[go: up one dir, main page]

CN103596223B - The cellular network energy consumption of mobile equipment optimization method that dispatching sequence is controlled - Google Patents

The cellular network energy consumption of mobile equipment optimization method that dispatching sequence is controlled Download PDF

Info

Publication number
CN103596223B
CN103596223B CN201310575205.8A CN201310575205A CN103596223B CN 103596223 B CN103596223 B CN 103596223B CN 201310575205 A CN201310575205 A CN 201310575205A CN 103596223 B CN103596223 B CN 103596223B
Authority
CN
China
Prior art keywords
energy consumption
transmission
task
scheduling
time slot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310575205.8A
Other languages
Chinese (zh)
Other versions
CN103596223A (en
Inventor
崔勇
肖诗汉
唐俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN201310575205.8A priority Critical patent/CN103596223B/en
Publication of CN103596223A publication Critical patent/CN103596223A/en
Application granted granted Critical
Publication of CN103596223B publication Critical patent/CN103596223B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

调度顺序可控的蜂窝网络移动设备能耗优化方法,将时间离散化为一个个时隙,在保证移动应用传输性能需求的前提下,按照事先计算的最优调度发送时隙来对移动应用流量数据进行调度发送,当移动设备有多个应用需要发送一定流量数据时,把移动应用的流量划分成多个任务单元;基于给定的任务单元调度顺序、到达时隙、截止期限和用户性能需求界限,在已知传输能耗函数、尾部能耗函数和性能开销函数的情况下,根据能耗优化动态规划模型,采用迭代算法求解每个任务单元的传输调度时隙,按照传输调度时隙对流量单元进行传输调度;本发明在保证用户对移动应用性能需求的前提下对传输能耗和尾部能耗综合优化,具有任务单元传输调度顺序可控的特点,能在移动终端设备上实现。

The energy consumption optimization method of cellular network mobile devices with controllable scheduling sequence discretizes the time into time slots. On the premise of ensuring the transmission performance requirements of mobile applications, the mobile application traffic is processed according to the pre-calculated optimal scheduling transmission time slots. Scheduling and sending data, when the mobile device has multiple applications that need to send a certain flow of data, divide the traffic of the mobile application into multiple task units; based on the given task unit scheduling order, arrival time slot, deadline and user performance requirements Boundary, in the case of known transmission energy consumption function, tail energy consumption function and performance overhead function, according to the dynamic programming model of energy consumption optimization, using iterative algorithm to solve the transmission scheduling time slot of each task unit, according to the transmission scheduling time slot pair The traffic unit performs transmission scheduling; the present invention comprehensively optimizes transmission energy consumption and tail energy consumption under the premise of ensuring the performance requirements of users for mobile applications, has the characteristics of controllable transmission scheduling sequence of task units, and can be implemented on mobile terminal equipment.

Description

调度顺序可控的蜂窝网络移动设备能耗优化方法Energy consumption optimization method for cellular network mobile devices with controllable scheduling sequence

技术领域technical field

本发明属于移动终端设备能耗优化技术领域,涉及调度顺序可控的蜂窝网络移动设备能耗优化方法。The invention belongs to the technical field of energy consumption optimization of mobile terminal equipment, and relates to a method for optimizing energy consumption of cellular network mobile equipment with controllable scheduling sequence.

背景技术Background technique

近年来,随着移动设备和蜂窝通信技术的快速发展,移动设备处理能力得到了显著提高,蜂窝网络传输带宽也不断增大,从而使得蜂窝移动应用快速增长。然而,由于大量的移动应用(特别是一些能耗密集型高带宽应用,如VoD和VoIP)需要消耗大量的能量,使得移动设备的能耗和电池使用时间问题日益突出。因此,在蜂窝移动网络中,如何减少移动设备能耗,延长电池使用时间,提高用户体验,是一个值得深入研究和十分有意义的课题。In recent years, with the rapid development of mobile devices and cellular communication technologies, the processing capability of mobile devices has been significantly improved, and the transmission bandwidth of cellular networks has also been continuously increased, resulting in rapid growth of cellular mobile applications. However, since a large number of mobile applications (especially some energy-intensive high-bandwidth applications, such as VoD and VoIP) consume a lot of energy, the problems of energy consumption and battery life of mobile devices have become increasingly prominent. Therefore, in a cellular mobile network, how to reduce the energy consumption of mobile devices, prolong battery life, and improve user experience is a topic worthy of in-depth research and very meaningful.

在3G蜂窝移动网络中,移动设备的能耗很大一部分来自尾部能耗和传输能耗。传输能耗是指实际传输数据的能量消耗,它与发送数据包的大小和信号强度有关。尾部能耗是指在数据发送完成后,从高能耗状态转换到低能耗状态时所持续的一段不活动时间所消耗的能量,它是由蜂窝移动网络中设计的无线资源控制策略RRC所引起的,大量的尾部能耗将造成系统的能效显著下降。为了减少这两部分能耗,目前已开展了大量研究工作。在传输能耗优化方面,主要探讨了信号强度对传输能量的影响,大都通过优化数据单元调度,使得数据能够在较好信道条件下传输,从而减少传输能耗。在尾部能耗优化方面,重点研究了计时器优化、延迟传输和快速休眠策略,分别通过调整RRC配置、数据排队和批量调度、基于流量预测的主动休眠等各种优化算法来减少尾部能耗。In a 3G cellular mobile network, a large part of the energy consumption of mobile devices comes from tail energy consumption and transmission energy consumption. Transmission energy consumption refers to the energy consumption of actually transmitting data, which is related to the size and signal strength of the transmitted data packet. Tail energy consumption refers to the energy consumed by a period of inactivity during the transition from a high energy consumption state to a low energy consumption state after data transmission is completed, which is caused by the radio resource control strategy RRC designed in the cellular mobile network , a large amount of tail energy consumption will cause a significant decline in the energy efficiency of the system. In order to reduce these two parts of energy consumption, a lot of research work has been carried out. In terms of transmission energy consumption optimization, the impact of signal strength on transmission energy is mainly discussed, mostly by optimizing data unit scheduling, so that data can be transmitted under better channel conditions, thereby reducing transmission energy consumption. In terms of tail energy optimization, the research focuses on timer optimization, delayed transmission, and fast sleep strategies, and reduces tail energy consumption by adjusting various optimization algorithms such as RRC configuration, data queuing and batch scheduling, and active sleep based on traffic prediction.

然而,分析现有的研究工作,可以发现还存在以下问题:一是通常只考虑其中一种能耗问题。由于同时考虑传输能耗和尾部能耗,最小化这两种能耗之和,试图找出最优的优化方案是比较困难的,所以现有文献工作通常都致力于优化减少其中一种能耗。二是忽视了用户体验。试图减少尾部能耗和传输能耗一般会带来数据包的传输延迟,现有优化方案通常仅以减少能耗为目标,很少考虑用户对传输性能的要求。三是给出的方案实现相对困难。现有低层系统支持方案(如优化RRC的计时器)通常需要修改由移动网运营商控制着的一些配置,而高层传输调度机制通常需要处理传输层(如TCP拥塞控制和流量控制)和应用层(如一些应用接口)协议和配置,这使得在实际系统中实现起来相对较为困难。However, analyzing the existing research work, it can be found that there are still the following problems: First, only one of the energy consumption issues is usually considered. Since both transmission energy consumption and tail energy consumption are considered at the same time, it is difficult to minimize the sum of these two energy consumptions and try to find the optimal optimization scheme, so the existing literature work is usually devoted to optimizing and reducing one of the energy consumption . The second is to ignore the user experience. Attempts to reduce tail energy consumption and transmission energy consumption generally lead to packet transmission delays. Existing optimization schemes usually only aim at reducing energy consumption, and seldom consider user requirements for transmission performance. Third, it is relatively difficult to implement the proposed scheme. Existing low-level system support schemes (such as optimized RRC timers) usually need to modify some configurations controlled by mobile network operators, while high-level transmission scheduling mechanisms usually need to deal with transport layers (such as TCP congestion control and flow control) and application layers (such as some application interfaces) protocol and configuration, which makes it relatively difficult to implement in the actual system.

发明内容Contents of the invention

为克服上述现有技术的缺点,本发明的目的在于提供一种调度顺序可控的蜂窝网络移动设备能耗优化方法,既考虑传输能耗和尾部能耗,又考虑用户体验需求,并能够直接在移动终端设备上实现。In order to overcome the above-mentioned shortcomings of the prior art, the purpose of the present invention is to provide a method for optimizing energy consumption of cellular network mobile devices with controllable scheduling sequence, which not only considers transmission energy consumption and tail energy consumption, but also considers user experience requirements, and can directly Implemented on mobile terminal equipment.

为了实现上述目的,本发明采取如下技术方案:In order to achieve the above object, the present invention takes the following technical solutions:

调度顺序可控的蜂窝网络移动设备能耗优化方法,移动设备按如下步骤进行实现:A method for optimizing energy consumption of mobile devices in a cellular network with controllable scheduling sequence, the mobile devices are implemented in the following steps:

步骤(1):将待传输多个移动应用的流量分解成n个任务单元,构成任务单元集U;Step (1): Decompose the traffic of multiple mobile applications to be transmitted into n task units to form a task unit set U;

步骤(2):输入每个任务单元u∈U的调度顺序ω、到达时隙ta(u)、给定的截止期td(u)和用户性能需求界限 Step (2): Input the scheduling order ω of each task unit u∈U, the arrival time slot t a (u), the given deadline t d (u) and the user performance requirement limit

步骤(3):按如下步骤计算ui∈U(1≤i≤n)对应的调度时隙ts(ui)和所有n个任务单元调度传输完成后的最小能耗值g(n);Step (3): Calculate the scheduling time slot t s (u i ) corresponding to u i ∈ U(1≤i≤n) and the minimum energy consumption value g(n) after the scheduled transmission of all n task units is completed according to the following steps ;

步骤(3.1):对所有的u∈U,计算每个任务单元传输结束时隙上限值 t dd ( u ) = t a ( u ) + φ u - 1 ( Φ ~ ( u ) ) ; Step (3.1): For all u∈U, calculate the upper limit value of the end slot of each task unit transmission t dd ( u ) = t a ( u ) + φ u - 1 ( Φ ~ ( u ) ) ;

步骤(3.2):按任务单元调度顺序ω对u∈U进行排序,排序后的任务集为U={u1,u2,...,un};Step (3.2): sort u∈U according to the task unit scheduling order ω, and the sorted task set is U={u 1 ,u 2 ,...,u n };

步骤(3.3):构造离散时隙集合∏(ts(u1));Step (3.3): Construct a set of discrete time slots ∏(t s (u 1 ));

步骤(3.4):对所有的k∈∏(ts(u1)),计算u1在时隙k被调度传输时的能耗值f(1,k)=Etrans(k,k+tr(u1))+Etail(T),其中tr(u1)表示u1的传输延迟时隙,T表示一个完整的尾部时间;Step (3.4): For all k∈∏(t s (u 1 )), calculate the energy consumption f( 1 ,k)=E trans (k,k+t r (u 1 ))+E tail (T), where t r (u 1 ) represents the transmission delay slot of u 1 , and T represents a complete tail time;

步骤(3.5):计算U中第1个任务单元传输完成后的最小能耗值 g ( 1 ) = min k ∈ Π ( t s ( u 1 ) ) { f ( 1 , k ) } ; Step (3.5): Calculate the minimum energy consumption value after the transmission of the first task unit in U is completed g ( 1 ) = min k ∈ Π ( t the s ( u 1 ) ) { f ( 1 , k ) } ;

步骤(3.6):令参数i=2;Step (3.6): Let parameter i=2;

步骤(3.7):构造离散时隙集合∏(ts(ui));Step (3.7): Construct a set of discrete time slots ∏(t s (u i ));

步骤(3.8):对所有的k∈∏(ts(ui)),计算ui在时隙k被调度传输时,U中前i个任务单元传输完成后的最小能耗值f(i,k),其中tr(ui)表示ui的传输延迟时隙:Step (3.8): For all k∈∏(t s ( u i )), calculate the minimum energy consumption value f(i ,k), where t r (u i ) represents the transmission delay slot of u i :

f ( i , k ) = min j ∈ Π ( t s ( u i - 1 ) ) and j + t r ( u i - 1 ) ≤ k { E trans ( k , k + t r ( u i ) ) + E tail ( k - ( j + t r ( u i - 1 ) ) ) + f ( i - 1 , j ) } , 并记录使得f(i,k)为最小值时所对应的j值,同时将该j值赋给Last(i,k); f ( i , k ) = min j ∈ Π ( t the s ( u i - 1 ) ) and j + t r ( u i - 1 ) ≤ k { E. trans ( k , k + t r ( u i ) ) + E. tail ( k - ( j + t r ( u i - 1 ) ) ) + f ( i - 1 , j ) } , And record the j value corresponding to the minimum value of f(i,k), and assign the j value to Last(i,k);

步骤(3.9):计算U中前i个任务单元传输完成后的最小能耗值 g ( i ) = min k ∈ ∏ ( t s ( u i ) ) { f ( i , k ) } ; Step (3.9): Calculate the minimum energy consumption value after the transmission of the first i task units in U g ( i ) = min k ∈ ∏ ( t the s ( u i ) ) { f ( i , k ) } ;

步骤(3.10):令参数i=i+1;Step (3.10): let parameter i=i+1;

步骤(3.11):如果参数i≤n,则转步骤(3.7),否则转步骤(3.12);Step (3.11): If the parameter i≤n, go to step (3.7), otherwise go to step (3.12);

步骤(3.12):计算 t s ( u n ) = arg min j ∈ Π ( t s ( u n ) ) { f ( i , j ) } ; Step (3.12): Calculate t the s ( u no ) = arg min j ∈ Π ( t the s ( u no ) ) { f ( i , j ) } ;

步骤(3.13):令参数i=n-1;Step (3.13): let the parameter i=n-1;

步骤(3.14):计算ts(ui)=Last(i,ts(ui+1));Step (3.14): Calculate t s (u i )=Last(i,t s (u i+1 ));

步骤(3.15):令参数i=i-1;Step (3.15): let parameter i=i-1;

步骤(3.16):如果参数i>0,则转步骤(3.14),否则转步骤(3.17);Step (3.16): If parameter i>0, go to step (3.14), otherwise go to step (3.17);

步骤(3.17):输出每个任务单元的传输调度时间ts(ui)和所有任务单元传输完成后对应的最小能耗值g(n);Step (3.17): Output the transmission scheduling time t s (u i ) of each task unit and the corresponding minimum energy consumption value g(n) after the transmission of all task units is completed;

步骤(4):按照ts(ui)依次对传输任务单元ui进行调度发送。Step (4): Scheduling and sending the transmission task units u i in sequence according to t s (u i ).

本发明与现有技术相比,具有以下优点:(1)将移动设备的传输能耗和尾部能耗两种能耗作为一个整体进行优化,使得移动设备的综合能耗最小化;(2)移动设备能耗优化以满足用户移动应用性能需求为前提,保证了用户有较好的应用传输体验;(3)由用户来决定任务单元的传输调度顺序,使得任务单元传输调度顺序可控,同时可满足某些特定移动应用的发送顺序需求,避免接收终端对任务单元进行不必要的重排序;(4)能耗优化方法仅对移动应用流量的传输调度时间进行优化,没有涉及任何移动运营商控制的参数和移动系统网络协议的修改,完全能够在移动终端设备上实现。Compared with the prior art, the present invention has the following advantages: (1) The transmission energy consumption and the tail energy consumption of the mobile device are optimized as a whole, so that the comprehensive energy consumption of the mobile device is minimized; (2) The energy consumption optimization of mobile devices is based on the premise of meeting the user's mobile application performance requirements, ensuring that users have a better application transmission experience; (3) The transmission scheduling order of task units is determined by the user, so that the transmission scheduling order of task units is controllable, and at the same time It can meet the transmission sequence requirements of some specific mobile applications and avoid unnecessary reordering of task units by the receiving terminal; (4) The energy consumption optimization method only optimizes the transmission scheduling time of mobile application traffic, and does not involve any mobile operators The modification of the control parameters and the network protocol of the mobile system can be completely realized on the mobile terminal equipment.

附图说明Description of drawings

图1是本发明的总体流程图。Fig. 1 is the general flowchart of the present invention.

图2是本发明的具体流程图。Fig. 2 is a specific flow chart of the present invention.

具体实施方式detailed description

下面结合附图和实施例对本发明的具体实施方式进行详细描述。The specific implementation manner of the present invention will be described in detail below with reference to the drawings and embodiments.

如图1所示,本发明调度顺序可控的蜂窝网络移动设备能耗优化方法主要是根据考虑用户性能需求的能耗优化模型求解最优任务传输调度时间。设计思路是将时间离散化为一个个时隙,并按时隙对流量数据单元进行传输调度,具体是根据建立的能耗优化模型,事先计算出每个数据单元的最优传输调度时隙,并基于该时隙对移动应用流量数据进行调度发送,从而达到在满足用户性能需求条件下的能耗最小化。本发明建立了考虑用户性能需求的传输能耗和尾部能耗综合优化模型,并引入任务单元调度顺序,将优化模型转换为动态规划问题。具体内容如下:As shown in FIG. 1 , the energy consumption optimization method for cellular network mobile devices with controllable scheduling order in the present invention is mainly to solve the optimal task transmission scheduling time according to the energy consumption optimization model considering user performance requirements. The design idea is to discretize time into time slots, and schedule the transmission of flow data units according to time slots. Specifically, according to the established energy consumption optimization model, the optimal transmission scheduling time slot for each data unit is calculated in advance, and The mobile application traffic data is scheduled and sent based on the time slot, so as to minimize energy consumption under the condition of meeting user performance requirements. The invention establishes a comprehensive optimization model of transmission energy consumption and tail energy consumption considering user performance requirements, and introduces task unit scheduling order to convert the optimization model into a dynamic programming problem. The specific content is as follows:

将来自于移动应用的流量分解成n个传输任务单元。对某一传输任务单元u,设它的到达时隙为ta(u),被调度发送的时隙为ts(u),传输延迟开销为tr(u)个时隙,被完全传输的结束时隙为te(u)=ts(u)+tr(u),传输截止期时隙为td(u)。Decompose the traffic from the mobile application into n transmission task units. For a transmission task unit u, let its arrival time slot be t a (u), the time slot to be dispatched is t s (u), the transmission delay overhead is t r (u) time slots, and it is completely transmitted The end time slot of t e (u)=t s (u)+t r (u), the transmission deadline time slot is t d (u).

考虑用户性能需求的能耗优化模型如下所示,这里U={ui|1≤i≤n}为传输任务单元集,Γ为给定时间:The energy consumption optimization model considering user performance requirements is as follows, where U={u i |1≤i≤n} is the set of transmission task units, and Γ is the given time:

minmin {{ EE. ~~ dd (( Uu ,, tt sthe s (( Uu )) ,, ΓΓ )) ++ EE. ~~ tt (( Uu ,, tt sthe s (( Uu )) ,, ΓΓ )) }} φφ uu (( tt ee (( uu )) -- tt aa (( uu )) )) ≤≤ ΦΦ ~~ (( uu )) ΣΣ uu ∈∈ {{ uu || tt sthe s (( uu )) == tt }} vv uu (( tt )) ≤≤ cc (( tt ))

其中,分别表示时间Γ内,传输任务单元集U在ts(U)时隙调度传输后的总传输能耗和总尾部能耗。φu(.)表示移动应用性能开销函数,表示用户期望的性能界限值。c(t)表示一个时隙t的信道容量,v(t)表示一个传输任务u在时隙t的传输速率。in, Respectively represent the total transmission energy consumption and the total tail energy consumption of the transmission task unit set U after scheduled transmission in time slot t s (U) within time Γ. φ u (.) represents the mobile application performance overhead function, Indicates the performance threshold expected by the user. c(t) represents the channel capacity of a time slot t, and v(t) represents the transmission rate of a transmission task u in time slot t.

模型中,总传输能耗可通过如下方法进行估算:In the model, the total transmission energy consumption It can be estimated by:

EE. ~~ dd (( Uu ,, tt sthe s (( Uu )) ,, ΓΓ )) == ΣΣ uu ∈∈ Uu EE. transtrans (( tt sthe s (( uu )) ,, tt ee (( uu )) ))

这里Etrans(t1,t2)表示从时间隙t1到t2的数据传输能耗,可采用进行计算,signal(τ)表示时隙τ时信号的强度,Psig(signal)表示产生信号的功率。Here E trans (t 1 ,t 2 ) represents the energy consumption of data transmission from time slot t 1 to t 2 , which can be adopted For calculation, signal(τ) represents the strength of the signal at time slot τ, and P sig (signal) represents the power of the generated signal.

总尾部能耗可通过如下方法时行估算:total tail energy consumption It can be estimated by the following methods:

EE. ~~ tt (( Uu ,, tt sthe s (( Uu )) ,, ΓΓ )) == ΣΣ 22 ≤≤ ii ≤≤ nno EE. tailtail (( ΔΔ tt ii )) ++ EE. tailtail (( TT ))

这里Etail(t)表示从上一个任务单元传输结束到下一个任务单元被调度前的时隙段内的尾部能耗pD、pF分别表示DCH状态和FACH状态对应的功耗,δD、δF分别表示状态DCH→FACH、FACH→IDLE的转换时间;T=δDF表示一个完整的尾部时间。Here E tail (t) represents the tail energy consumption in the time slot from the end of the transmission of the previous task unit to the time slot before the next task unit is scheduled pD and pF represent the power consumption corresponding to DCH state and FACH state respectively, δ D and δ F represent the transition time of states DCH→FACH and FACH→IDLE respectively; T=δ D + δ F represents a complete tail time.

应用性能开销函数φu(t)可通过如下方法进行计算:The application performance overhead function φ u (t) can be calculated by the following method:

这里D(u)=te(u)-ta(u)表示任务延迟(包括缓冲延迟和传输延迟),S(u)表示任务u的数据大小,f1和f2表示一个应用对延迟的敏感程度,权值wu表示用户对移动应用产生任务u的喜好程度。Here D(u)=t e (u)-t a (u) represents the task delay (including buffer delay and transmission delay), S(u) represents the data size of task u, f 1 and f 2 represent an application pair delay The sensitivity of the weight w u represents the user's preference for the task u generated by the mobile application.

求解上述能耗优化模型是一个NP难问题,为了快速求解,引入传输任务单元调度顺序ω,将优化模型求解NP难问题转化为动态规划问题。具体描述如下:Solving the above energy consumption optimization model is an NP-hard problem. In order to solve it quickly, the transmission task unit scheduling order ω is introduced, and the NP-hard problem solved by the optimization model is transformed into a dynamic programming problem. The specific description is as follows:

根据每一个任务单元对应的ω值对U中元素进行排序,排序后的任务集为U={u1,u2,...,un},则优化模型目标函数式变换为:Sort the elements in U according to the ω value corresponding to each task unit. The sorted task set is U={u 1 ,u 2 ,...,u n }, then the objective function of the optimization model is transformed into:

EE. (( Uu ,, tt sthe s (( Uu )) ,, ΓΓ )) == EE. transtrans (( tt sthe s (( uu 11 )) ,, tt ee (( uu 11 )) )) ++ EE. tailtail (( TT )) ++ ΣΣ ii == 22 nno {{ EE. transtrans (( tt sthe s (( uu ii )) ,, tt ee (( uu ii )) )) ++ EE. tailtail (( tt sthe s (( uu ii )) -- tt ee (( uu ii -- 11 )) )) }}

用f(i,k)表示ui在时隙k被调度传输时,U中前i个单元的最小能耗,用g(i)表示ui在所有调度可能情况下,U中前i个单元的最小能耗值。若引入集合∏(ts(u))={ts(u)|ts(u)≥ta(u)andts(u)≤tdd(u)-tr(u)},其中是用户对每个任务单元u的性能期望界限值,则可构造相应动态规划式:Use f(i,k) to represent the minimum energy consumption of the first i units in U when u i is scheduled for transmission at time slot k, and use g(i) to represent the minimum energy consumption of the first i units in U under all scheduling possibilities. The minimum energy consumption value for the unit. If the set ∏(t s (u))={t s (u)|t s (u)≥t a (u)andt s (u)≤t dd (u)-t r (u)} is introduced, where is the user's performance expectation limit value for each task unit u, then the corresponding dynamic programming formula can be constructed:

ff (( ii ,, kk )) == minmin jj ∈∈ ΠΠ (( tt sthe s (( uu ii -- 11 )) )) and jand j ++ tt rr (( uu ii -- 11 )) ≤≤ kk {{ EE. transtrans (( kk ,, kk ++ tt rr (( uu ii )) )) ++ EE. tailtail (( kk -- (( jj ++ tt rr (( uu ii -- 11 )) )) )) ++ ff (( ii -- 11 ,, jj )) }}

gg (( ii )) == minmin kk ∈∈ ΠΠ (( tt sthe s (( uu ii )) )) {{ ff (( ii ,, kk )) }}

边界条件是f(1,k)=Etrans(k,k+tr(u1))+Etail(T)。The boundary conditions are f(1,k)=E trans (k,k+t r (u 1 ))+E tail (T).

上述动态规划问题可采用迭代算法来求解,从而获得优化目标值g(n)和最优任务单元调度时隙结果ts(U)。The above dynamic programming problem can be solved by an iterative algorithm, so as to obtain the optimal target value g(n) and the optimal task unit scheduling time slot result t s (U).

如图2所示,具体地,在已知传输能耗函数Etrans(t1,t2)、尾部能耗函数Etail(t)和性能开销函数φu(t)的情况下,实现过程按如下步骤进行:As shown in Figure 2, specifically, when the transmission energy consumption function E trans (t 1 ,t 2 ), the tail energy consumption function E tail (t) and the performance overhead function φ u (t) are known, the implementation process Proceed as follows:

步骤(1):将待传输多个移动应用的流量分解成n个任务单元,构成任务单元集U;Step (1): Decompose the traffic of multiple mobile applications to be transmitted into n task units to form a task unit set U;

步骤(2):输入每个任务单元u∈U的调度顺序ω、到达时隙ta(u)、给定的截止期td(u)和用户性能需求界限 Step (2): Input the scheduling order ω of each task unit u∈U, the arrival time slot t a (u), the given deadline t d (u) and the user performance requirement limit

步骤(3):按如下步骤计算ui∈U(1≤i≤n)对应的调度时隙ts(ui)和所有n个任务单元调度传输完成后的最小能耗值g(n);Step (3): Calculate the scheduling time slot t s (u i ) corresponding to u i ∈ U(1≤i≤n) and the minimum energy consumption value g(n) after the scheduled transmission of all n task units is completed according to the following steps ;

步骤(3.1):对所有的u∈U,计算每个任务单元传输结束时隙上限值 t dd ( u ) = t a ( u ) + φ u - 1 ( Φ ~ ( u ) ) ; Step (3.1): For all u∈U, calculate the upper limit value of the end slot of each task unit transmission t dd ( u ) = t a ( u ) + φ u - 1 ( Φ ~ ( u ) ) ;

步骤(3.2):按任务单元调度顺序ω对u∈U进行排序,排序后的任务集为U={u1,u2,...,un};Step (3.2): sort u∈U according to the task unit scheduling order ω, and the sorted task set is U={u 1 ,u 2 ,...,u n };

步骤(3.3):构造离散时隙集合∏(ts(u1));Step (3.3): Construct a set of discrete time slots ∏(t s (u 1 ));

步骤(3.4):对所有的k∈∏(ts(u1)),计算u1在时隙k被调度传输时的能耗值f(1,k)=Etrans(k,k+tr(u1))+Etail(T),其中tr(u1)表示u1的传输延迟时隙,T表示一个完整的尾部时间;Step (3.4): For all k∈∏(t s (u 1 )), calculate the energy consumption f( 1 ,k)=E trans (k,k+t r (u 1 ))+E tail (T), where t r (u 1 ) represents the transmission delay slot of u 1 , and T represents a complete tail time;

步骤(3.5):计算U中第1个任务单元传输完成后的最小能耗值 g ( 1 ) = min k ∈ Π ( t s ( u 1 ) ) { f ( 1 , k ) } ; Step (3.5): Calculate the minimum energy consumption value after the transmission of the first task unit in U is completed g ( 1 ) = min k ∈ Π ( t the s ( u 1 ) ) { f ( 1 , k ) } ;

步骤(3.6):令参数i=2;Step (3.6): Let parameter i=2;

步骤(3.7):构造离散时隙集合∏(ts(ui));Step (3.7): Construct a set of discrete time slots ∏(t s (u i ));

步骤(3.8):对所有的k∈∏(ts(ui)),计算ui在时隙k被调度传输时,U中前i个任务单元传输完成后的最小能耗值f(i,k),其中tr(ui)表示ui的传输延迟时隙:Step (3.8): For all k∈∏(t s ( u i )), calculate the minimum energy consumption value f(i ,k), where t r (u i ) represents the transmission delay slot of u i :

f ( i , k ) = min j ∈ Π ( t s ( u i - 1 ) ) and j + t r ( u i - 1 ) ≤ k { E trans ( k , k + t r ( u i ) ) + E tail ( k - ( j + t r ( u i - 1 ) ) ) + f ( i - 1 , j ) } , 并记录使得f(i,k)为最小值时所对应的j值,同时将该j值赋给Last(i,k); f ( i , k ) = min j ∈ Π ( t the s ( u i - 1 ) ) and j + t r ( u i - 1 ) ≤ k { E. trans ( k , k + t r ( u i ) ) + E. tail ( k - ( j + t r ( u i - 1 ) ) ) + f ( i - 1 , j ) } , And record the j value corresponding to the minimum value of f(i,k), and assign the j value to Last(i,k);

步骤(3.9):计算U中前i个任务单元传输完成后的最小能耗值 g ( i ) = min k ∈ Π ( t s ( u i ) ) { f ( i , k ) } ; Step (3.9): Calculate the minimum energy consumption value after the transmission of the first i task units in U g ( i ) = min k ∈ Π ( t the s ( u i ) ) { f ( i , k ) } ;

步骤(3.10):令参数i=i+1;Step (3.10): let parameter i=i+1;

步骤(3.11):如果参数i≤n,则转步骤(3.7),否则转步骤(3.12);Step (3.11): If the parameter i≤n, go to step (3.7), otherwise go to step (3.12);

步骤(3.12):计算 t s ( u n ) = arg min j ∈ Π ( t s ( u n ) ) { f ( i , j ) } ; Step (3.12): Calculate t the s ( u no ) = arg min j ∈ Π ( t the s ( u no ) ) { f ( i , j ) } ;

步骤(3.13):令参数i=n-1;Step (3.13): let the parameter i=n-1;

步骤(3.14):计算ts(ui)=Last(i,ts(ui+1));Step (3.14): Calculate t s (u i )=Last(i,t s (u i+1 ));

步骤(3.15):令参数i=i-1;Step (3.15): let parameter i=i-1;

步骤(3.16):如果参数i>0,则转步骤(3.14),否则转步骤(3.17);Step (3.16): If parameter i>0, go to step (3.14), otherwise go to step (3.17);

步骤(3.17):输出每个任务单元的传输调度时间ts(ui)和所有任务单元传输完成后对应的最小能耗值g(n);Step (3.17): Output the transmission scheduling time t s (u i ) of each task unit and the corresponding minimum energy consumption value g(n) after the transmission of all task units is completed;

步骤(4):按照ts(ui)依次对传输任务单元ui进行调度发送。Step (4): Scheduling and sending the transmission task units u i in sequence according to t s (u i ).

上述步骤(3.3)和步骤(3.7)中,集合∏(ts(u1))、∏(ts(ui))按如下方法进行构造:In the above steps (3.3) and (3.7), the sets ∏(t s (u 1 )), ∏(t s (u i )) are constructed as follows:

∏(ts(u))={ts(u)|ts(u)≥ta(u)andts(u)≤tdd(u)-tr(u)}∏(t s (u))={t s (u)|t s (u)≥t a (u)andt s (u)≤t dd (u)-t r (u)}

其中,tr(u)可利用所有的ts(u)通过进行计算,S(u)为任务单元u的数据大小,Rsig(signal(τ))为给定一个时隙内对应信号强度的数据传输平均速率。Among them, t r (u) can use all t s (u) to pass For calculation, S(u) is the data size of the task unit u, and R sig (signal(τ)) is the average rate of data transmission corresponding to the signal strength within a given time slot.

Claims (2)

1.调度顺序可控的蜂窝网络移动设备能耗优化方法,其特征在于,移动设备按如下步骤进行实现:1. A method for optimizing energy consumption of cellular network mobile devices with controllable scheduling sequence, characterized in that the mobile devices are implemented in the following steps: 步骤(1):将待传输多个移动应用的流量分解成n个任务单元,构成任务单元集U;Step (1): Decompose the traffic of multiple mobile applications to be transmitted into n task units to form a task unit set U; 步骤(2):输入每个任务单元u∈U的调度顺序ω、到达时隙ta(u)、给定的截止期td(u)和用户性能需求界限 Step (2): Input the scheduling order ω of each task unit u∈U, the arrival time slot t a (u), the given deadline t d (u) and the user performance requirement limit 步骤(3):按如下步骤计算ui∈U(1≤i≤n)对应的调度时隙ts(ui)和所有n个任务单元调度传输完成后的最小能耗值g(n);Step (3): Calculate the scheduling time slot t s (u i ) corresponding to u i ∈ U(1≤i≤n) and the minimum energy consumption value g(n) after the scheduled transmission of all n task units is completed according to the following steps ; 步骤(3.1):对所有的u∈U,计算每个任务单元传输结束时隙上限值 为用户给定的移动应用性能开销函数φu(t)的反函数,φu(t)定义如下:Step (3.1): For all u ∈ U, calculate the upper limit value of the transmission end time slot of each task unit The inverse function of the mobile application performance overhead function φ u (t) given by the user, φ u (t) is defined as follows: 其中,D(u)表示包括缓冲延迟和传输延迟的任务延迟,S(u)表示任务u的数据大小,f1和f2表示一个移动应用对延迟的敏感程度;权值wu表示用户对移动应用产生任务u的喜好程度;Among them, D(u) represents the task delay including buffer delay and transmission delay, S(u) represents the data size of task u, f 1 and f 2 represent the sensitivity of a mobile application to delay; weight w u represents the user's The liking degree of the task u generated by the mobile application; 步骤(3.2):按任务单元调度顺序ω对u∈U进行排序,排序后的任务集为U={u1,u2,...,un};Step (3.2): sort u∈U according to the task unit scheduling order ω, and the sorted task set is U={u 1 ,u 2 ,...,u n }; 步骤(3.3):构造离散时隙集合∏(ts(u1));Step (3.3): Construct a set of discrete time slots ∏(t s (u 1 )); 步骤(3.4):对所有的k∈∏(ts(u1)),计算u1在时隙k被调度传输时的能耗值f(1,k)=Etrans(k,k+tr(u1))+Etail(T),其中tr(u1)表示u1的传输延迟时隙,T表示一个完整的尾部时间;Step (3.4): For all k∈∏( t s (u 1 )), calculate the energy consumption value f(1,k)=E trans (k,k+t r (u 1 ))+E tail (T), where t r (u 1 ) represents the transmission delay slot of u 1 , and T represents a complete tail time; 步骤(3.5):计算U中第1个任务单元传输完成后的最小能耗值 g ( 1 ) = m i n k ∈ Π ( t s ( u 1 ) ) { f ( 1 , k ) } ; Step (3.5): Calculate the minimum energy consumption value after the first task unit transmission in U is completed g ( 1 ) = m i no k ∈ Π ( t the s ( u 1 ) ) { f ( 1 , k ) } ; 步骤(3.6):令参数i=2;Step (3.6): make parameter i=2; 步骤(3.7):构造离散时隙集合∏(ts(ui));Step (3.7): Construct a set of discrete time slots ∏(t s (u i )); 步骤(3.8):对所有的k∈∏(ts(ui)),计算ui在时隙k被调度传输时,U中前i个任务单元传输完成后的最小能耗值f(i,k),其中tr(ui)表示ui的传输延迟时隙:Step (3.8): For all k∈∏(t s ( u i )), calculate the minimum energy consumption value f(i ,k), where t r (u i ) represents the transmission delay slot of u i : 并记录使得f(i,k)为最小值时所对应的j值,同时将该j值赋给Last(i,k); And record the j value corresponding to the minimum value of f(i,k), and assign the j value to Last(i,k); 步骤(3.9):计算U中前i个任务单元传输完成后的最小能耗值 g ( i ) = m i n k ∈ Π ( t s ( u i ) ) { f ( i , k ) } ; Step (3.9): Calculate the minimum energy consumption value after the transmission of the first i task units in U is completed g ( i ) = m i no k ∈ Π ( t the s ( u i ) ) { f ( i , k ) } ; 步骤(3.10):令参数i=i+1;Step (3.10): make parameter i=i+1; 步骤(3.11):如果参数i≤n,则转步骤(3.7),否则转步骤(3.12);Step (3.11): If the parameter i≤n, then go to step (3.7), otherwise go to step (3.12); 步骤(3.12):计算 Step (3.12): Calculate 步骤(3.13):令参数i=n-1;Step (3.13): make parameter i=n-1; 步骤(3.14):计算ts(ui)=Last(i,ts(ui+1));Step (3.14): Calculate t s (u i )=Last(i,t s (u i+1 )); 步骤(3.15):令参数i=i-1;Step (3.15): make parameter i=i-1; 步骤(3.16):如果参数i>0,则转步骤(3.14),否则转步骤(3.17);Step (3.16): If parameter i>0, then go to step (3.14), otherwise go to step (3.17); 步骤(3.17):输出每个任务单元的传输调度时间ts(ui)和所有任务单元传输完成后对应的最小能耗值g(n);Step (3.17): Output the transmission scheduling time t s (u i ) of each task unit and the corresponding minimum energy consumption value g(n) after the transmission of all task units is completed; 所述步骤(3.4)和步骤(3.8)中,任务单元从时间隙t1到t2的传输能耗Etrans(t1,t2)按如下方法进行计算:In the step (3.4) and step (3.8), the transmission energy consumption E trans (t 1 , t 2 ) of the task unit from the time slot t 1 to t 2 is calculated as follows: EE. tt rr aa nno sthe s (( tt 11 ,, tt 22 )) == ΣΣ tt 11 ≤≤ ττ ≤≤ tt 22 PP sthe s ii gg (( sthe s ii gg nno aa ll (( ττ )) )) 其中,Psig(signal(τ))为给定的在时隙τ时产生信号的功率;Wherein, P sig (signal(τ)) is the power of a given signal generated at time slot τ; 所述步骤(3.4)和步骤(3.8)中,上一个任务单元传输结束到下一个任务单元被调度前时间段内的尾部能耗Etail(t)按如下方法进行计算:In said step (3.4) and step (3.8), the tail energy consumption E tail (t) in the time period before the last task unit transmission ends to the next task unit is scheduled is calculated as follows: 其中,pD、pF分别为给定的DCH状态和FACH状态对应的功耗,δD、δF分别为给定的状态DCH→FACH、FACH→IDLE的转换时间;Among them, pD and pF are the power consumption corresponding to the given DCH state and FACH state respectively, and δ D and δ F are the conversion time of the given state DCH→FACH and FACH→IDLE respectively; 步骤(4):按照ts(ui)依次对传输任务单元ui进行调度发送。Step (4): Scheduling and sending the transmission task units u i in sequence according to t s (u i ). 2.根据权利要求1所述的调度顺序可控的蜂窝网络移动设备能耗优化方法,其特征在于,所述步骤(3.3)和步骤(3.7)中,集合∏(ts(u1))、∏(ts(ui))按如下方法进行构造:2. The method for optimizing energy consumption of cellular network mobile devices with controllable scheduling sequence according to claim 1, characterized in that, in the step (3.3) and step (3.7), the set ∏(t s (u 1 )) , ∏(t s (u i )) is constructed as follows: ∏(ts(u))={ts(u)|ts(u)≥ta(u)andts(u)≤tdd(u)-tr(u)}∏(t s (u))={t s (u)|t s (u)≥t a (u)andt s (u)≤t dd (u)-t r (u)} 其中,tr(u)表示任务单元传输延迟时隙,其值可利用所有的ts(u)通过进行计算,S(u)为任务单元u的数据大小,Rsig(signal(τ))为给定一个时隙内对应信号强度的数据传输平均速率。Among them, t r (u) represents the transmission delay time slot of the task unit, and its value can be passed by using all t s (u) For calculation, S(u) is the data size of the task unit u, and R sig (signal(τ)) is the average rate of data transmission corresponding to the signal strength within a given time slot.
CN201310575205.8A 2013-11-16 2013-11-16 The cellular network energy consumption of mobile equipment optimization method that dispatching sequence is controlled Active CN103596223B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310575205.8A CN103596223B (en) 2013-11-16 2013-11-16 The cellular network energy consumption of mobile equipment optimization method that dispatching sequence is controlled

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310575205.8A CN103596223B (en) 2013-11-16 2013-11-16 The cellular network energy consumption of mobile equipment optimization method that dispatching sequence is controlled

Publications (2)

Publication Number Publication Date
CN103596223A CN103596223A (en) 2014-02-19
CN103596223B true CN103596223B (en) 2016-08-17

Family

ID=50086161

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310575205.8A Active CN103596223B (en) 2013-11-16 2013-11-16 The cellular network energy consumption of mobile equipment optimization method that dispatching sequence is controlled

Country Status (1)

Country Link
CN (1) CN103596223B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104363635B (en) * 2014-10-28 2017-10-17 清华大学 The Stream Media Application method for allocating bandwidth resources of quick energy optimization
CN104410870B (en) * 2014-10-28 2017-04-19 清华大学 Method for distributing bandwidth resource of streaming media application with optimized energy consumption
CN105792288B (en) * 2014-12-23 2018-11-13 北京永安信通科技股份有限公司 Based on the recursive packet transmission scheduling method and apparatus of relaxation
CN104836682B (en) * 2015-04-01 2018-06-26 华中科技大学 A kind of network data transmission energy consumption optimization method based on dynamic programming algorithm
US9414404B1 (en) * 2015-05-29 2016-08-09 Apple Inc. Coalescing application data activity from multiple applications
CN106900070B (en) * 2017-01-09 2020-02-14 北京邮电大学 Mobile device multi-application program data transmission energy consumption optimization method
CN107995660B (en) * 2017-12-18 2021-08-17 重庆邮电大学 Joint task scheduling and resource allocation method supporting D2D-edge server offloading

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103294548A (en) * 2013-05-13 2013-09-11 华中科技大学 Distributed file system based IO (input output) request dispatching method and system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103294548A (en) * 2013-05-13 2013-09-11 华中科技大学 Distributed file system based IO (input output) request dispatching method and system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MPLS_TP网络的多业务传送特性和本地保护技术研究;曹畅;《中国优秀博士论文全文数据库》;20130115;全文 *
MPLS流量工程最小干扰选路算法研究;崔勇;《软件学报》;20060511;全文 *

Also Published As

Publication number Publication date
CN103596223A (en) 2014-02-19

Similar Documents

Publication Publication Date Title
CN103596223B (en) The cellular network energy consumption of mobile equipment optimization method that dispatching sequence is controlled
CN101610566B (en) System and method for dynamically adjusting sleep/wake schedule of wireless network device
CN104363635B (en) The Stream Media Application method for allocating bandwidth resources of quick energy optimization
CN103037391B (en) Low-power consumption RRC (Radio Resource Control) protocol optimal control method based on data stream prediction
CN103269513B (en) The tail time in cellular network is utilized to carry out the method for transfer of data
CN104410870B (en) Method for distributing bandwidth resource of streaming media application with optimized energy consumption
CN103716869A (en) Distributed power control method based on energy efficiency optimization in D2D communication
CN102883420B (en) Transmission scheduling method and device in sleep mode
CN115190533A (en) Transmission processing method, device and communication equipment
Tsao et al. Energy-efficient packet scheduling algorithms for real-time communications in a mobile WiMAX system
CN102595578A (en) Self-adaptive deterministic scheduling method for WIA-PA network
CN102006670A (en) Dynamic polling medium access control method of emergency response supported sensor network
CN103228029A (en) Real-time data transmission method meeting IEEE802.11 protocol
CN105517120A (en) ON/OFF control method and device of small base station
CN106878958A (en) Fast Propagation Method Based on Adjustable Duty Cycle in Software Custom Wireless Networks
CN107690196B (en) A data transmission scheduling method based on channel quality detection in LTE cellular network
Liao et al. Power-saving scheduling with a QoS guarantee in a mobile WiMAX system
CN102946629B (en) Online optimal scheduling solution for tail energy consumption of 3-G communication of mobile intelligent terminal
US11550384B2 (en) Methods and apparatus for adaptive power profiling in a baseband processing system
EP2786619B1 (en) Facilitating power conservation for local area transmissions
CN104023358B (en) Wireless resource adjusting method capable of balancing system signaling load and terminal power consumption
CN106879054B (en) Wireless data transmission energy consumption optimization method
Li et al. Design of power saving mechanism for LTE-a networks supporting mobile IPTV services
Jin et al. Energy saving strategy in cognitive networks based on software defined radio
Jiang et al. An Intelligent Discontinuous Reception Scheme for Critical and Massive Machine-type Communications

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant