CN103607139B - Surge and solar hybrid power generation system - Google Patents
Surge and solar hybrid power generation system Download PDFInfo
- Publication number
- CN103607139B CN103607139B CN201310651617.5A CN201310651617A CN103607139B CN 103607139 B CN103607139 B CN 103607139B CN 201310651617 A CN201310651617 A CN 201310651617A CN 103607139 B CN103607139 B CN 103607139B
- Authority
- CN
- China
- Prior art keywords
- surge
- power generation
- fluid
- power generating
- solar
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000010248 power generation Methods 0.000 title abstract description 87
- 239000012530 fluid Substances 0.000 claims abstract description 55
- 239000004065 semiconductor Substances 0.000 claims abstract description 31
- 230000001174 ascending effect Effects 0.000 claims description 7
- 230000017525 heat dissipation Effects 0.000 claims description 5
- 238000009413 insulation Methods 0.000 claims description 3
- 239000005439 thermosphere Substances 0.000 claims 6
- 230000001012 protector Effects 0.000 claims 1
- 238000010438 heat treatment Methods 0.000 abstract description 29
- 238000001816 cooling Methods 0.000 abstract description 10
- 239000004020 conductor Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 3
- 238000005057 refrigeration Methods 0.000 description 3
- 230000005611 electricity Effects 0.000 description 2
- 229910001172 neodymium magnet Inorganic materials 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 238000005338 heat storage Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/30—Energy from the sea, e.g. using wave energy or salinity gradient
Landscapes
- Photovoltaic Devices (AREA)
Abstract
浪涌和太阳能联合发电系统,将浪涌发电与太阳能发电组合起来,在浪涌发电的海表面平台上设置太阳能发电,既能够节省地面资源又能够有效提高海面资源的利用率,大大提高单位空间的发电量,促进绿色环保可持续能源的发展,其特征在于,包括具有平台支架的浪涌发电装置,和固定于所述平台支架上方的半导体温差发电装置,所述半导体温差发电装置包括自下而上依次叠合的冷端制冷层、温差发电半导体元件层和热端供热层,所述热端供热层通过流体管路连接聚光加热装置,所述聚光加热装置位于太阳光收集器的底部,所述太阳光收集器通过太阳位置追踪驱动装置与所述平台支架连接。
Surge and solar combined power generation system, combining surge power generation and solar power generation, setting up solar power generation on the sea surface platform of surge power generation, can not only save ground resources but also effectively improve the utilization rate of sea surface resources, greatly improving the unit space The power generation capacity promotes the development of green, environmentally friendly and sustainable energy. It is characterized in that it includes a surge power generation device with a platform support, and a semiconductor thermoelectric power generation device fixed above the platform support. The semiconductor thermoelectric power generation device includes a bottom The cold-end cooling layer, the thermoelectric power generation semiconductor element layer, and the hot-end heating layer are sequentially stacked on the top. The hot-end heating layer is connected to the concentrating heating device through a fluid pipeline, and the concentrating heating device is located at the solar collector. The bottom of the solar collector, the solar collector is connected to the platform support through a solar position tracking drive device.
Description
技术领域technical field
本发明涉及发电技术,特别是一种浪涌和太阳能联合发电系统。The invention relates to power generation technology, in particular to a surge and solar combined power generation system.
背景技术Background technique
如何利用大海中日夜不停的浪涌的现象进行发电和如何利用白天太阳光照射地面的现象进行发电一直是人们追逐绿色环保可持续能源的热点。现有技术中虽然浪涌发电技术以及太阳能发电技术分别得到了持续发展,但是在实际应用中,浪涌发电的每天发电量过低,还占用了一定的海面及上下空间,无法广泛推广;太阳能发电由于受到地面遮挡环境的影响,即使在晴天也可能只工作于白天的小部分时间,而且还占用了宝贵的地面资源。发明人认为,如果将浪涌发电与太阳能发电组合起来,在浪涌发电的海表面平台上设置太阳能发电,就既能够节省地面资源又能够有效提高海面资源的利用率,大大提高单位空间的发电量,促进绿色环保可持续能源的发展。How to use the phenomenon of day and night surges in the sea to generate electricity and how to use the phenomenon of sunlight irradiating the ground during the day to generate electricity has always been a hot spot for people to pursue green, environmentally friendly and sustainable energy. Although surge power generation technology and solar power generation technology have been continuously developed in the prior art, in practical applications, the daily power generation of surge power generation is too low, and it also occupies a certain amount of sea surface and upper and lower space, which cannot be widely promoted; Due to the influence of the ground shading environment, power generation may only work for a small part of the daytime even on sunny days, and it also takes up valuable ground resources. The inventor believes that if surge power generation and solar power generation are combined and solar power generation is installed on the sea surface platform for surge power generation, it can not only save ground resources but also effectively improve the utilization rate of sea surface resources, greatly improving the power generation per unit space to promote the development of green, environmentally friendly and sustainable energy.
发明内容Contents of the invention
本发明针对现有技术中存在的缺陷或不足,提供一种浪涌和太阳能联合发电系统,将浪涌发电与太阳能发电组合起来,在浪涌发电的海表面平台上设置太阳能发电,既能够节省地面资源又能够有效提高海面资源的利用率,大大提高单位空间的发电量,促进绿色环保可持续能源的发展。Aiming at the defects or deficiencies in the prior art, the present invention provides a combined surge and solar power generation system, which combines surge power generation and solar power generation, and sets solar power generation on the sea surface platform for surge power generation, which can save Ground resources can also effectively improve the utilization rate of sea surface resources, greatly increase the power generation per unit space, and promote the development of green, environmentally friendly and sustainable energy.
本发明技术方案如下:Technical scheme of the present invention is as follows:
浪涌和太阳能联合发电系统,其特征在于,包括具有平台支架的浪涌发电装置,和固定于所述平台支架上方的半导体温差发电装置,所述半导体温差发电装置包括自下而上依次叠合的冷端制冷层、温差发电半导体元件层和热端供热层,所述热端供热层通过流体管路连接聚光加热装置,所述聚光加热装置位于太阳光收集器的底部,所述太阳光收集器通过太阳位置追踪驱动装置与所述平台支架连接。The surge and solar energy combined power generation system is characterized in that it includes a surge power generation device with a platform support, and a semiconductor thermoelectric power generation device fixed above the platform support, and the semiconductor thermoelectric power generation device includes sequentially stacked from bottom to top The cold end cooling layer, the thermoelectric power generation semiconductor element layer and the hot end heating layer, the hot end heating layer is connected to the concentrating heating device through a fluid pipeline, and the concentrating heating device is located at the bottom of the solar collector, so The solar collector is connected to the platform support through a solar position tracking drive device.
所述流体管路包括流体上行管和流体下行管,所述聚光加热装置包括倾斜设置的流体腔,流体腔的高端连接流体下行管的上端,流体腔的低端连接流体上行管的上端,流体下行管的下端和流体上行管的下端连接在热端供热层的不同位置,使得被聚光加热的流体在聚光加热装置和热端供热层之间形成自循环回路。The fluid pipeline includes a fluid ascending pipe and a fluid descending pipe, and the concentrating heating device includes a fluid chamber arranged obliquely. The high end of the fluid chamber is connected to the upper end of the fluid descending pipe, and the low end of the fluid chamber is connected to the upper end of the fluid ascending pipe. The lower end of the fluid downpipe and the lower end of the fluid uppipe are connected to different positions of the hot-end heating layer, so that the concentrated-heated fluid forms a self-circulating loop between the concentrated-light heating device and the hot-end heating layer.
所述流体下行管、所述流体上行管和所述热端供热层的裸露表面附加有保温层,使得所述热端供热层内的流体在白天集热后能够维持晚间的半导体温差发电。The exposed surfaces of the fluid downpipe, the fluid uppipe, and the hot-end heating layer are attached with an insulation layer, so that the fluid in the hot-end heating layer can maintain semiconductor thermoelectric power generation at night after collecting heat during the day .
所述冷端制冷层采用热管制冷,所述冷端制冷层的侧面连接有散热元件,所述散热元件向平台支架的下方延伸。The cooling layer at the cold end is refrigerated by heat pipes, and a cooling element is connected to the side of the cooling layer at the cold end, and the cooling element extends to the bottom of the platform support.
所述太阳光收集器的底部上表面周边设置有太阳位置传感元件,所述太阳位置传感元件连接太阳位置追踪驱动装置的控制电路。A sun position sensing element is arranged around the upper surface of the bottom of the solar collector, and the sun position sensing element is connected to the control circuit of the sun position tracking driving device.
所述浪涌发电装置包括固定于平台支架的浪涌发电定子盘,所述浪涌发电定子盘上穿插着若干个浮筒动子,形成若干个浪涌发电单元,所述浮筒动子采用钕铁硼磁铁,所述浪涌发电单元通过桥式整流连接单元输出正极和单元输出负极,使得浪涌发电单元在浮筒动子随浪涌的升起和降落中均能沿同一方向输出电流。The surge power generation device includes a surge power stator plate fixed on the platform support, and several buoy movers are interspersed on the surge power stator plate to form several surge power generation units. The buoy movers are made of neodymium iron Boron magnet, the surge power generation unit connects the positive pole of the unit output and the negative pole of the unit output through bridge rectification, so that the surge power generation unit can output current in the same direction when the buoy mover rises and falls with the surge.
所述浪涌发电装置包括若干个浪涌发电组,所述半导体温差发电装置包括若干个半导体温差发电组,浪涌发电装置正极端依次通过单向导通器和充电保护装置连接储电装置正极端,半导体温差发电装置正极端依次通过单向导通器和充电保护装置连接储电装置正极端,所述储电装置正极端依次通过遥控开关和放电保护装置连接系统输出正极,半导体温差发电装置负极端、浪涌发电装置负极端和储电装置负极端均连接到系统输出负极。The surge power generation device includes several surge power generation groups, and the semiconductor thermoelectric power generation device includes several semiconductor thermoelectric power generation groups. The positive end of the surge power generation device is connected to the positive end of the power storage device through a one-way conductor and a charging protection device in turn. The positive end of the semiconductor thermoelectric power generation device is connected to the positive end of the power storage device through the one-way conductor and the charging protection device in turn, and the positive end of the power storage device is connected to the system output positive pole through the remote switch and the discharge protection device in turn, and the negative end of the semiconductor thermoelectric power generation device , the negative terminal of the surge power generation device and the negative terminal of the power storage device are all connected to the negative terminal of the system output.
所述单向导通器采用二极管。The unidirectional conductor adopts a diode.
本发明技术效果如下:本发明浪涌和太阳能联合发电系统在浪涌发电的基础平台上集成半导体温差发电装置,并利用太阳光收集器向温差发电装置提供聚光加热的流体热源,这样不仅能够在白天充分利用太阳能,而且在夜晚也能够通过白天集热流体维持晚间的半导体温差发电,从而更大限度地实现连续发电。在一个联合发电系统内,浪涌发电和太阳能发电能够相互补偿,从而实现连续稳定的电源输出。另外,温差发电装置低温端即冷端的散热或制冷还能够利用浪涌辅助。The technical effects of the present invention are as follows: the surge and solar combined power generation system of the present invention integrates a semiconductor thermoelectric power generation device on the basic platform of surge power generation, and uses a solar collector to provide a fluid heat source for concentrated heating to the thermoelectric power generation device, which can not only In the daytime, solar energy can be fully utilized, and at night, the semiconductor temperature difference power generation at night can also be maintained by the heat collecting fluid during the day, so as to achieve continuous power generation to the greatest extent. In a combined power generation system, surge power generation and solar power generation can compensate each other to achieve continuous and stable power output. In addition, the heat dissipation or cooling of the low-temperature end of the thermoelectric power generation device, that is, the cold end, can also be assisted by a surge.
附图说明Description of drawings
图1是实施本发明的浪涌和太阳能联合发电系统结构示意图。Fig. 1 is a structural schematic diagram of a surge and solar combined power generation system implementing the present invention.
图2是实施本发明的浪涌和太阳能联合发电系统电路结构示意图。Fig. 2 is a schematic circuit structure diagram of a combined surge and solar power generation system implementing the present invention.
图3是浪涌发电装置结构示意图。Fig. 3 is a schematic structural diagram of a surge power generation device.
图4是带有桥式整流单元的浪涌发电单元结构示意图。Fig. 4 is a schematic structural diagram of a surge power generation unit with a bridge rectifier unit.
附图标记列示如下:1-太阳光收集器;2-太阳位置传感元件;3-流体上行管;4-流体下行管;5-太阳位置追踪驱动装置;6-热端供热层;7-冷端制冷层;8-温差发电半导体元件层;9-散热元件;10-平台支架;11-浪涌发电定子盘;12-浮筒动子;13-系统输出正极;14-系统输出负极;15-放电保护装置;16-遥控开关;17-储电装置;18-充电保护装置;19-单向导通器;20-浪涌发电装置;21-浪涌发电组;22-半导体温差发电组;23-浪涌发电单元;24-桥式整流单元;25-单元输出正极;26-单元输出负极;27-聚光加热装置;28-半导体温差发电装置。The reference signs are listed as follows: 1-sunlight collector; 2-sun position sensing element; 3-fluid ascending pipe; 4-fluid descending pipe; 5-sun position tracking driving device; 6-hot end heating layer; 7-cold end refrigeration layer; 8-thermoelectric power generation semiconductor element layer; 9-radiation element; 10-platform support; 11-surge power generation stator plate; 12-float mover; 13-system output positive pole; ;15-discharge protection device; 16-remote control switch; 17-power storage device; 18-charging protection device; 19-one-way conductor; 20-surge power generation device; 23-surge power generation unit; 24-bridge rectifier unit; 25-unit output positive pole; 26-unit output negative pole; 27-concentrating heating device; 28-semiconductor thermoelectric power generation device.
具体实施方式Detailed ways
下面结合附图(图1-图4)对本发明进行说明。The present invention will be described below in conjunction with the accompanying drawings (Fig. 1-Fig. 4).
图1是实施本发明的浪涌和太阳能联合发电系统结构示意图。如图1所示,浪涌和太阳能联合发电系统,包括具有平台支架10的浪涌发电装置20,和固定于所述平台支架10上方的半导体温差发电装置28,所述半导体温差发电装置28包括自下而上依次叠合的冷端制冷层7、温差发电半导体元件层8和热端供热层6,所述热端供热层6通过流体管路(例如流体上行管3和流体下行管4)连接聚光加热装置27,所述聚光加热装置27位于太阳光收集器1的底部,所述太阳光收集器1通过太阳位置追踪驱动装置5与所述平台支架10连接。所述流体管路包括流体上行管3和流体下行管4,所述聚光加热装置27包括倾斜设置的流体腔,流体腔的高端(例如图1聚光加热装置27的右端)连接流体下行管4的上端,流体腔的低端(例如图1聚光加热装置27的左端)连接流体上行管3的上端,流体下行管4的下端和流体上行管3的下端连接在热端供热层6的不同位置,使得被聚光加热的流体在聚光加热装置27和热端供热层6之间形成自循环回路。所述流体下行管4、所述流体上行管3和所述热端供热层6的裸露表面附加有保温层,使得所述热端供热层6内的流体在白天集热后能够维持晚间的半导体温差发电。所述流体可以是水或油等液体,具有集热、蓄热、传热等作用。所述流体下行管4、所述流体上行管3均设置为挠曲管路。所述冷端制冷层7采用热管制冷,所述冷端制冷层7的侧面连接有散热元件9,所述散热元件9向平台支架10的下方延伸。所述热管制冷是指热管内的工质通过气化和冷凝的相变循环而制冷。所述太阳光收集器1的底部上表面周边设置有太阳位置传感元件2,所述太阳位置传感元件2连接太阳位置追踪驱动装置5的控制电路。所述太阳光收集器1可选择采用凹式、凸式、凹凸式、平面式、阵列组合式聚光元件进行太阳光收集,聚光元件可设置在四周侧面和顶面。如图3和图4所示,所述浪涌发电装置包括固定于平台支架10的浪涌发电定子盘11,所述浪涌发电定子盘11上穿插着若干个浮筒动子12,形成若干个浪涌发电单元23,所述浮筒动子采用钕铁硼磁铁,所述浪涌发电单元23通过桥式整流单元24连接单元输出正极25和单元输出负极26,使得浪涌发电单元23在浮筒动子随浪涌的升起和降落中均能沿同一方向输出电流。Fig. 1 is a structural schematic diagram of a surge and solar combined power generation system implementing the present invention. As shown in Figure 1, the surge and solar combined power generation system includes a surge
图2是实施本发明的浪涌和太阳能联合发电系统电路结构示意图。如图2所示,所述浪涌发电装置20包括若干个浪涌发电组21,所述半导体温差发电装置28包括若干个半导体温差发电组22,浪涌发电装置20正极端依次通过单向导通器19和充电保护装置18连接储电装置17正极端,半导体温差发电装置28正极端依次通过单向导通器19和充电保护装置18连接储电装置正极端17,所述储电装置17正极端依次通过遥控开关16和放电保护装置15连接系统输出正极13,半导体温差发电装置负极端、浪涌发电装置负极端和储电装置负极端均连接到系统输出负极14。所述单向导通器19采用二极管。Fig. 2 is a schematic circuit structure diagram of a combined surge and solar power generation system implementing the present invention. As shown in Figure 2, the surge
在此指明,以上叙述有助于本领域技术人员理解本发明创造,但并非限制本发明创造的保护范围。任何没有脱离本发明创造实质内容的对以上叙述的等同替换、修饰改进和/或删繁从简而进行的实施,均落入本发明创造的保护范围。It is pointed out here that the above description is helpful for those skilled in the art to understand the present invention, but does not limit the protection scope of the present invention. Any equivalent replacement, modification and improvement and/or simplified implementation of the above descriptions without departing from the essence of the present invention shall fall within the protection scope of the present invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310651617.5A CN103607139B (en) | 2013-12-05 | 2013-12-05 | Surge and solar hybrid power generation system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310651617.5A CN103607139B (en) | 2013-12-05 | 2013-12-05 | Surge and solar hybrid power generation system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103607139A CN103607139A (en) | 2014-02-26 |
CN103607139B true CN103607139B (en) | 2014-07-09 |
Family
ID=50125343
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310651617.5A Expired - Fee Related CN103607139B (en) | 2013-12-05 | 2013-12-05 | Surge and solar hybrid power generation system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103607139B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105529955A (en) * | 2015-01-26 | 2016-04-27 | 云南师范大学 | A Fresnel concentrating thermoelectric power generation device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101719748A (en) * | 2009-11-28 | 2010-06-02 | 上海聚恒太阳能有限公司 | Solar-concentrating power generating device for power generation by waste heat |
CN102112821A (en) * | 2008-06-10 | 2011-06-29 | 菲利普·C·瓦茨 | Integrated energy systems for whole homes or buildings |
CN102514698A (en) * | 2012-01-10 | 2012-06-27 | 苏州星诺游艇有限公司 | Yacht and power supply system thereof |
CN102650255A (en) * | 2012-05-23 | 2012-08-29 | 西北工业大学 | Floating pontoon type sea wave generating set |
CN103352816A (en) * | 2013-03-25 | 2013-10-16 | 广州天研自动化科技有限公司 | Multi-mode energy harvesting system on traffic route |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011127119A1 (en) * | 2010-04-06 | 2011-10-13 | D & D Manufacturing | Concentrating solar energy collector system with photovoltaic cells |
-
2013
- 2013-12-05 CN CN201310651617.5A patent/CN103607139B/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102112821A (en) * | 2008-06-10 | 2011-06-29 | 菲利普·C·瓦茨 | Integrated energy systems for whole homes or buildings |
CN101719748A (en) * | 2009-11-28 | 2010-06-02 | 上海聚恒太阳能有限公司 | Solar-concentrating power generating device for power generation by waste heat |
CN102514698A (en) * | 2012-01-10 | 2012-06-27 | 苏州星诺游艇有限公司 | Yacht and power supply system thereof |
CN102650255A (en) * | 2012-05-23 | 2012-08-29 | 西北工业大学 | Floating pontoon type sea wave generating set |
CN103352816A (en) * | 2013-03-25 | 2013-10-16 | 广州天研自动化科技有限公司 | Multi-mode energy harvesting system on traffic route |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105529955A (en) * | 2015-01-26 | 2016-04-27 | 云南师范大学 | A Fresnel concentrating thermoelectric power generation device |
Also Published As
Publication number | Publication date |
---|---|
CN103607139A (en) | 2014-02-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN203734617U (en) | Natural flow-type solar energy comprehensive utilization device | |
CN102751917B (en) | Solar energy temperature difference power generation system based on liquid metal thermal switch | |
CN102307030A (en) | Spatial day-and-night temperature difference generating device and method | |
CN203747724U (en) | A natural flow type photovoltaic-solar-thermal-thermoelectric power generation comprehensive utilization device | |
CN108599720A (en) | A kind of solid matter CPV assembly radiating devices | |
CN203532175U (en) | Small solar concentrating and heat collection power generation device | |
CN204648712U (en) | A kind of solar parabolic through power generation system | |
CN105245181A (en) | A solar concentrating frequency division utilization system embedded in a thermoelectric power generation module | |
CN101814870A (en) | Solar trench type temperature-difference generating device | |
CN102607206B (en) | Solar photovoltaic photo-thermal composite heat pipe vacuum tube | |
CN102437797A (en) | Light-gathering solar thermoelectric power generation device | |
CN204665998U (en) | A kind of heat-storing device | |
CN103607139B (en) | Surge and solar hybrid power generation system | |
CN107061203B (en) | A solar Stirling power generation system | |
CN103138643A (en) | Solar thermoelectric conversion mechanism | |
CN105515527A (en) | Solar energy coupling multi-source heat pump integrated system | |
CN105529955A (en) | A Fresnel concentrating thermoelectric power generation device | |
CN103423108B (en) | A kind of combined power generation device utilizing solar energy and geothermal power | |
CN202082057U (en) | Hot-sand heat-storage solar disc Strling generator | |
CN203482116U (en) | Light-concentrating semiconductor thermoelectric power generation apparatus | |
CN101924505A (en) | Solar energy temperature difference generating set | |
CN103166505A (en) | Solar energy power generating device | |
CN103825534A (en) | Novel concentrating photovoltaic semiconductor temperature differential power generation device | |
CN202353502U (en) | Concentration-type solar thermo-electric generating device | |
CN104660101A (en) | Temperature difference power generator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20140709 Termination date: 20141205 |
|
EXPY | Termination of patent right or utility model |