[go: up one dir, main page]

CN103580520A - Inverter modulating device and method - Google Patents

Inverter modulating device and method Download PDF

Info

Publication number
CN103580520A
CN103580520A CN201310542145.XA CN201310542145A CN103580520A CN 103580520 A CN103580520 A CN 103580520A CN 201310542145 A CN201310542145 A CN 201310542145A CN 103580520 A CN103580520 A CN 103580520A
Authority
CN
China
Prior art keywords
input terminal
output
tri
module
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310542145.XA
Other languages
Chinese (zh)
Other versions
CN103580520B (en
Inventor
徐德鸿
严成
张扬帆
孙超
刘程宇
延汇文
吴吉良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Shenzhen Kstar Technology Co Ltd
Original Assignee
Zhejiang University ZJU
Shenzhen Kstar Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU, Shenzhen Kstar Technology Co Ltd filed Critical Zhejiang University ZJU
Priority to CN201310542145.XA priority Critical patent/CN103580520B/en
Publication of CN103580520A publication Critical patent/CN103580520A/en
Application granted granted Critical
Publication of CN103580520B publication Critical patent/CN103580520B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inverter Devices (AREA)

Abstract

本发明公开的一种逆变器的调制装置及方法,本发明通过检测输出功率,比较输出功率值与设定功率值来控制两种调制方式相互切换,在输出功率小于设定功率时,选择采用连续调制波,而在输出功率大于设定功率时,选择采用断续调制波,然后将选择的调制波通过该调制装置的输出信号作为逆变器的驱动信号。本发明提出的调制方法,在逆变器轻载,开关损耗不显著时,采用连续调制波减小输出滤波器上的损耗来提高效率,而在逆变重载时,采用断续调制波来大幅度地减小逆变器的开关损耗来提高效率,从而在全功率范围内,逆变器的效率比以单一调制波的方式效率高,并且切换方式简单可靠,易实现。The invention discloses an inverter modulation device and method. The invention controls the mutual switching of two modulation modes by detecting the output power and comparing the output power value with the set power value. When the output power is less than the set power, select A continuous modulation wave is used, and when the output power is greater than the set power, a discontinuous modulation wave is selected, and then the selected modulation wave passes through the output signal of the modulation device as the drive signal of the inverter. In the modulation method proposed by the present invention, when the inverter is light-loaded and the switching loss is not significant, the continuous modulation wave is used to reduce the loss on the output filter to improve efficiency, and when the inverter is heavy-loaded, the discontinuous modulation wave is used to The switching loss of the inverter is greatly reduced to improve efficiency, so that in the full power range, the efficiency of the inverter is higher than that of a single modulation wave, and the switching method is simple, reliable, and easy to implement.

Description

一种逆变器的调制装置及方法Modulation device and method for an inverter

技术领域 technical field

本发明涉及逆变器及其调制技术,尤其涉及一种逆变器的调制装置及方法。  The invention relates to an inverter and its modulation technology, in particular to a modulation device and method for an inverter. the

背景技术 Background technique

逆变器是将直流电转换为交流电的装置,应用广泛。目前逆变器的调制方式常使用单一的调制方式,每种的调制方式有一定的最佳工作范围。比如常见的连续调制方式,输出纹波较小,能够获得很好的输出电流,而断续的调制方式,相比于连续的调制方式,能够减小桥臂的开关损耗,而在另一方面,增大了输出电流的纹波,从而增加输出滤波器上的磁损。效率对于逆变器是个很重要的因素,较高的逆变器转换效率意味能够输出更多的电能,而且对于逆变器本身,较高的效率能够减小逆变器的发热量,在相同散热装置的条件下,能够降低逆变器的温度,从而提高逆变器的可靠性。  Inverters are devices that convert direct current into alternating current and are used in a wide range of applications. At present, the modulation method of the inverter often uses a single modulation method, and each modulation method has a certain optimal working range. For example, the common continuous modulation method has a small output ripple and can obtain a good output current. Compared with the continuous modulation method, the discontinuous modulation method can reduce the switching loss of the bridge arm. On the other hand, , which increases the ripple of the output current, thereby increasing the magnetic loss on the output filter. Efficiency is a very important factor for inverters. Higher inverter conversion efficiency means that more power can be output, and for the inverter itself, higher efficiency can reduce the heat generated by the inverter. Under the condition of the cooling device, the temperature of the inverter can be reduced, thereby improving the reliability of the inverter. the

发明内容 Contents of the invention

本发明的目的是克服现有技术的不足,提供一种逆变器的调制装置及方法。  The purpose of the present invention is to overcome the deficiencies of the prior art and provide a modulation device and method for an inverter. the

逆变器的调制装置是:A相连续调制波发生器和A相断续调制波发生器分别连接第一选择器的1脚输入端和2脚输入端,第一选择器的输出端同时连接第一比较器的正输入端和第二比较器的正输入端,第一三角波发生器连接第一比较器的负输入端,第二三角波发生器连接第二比较器的负输入端,第一比较器的输出端同时连接第一反相器的输入端和第一死区模块的输入端,第一反相器的输出端连接第二死区模块的输入端,第一死区模块的输出端连接第一驱动模块的输入端,第二死区模块的输出端连接第二驱动模块的输入端,第一驱动模块的输出信号为桥臂开关Sa1的驱动信号,第二驱动模块的输出信号为桥臂开关Sa3的驱动信号,第二比较器的输出端同时连接第二反相器的输入端和第三死区模块的输入端,第二反相器的输出端连接第四死区模块的输入端,第三死区模块的输出端连接第三驱动模块的输入端,第四死区模块的输出端连接第四驱动模块的输入端,第三驱动模块的输出信号为桥臂开关Sa2的驱动信号,第四驱动模块的输出信号为桥臂开关Sa4的驱动信号;  The modulation device of the inverter is: A-phase continuous modulation wave generator and A-phase discontinuous modulation wave generator are respectively connected to the 1-pin input terminal and 2-pin input terminal of the first selector, and the output terminal of the first selector is connected to The positive input terminal of the first comparator and the positive input terminal of the second comparator, the first triangular wave generator is connected to the negative input terminal of the first comparator, the second triangular wave generator is connected to the negative input terminal of the second comparator, the first The output terminal of the comparator is connected to the input terminal of the first inverter and the input terminal of the first dead zone module at the same time, the output terminal of the first inverter is connected to the input terminal of the second dead zone module, and the output terminal of the first dead zone module terminal is connected to the input terminal of the first driving module, the output terminal of the second dead zone module is connected to the input terminal of the second driving module, the output signal of the first driving module is the driving signal of the bridge arm switch S a1 , the output of the second driving module The signal is the driving signal of the bridge arm switch S a3 , the output terminal of the second comparator is connected to the input terminal of the second inverter and the input terminal of the third dead zone module at the same time, and the output terminal of the second inverter is connected to the fourth dead zone module. The input terminal of the zone module, the output terminal of the third dead zone module is connected to the input terminal of the third drive module, the output terminal of the fourth dead zone module is connected to the input terminal of the fourth drive module, and the output signal of the third drive module is the bridge arm The driving signal of the switch S a2 , the output signal of the fourth driving module is the driving signal of the bridge arm switch S a4 ;

B相连续调制波发生器和B相断续调制波发生器分别连接第二选择器的1脚输入端和2脚输入端,第二选择器的输出端同时连接第三比较器的正输入端和第四比较器的正输入端,第一三角波发生器连接第三比较器的负输入端,第二三角波发生器连接第四比较器的负输入端,第三比较器的输出端同时连接第三反相器的输入端和第五死区模块的输入端,第三反相器的输出端连接第六死区模块的输入端,第五死区模块的输出端连接第五驱动模块的输入端,第六死区模块的输出端连接第六驱动模块的输入端,第五驱动模块的输出信号为桥臂开关Sb1的驱动信号,第六驱动模块的输出信号为桥臂开关Sb3的驱动信号,第四比较器的输出端同时 连接第四反相器的输入端和第七死区模块的输入端,第四反相器的输出端连接第八死区模块的输入端,第七死区模块的输出端连接第七驱动模块的输入端,第八死区模块的输出端连接第八驱动模块的输入端,第七驱动模块的输出信号为桥臂开关Sb2的驱动信号,第八驱动模块的输出信号为桥臂开关Sb4的驱动信号;  The B-phase continuous modulation wave generator and the B-phase discontinuous modulation wave generator are respectively connected to the 1-pin input terminal and 2-pin input terminal of the second selector, and the output terminal of the second selector is connected to the positive input terminal of the third comparator at the same time and the positive input terminal of the fourth comparator, the first triangular wave generator is connected to the negative input terminal of the third comparator, the second triangular wave generator is connected to the negative input terminal of the fourth comparator, and the output terminal of the third comparator is connected to the first comparator at the same time The input terminal of the three inverters and the input terminal of the fifth dead zone module, the output terminal of the third inverter is connected to the input terminal of the sixth dead zone module, and the output terminal of the fifth dead zone module is connected to the input terminal of the fifth drive module terminal, the output terminal of the sixth dead zone module is connected to the input terminal of the sixth driving module, the output signal of the fifth driving module is the driving signal of the bridge arm switch S b1 , and the output signal of the sixth driving module is the driving signal of the bridge arm switch S b3 Drive signal, the output terminal of the fourth comparator is connected to the input terminal of the fourth inverter and the input terminal of the seventh dead zone module at the same time, the output terminal of the fourth inverter is connected to the input terminal of the eighth dead zone module, and the seventh The output terminal of the dead zone module is connected to the input terminal of the seventh driving module, the output terminal of the eighth dead zone module is connected to the input terminal of the eighth driving module, the output signal of the seventh driving module is the driving signal of the bridge arm switch S b2 , the The output signal of the eight drive modules is the drive signal of the bridge arm switch S b4 ;

C相连续调制波发生器和C相断续调制波发生器分别连接第三选择器的1脚输入端和2脚输入端,第三选择器的输出端同时连接第五比较器的正输入端和第六比较器的正输入端,第一三角波发生器连接第五比较器的负输入端,第二三角波发生器连接第六比较器的负输入端,第五比较器的输出端同时连接第五反相器的输入端和第九死区模块的输入端,第五反相器的输出端连接第十死区模块的输入端,第九死区模块的输出端连接第九驱动模块的输入端,第十死区模块的输出端连接第十驱动模块的输入端,第九驱动模块的输出信号为桥臂开关Sc1的驱动信号,第十驱动模块的输出信号为桥臂开关Sc3的驱动信号,第六比较器的输出端同时连接第六反相器的输入端和第十一死区模块的输入端,第六反相器的输出端连接第十二死区模块的输入端,第十一死区模块的输出端连接第十一驱动模块的输入端,第十二死区模块的输出端连接第十二驱动模块的输入端,第十一驱动区模块的输出信号为桥臂开关Sc2的驱动信号,第十二驱动模块的输出信号为桥臂开关Sc4的驱动信号;  The C-phase continuous modulation wave generator and the C-phase discontinuous modulation wave generator are respectively connected to the 1-pin input terminal and 2-pin input terminal of the third selector, and the output terminal of the third selector is connected to the positive input terminal of the fifth comparator at the same time and the positive input of the sixth comparator, the first triangular wave generator is connected to the negative input of the fifth comparator, the second triangular wave generator is connected to the negative input of the sixth comparator, and the output of the fifth comparator is connected to the fifth comparator at the same time. The input terminal of the fifth inverter and the input terminal of the ninth dead zone module, the output terminal of the fifth inverter is connected to the input terminal of the tenth dead zone module, and the output terminal of the ninth dead zone module is connected to the input terminal of the ninth drive module terminal, the output end of the tenth dead zone module is connected to the input end of the tenth driving module, the output signal of the ninth driving module is the driving signal of the bridge arm switch S c1 , and the output signal of the tenth driving module is the driving signal of the bridge arm switch S c3 Drive signal, the output terminal of the sixth comparator is connected to the input terminal of the sixth inverter and the input terminal of the eleventh dead zone module at the same time, the output terminal of the sixth inverter is connected to the input terminal of the twelfth dead zone module, The output terminal of the eleventh dead zone module is connected to the input terminal of the eleventh drive module, the output terminal of the twelfth dead zone module is connected to the input terminal of the twelfth drive module, and the output signal of the eleventh drive zone module is the bridge arm The driving signal of the switch S c2 , the output signal of the twelfth driving module is the driving signal of the bridge arm switch S c4 ;

第一乘法器的输入端信号分别为逆变器滤波器后端的A相电流的采样值和AC线电压的采样值,第二乘法器的输入端信号分别为逆变器滤波器后端的B相电流的采样值和BC线电压的采样值,第一乘法器的输出端连接加法器的1脚输入端,第二乘法器的输出端连接加法器的2脚输入端,加法器的输出端连接第七比较器的负输入端,第七比较器的正输入端信号为设定功率值Pt,第七比较器的输出端同时连接第一选择器、第二选择器、第三选择器的sel选择输入端。  The input signals of the first multiplier are respectively the sampling value of the A-phase current and the sampling value of the AC line voltage at the rear end of the inverter filter, and the input signals of the second multiplier are respectively the B-phase at the rear end of the inverter filter. The sampling value of the current and the sampling value of the BC line voltage, the output terminal of the first multiplier is connected to the input terminal of pin 1 of the adder, the output terminal of the second multiplier is connected to the input terminal of pin 2 of the adder, and the output terminal of the adder is connected to The negative input terminal of the seventh comparator, the positive input terminal signal of the seventh comparator is the set power value P t , the output terminal of the seventh comparator is connected to the first selector, the second selector, and the third selector at the same time sel selects the input terminal.

逆变器调制方法是:采用两种调制方式的切换,根据加法器的输出信号即检测的输出功率Pout,与设定功率值Pt通过第七比较器进行滞环比较,滞环功率为ΔP,当检测的输出功率大于设定功率的滞环上限,即Pout>Pt+ΔP2时,第七比较器输出从原状态切换为正电平,当检测的输出功率Pout小于设定功率的滞环下限,即Pout<Pt-ΔP2时,第七比较器的输出从原状态切换为负电平,第七比较器的输出控制第一选择器,第二选择器,第三选择器的输出调制波,当第七比较器输出为高电平时,第一选择器,第二选择器,第三选择器依次输出A相连续调制波,B相连续调制波,C相连续调制波,当第七比较器输出为低电平时,第一选择器,第二选择器,第三选择器依次输出A相断续调制波,B相断续调制波,C相断续调制波;A相第一选择器输出调制波分别与第一三角载波和第二三角载波进行比较,将与第一三角载波和第三三角载波比较后产生的两路信号通过反向器产生与其互补的信号,该两路信号与其互补信号经过死区模块与驱动模块,第一驱动模块,第二驱动模块,第三驱动模块,第四驱动模块的四路输出信号作为逆变器A相桥臂四个开关管的驱动信号,B相和C相桥臂的驱动信号产生类似于A相,将对应相的所选择的调制与载波比较后,通过反相器产生互补信号, 然后再通过死区模块和驱动模块产生对应相的驱动信号;  The modulation method of the inverter is: switch between two modulation modes, according to the output signal of the adder, that is, the detected output power P out , and set the power value P t through the seventh comparator for hysteresis comparison, the hysteresis power is ΔP, when the detected output power is greater than the hysteresis upper limit of the set power, that is, P out > P t + ΔP2, the output of the seventh comparator switches from the original state to a positive level, when the detected output power P out is less than the set The lower limit of power hysteresis, that is, when P out <P t -ΔP2, the output of the seventh comparator switches from the original state to negative level, and the output of the seventh comparator controls the first selector, the second selector, and the third selector When the output of the seventh comparator is high level, the first selector, the second selector, and the third selector output A-phase continuous modulation wave, B-phase continuous modulation wave, and C-phase continuous modulation wave in sequence. , when the output of the seventh comparator is low level, the first selector, the second selector, and the third selector output A-phase discontinuous modulation wave, B-phase discontinuous modulation wave, and C-phase discontinuous modulation wave in sequence; The phase first selector output modulation wave is compared with the first triangular carrier and the second triangular carrier respectively, and the two signals generated after comparing with the first triangular carrier and the third triangular carrier are generated by the inverter to complement the signal, The two signals and their complementary signals pass through the dead zone module and the drive module, the first drive module, the second drive module, the third drive module, and the four output signals of the fourth drive module are used as four switches of the A-phase bridge arm of the inverter The driving signal of the tube, the driving signal of the B-phase and C-phase bridge arms is similar to the A-phase, after comparing the selected modulation of the corresponding phase with the carrier, the complementary signal is generated through the inverter, and then passed through the dead zone module and the driver The module generates the drive signal corresponding to the phase;

所述的连续调制波为:根据所需输出的电压Va,Vb,Vc合成矢量Vref, 

Figure BDA0000408283790000031
根据Vref的相角θ,和调制比m,以及三电平空间矢量图得到Vref所在的大扇区区域和小扇区区域,根据所在三角形小扇区中的三个合成矢量V1,V2,V3,其中V3为冗余矢量,计算三个合成矢量对应的作用时间T1,T2,T3,将T3时间分配给两个V3冗余矢量,保证每个开关周期内,每相桥臂开关动作两次的条件下,以V3→V1→V2→V3→V3→V2→V1→V3的7段式序列计算对应A,B,C桥臂各电平的作用时间Ta,Tb,Tc,继而得到三电平的连续调制波,包括A相连续调制波,B相连续调制波,C相连续调制波;  The continuous modulation wave is: according to the required output voltage V a , V b , V c synthesized vector V ref ,
Figure BDA0000408283790000031
According to the phase angle θ of V ref , the modulation ratio m, and the three-level space vector diagram, the large sector area and the small sector area where V ref is located are obtained. According to the three synthetic vectors V 1 in the triangular small sector where it is located, V 2 , V 3 , where V 3 is a redundant vector, calculate the action time T 1 , T 2 , T 3 corresponding to the three synthetic vectors, and assign the T 3 time to the two V 3 redundant vectors to ensure that each switch In the period, under the condition that each phase bridge arm switch acts twice, the corresponding A, B , B , The action time T a , T b , T c of each level of the C bridge arm, and then obtain the three-level continuous modulation wave, including the A-phase continuous modulation wave, the B-phase continuous modulation wave, and the C-phase continuous modulation wave;

所述的断续调制波为:在连续调制波序列的基础上,将两种V3冗余矢量作用变为为采用其中之一的V3冗余矢量,保证一个开关周内一相桥臂的电平保持不变,即对应的桥臂开关一个开关周期内不动作,7段式连续序列就变为5段式断续序列,V1→V2→V3→V2→V1,从而得到A相断续调制波,B相断续调制波,C相断续调制波,断续调制波相比于连续调制波,每相桥臂在一个工频周期内有三分之一时间桥臂开关保持不动作;  The discontinuous modulation wave is as follows: on the basis of the continuous modulation wave sequence, the role of two V3 redundant vectors is changed to adopt one of the V3 redundant vectors to ensure that one phase of the bridge arm in one switching cycle The level remains unchanged, that is, the corresponding bridge arm switch does not act within one switching cycle, and the 7-segment continuous sequence becomes a 5-segment intermittent sequence, V 1 →V 2 →V 3 →V 2 →V 1 , Thus, A-phase discontinuous modulation wave, B-phase discontinuous modulation wave, and C-phase discontinuous modulation wave are obtained. Compared with continuous modulation wave, each phase bridge arm has one-third of the time in a power frequency cycle. The arm switch remains inactive;

所述的第一三角波载波表达式u1tri(t)为:  The first triangular wave carrier expression u1 tri (t) is:

uu 11 tritri (( tt )) == Uu tritri -- 22 Uu tritri TT tritri (( tt -- TT tritri &CenterDot;&Center Dot; NN )) ,, NN &CenterDot;&Center Dot; TT tritri &le;&le; tt << NN &CenterDot;&Center Dot; TT tritri ++ TT tritri 22 22 Uu tritri TT tritri (( tt -- TT tritri &CenterDot;&Center Dot; NN -- TT tritri 22 )) ,, NN &CenterDot;&Center Dot; TT tritri ++ TT tritri 22 &le;&le; tt << TT tritri &CenterDot;&Center Dot; (( NN ++ 11 ))

所述的第二三角波载波表达式u2tri(t)为:  The second triangular wave carrier expression u2 tri (t) is:

uu 22 tritri (( tt )) == -- Uu tritri ++ 22 Uu tritri TT tritri (( tt -- TT tritri &CenterDot;&Center Dot; NN )) ,, NN &CenterDot;&Center Dot; TT tritri &le;&le; tt << NN &CenterDot;&Center Dot; TT tritri ++ TT tritri 22 -- 22 Uu tritri TT tritri (( tt -- TT tritri &CenterDot;&CenterDot; NN -- TT tritri 22 )) ,, NN &CenterDot;&Center Dot; TT tritri ++ TT tritri 22 &le;&le; tt << TT tritri &CenterDot;&Center Dot; (( NN ++ 11 ))

表达式中参数为:三角载波幅值Utri,三角载波周期Ttri,N为整数。  The parameters in the expression are: triangular carrier amplitude U tri , triangular carrier period T tri , and N is an integer.

本发明提出的调制方法,在逆变器轻载,开关损耗不显著时,采用连续调制波减小输出滤波器上的损耗来提高效率,而在逆变重载时,采用断续调制波来大幅度地减小逆变器的开关损耗来提高效率,从而在全功率范围内,逆变器的效率比以单一调制波的方式效率都要高,并且切换方式简单可靠,易实现。  In the modulation method proposed by the present invention, when the inverter is light-loaded and the switching loss is not significant, the continuous modulation wave is used to reduce the loss on the output filter to improve efficiency, and when the inverter is heavy-loaded, the discontinuous modulation wave is used to The switching loss of the inverter is greatly reduced to improve efficiency, so that in the full power range, the efficiency of the inverter is higher than that of a single modulation wave, and the switching method is simple, reliable, and easy to implement. the

附图说明 Description of drawings

图1为逆变器的调制装置的电路框图;  Fig. 1 is the circuit block diagram of the modulation device of inverter;

图2为三电平T型逆变器电路结构图;  Figure 2 is a circuit structure diagram of a three-level T-type inverter;

图3为上升沿延时模块的一种实现电路;  Fig. 3 is a kind of realization circuit of rising edge delay module;

图4为三电平连续调制波和断续调制波的序列;  Fig. 4 is the sequence of three-level continuous modulation wave and discontinuous modulation wave;

图5为根据输出功率与设定功率进行调制方式滞环切换;  Figure 5 shows the hysteresis switching of the modulation mode according to the output power and the set power;

图6为连续调制产生的调制波与驱动波形;  Figure 6 shows the modulation wave and driving waveform generated by continuous modulation;

图7为断续调制产生的调制波与驱动波形。  Figure 7 shows the modulation wave and driving waveform generated by discontinuous modulation. the

具体实施方式 Detailed ways

下面结合附图对本发明进行详细说明。  The present invention will be described in detail below in conjunction with the accompanying drawings. the

如图1所示,逆变器的调制装置是:A相连续调制波发生器1和A相断续调制波发生器2分别连接第一选择器7的1脚输入端和2脚输入端,第一选择器7的输出端同时连接第一比较器10的正输入端和第二比较器11的正输入端,第一三角波发生器46连接第一比较器10的负输入端,第二三角波发生器47连接第二比较器11的负输入端,第一比较器10的输出端同时连接第一反相器16的输入端和第一死区模块22的输入端,第一反相器16的输出端连接第二死区模块23的输入端,第一死区模块22的输出端连接第一驱动模块34的输入端,第二死区模块23的输出端连接第二驱动模块35的输入端,第一驱动模块34的输出信号为桥臂开关Sa1的驱动信号,第二驱动模块35的输出信号为桥臂开关Sa3的驱动信号,第二比较器11的输出端同时连接第二反相器17的输入端和第三死区模块24的输入端,第二反相器17的输出端连接第四死区模块25的输入端,第三死区模块24的输出端连接第三驱动模块36的输入端,第四死区模块25的输出端连接第四驱动模块37的输入端,第三驱动模块36的输出信号为桥臂开关Sa2的驱动信号,第四驱动模块37的输出信号为桥臂开关Sa4的驱动信号;  As shown in Figure 1, the modulation device of the inverter is: A-phase continuous modulation wave generator 1 and A-phase discontinuous modulation wave generator 2 are respectively connected to the 1-pin input terminal and 2-pin input terminal of the first selector 7, The output terminal of the first selector 7 is connected to the positive input terminal of the first comparator 10 and the positive input terminal of the second comparator 11 simultaneously, and the first triangular wave generator 46 is connected to the negative input terminal of the first comparator 10, and the second triangular wave The generator 47 is connected to the negative input terminal of the second comparator 11, and the output terminal of the first comparator 10 is connected to the input terminal of the first inverter 16 and the input terminal of the first dead zone module 22 at the same time, and the first inverter 16 The output terminal of the second dead zone module 23 is connected to the input terminal of the second dead zone module 23, the output terminal of the first dead zone module 22 is connected to the input terminal of the first driving module 34, and the output terminal of the second dead zone module 23 is connected to the input of the second driving module 35 end, the output signal of the first driving module 34 is the driving signal of the bridge arm switch S a1 , the output signal of the second driving module 35 is the driving signal of the bridge arm switch S a3 , and the output terminal of the second comparator 11 is connected to the second The input terminal of the inverter 17 and the input terminal of the third dead zone module 24, the output terminal of the second inverter 17 is connected to the input terminal of the fourth dead zone module 25, and the output terminal of the third dead zone module 24 is connected to the third dead zone module 24. The input end of the driving module 36, the output end of the fourth dead zone module 25 is connected to the input end of the fourth driving module 37, the output signal of the third driving module 36 is the driving signal of the bridge arm switch S a2 , and the output signal of the fourth driving module 37 is The output signal is the driving signal of the bridge arm switch S a4 ;

B相连续调制波发生器3和B相断续调制波发生器4分别连接第二选择器8的1脚输入端和2脚输入端,第二选择器8的输出端同时连接第三比较器12的正输入端和第四比较器13的正输入端,第一三角波发生器46连接第三比较器12的负输入端,第二三角波发生器47连接第四比较器13的负输入端,第三比较器12的输出端同时连接第三反相器18的输入端和第五死区模块26的输入端,第三反相器18的输出端连接第六死区模块27的输入端,第五死区模块26的输出端连接第五驱动模块38的输入端,第六死区模块27的输出端连接第六驱动模块39的输入端,第五驱动模块38的输出信号为桥臂开关Sb1的驱动信号,第六驱动模块39的输出信号为桥臂开关Sb3的驱动信号,第四比较器13的输出端同时连接第四反相器19的输入端和第七死区模块28的输入端,第四反相器19的输出端连接第八死区模块29的输入端,第七死区模块28的输出端连接第七驱动模块40的输入端,第八死区模块29的输出端连接第八驱动模块41的输入端,第七驱动模块40的输出信号为桥臂开关Sb2的驱动信号,第八驱动模块41的输出信号为桥臂开关Sb4的驱动信号;  The B-phase continuous modulation wave generator 3 and the B-phase discontinuous modulation wave generator 4 are respectively connected to the 1-pin input terminal and the 2-pin input terminal of the second selector 8, and the output terminal of the second selector 8 is connected to the third comparator at the same time The positive input terminal of 12 and the positive input terminal of the fourth comparator 13, the first triangular wave generator 46 connects the negative input terminal of the third comparator 12, and the second triangular wave generator 47 connects the negative input terminal of the fourth comparator 13, The output terminal of the third comparator 12 is connected to the input terminal of the third inverter 18 and the input terminal of the fifth dead zone module 26 at the same time, and the output terminal of the third inverter 18 is connected to the input terminal of the sixth dead zone module 27, The output terminal of the fifth dead zone module 26 is connected to the input terminal of the fifth driving module 38, the output terminal of the sixth dead zone module 27 is connected to the input terminal of the sixth driving module 39, and the output signal of the fifth driving module 38 is a bridge arm switch The driving signal of S b1 , the output signal of the sixth driving module 39 is the driving signal of the bridge arm switch S b3 , the output terminal of the fourth comparator 13 is connected to the input terminal of the fourth inverter 19 and the seventh dead zone module 28 at the same time The input terminal of the fourth inverter 19 is connected to the input terminal of the eighth dead zone module 29, the output terminal of the seventh dead zone module 28 is connected to the input terminal of the seventh driving module 40, and the output terminal of the eighth dead zone module 29 The output end is connected to the input end of the eighth driving module 41, the output signal of the seventh driving module 40 is the driving signal of the bridge arm switch S b2 , and the output signal of the eighth driving module 41 is the driving signal of the bridge arm switch S b4 ;

C相连续调制波发生器5和C相断续调制波发生器6分别连接第三选择器9的1脚输入端和2脚输入端,第三选择器9的输出端同时连接第五比较器14的正输入端和第六比较器 15的正输入端,第一三角波发生器46连接第五比较器14的负输入端,第二三角波发生器47连接第六比较器15的负输入端,第五比较器14的输出端同时连接第五反相器20的输入端和第九死区模块30的输入端,第五反相器20的输出端连接第十死区模块31的输入端,第九死区模块30的输出端连接第九驱动模块42的输入端,第十死区模块31的输出端连接第十驱动模块43的输入端,第九驱动模块42的输出信号为桥臂开关Sc1的驱动信号,第十驱动模块43的输出信号为桥臂开关Sc3的驱动信号,第六比较器15的输出端同时连接第六反相器21的输入端和第十一死区模块32的输入端,第六反相器21的输出端连接第十二死区模块33的输入端,第十一死区模块32的输出端连接第十一驱动模块44的输入端,第十二死区模块33的输出端连接第十二驱动模块45的输入端,第十一驱动区模块44的输出信号为桥臂开关Sc2的驱动信号,第十二驱动模块45的输出信号为桥臂开关Sc4的驱动信号;  The C-phase continuous modulation wave generator 5 and the C-phase discontinuous modulation wave generator 6 are respectively connected to the 1-pin input terminal and the 2-pin input terminal of the third selector 9, and the output terminal of the third selector 9 is connected to the fifth comparator at the same time The positive input terminal of 14 and the positive input terminal of the sixth comparator 15, the first triangular wave generator 46 connects the negative input terminal of the fifth comparator 14, and the second triangular wave generator 47 connects the negative input terminal of the sixth comparator 15, The output terminal of the fifth comparator 14 is connected to the input terminal of the fifth inverter 20 and the input terminal of the ninth dead zone module 30 at the same time, and the output terminal of the fifth inverter 20 is connected to the input terminal of the tenth dead zone module 31, The output terminal of the ninth dead zone module 30 is connected to the input terminal of the ninth driving module 42, the output terminal of the tenth dead zone module 31 is connected to the input terminal of the tenth driving module 43, and the output signal of the ninth driving module 42 is a bridge arm switch The driving signal of S c1 , the output signal of the tenth driving module 43 is the driving signal of the bridge arm switch S c3 , the output terminal of the sixth comparator 15 is connected to the input terminal of the sixth inverter 21 and the eleventh dead zone module at the same time 32, the output of the sixth inverter 21 is connected to the input of the twelfth dead zone module 33, the output of the eleventh dead zone module 32 is connected to the input of the eleventh driving module 44, and the twelfth The output terminal of the dead zone module 33 is connected to the input terminal of the twelfth drive module 45, the output signal of the eleventh drive zone module 44 is the drive signal of the bridge arm switch Sc2 , and the output signal of the twelfth drive module 45 is the bridge arm switch S c2. a driving signal of the switch S c4 ;

第一乘法器50的输入端信号分别为逆变器滤波器后端的A相电流的采样值和AC线电压的采样值,第二乘法器51的输入端信号分别为逆变器滤波器后端的B相电流的采样值和BC线电压的采样值,第一乘法器50的输出端连接加法器49的1脚输入端,第二乘法器51的输出端连接加法器49的2脚输入端,加法器49的输出端连接第七比较器48的负输入端,第七比较器48的正输入端信号为设定功率值Pt,第七比较器48的输出端同时连接第一选择器7、第二选择器8、第三选择器9的sel选择输入端。  The input terminal signals of the first multiplier 50 are respectively the sampling value of the A-phase current and the sampling value of the AC line voltage at the rear end of the inverter filter, and the input terminal signals of the second multiplier 51 are respectively the sampling values of the inverter filter rear end. The sampling value of the B-phase current and the sampling value of the BC line voltage, the output terminal of the first multiplier 50 is connected to the 1-pin input terminal of the adder 49, and the output terminal of the second multiplier 51 is connected to the 2-pin input terminal of the adder 49, The output terminal of the adder 49 is connected to the negative input terminal of the seventh comparator 48, the positive input terminal signal of the seventh comparator 48 is the set power value Pt , and the output terminal of the seventh comparator 48 is connected to the first selector 7 at the same time. , the sel selection input terminals of the second selector 8 and the third selector 9 .

逆变器调制方法是:采用两种调制方式的切换,根据加法器49的输出信号即检测的输出功率Pout,与设定功率值Pt通过第七比较器48进行滞环比较,滞环功率为ΔP,当检测的输出功率大于设定功率的滞环上限,即Pout>Pt+ΔP2时,第七比较器48输出从原状态切换为正电平,当检测的输出功率Pout小于设定功率的滞环下限,即Pout<Pt-ΔP2时,第七比较器48的输出从原状态切换为负电平,第七比较器48的输出控制第一选择器7,第二选择器8,第三选择器9的输出调制波,当第七比较器48输出为高电平时,第一选择器7,第二选择器8,第三选择器9依次输出A相连续调制波,B相连续调制波,C相连续调制波,当第七比较器48输出为低电平时,第一选择器7,第二选择器8,第三选择器9依次输出A相断续调制波,B相断续调制波,C相断续调制波;A相第一选择器输出调制波分别与第一三角载波和第二三角载波进行比较,将与第一三角载波和第三三角载波比较后产生的两路信号通过反向器产生与其互补的信号,该两路信号与其互补信号经过死区模块与驱动模块,第一驱动模块,第二驱动模块,第三驱动模块,第四驱动模块的四路输出信号作为逆变器A相桥臂四个开关管的驱动信号,B相和C相桥臂的驱动信号产生类似于A相,将对应相的所选择的调制与载波比较后,通过反相器产生互补信号,然后再通过死区模块和驱动模块产生对应相的驱动信号;  The inverter modulation method is: switch between two modulation modes, according to the output signal of the adder 49, that is, the detected output power P out , and the set power value P t through the seventh comparator 48 for hysteresis comparison, the hysteresis The power is ΔP. When the detected output power is greater than the hysteresis upper limit of the set power, that is, when P out >P t +ΔP2, the output of the seventh comparator 48 is switched from the original state to a positive level. When the detected output power P out Less than the hysteresis lower limit of the set power, that is, when P out <P t -ΔP2, the output of the seventh comparator 48 is switched from the original state to a negative level, and the output of the seventh comparator 48 controls the first selector 7, the second Selector 8, the output modulation wave of the third selector 9, when the output of the seventh comparator 48 is high level, the first selector 7, the second selector 8, and the third selector 9 output A-phase continuous modulation wave in sequence , B-phase continuous modulation wave, C-phase continuous modulation wave, when the output of the seventh comparator 48 is low level, the first selector 7, the second selector 8, and the third selector 9 output A-phase intermittent modulation wave in sequence , B-phase intermittent modulation wave, C-phase intermittent modulation wave; A-phase first selector output modulation wave is compared with the first triangular carrier and the second triangular carrier respectively, and will be compared with the first triangular carrier and the third triangular carrier The two-way signals generated last pass through the inverter to generate complementary signals, and the two-way signals and their complementary signals pass through the dead zone module and the driving module, the first driving module, the second driving module, the third driving module, and the fourth driving module The four output signals of the inverter are used as the drive signals of the four switch tubes of the A-phase bridge arm of the inverter. The drive signals of the B-phase and C-phase bridge arms are similar to those of the A-phase. After comparing the selected modulation of the corresponding phase with the carrier, The complementary signal is generated through the inverter, and then the driving signal of the corresponding phase is generated through the dead zone module and the driving module;

所述的连续调制波为:根据所需输出的电压Va,Vb,Vc合成矢量Vref, 

Figure BDA0000408283790000051
根据Vref的相角θ,和调制比m,以及三电平空间矢量图得到Vref所在的大扇区区域和小扇区区域,根据所在三角形小扇区中的三个合成矢量V1,V2,V3,其 中V3为冗余矢量,计算三个合成矢量对应的作用时间T1,T2,T3,将T3时间分配给两个V3冗余矢量,保证每个开关周期内,每相桥臂开关动作两次的条件下,以V3→V1→V2→V3→V3→V2→V1→V3的7段式序列计算对应A,B,C桥臂各电平的作用时间Ta,Tb,Tc,继而得到三电平的连续调制波,包括A相连续调制波,B相连续调制波,C相连续调制波;  The continuous modulation wave is: according to the required output voltage V a , V b , V c synthesized vector V ref ,
Figure BDA0000408283790000051
According to the phase angle θ of V ref , the modulation ratio m, and the three-level space vector diagram, the large sector area and the small sector area where V ref is located are obtained. According to the three synthetic vectors V 1 in the triangular small sector where it is located, V 2 , V 3 , where V 3 is a redundant vector, calculate the action time T 1 , T 2 , T 3 corresponding to the three synthetic vectors, and assign the T 3 time to the two V 3 redundant vectors to ensure that each switch In the period, under the condition that each phase bridge arm switch acts twice, the corresponding A , B , B , The action time T a , T b , T c of each level of the C bridge arm, and then obtain the three-level continuous modulation wave, including the A-phase continuous modulation wave, the B-phase continuous modulation wave, and the C-phase continuous modulation wave;

所述的断续调制波为:在连续调制波序列的基础上,将两种V3冗余矢量作用变为为采用其中之一的V3冗余矢量,保证一个开关周内一相桥臂的电平保持不变,即对应的桥臂开关一个开关周期内不动作,7段式连续序列就变为5段式断续序列,V1→V2→V3→V2→V1,从而得到A相断续调制波,B相断续调制波,C相断续调制波,断续调制波相比于连续调制波,每相桥臂在一个工频周期内有三分之一时间桥臂开关保持不动作;  The discontinuous modulation wave is as follows: on the basis of the continuous modulation wave sequence, the role of two V3 redundant vectors is changed to adopt one of the V3 redundant vectors to ensure that one phase of the bridge arm in one switching cycle The level remains unchanged, that is, the corresponding bridge arm switch does not act within one switching cycle, and the 7-segment continuous sequence becomes a 5-segment intermittent sequence, V 1 →V 2 →V 3 →V 2 →V 1 , Thus, A-phase discontinuous modulation wave, B-phase discontinuous modulation wave, and C-phase discontinuous modulation wave are obtained. Compared with continuous modulation wave, each phase bridge arm has one-third of the time in a power frequency cycle. The arm switch remains inactive;

所述的第一三角波载波表达式u1tri(t)为:  The first triangular wave carrier expression u1 tri (t) is:

uu 11 tritri (( tt )) == Uu tritri -- 22 Uu tritri TT tritri (( tt -- TT tritri &CenterDot;&CenterDot; NN )) ,, NN &CenterDot;&CenterDot; TT tritri &le;&le; tt << NN &CenterDot;&Center Dot; TT tritri ++ TT tritri 22 22 Uu tritri TT tritri (( tt -- TT tritri &CenterDot;&Center Dot; NN -- TT tritri 22 )) ,, NN &CenterDot;&Center Dot; TT tritri ++ TT tritri 22 &le;&le; tt << TT tritri &CenterDot;&Center Dot; (( NN ++ 11 ))

所述的第二三角波载波表达式u2tri(t)为:  The second triangular wave carrier expression u2 tri (t) is:

uu 22 tritri (( tt )) == -- Uu tritri ++ 22 Uu tritri TT tritri (( tt -- TT tritri &CenterDot;&Center Dot; NN )) ,, NN &CenterDot;&Center Dot; TT tritri &le;&le; tt << NN &CenterDot;&Center Dot; TT tritri ++ TT tritri 22 -- 22 Uu tritri TT tritri (( tt -- TT tritri &CenterDot;&Center Dot; NN -- TT tritri 22 )) ,, NN &CenterDot;&Center Dot; TT tritri ++ TT tritri 22 &le;&le; tt << TT tritri &CenterDot;&Center Dot; (( NN ++ 11 ))

表达式中参数为:三角载波幅值Utri,三角载波周期Ttri,N为整数。  The parameters in the expression are: triangular carrier amplitude U tri , triangular carrier period T tri , and N is an integer.

工作原理:  working principle:

图2为本发明所应用的三电平逆变器,由12个有反并联二极管的全控开关构成的全桥桥臂,包括A相桥臂的Sa1、Sa2、Sa3、Sa4,B相桥臂的Sb1、Sb2、Sb3、Sb4,C相桥臂的Sc1、Sc2、Sc3、Sc4,桥臂输出接LCL滤波器。AC线电压采样值vac,BC线电压采样值vbc,A相电流采样值ia,B相电流采样值ib用于本发明中的检测功率环节;  Fig. 2 is a three-level inverter applied in the present invention, a full-bridge bridge arm composed of 12 full-control switches with anti-parallel diodes, including S a1 , S a2 , S a3 , and S a4 of the A-phase bridge arm , S b1 , S b2 , S b3 , S b4 of the B-phase bridge arm, S c1 , S c2 , S c3 , S c4 of the C-phase bridge arm, and the output of the bridge arm is connected to the LCL filter. AC line voltage sampled value v ac , BC line voltage sampled value v bc , A-phase current sampled value i a , and B-phase current sampled value i b are used for the power detection link in the present invention;

如图3所示,死区模块的一种实现电路由一个与门、一个电阻及一个电容组成,当输入信号为上升沿时,与门的输入端1电平由低变高,与门的输入端2电平即电容管脚1电平,与门的输入端2电平由零充电至高电平,当与门的输入端2电平小于输入高电平阈值时,与门输出端3输出低电平,当与门的输入端2电平充电至输入高电平阈值时,与门输出端3输出翻转至高电平,将输入上升沿信号延时输出,上升沿延时由电阻电容大小决定;  As shown in Figure 3, an implementation circuit of the dead zone module consists of an AND gate, a resistor and a capacitor. When the input signal is a rising edge, the level of the input terminal 1 of the AND gate changes from low to high, and the level of the AND gate The level of the input terminal 2 is the level of the capacitor pin 1. The level of the input terminal 2 of the AND gate is charged from zero to high level. When the level of the input terminal 2 of the AND gate is less than the input high level threshold, the output terminal 3 of the AND gate The output is low level. When the input terminal 2 of the AND gate is charged to the input high level threshold, the output terminal 3 of the AND gate is turned over to high level, and the input rising edge signal is delayed and output. The rising edge delay is determined by the resistance and capacitance size decision;

如图4所示,本发明所使用的调制波产生由电压合成的矢量Vref在三电平空间矢量中, 首先确定扇区的位置,根据小扇区所在的对应三个合成矢量V1,V2,V3,如图4当合成矢量在I-2扇区中时,V1为PPN,V2为PON,V3为PPO/OON,计算每个矢量的作用时间,连续的调制波为7段式在I-2扇区中,顺序为PPO→PPN→PON→OON→PON→PPN→PPO,一个开关周期内,每相桥臂开关管动作两次,而断续的调制波为5段式,在I-2扇区中,顺序为PPN→PON→OON→PON→PPN,一个开关周期内,有一相桥臂开关管不动作,其他两相桥臂开关管动作两次,其他扇区都以此类推;  As shown in Figure 4, the modulated wave used in the present invention produces a vector V ref synthesized by voltage in the three-level space vector, first determine the position of the sector, and according to the corresponding three synthesized vectors V 1 where the small sector is located, V 2 , V 3 , as shown in Figure 4, when the composite vector is in the I-2 sector, V 1 is PPN, V 2 is PON, V 3 is PPO/OON, calculate the action time of each vector, and continuously modulate the wave In the I-2 sector, the sequence is PPO→PPN→PON→OON→PON→PPN→PPO. In one switching cycle, the switching tube of each phase bridge arm acts twice, and the intermittent modulation wave is 5-stage type, in the I-2 sector, the sequence is PPN→PON→OON→PON→PPN, within one switching cycle, the switch tube of one phase arm does not act, the switch tube of the other two phase arms acts twice, and the others Sectors are analogous;

图5为根据设定功率值Pt及滞环功率ΔP来实现调制方式切换,根据逆变器当前的工作状态分别由A、B、C中每相的连续调制波发生器和断续发生器生成可供选择控制输出的连续调制波和断续调制波。此时,由功率监测环节监测当前功率,将逆变器滤波器器后的AC线电压vac,A相输出电流ia,BC线电压vbc,B相输出电流ib通过第一乘法器,第二乘法器,加法器可得当前的输出功率Pout;  Figure 5 shows the switching of the modulation mode according to the set power value P t and the hysteresis power ΔP. According to the current working state of the inverter, the continuous modulation wave generator and the discontinuous generator of each phase in A, B, and C are respectively Generate continuous and discontinuous modulated waves with optional control output. At this time, the current power is monitored by the power monitoring link, and the AC line voltage v ac after the inverter filter, the A-phase output current i a , the BC line voltage v bc , and the B-phase output current i b pass through the first multiplier , the second multiplier, and the adder can obtain the current output power P out ;

当逆变器运行在较小功率时,输出功率小于设定功率的滞环下限,即保持Pout<Pt-ΔP2,第七比较器比较输出的电平保持为高电平,该高电平控制第一选择器,第二选择器,第三选择器的一次输出A相连续调制波,B相连续调制波,C相连续调制波,连续调制波与三角载波的比较后通过反向产生互补的信号,然后再经过死区模块产生死区,输出作为逆变器桥臂开关管的驱动信号。如图6为三电平连调制波及其对应驱动;。  When the inverter is running at a lower power, the output power is less than the lower limit of the set power hysteresis, that is, keeping P out <P t -ΔP2, the level of the comparison output of the seventh comparator remains at a high level, and the high level Level control of the first selector, the second selector, and the third selector output A-phase continuous modulation wave, B-phase continuous modulation wave, C-phase continuous modulation wave, and the continuous modulation wave is compared with the triangular carrier wave and then generated by reverse The complementary signals are then passed through the dead zone module to generate a dead zone, and output as a driving signal for the switching tube of the inverter bridge arm. Figure 6 shows the three-level continuous modulation wave and its corresponding drive;

当逆变器功率由小功率慢慢增大,当检测到输出功率超过设定功率的滞环上限时,即Pout>Pt+ΔP2,第七比较器的输出电平为由原来的高电平改为低电平,该电平跳变控制第一选择器,第二选择器,第三选择器的输出的由原来的A相连续调制波,B相连续调制波,C相连续调制波,改变为A相断续调制波,B相断续调制波,C相断续调制波,将断续调制波与三角载波的比较后通过反向产生互补的信号,然后再经过死区模块产生死区,输出作为逆变器桥臂开关管的驱动信号。如图7所示为三电平断续调制波及其对应驱动;  When the power of the inverter increases slowly from low power, when it is detected that the output power exceeds the hysteresis upper limit of the set power, that is, P out > P t +ΔP2, the output level of the seventh comparator is changed from the original high The level is changed to a low level, and the level transition controls the output of the first selector, the second selector, and the third selector from the original A-phase continuous modulation wave, B-phase continuous modulation wave, and C-phase continuous modulation Wave, change to A-phase discontinuous modulation wave, B-phase discontinuous modulation wave, C-phase discontinuous modulation wave, compare the discontinuous modulation wave with the triangular carrier wave, generate complementary signals by reverse, and then pass through the dead zone module A dead zone is generated, and the output is used as a drive signal for the switching tube of the bridge arm of the inverter. As shown in Figure 7, the three-level discontinuous modulation wave and its corresponding drive are shown;

当逆变器保持较大功率输出时,即保持Pout>Pt+ΔP2,第七比较器的输出持续为低电平,控制第一选择器,第二选择器,第三选择器的输出分别保持为A相断续调制波,B相断续调制波,C相断续调制波,断续调制波与三角载波的比较后通过反向产生互补的信号,然后再经过死区模块产生死区,输出作为逆变器桥臂开关管的驱动信号;  When the inverter maintains a large power output, that is, maintains P out > P t +ΔP2, the output of the seventh comparator is continuously low, controlling the output of the first selector, the second selector, and the third selector Respectively keep as A-phase discontinuous modulation wave, B-phase discontinuous modulation wave, C-phase discontinuous modulation wave, the discontinuous modulation wave and the triangular carrier wave are compared to generate complementary signals through the reverse direction, and then pass through the dead zone module to generate dead Area, output as the driving signal of the switching tube of the inverter bridge arm;

反之,当逆变器功率由大功率慢慢减小,当检测到输出功率低于设定功率的滞环下限时,即Pout<Pt-ΔP2,第七比较的输出电平由原来的低电平改变为高电平,该电平跳变控制第一选择器,第二选择器,第三选择器的输出的由原来的A相断续调制波,B相断续调制波,C相断续调制波,改变为输出A相连续调制波,B相连续调制波,C相连续调制波,将断续调制波与三角载波的比较后通过反向产生互补的信号,然后再经过死区模块产生死区,输出作为逆变器桥臂开关管的驱动信号。  Conversely, when the power of the inverter is gradually reduced from high power, when it is detected that the output power is lower than the lower limit of the hysteresis of the set power, that is, P out <P t -ΔP2, the output level of the seventh comparison is changed from the original The low level changes to the high level, and the level jump controls the output of the first selector, the second selector, and the third selector from the original A-phase intermittent modulation wave, B-phase intermittent modulation wave, and C-phase intermittent modulation wave. Phase discontinuous modulation wave, change to output A phase continuous modulation wave, B phase continuous modulation wave, C phase continuous modulation wave, compare the discontinuous modulation wave with the triangular carrier wave and generate complementary signals through reverse, and then pass through the dead The zone module generates a dead zone, and the output is used as a drive signal for the switch tube of the inverter bridge arm.

Claims (2)

1.一种逆变器的调制装置,其特征在于A相连续调制波发生器(1)和A相断续调制波发生器(2)分别连接第一选择器(7)的1脚输入端和2脚输入端,第一选择器(7)的输出端同时连接第一比较器(10)的正输入端和第二比较器(11)的正输入端,第一三角波发生器(46)连接第一比较器(10)的负输入端,第二三角波发生器(47)连接第二比较器(11)的负输入端,第一比较器(10)的输出端同时连接第一反相器(16)的输入端和第一死区模块(22)的输入端,第一反相器(16)的输出端连接第二死区模块(23)的输入端,第一死区模块(22)的输出端连接第一驱动模块(34)的输入端,第二死区模块(23)的输出端连接第二驱动模块(35)的输入端,第一驱动模块(34)的输出信号为桥臂开关Sa1的驱动信号,第二驱动模块(35)的输出信号为桥臂开关Sa3的驱动信号,第二比较器(11)的输出端同时连接第二反相器(17)的输入端和第三死区模块(24)的输入端,第二反相器(17)的输出端连接第四死区模块(25)的输入端,第三死区模块(24)的输出端连接第三驱动模块(36)的输入端,第四死区模块(25)的输出端连接第四驱动模块(37)的输入端,第三驱动模块(36)的输出信号为桥臂开关Sa2的驱动信号,第四驱动模块(37)的输出信号为桥臂开关Sa4的驱动信号;1. An inverter modulation device, characterized in that the A-phase continuous modulation wave generator (1) and the A-phase discontinuous modulation wave generator (2) are respectively connected to the 1-pin input terminal of the first selector (7) and the 2-pin input terminal, the output terminal of the first selector (7) is simultaneously connected to the positive input terminal of the first comparator (10) and the positive input terminal of the second comparator (11), the first triangular wave generator (46) Connect to the negative input terminal of the first comparator (10), connect the second triangular wave generator (47) to the negative input terminal of the second comparator (11), and connect the output terminal of the first comparator (10) to the first inverting The input terminal of the device (16) and the input terminal of the first dead zone module (22), the output terminal of the first inverter (16) is connected to the input terminal of the second dead zone module (23), and the first dead zone module ( The output terminal of 22) is connected to the input terminal of the first driving module (34), the output terminal of the second dead zone module (23) is connected to the input terminal of the second driving module (35), and the output signal of the first driving module (34) is the driving signal of the bridge arm switch S a1 , the output signal of the second driving module (35) is the driving signal of the bridge arm switch S a3 , and the output terminal of the second comparator (11) is connected to the second inverter (17) at the same time and the input terminal of the third dead zone module (24), the output terminal of the second inverter (17) is connected to the input terminal of the fourth dead zone module (25), and the output of the third dead zone module (24) terminal is connected to the input terminal of the third driving module (36), the output terminal of the fourth dead zone module (25) is connected to the input terminal of the fourth driving module (37), and the output signal of the third driving module (36) is a bridge arm switch The driving signal of S a2 , the output signal of the fourth driving module (37) is the driving signal of the bridge arm switch S a4 ; B相连续调制波发生器(3)和B相断续调制波发生器(4)分别连接第二选择器(8)的1脚输入端和2脚输入端,第二选择器(8)的输出端同时连接第三比较器(12)的正输入端和第四比较器(13)的正输入端,第一三角波发生器(46)连接第三比较器(12)的负输入端,第二三角波发生器(47)连接第四比较器(13)的负输入端,第三比较器(12)的输出端同时连接第三反相器(18)的输入端和第五死区模块(26)的输入端,第三反相器(18)的输出端连接第六死区模块(27)的输入端,第五死区模块(26)的输出端连接第五驱动模块(38)的输入端,第六死区模块(27)的输出端连接第六驱动模块(39)的输入端,第五驱动模块(38)的输出信号为桥臂开关Sb1的驱动信号,第六驱动模块(39)的输出信号为桥臂开关Sb3的驱动信号,第四比较器(13)的输出端同时连接第四反相器(19)的输入端和第七死区模块(28)的输入端,第四反相器(19)的输出端连接第八死区模块(29)的输入端,第七死区模块(28)的输出端连接第七驱动模块(40)的输入端,第八死区模块(29)的输出端连接第八驱动模块(41)的输入端,第七驱动模块(40)的输出信号为桥臂开关Sb2的驱动信号,第八驱动模块(41)的输出信号为桥臂开关Sb4的驱动信号;The B-phase continuous modulation wave generator (3) and the B-phase discontinuous modulation wave generator (4) are respectively connected to the 1-pin input terminal and 2-pin input terminal of the second selector (8), and the second selector (8) The output terminal is connected to the positive input terminal of the third comparator (12) and the positive input terminal of the fourth comparator (13) at the same time, and the first triangular wave generator (46) is connected to the negative input terminal of the third comparator (12). The second triangular wave generator (47) is connected to the negative input terminal of the fourth comparator (13), and the output terminal of the third comparator (12) is connected to the input terminal of the third inverter (18) and the fifth dead zone module ( 26), the output terminal of the third inverter (18) is connected to the input terminal of the sixth dead zone module (27), the output terminal of the fifth dead zone module (26) is connected to the fifth driving module (38) The input terminal, the output terminal of the sixth dead zone module (27) is connected to the input terminal of the sixth driving module (39), the output signal of the fifth driving module (38) is the driving signal of the bridge arm switch S b1 , and the sixth driving module The output signal of (39) is the driving signal of the bridge arm switch S b3 , and the output terminal of the fourth comparator (13) is simultaneously connected to the input terminal of the fourth inverter (19) and the input of the seventh dead zone module (28) terminal, the output terminal of the fourth inverter (19) is connected to the input terminal of the eighth dead zone module (29), the output terminal of the seventh dead zone module (28) is connected to the input terminal of the seventh drive module (40), and the The output terminal of the eighth dead zone module (29) is connected to the input terminal of the eighth driving module (41), the output signal of the seventh driving module (40) is the driving signal of the bridge arm switch S b2 , and the output signal of the eighth driving module (41) The output signal is the driving signal of the bridge arm switch S b4 ; C相连续调制波发生器(5)和C相断续调制波发生器(6)分别连接第三选择器(9)的1脚输入端和2脚输入端,第三选择器(9)的输出端同时连接第五比较器(14)的正输入端和第六比较器(15)的正输入端,第一三角波发生器(46)连接第五比较器(14)的负输入端,第二三角波发生器(47)连接第六比较器(15)的负输入端,第五比较器(14)的输出端同时连接第五反相器(20)的输入端和第九死区模块(30)的输入端,第五反相器(20)的输出端连接第十死区模块(31)的输入端,第九死区模块(30)的输出端连接第九驱动模块(42)的输入端,第十死区模块(31)的输出端连接第十驱动模块(43)的输入端,第九驱动模块(42)的输出信号为桥臂开关Sc1的驱动信号,第十驱动模块(43)的输出信号为桥臂开关Sc3的驱动信号,第六比较器(15)的输出端同时连接第六反相器(21)的输入端和第十一死区模块(32)的输入端,第六反相器(21)的输出端连接第十二死区模块(33)的输入端,第十一死区模块(32)的输出端连接第十一驱动模块(44)的输入端,第十二死区模块(33)的输出端连接第十二驱动模块(45)的输入端,第十一驱动区模块(44)的输出信号为桥臂开关Sc2的驱动信号,第十二驱动模块(45)的输出信号为桥臂开关Sc4的驱动信号;The C-phase continuous modulation wave generator (5) and the C-phase discontinuous modulation wave generator (6) are respectively connected to the 1-pin input terminal and 2-pin input terminal of the third selector (9), and the third selector (9) The output terminal is simultaneously connected to the positive input terminal of the fifth comparator (14) and the positive input terminal of the sixth comparator (15), and the first triangular wave generator (46) is connected to the negative input terminal of the fifth comparator (14). The second triangular wave generator (47) is connected to the negative input terminal of the sixth comparator (15), and the output terminal of the fifth comparator (14) is connected to the input terminal of the fifth inverter (20) and the ninth dead zone module ( 30), the output terminal of the fifth inverter (20) is connected to the input terminal of the tenth dead zone module (31), the output terminal of the ninth dead zone module (30) is connected to the ninth driving module (42) The input terminal, the output terminal of the tenth dead zone module (31) is connected to the input terminal of the tenth driving module (43), the output signal of the ninth driving module (42) is the driving signal of the bridge arm switch S c1 , and the tenth driving module The output signal of (43) is the drive signal of the bridge arm switch S c3 , and the output terminal of the sixth comparator (15) is simultaneously connected to the input terminal of the sixth inverter (21) and the input terminal of the eleventh dead zone module (32). The input terminal, the output terminal of the sixth inverter (21) is connected to the input terminal of the twelfth dead zone module (33), the output terminal of the eleventh dead zone module (32) is connected to the eleventh drive module (44) The input terminal, the output terminal of the twelfth dead zone module (33) is connected to the input terminal of the twelfth drive module (45), the output signal of the eleventh drive zone module (44) is the drive signal of the bridge arm switch S c2 , The output signal of the twelfth driving module (45) is the driving signal of the bridge arm switch S c4 ; 第一乘法器(50)的输入端信号分别为逆变器滤波器后端的A相电流的采样值和AC线电压的采样值,第二乘法器(51)的输入端信号分别为逆变器滤波器后端的B相电流的采样值和BC线电压的采样值,第一乘法器(50)的输出端连接加法器(49)的1脚输入端,第二乘法器(51)的输出端连接加法器(49)的2脚输入端,加法器(49)的输出端连接第七比较器(48)的负输入端,第七比较器(48)的正输入端信号为设定功率值Pt,第七比较器(48)的输出端同时连接第一选择器(7)、第二选择器(8)、第三选择器(9)的sel选择输入端。The input signals of the first multiplier (50) are respectively the sampled value of the A-phase current and the sampled value of the AC line voltage at the back end of the inverter filter, and the input signals of the second multiplier (51) are respectively the The sampled value of the B-phase current and the sampled value of the BC line voltage at the rear end of the filter, the output terminal of the first multiplier (50) is connected to the input terminal of pin 1 of the adder (49), and the output terminal of the second multiplier (51) Connect the 2-pin input terminal of the adder (49), the output terminal of the adder (49) is connected to the negative input terminal of the seventh comparator (48), and the positive input terminal signal of the seventh comparator (48) is the set power value P t , the output terminal of the seventh comparator ( 48 ) is simultaneously connected to the sel selection input terminals of the first selector ( 7 ), the second selector ( 8 ), and the third selector ( 9 ). 2.一种使用如权利要求1所述装置的逆变器调制方法,其特征在于两种调制方式的切换,根据加法器(49)的输出信号即检测的输出功率Pout,与设定功率值Pt通过第七比较器(48)进行滞环比较,滞环功率为ΔP,当检测的输出功率大于设定功率的滞环上限,即Pout>Pt+ΔP2时,第七比较器(48)输出从原状态切换为正电平,当检测的输出功率Pout小于设定功率的滞环下限,即Pout<Pt-ΔP2时,第七比较器(48)的输出从原状态切换为负电平,第七比较器(48)的输出控制第一选择器(7),第二选择器(8),第三选择器(9)的输出调制波,当第七比较器(48)输出为高电平时,第一选择器(7),第二选择器(8),第三选择器(9)依次输出A相连续调制波,B相连续调制波,C相连续调制波,当第七比较器(48)输出为低电平时,第一选择器(7),第二选择器(8),第三选择器(9)依次输出A相断续调制波,B相断续调制波,C相断续调制波;A相第一选择器输出调制波分别与第一三角载波和第二三角载波进行比较,将与第一三角载波和第三三角载波比较后产生的两路信号通过反向器产生与其互补的信号,该两路信号与其互补信号经过死区模块与驱动模块,第一驱动模块,第二驱动模块,第三驱动模块,第四驱动模块的四路输出信号作为逆变器A相桥臂四个开关管的驱动信号,B相和C相桥臂的驱动信号产生类似于A相,将对应相的所选择的调制与载波比较后,通过反相器产生互补信号,然后再通过死区模块和驱动模块产生对应相的驱动信号;2. An inverter modulation method using the device as claimed in claim 1, characterized in that the switching of the two modulation modes is based on the output signal of the adder (49), that is, the detected output power P out , and the set power The value P t is compared by the seventh comparator (48), and the hysteresis power is ΔP. When the detected output power is greater than the hysteresis upper limit of the set power, that is, P out > P t + ΔP2, the seventh comparator (48) The output switches from the original state to a positive level. When the detected output power P out is less than the hysteresis lower limit of the set power, that is, P out <P t -ΔP2, the output of the seventh comparator (48) changes from the original The state is switched to negative level, the output of the seventh comparator (48) controls the output modulation wave of the first selector (7), the second selector (8), and the third selector (9), when the seventh comparator ( 48) When the output is high level, the first selector (7), the second selector (8), and the third selector (9) sequentially output A-phase continuous modulation wave, B-phase continuous modulation wave, and C-phase continuous modulation wave , when the output of the seventh comparator (48) is low level, the first selector (7), the second selector (8), and the third selector (9) output A-phase intermittent modulation wave sequentially, B-phase Continuous modulation wave, phase C discontinuous modulation wave; Phase A first selector output modulation wave is compared with the first triangular carrier and the second triangular carrier respectively, and the two generated after comparing with the first triangular carrier and the third triangular carrier The two-way signal generates a complementary signal through the inverter, and the two-way signal and its complementary signal pass through the dead zone module and the driving module, the first driving module, the second driving module, the third driving module, and the four outputs of the fourth driving module The signal is used as the driving signal of the four switching tubes of the A-phase bridge arm of the inverter. The driving signals of the B-phase and C-phase bridge arms are similar to the A-phase. After comparing the selected modulation of the corresponding phase with the carrier, it passes through the inverter Generate complementary signals, and then generate corresponding phase drive signals through the dead zone module and the drive module; 所述的连续调制波为:根据所需输出的电压Va,Vb,Vc合成矢量Vref
Figure FDA0000408283780000021
根据Vref的相角θ,和调制比m,以及三电平空间矢量图得到Vref所在的大扇区区域和小扇区区域,根据所在三角形小扇区中的三个合成矢量V1,V2,V3,其中V3为冗余矢量,计算三个合成矢量对应的作用时间T1,T2,T3,将T3时间分配给两个V3冗余矢量,保证每个开关周期内,每相桥臂开关动作两次的条件下,以V3→V1→V2→V3→V3→V2→V1→V3的7段式序列计算对应A,B,C桥臂各电平的作用时间Ta,Tb,Tc,继而得到三电平的连续调制波,包括A相连续调制波,B相连续调制波,C相连续调制波;
The continuous modulation wave is: according to the required output voltage V a , V b , V c synthesized vector V ref ,
Figure FDA0000408283780000021
According to the phase angle θ of V ref , the modulation ratio m, and the three-level space vector diagram, the large sector area and the small sector area where V ref is located are obtained. According to the three synthetic vectors V 1 in the triangular small sector where it is located, V 2 , V 3 , where V 3 is a redundant vector, calculate the action time T 1 , T 2 , T 3 corresponding to the three synthetic vectors, and assign the T 3 time to the two V 3 redundant vectors to ensure that each switch In the period, under the condition that each phase bridge arm switch acts twice, the corresponding A , B , B , The action time T a , T b , T c of each level of the C bridge arm, and then obtain the three-level continuous modulation wave, including the A-phase continuous modulation wave, the B-phase continuous modulation wave, and the C-phase continuous modulation wave;
所述的断续调制波为:在连续调制波序列的基础上,将两种V3冗余矢量作用变为为采用其中之一的V3冗余矢量,保证一个开关周内一相桥臂的电平保持不变,即对应的桥臂开关一个开关周期内不动作,7段式连续序列就变为5段式断续序列,V1→V2→V3→V2→V1,从而得到A相断续调制波,B相断续调制波,C相断续调制波,断续调制波相比于连续调制波,每相桥臂在一个工频周期内有三分之一时间桥臂开关保持不动作;The discontinuous modulation wave is as follows: on the basis of the continuous modulation wave sequence, the role of two V3 redundant vectors is changed to adopt one of the V3 redundant vectors to ensure that one phase of the bridge arm in one switching cycle The level remains unchanged, that is, the corresponding bridge arm switch does not act within one switching cycle, and the 7-segment continuous sequence becomes a 5-segment intermittent sequence, V 1 →V 2 →V 3 →V 2 →V 1 , Thus, A-phase discontinuous modulation wave, B-phase discontinuous modulation wave, and C-phase discontinuous modulation wave are obtained. Compared with continuous modulation wave, each phase bridge arm has one-third of the time in a power frequency cycle. The arm switch remains inactive; 所述的第一三角波载波表达式u1tri(t)为:The first triangular wave carrier expression u1 tri (t) is: uu 11 tritri (( tt )) == Uu tritri -- 22 Uu tritri TT tritri (( tt -- TT tritri &CenterDot;&CenterDot; NN )) ,, NN &CenterDot;&CenterDot; TT tritri &le;&le; tt << NN &CenterDot;&CenterDot; TT tritri ++ TT tritri 22 22 Uu tritri TT tritri (( tt -- TT tritri &CenterDot;&Center Dot; NN -- TT tritri 22 )) ,, NN &CenterDot;&CenterDot; TT tritri ++ TT tritri 22 &le;&le; tt << TT tritri &CenterDot;&Center Dot; (( NN ++ 11 )) 所述的第二三角波载波表达式u2tri(t)为:The second triangular wave carrier expression u2 tri (t) is: uu 22 tritri (( tt )) == -- Uu tritri ++ 22 Uu tritri TT tritri (( tt -- TT tritri &CenterDot;&CenterDot; NN )) ,, NN &CenterDot;&CenterDot; TT tritri &le;&le; tt << NN &CenterDot;&CenterDot; TT tritri ++ TT tritri 22 -- 22 Uu tritri TT tritri (( tt -- TT tritri &CenterDot;&CenterDot; NN -- TT tritri 22 )) ,, NN &CenterDot;&CenterDot; TT tritri ++ TT tritri 22 &le;&le; tt << TT tritri &CenterDot;&Center Dot; (( NN ++ 11 )) 表达式中参数为:三角载波幅值Utri,三角载波周期Ttri,N为整数。The parameters in the expression are: triangular carrier amplitude U tri , triangular carrier period T tri , and N is an integer.
CN201310542145.XA 2013-11-05 2013-11-05 A kind of modulating device of inverter and method Active CN103580520B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310542145.XA CN103580520B (en) 2013-11-05 2013-11-05 A kind of modulating device of inverter and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310542145.XA CN103580520B (en) 2013-11-05 2013-11-05 A kind of modulating device of inverter and method

Publications (2)

Publication Number Publication Date
CN103580520A true CN103580520A (en) 2014-02-12
CN103580520B CN103580520B (en) 2015-12-09

Family

ID=50051624

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310542145.XA Active CN103580520B (en) 2013-11-05 2013-11-05 A kind of modulating device of inverter and method

Country Status (1)

Country Link
CN (1) CN103580520B (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103904928A (en) * 2014-04-23 2014-07-02 西华大学 Serial-parallel mixing type three-level NPP inversion topological unit and three-level inverter
CN104578886A (en) * 2015-01-23 2015-04-29 阳光电源股份有限公司 Pulse width modulation method for three-level photovoltaic inverter and modulator
CN104578870A (en) * 2015-01-23 2015-04-29 阳光电源股份有限公司 Space vector pulse width modulation method for three-phase three-level inverter and modulator
CN106330045A (en) * 2016-10-25 2017-01-11 北京新能源汽车股份有限公司 Permanent magnet synchronous motor control system and control method of permanent magnet synchronous motor
US9859816B2 (en) 2015-11-17 2018-01-02 Delta Electronics (Shanghai) Co., Ltd. Method for controlling modulation wave and three-phase three-wire three-level circuit
CN107546999A (en) * 2017-08-22 2018-01-05 浙江大学 A kind of band active power decouples single-phase ZVT inverter circuit and its modulator approach
CN111989853A (en) * 2018-04-06 2020-11-24 东芝三菱电机产业系统株式会社 Power conversion device
CN117713580A (en) * 2024-02-06 2024-03-15 杭州利沃得电源有限公司 Switching method and device for modulation mode of photovoltaic inverter
CN119362861A (en) * 2024-12-23 2025-01-24 深圳市德兰明海新能源股份有限公司 Energy-saving control method for energy storage power supply, energy storage power supply and storage medium
CN119448806A (en) * 2025-01-10 2025-02-14 中国石油大学(华东) Modulation method and system for three-level split output inverter with common bridge arm of hybrid device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10164856A (en) * 1996-11-29 1998-06-19 Hitachi Ltd Control device for three-level inverter and three-level converter
US6333569B1 (en) * 2000-09-23 2001-12-25 Samsung Electronics Co., Ltd. Pulse width modulation method of inverter
CN101340156A (en) * 2008-08-07 2009-01-07 株洲南车时代电气股份有限公司 Modulating method and system of 3 level space vector
CN102916604A (en) * 2012-10-26 2013-02-06 浙江大学 One-phase inverter modulation method
CN103368427A (en) * 2012-04-05 2013-10-23 艾默生网络能源有限公司 Single-phase inverter and system thereof and three-phase inverter and system thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10164856A (en) * 1996-11-29 1998-06-19 Hitachi Ltd Control device for three-level inverter and three-level converter
US6333569B1 (en) * 2000-09-23 2001-12-25 Samsung Electronics Co., Ltd. Pulse width modulation method of inverter
CN101340156A (en) * 2008-08-07 2009-01-07 株洲南车时代电气股份有限公司 Modulating method and system of 3 level space vector
CN103368427A (en) * 2012-04-05 2013-10-23 艾默生网络能源有限公司 Single-phase inverter and system thereof and three-phase inverter and system thereof
CN102916604A (en) * 2012-10-26 2013-02-06 浙江大学 One-phase inverter modulation method

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GANG ZHANG ET AL: "An Optimized PWM Modulation Scheme for High Power Three-Level Converter", 《PROCEEDINGS OF THE 2009 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION》, 12 August 2009 (2009-08-12) *
LUCA DALESSANDRO ET AL: "Discontinuous Space-Vector Modulation for Three-Level PWM Rectifiers", 《IEEE TRANSACTIONS ON POWER ELECTRONICS》, vol. 23, no. 2, 31 March 2008 (2008-03-31), XP011204452 *
孙超等: "T型三电平并网逆变器两种调制策略研究", 《电源学报》, no. 3, 31 May 2013 (2013-05-31) *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103904928A (en) * 2014-04-23 2014-07-02 西华大学 Serial-parallel mixing type three-level NPP inversion topological unit and three-level inverter
CN104578886A (en) * 2015-01-23 2015-04-29 阳光电源股份有限公司 Pulse width modulation method for three-level photovoltaic inverter and modulator
CN104578870A (en) * 2015-01-23 2015-04-29 阳光电源股份有限公司 Space vector pulse width modulation method for three-phase three-level inverter and modulator
CN104578886B (en) * 2015-01-23 2017-06-13 阳光电源股份有限公司 A kind of three-level photovoltaic inverter pulse duration modulation method and modulator
US9859816B2 (en) 2015-11-17 2018-01-02 Delta Electronics (Shanghai) Co., Ltd. Method for controlling modulation wave and three-phase three-wire three-level circuit
CN106330045A (en) * 2016-10-25 2017-01-11 北京新能源汽车股份有限公司 Permanent magnet synchronous motor control system and control method of permanent magnet synchronous motor
CN107546999A (en) * 2017-08-22 2018-01-05 浙江大学 A kind of band active power decouples single-phase ZVT inverter circuit and its modulator approach
CN111989853A (en) * 2018-04-06 2020-11-24 东芝三菱电机产业系统株式会社 Power conversion device
CN111989853B (en) * 2018-04-06 2023-07-07 东芝三菱电机产业系统株式会社 Power conversion device
CN117713580A (en) * 2024-02-06 2024-03-15 杭州利沃得电源有限公司 Switching method and device for modulation mode of photovoltaic inverter
CN117713580B (en) * 2024-02-06 2024-05-24 杭州利沃得电源有限公司 Switching method and device for modulation mode of photovoltaic inverter
CN119362861A (en) * 2024-12-23 2025-01-24 深圳市德兰明海新能源股份有限公司 Energy-saving control method for energy storage power supply, energy storage power supply and storage medium
CN119448806A (en) * 2025-01-10 2025-02-14 中国石油大学(华东) Modulation method and system for three-level split output inverter with common bridge arm of hybrid device
CN119448806B (en) * 2025-01-10 2025-04-22 中国石油大学(华东) Modulation method and system for three-level split output inverter with common bridge arm of hybrid device

Also Published As

Publication number Publication date
CN103580520B (en) 2015-12-09

Similar Documents

Publication Publication Date Title
CN103580520B (en) A kind of modulating device of inverter and method
CN103401455B (en) Modulation method for active neutral-point clamp type tri-level inverter
CN102709941B (en) Control method of quasi-Z source cascade multi-level single-phase photovoltaic grid generation system
CN103595287B (en) A kind of control method of bidirectional power flow high-frequency isolation active clamp inverter
CN103684027B (en) Single-phase photovoltaic grid-connected inverter based on ripple power transfer and modulation control method
CN102074974A (en) Device and method for eliminating grid-connected current zero-crossing distortion of unipolar control single-phase grid-connected inverter
CN101753044A (en) A three-level midpoint potential balance control method based on zero-sequence voltage injection
CN105978388B (en) One kind can inhibit leakage current single-phase buck-boost type photovoltaic DC-to-AC converter and its control method
CN106487267A (en) A kind of single-phase grid-connected inverter topological structure and its control method
CN104953876B (en) The method that H bridge cascaded multilevel inverters on-off times minimize modulation
CN111697539B (en) Three-level ANPC inverter open-circuit fault tolerance method based on carrier modulation
CN111064377B (en) Synchronous carrier DPWM method to avoid two-level jump of phase voltage of three-level inverter
CN103944183B (en) A kind of hybrid PWM modulation switching device shifter and method
CN102916438A (en) Photovoltaic power generation control system and photovoltaic power generation control method based on three-level inverter
CN103532417A (en) Control method of topology variable grid-connected inverter
CN102075107A (en) Main circuit of three-phase four-wire DC/AC convertor and control method thereof
CN105553310A (en) Low-modulation-index control method for modular multi-level current converter
CN110880785A (en) Active thermal control method for modular multilevel converters based on hybrid modulation strategy
CN111884532B (en) Narrow pulse-free modulation method suitable for three-phase high-frequency chain matrix converter
CN104410311A (en) Discontinuous PWM modulation midpoint balance method of three-level inverter
CN102158109A (en) Photovoltaic synchronization inverter system
CN102013681A (en) Three-phase solar inversion output waveform dynamic compensation control method
CN103701329A (en) Solar photovoltaic converter of phase-shifted full-bridge soft switch
CN105743330A (en) Single support vector machine (SVM) simplified modulation algorithm of dual inverters
CN103366053B (en) A kind of improvement of Voltage-oriented control strategy and Mathematical Modeling Methods

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant