推荐新业务Servicek的推荐度Rk如公式(5)所示:In this step, according to the relationship model Calculate the recommendation degree R k for recommending a new service Service k to user A (assuming that user A has 1~a interests) as shown in formula (5):
公式(5)中,l表示用户A的a个兴趣。In formula (5), l represents user A's a interests.
然后,将新业务Servicek的推荐度Rk进行降序排列,根据系统预设的业务推荐数量阈值Num,将推荐度Rk排列在前Num项的新业务Servicek推送给用户A。Then, the recommendation degree R k of the new business Service k is sorted in descending order, and the new business Service k whose recommendation degree R k ranks in the top Num items is pushed to user A according to the system preset business recommendation quantity threshold Num.
本发明方法中,将根据用户兴趣建立的用户位置情景引入到LBS个性化业务推荐方法中,提升了个性化服务推荐精准度和用户体验;而且,本发明方法应用于基于云计算资源池的系统框架中,实现了资源的弹性、动态扩展,缩短了系统响应时间,同时也提升了用户体验。In the method of the present invention, the user location scenario established according to user interests is introduced into the LBS personalized service recommendation method, which improves the accuracy of personalized service recommendation and user experience; moreover, the method of the present invention is applied to a system based on cloud computing resource pools In the framework, the elasticity and dynamic expansion of resources are realized, the system response time is shortened, and the user experience is also improved.
图2为本发明业务推荐系统的组成结构示意图,如图2所示,至少包括获取单元、第一建立单元、第二建立单元、第三建立单元,以及业务推荐单元;其中,Figure 2 is a schematic diagram of the composition and structure of the service recommendation system of the present invention, as shown in Figure 2, at least including an acquisition unit, a first establishment unit, a second establishment unit, a third establishment unit, and a service recommendation unit; wherein,
获取模块,用于用户基本信息、用户使用互联网的原始信息,以及用户使用移动业务的位置情景信息;The acquisition module is used for the basic information of the user, the original information of the user using the Internet, and the location context information of the user using the mobile service;
第一建立单元,用于根据获得的用户使用互联网的原始信息建立用户兴趣模型;A first establishing unit, configured to establish a user interest model according to the obtained original information on the use of the Internet by the user;
第二建立单元,用于根据获得的用户使用移动业务的位置情景信息建立用户情景模型;The second establishing unit is used to establish a user scenario model according to the obtained location scenario information of the user using the mobile service;
第三建立单元,用于根据建立的用户兴趣模型和用户情景模型,建立用户兴趣模型、用户情景模型与业务信息之间的关联关系模型。The third establishing unit is configured to establish a relationship model between the user interest model, the user situation model and the service information according to the established user interest model and user situation model.
业务推荐单元,用于根据关联关系模型,计算向用户推荐的各业务的推荐度,并根据用户基本信息将推荐度高的业务推送给用户。The service recommendation unit is configured to calculate the recommendation degree of each service recommended to the user according to the association relationship model, and push the service with a high recommendation degree to the user according to the basic information of the user.
本发明业务推荐系统位于云计算资源池中,而云计算资源池本身包含分布于不同地理位置的计算与存储资源,这样,在云计算框架下,通过云计算资源管理组件的调度策略,针对个性化服务推荐系统相关应用程序的不同需求,动态、透明的提供了其所需的计算与存储资源,并在当前应用程序不使用时将其资源动态回收。也就是说,本发明基于云计算资源池的系统框架中,实现了资源的弹性、动态扩展,缩短了系统响应时间,同时也提升了用户体验。The service recommendation system of the present invention is located in the cloud computing resource pool, and the cloud computing resource pool itself contains computing and storage resources distributed in different geographical locations. In this way, under the cloud computing framework, through the scheduling strategy of the cloud computing resource management According to the different requirements of the related applications of the personalized service recommendation system, it dynamically and transparently provides the required computing and storage resources, and dynamically recycles the resources when the current application is not in use. That is to say, in the system framework based on the cloud computing resource pool, the present invention realizes elastic and dynamic expansion of resources, shortens system response time, and improves user experience at the same time.
虽然本发明所揭露的实施方式如上,但所述的内容仅为便于理解本发明而采用的实施方式,并非用以限定本发明。任何本发明所属领域内的技术人员,在不脱离本发明所揭露的精神和范围的前提下,可以在实施的形式及细节上进行任何的修改与变化,但本发明的专利保护范围,仍须以所附的权利要求书所界定的范围为准。Although the embodiments disclosed in the present invention are as above, the described content is only an embodiment adopted for understanding the present invention, and is not intended to limit the present invention. Anyone skilled in the field of the present invention can make any modifications and changes in the form and details of the implementation without departing from the spirit and scope disclosed by the present invention, but the scope of patent protection of the present invention must still be The scope defined by the appended claims shall prevail.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310648021.XA CN103617547B (en) | 2013-12-04 | 2013-12-04 | A kind of business recommended method and system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310648021.XA CN103617547B (en) | 2013-12-04 | 2013-12-04 | A kind of business recommended method and system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103617547A CN103617547A (en) | 2014-03-05 |
CN103617547B true CN103617547B (en) | 2017-07-07 |
Family
ID=50168251
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310648021.XA Active CN103617547B (en) | 2013-12-04 | 2013-12-04 | A kind of business recommended method and system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103617547B (en) |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104008184A (en) * | 2014-06-10 | 2014-08-27 | 百度在线网络技术(北京)有限公司 | Method and device for pushing information |
CN104063457A (en) * | 2014-06-25 | 2014-09-24 | 北京智谷睿拓技术服务有限公司 | Information communication method, system and terminal |
CN105446994A (en) * | 2014-07-11 | 2016-03-30 | 华为技术有限公司 | Service recommendation method and device with intelligent assistant |
CN104168587A (en) * | 2014-08-11 | 2014-11-26 | 无锡高联信息技术有限公司 | Resource utilization method based on LTE system |
CN104680399A (en) * | 2015-03-13 | 2015-06-03 | 江苏物联网研究发展中心 | Sale recommending method for agricultural material commodities |
CN107086922B (en) * | 2016-02-15 | 2020-08-04 | 中国移动通信集团福建有限公司 | Method and device for identifying user behavior |
CN105956009B (en) * | 2016-04-21 | 2019-09-06 | 深圳大数点科技有限公司 | A method of do something for the occasion in real time content matching and push |
CN107332807A (en) * | 2016-04-29 | 2017-11-07 | 高德信息技术有限公司 | A kind of information-pushing method and device |
US9912773B2 (en) | 2016-05-25 | 2018-03-06 | New Asia Technology Development Limited | Systems and methods to prioritize and schedule notifications with user behaviour and contextual data analysis |
CN106095887A (en) * | 2016-06-07 | 2016-11-09 | 兰州大学 | Context aware Web service recommendation method based on weighted space-time effect |
WO2018000210A1 (en) * | 2016-06-28 | 2018-01-04 | 深圳狗尾草智能科技有限公司 | User portrait-based skill package recommendation device and method |
CN108280183B (en) * | 2018-01-23 | 2021-11-26 | 深圳时代农信科技有限公司 | Information pushing system based on big data matching and GPS positioning |
CN109064268A (en) * | 2018-07-20 | 2018-12-21 | 中国建设银行股份有限公司 | Business recommended method, apparatus, server-side and storage medium |
CN109598576A (en) * | 2018-10-25 | 2019-04-09 | 阿里巴巴集团控股有限公司 | Service recommendation method, device and equipment |
CN109657154B (en) * | 2018-12-28 | 2021-08-31 | 浙江省公众信息产业有限公司 | Resource sequencing device and resource sequencing method based on situation |
CN109829108B (en) * | 2019-01-28 | 2020-12-04 | 北京三快在线科技有限公司 | Information recommendation method and device, electronic equipment and readable storage medium |
CN112395486B (en) * | 2019-08-12 | 2023-11-03 | 中国移动通信集团重庆有限公司 | Broadband service recommendation method, system, server and storage medium |
CN114036374A (en) * | 2021-09-29 | 2022-02-11 | 国家电网有限公司 | Novel service business intelligent matching method and device for different clients |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101923545A (en) * | 2009-06-15 | 2010-12-22 | 北京百分通联传媒技术有限公司 | Method for recommending personalized information |
CN102196356A (en) * | 2010-03-08 | 2011-09-21 | 株式会社Ntt都科摩 | Method and system for recommending mobile services in communication network |
CN102215300A (en) * | 2011-05-24 | 2011-10-12 | 中国联合网络通信集团有限公司 | Telecommunication service recommendation method and system |
CN102421062A (en) * | 2011-12-01 | 2012-04-18 | 中国联合网络通信集团有限公司 | Method and system for pushing application information |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8478747B2 (en) * | 2008-06-05 | 2013-07-02 | Samsung Electronics Co., Ltd. | Situation-dependent recommendation based on clustering |
-
2013
- 2013-12-04 CN CN201310648021.XA patent/CN103617547B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101923545A (en) * | 2009-06-15 | 2010-12-22 | 北京百分通联传媒技术有限公司 | Method for recommending personalized information |
CN102196356A (en) * | 2010-03-08 | 2011-09-21 | 株式会社Ntt都科摩 | Method and system for recommending mobile services in communication network |
CN102215300A (en) * | 2011-05-24 | 2011-10-12 | 中国联合网络通信集团有限公司 | Telecommunication service recommendation method and system |
CN102421062A (en) * | 2011-12-01 | 2012-04-18 | 中国联合网络通信集团有限公司 | Method and system for pushing application information |
Also Published As
Publication number | Publication date |
---|---|
CN103617547A (en) | 2014-03-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103617547B (en) | A kind of business recommended method and system | |
CN105959325B (en) | A kind of method and system of automatic push investigation questionnaire | |
CN101833570A (en) | Method and device for optimizing page push of mobile terminal | |
US20100076955A1 (en) | Data network service based on profiling client-addresses | |
CN105245583A (en) | Promotion information pushing method and device | |
US10540386B2 (en) | Method for processing and displaying real-time social data on map | |
CN105227445A (en) | Platform is recommended in application recommend method and application | |
Zeng et al. | Temporal-spatial mobile application usage understanding and popularity prediction for edge caching | |
CN104156356B (en) | Personalized Navigation page generation method and device | |
KR102068788B1 (en) | Server for offering service targetting user and service offering method thereof | |
CN102708198A (en) | Individualized network advertisement pushing method | |
CN103390000B (en) | A kind of web search method and web page search system | |
US20190019222A1 (en) | User/group servicing based on deep network analysis | |
WO2017012481A1 (en) | Information display method and apparatus | |
US10509831B2 (en) | Systems and methods for time and space algorithm usage | |
CN110557351B (en) | Method and apparatus for generating information | |
Zhu et al. | Finding top-k similar users based on trajectory-pattern model for personalized service recommendation | |
CN102866945A (en) | Method and device for providing first application test information corresponding to users | |
Zhu et al. | Exploiting user context and network information for mobile application usage prediction | |
CN107181672A (en) | The friend recommendation method based on Annual distribution relative entropy in the social networks of position | |
Arnaboldi et al. | Droidopppathfinder: A context and social-aware path recommender system based on opportunistic sensing | |
US10277709B2 (en) | Determining a visitation profile for a user | |
Zhang et al. | Context-aware video recommendation by mining users' view preferences based on access points | |
Gui et al. | A client-server architecture for context-aware search application | |
US20220014952A1 (en) | User Affinity Labeling from Telecommunications Network User Data |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |