[go: up one dir, main page]

CN103579690A - A storage battery repair system capable of remote control and its repair method - Google Patents

A storage battery repair system capable of remote control and its repair method Download PDF

Info

Publication number
CN103579690A
CN103579690A CN201210257920.2A CN201210257920A CN103579690A CN 103579690 A CN103579690 A CN 103579690A CN 201210257920 A CN201210257920 A CN 201210257920A CN 103579690 A CN103579690 A CN 103579690A
Authority
CN
China
Prior art keywords
discharge
battery
charging
repair
repaired
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201210257920.2A
Other languages
Chinese (zh)
Other versions
CN103579690B (en
Inventor
刘粤荣
陈方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dongguan Constant Amperex Technology Ltd
Original Assignee
Nanjing Jiexiang Energy Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Jiexiang Energy Technology Co ltd filed Critical Nanjing Jiexiang Energy Technology Co ltd
Priority to CN201210257920.2A priority Critical patent/CN103579690B/en
Publication of CN103579690A publication Critical patent/CN103579690A/en
Application granted granted Critical
Publication of CN103579690B publication Critical patent/CN103579690B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/446Initial charging measures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/448End of discharge regulating measures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/12Remote or cooperative charging

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

The invention relates to a storage battery repair system capable of realizing remote control, which comprises a database, a system control device, a charge and discharge control device, a discharge device and a charge device, wherein the database is used for storing a plurality of storage battery repair parameters; the charging equipment and the discharging equipment are externally connected to a storage battery to be repaired, the charging equipment and the discharging equipment are internally connected to charging and discharging control equipment respectively, the charging and discharging control equipment is connected with system control equipment through a communication network, and the system control equipment is connected with the database. The invention can automatically select a repair mode for determining the charging amount and the charging program according to the actual discharging data of different storage batteries, realizes the remote operation of repairing the storage batteries, is favorable for realizing the sharing of repair knowledge, is favorable for quickly transmitting the targeted repair mode to each repair site, and improves the repair effect of the storage batteries.

Description

一种能够实现远程控制的蓄电池修复系统及其修复方法A storage battery repair system capable of remote control and its repair method

技术领域 technical field

本发明涉及蓄电池领域,特别涉及一种能够实现远程控制的蓄电池修复系统及其修复方法。The invention relates to the field of batteries, in particular to a battery repair system capable of realizing remote control and a repair method thereof.

背景技术 Background technique

蓄电池泛称可反复充放电使用的电池,又称二次电池。当前市场上蓄电池用量最大的是铅蓄电池,它的制造材料来源广泛、价格低廉,且具有安全可靠、容量大、放电强度大等电气性能优势。在目前实际使用的各种类型的蓄电池中,唯有铅蓄电池回收效率能够达到99%,材料资源几乎可完全重复性循环利用,符合绿色环保的发展趋势。目前,铅蓄电池在电动牵引车、车船起动、通信机站、储能等大功率/大容量领域占据绝对的统治地位。Batteries are generally referred to as batteries that can be repeatedly charged and discharged, also known as secondary batteries. Currently, lead-acid batteries are the most widely used storage batteries in the market. They have a wide range of sources of manufacturing materials, low prices, and have the advantages of safety, reliability, large capacity, and high discharge intensity. Among the various types of batteries currently in use, only lead-acid batteries can achieve a recycling efficiency of 99%, and material resources can be recycled almost completely, which is in line with the development trend of green and environmental protection. At present, lead-acid batteries occupy an absolute dominant position in high-power/large-capacity fields such as electric tractors, vehicle and ship starting, communication stations, and energy storage.

但铅蓄电池又具有使用寿命较短、容易提前报废的缺陷,这一缺陷会给社会造成巨大的资源浪费。据统计,目前我国仅电动自行车行业每年就需要使用6亿只左右的铅蓄电池,由于提前废弃现象严重,仅电动自行车行业一年废弃的铅蓄电池量就超过6亿只。加上其他行业,每年所废弃的铅蓄电池的数量更为庞大。However, lead-acid batteries have the disadvantages of short service life and easy scrapping in advance, which will cause huge waste of resources for the society. According to statistics, at present, the electric bicycle industry in my country alone needs to use about 600 million lead-acid batteries every year. Due to the serious phenomenon of early discarding, the amount of lead-acid batteries discarded in the electric bicycle industry alone exceeds 600 million a year. In addition to other industries, the amount of lead-acid batteries discarded every year is even greater.

对铅蓄电池进行修复是避免铅蓄电池提前报废,延长电池使用寿命,减少资源浪费的一种可行的技术手段。现有技术中,有多种对铅蓄电池进行修复的方法,包括:富液补充充电方法、正/负脉冲充电方法、多阶段式智能充电方法、高温搁置法等。不同类型的修复方法需要对不同容量衰减状态的电池作不同的技术处理,由于铅蓄电池修复方法的多样性、修复材料的多样性以及待修复的电池的状态的多样性,实施铅蓄电池修复的技术人员需要具有较丰富的技术经验,需要对近年新出现的多种功能材料和技术原理方法有深刻的了解,需要对铅蓄电池修复过程有严格的控制。正是因为蓄电池修复对技术有相对严格的要求,总体而言,当前铅蓄电池整体修复效果并不理想,修复效率很低。出于上述原因,现有技术中尚缺乏能够自动、高效地完成铅蓄电池修复的设备。Repairing lead-acid batteries is a feasible technical means to avoid premature scrapping of lead-acid batteries, prolong battery life and reduce waste of resources. In the prior art, there are many methods for repairing lead-acid batteries, including: rich liquid supplementary charging method, positive/negative pulse charging method, multi-stage intelligent charging method, high temperature shelving method and so on. Different types of repair methods require different technical treatments for batteries with different capacity decay states. Due to the diversity of lead-acid battery repair methods, the diversity of repair materials and the diversity of the state of the battery to be repaired, the technology for implementing lead-acid battery repair Personnel need to have rich technical experience, need to have a deep understanding of various functional materials and technical principles and methods that have emerged in recent years, and need to have strict control over the repair process of lead-acid batteries. It is precisely because battery repair has relatively strict requirements on technology, generally speaking, the overall repair effect of the current lead-acid battery is not ideal, and the repair efficiency is very low. For the above reasons, there is still a lack of equipment that can automatically and efficiently complete the repair of lead-acid batteries in the prior art.

除了铅蓄电池,其它类型的二次电池,如锂电池、镍氢电池等,由于使用过程中的欠维护充电或充电恒压值过高、环境温度过高引致的过充电,都会使电池提前废弃,通过特殊的充放电方式可使容量得到一定程度恢复而继续使用,其修复处理同样可在一定程度减少对材料资源以及产品制造能源的浪费。In addition to lead-acid batteries, other types of secondary batteries, such as lithium batteries, nickel-metal hydride batteries, etc., will be discarded in advance due to under-maintenance charging during use or overcharging caused by excessive charging constant voltage and high ambient temperature. , Through special charging and discharging methods, the capacity can be recovered to a certain extent and continue to be used, and its repair treatment can also reduce the waste of material resources and product manufacturing energy to a certain extent.

发明内容 Contents of the invention

本发明的目的在于克服现有技术中尚缺乏能够自动、高效地完成蓄电池修复的设备的缺陷,从而提供一种能够实现蓄电池修复的远程控制系统。The purpose of the present invention is to overcome the lack of equipment capable of automatically and efficiently completing battery repair in the prior art, thereby providing a remote control system capable of realizing battery repair.

为了实现上述目的,本发明提供了一种能够实现远程控制的蓄电池修复系统,包括数据库1、系统控制设备4、充放电控制设备7、放电设备2以及充电设备3;其中,所述的充电设备3与放电设备2分别连接到外部待修复的蓄电池6的正负极两端,所述的充电设备3与放电设备2还分别连接到所述的充放电控制设备7上,所述的充放电控制设备7通过通信网络5与系统控制设备4连接,所述系统控制设备4与所述的数据库1连接;In order to achieve the above purpose, the present invention provides a battery repair system capable of remote control, including a database 1, a system control device 4, a charging and discharging control device 7, a discharging device 2, and a charging device 3; wherein the charging device 3 and the discharge device 2 are respectively connected to the positive and negative ends of the external storage battery 6 to be repaired, and the charging device 3 and the discharge device 2 are respectively connected to the charge and discharge control device 7, and the charge and discharge The control device 7 is connected to the system control device 4 through the communication network 5, and the system control device 4 is connected to the database 1;

所述的放电设备2根据所述充放电控制设备7所发出的指令对所述蓄电池6进行放电操作,并向所述充放电设备7返回相应的数据;所述数据包括:所述蓄电池6以标规额定电流Ie放电至标规终止电压V0时反馈的时间值T0,在T0时间的放电平均电压值V01以及放电暂停时间T1反馈的实时电压值V1;其中,所述T1的取值为0.5~5%T标称额定The discharge device 2 discharges the storage battery 6 according to the instructions issued by the charge and discharge control device 7, and returns corresponding data to the charge and discharge device 7; the data includes: the storage battery 6 and The time value T 0 fed back when the rated current I e of the standard discharges to the end voltage V 0 of the standard, the average discharge voltage value V 01 at the time T 0 and the real-time voltage value V 1 fed back at the discharge pause time T 1 ; among them, The value of T1 mentioned above is 0.5~5% of the nominal rating of T;

所述的充电设备3根据所述充放电控制设备7所发出的指令对所述蓄电池6进行充电操作,所述充电操作包括向所述蓄电池6充入指定的电量;The charging device 3 performs a charging operation on the storage battery 6 according to an instruction issued by the charging and discharging control device 7, and the charging operation includes charging the storage battery 6 with a specified amount of electricity;

所述的充放电控制设备7将所述系统控制设备4所发出的指令传输到所述的放电设备2或充电设备3,还将所述放电设备2返回的数据传输到所述系统控制设备4;The charge and discharge control device 7 transmits the instructions issued by the system control device 4 to the discharge device 2 or the charge device 3, and also transmits the data returned by the discharge device 2 to the system control device 4 ;

所述的系统控制设备4根据反馈的T0、V01以及V1量值读取所述数据库1中所储存的修复充电量C与所述T0、V01、V1之间的对应关系,根据这一对应关系选择修复方式,将所选择的修复方式所对应的命令从所述数据库1读取并通过所述充放电控制设备7发送到所述充电设备3;其中,所述修复充电量C与所述T0、V01、V1之间的对应关系为C=﹝m﹢n(1-T0/T标称额定)﹞C标称;其中,m=1.1~1.3;n=1.0~3.2,其取值范围由V01和V1的量值共同决定;The system control device 4 reads the corresponding relationship between the restoration charge C stored in the database 1 and the T 0 , V 01 , and V 1 according to the fed back values of T 0 , V 01 , and V 1 , select a repairing method according to this corresponding relationship, read the command corresponding to the selected repairing method from the database 1 and send it to the charging device 3 through the charging and discharging control device 7; wherein, the repairing charging The corresponding relationship between the quantity C and the T 0 , V 01 , and V 1 is C=﹢m﹢n(1-T 0 /T nominal rating )﹞C nominal ; among them, m=1.1~1.3; n =1.0~3.2, its value range is determined by the value of V 01 and V 1 ;

所述的Ie、V0、T标称额定与C标称为国家技术标准规定的公知值。The above-mentioned I e , V 0 , T nominal rating and C nominal are known values stipulated by national technical standards.

上述技术方案中,所述的数据库1与系统控制设备4组成远程控制端,所述的充放电控制设备7、放电设备2以及充电设备3组成本地修复端,所述远程控制端能够对至少一个本地修复端进行控制。In the above technical solution, the database 1 and the system control device 4 form a remote control terminal, the charge and discharge control device 7, the discharge device 2 and the charging device 3 form a local repair terminal, and the remote control terminal can perform at least one The local repair side takes control.

上述技术方案中,所述通信网络为互联网。In the above technical solution, the communication network is the Internet.

上述技术方案中,所述通信网络为局域网。In the above technical solution, the communication network is a local area network.

本发明还提供了一种基于所述的能够实现远程控制的蓄电池修复系统上实现的蓄电池修复方法,包括:The present invention also provides a battery repair method based on the battery repair system capable of realizing remote control, including:

步骤1)、以恒压限流方式为待修复的蓄电池充满电,然后静置一段时间,所述静置时间大于10分钟;Step 1), fully charge the battery to be repaired in a constant voltage and current limiting manner, and then let it stand for a period of time, the standing time is greater than 10 minutes;

步骤2)、设定以Ie强度、终止电压V0进行检测放电,得到放电前电动势E、放电至终止电压V0的时间T0、在T0时间的放电平均电压值V01以及放电至V0后空载运行T1时间反弹的实时电压值V1Step 2), set the intensity of I e and the end voltage V 0 to detect the discharge, and obtain the electromotive force E before discharge, the time T 0 of discharge to the end voltage V 0 , the average discharge voltage value V 01 at T 0 time, and the discharge to The real-time voltage value V 1 rebounded at T 1 time after no-load operation after V 0 ;

步骤3)、根据步骤2)所得到的数据确定对待修复的蓄电池进行修复充电时所需要的修复充电量C;Step 3), according to the data obtained in step 2), determine the repair charging capacity C required for repair charging of the storage battery to be repaired;

步骤4)、根据步骤2)得到的数据和步骤3)得到的修复充电量C的数据进行分阶段充电,实现对蓄电池的修复。Step 4), according to the data obtained in step 2) and the data of the repaired charging capacity C obtained in step 3), charge in stages to realize the repair of the battery.

上述技术方案中,在所述的步骤2)之后、步骤4)之前,还包括:In the above technical solution, after step 2) and before step 4), it also includes:

步骤a)、根据步骤2)得到的数据确定待修复的蓄电池的失效模式,根据不同的失效模式为所述的待修复的蓄电池添加修复材料,并为蓄电池补足电解液。Step a), according to the data obtained in step 2), determine the failure mode of the battery to be repaired, add repair materials to the battery to be repaired according to different failure modes, and replenish electrolyte for the battery.

上述技术方案中,在所述的步骤a)中,所述的根据不同的失效模式为所述的待修复的铅蓄电池添加修复材料,对铅蓄电池包括:In the above technical solution, in the step a), the repair materials are added to the lead-acid battery to be repaired according to different failure modes, and the lead-acid battery includes:

步骤a-1)、当待修复的蓄电池符合E<2.15V/单格、V01≤1.98V/单格、V1<2.00V/单格三项特征中的两项或三项时,执行步骤a-2);当待修复的蓄电池符合E>2.23V/单格、V01>2.02V/单格、V1>2.05V/单格三项特征中的两项或三项时,执行步骤a-3);非上述两种典型状态表现,执行步骤a-4);Step a-1), when the battery to be repaired meets two or three of the three characteristics of E<2.15V/single cell, V 01 ≤1.98V/single cell, and V 1 <2.00V/single cell, execute Step a-2); when the battery to be repaired meets two or three of the three characteristics of E>2.23V/single cell, V 01 >2.02V/single cell, V 1 >2.05V/single cell, execute Step a-3); if it is not the above two typical state performances, execute step a-4);

步骤a-2)、为待修复的蓄电池外加抗极板硫酸铅结晶盐化的修复材料,然后结束本步骤的操作;Step a-2), adding a repairing material to the battery to be repaired to resist crystallization of lead sulfate on the plate, and then ending the operation of this step;

步骤a-3)、为待修复的蓄电池外加抑制极板活性物质软化的修复材料,然后结束本步骤的操作;Step a-3), add a repair material to the battery to be repaired to inhibit the softening of the active material of the plate, and then end the operation of this step;

步骤a-4)、为待修复的蓄电池先外加抗硫化材料,通过充电治理极板硫酸铅结晶盐化,然后再外加固晶材料通过充电治理极板活性物质软化。Step a-4), first add anti-sulfur material to the battery to be repaired, control the lead sulfate crystal salinization of the plate through charging, and then add the crystal-fixing material to control the softening of the active material of the plate through charging.

上述技术方案中,所述的步骤2)包括:In the above technical solution, the step 2) includes:

步骤2-1)、将待修复的蓄电池以额定电流强度Ie放电至V0,记录放电时间T0;若E<V0,则记录放电时间值T0=0;Step 2-1), discharge the battery to be repaired to V 0 at the rated current intensity I e , and record the discharge time T 0 ; if E<V 0 , record the discharge time value T 0 =0;

步骤2-2)、在蓄电池以电流Ie放电至V0过程中,连续采样实时放电的电压值,根据采样结果计算出采样平均值V01并储存记录;Step 2-2), in the process of discharging the battery with the current Ie to V0 , continuously sample the real-time discharge voltage value, calculate the sampling average value V01 according to the sampling result and store the record;

步骤2-3)、将待修复的蓄电池以Ie电流强度放电至V0时,空载T1时间,记录此时反弹的实时电压值V1Step 2-3), when the battery to be repaired is discharged to V 0 with the current intensity of I e , it is no-loaded for T 1 time, and the real-time voltage value V 1 rebounded at this time is recorded;

步骤2-4)、对待修复的蓄电池深放电至V2,然后放电电流的强度分阶段递减继续深放电至V2,V2≤80%V0/单格;其中,所述的放电电流的强度分阶段递减包括:Ie电流强度的1/2等分递减,或以任意形式递减,递减阶数设置1阶以上。Step 2-4), deeply discharge the storage battery to be repaired to V 2 , then gradually decrease the intensity of the discharge current and continue deep discharge to V 2 , V 2 ≤ 80% V 0 /cell; wherein, the discharge current The step-by-step reduction of intensity includes: the current intensity of I e is reduced by 1/2 equal parts, or reduced in any form, and the order of reduction is set to be more than 1 order.

上述技术方案中,所述步骤3)的修复充电量C,与所述T0、V1之间的对应关系为C=﹝m﹢n(1-T0/T标称额定)﹞C标称;其中m=1.1~1.3,n=1.0~3.2,n的取值范围根据蓄电池种类结合V01、V1的量值区间而定,对铅蓄电池包括:In the above technical solution, the corresponding relationship between the repaired charging capacity C in step 3) and the T 0 and V 1 is C=﹢m﹢n(1-T 0 /T nominal rating )﹞C standard where m=1.1~1.3, n=1.0~3.2, the value range of n depends on the type of storage battery combined with the value interval of V 01 and V 1 , for lead storage battery it includes:

i、待修复的蓄电池V01≤1.98V/单格时,n取值2.5~3.2:其中,V1<2.0V/单格时n取值2.8~3.2,V1≥2.0V/单格时n取值2.5~2.8;i. When the V 01 of the battery to be repaired is ≤1.98V/cell, the value of n is 2.5~3.2: Among them, when V 1 <2.0V/cell, the value of n is 2.8~3.2, when V 1 ≥2.0V/cell The value of n is 2.5~2.8;

ii、待修复的蓄电池V01>2.02V/单格时,n取值1.0~1.8:其中,V1≥2.05V/单格时n取值1.0~1.3,V1<2.05V/单格时n取值1.3~1.8;ii. When the V 01 of the battery to be repaired is >2.02V/cell, the value of n is 1.0~1.8: Among them, when V 1 ≥2.05V/cell, the value of n is 1.0~1.3, when V 1 <2.05V/cell The value of n is 1.3~1.8;

iii、待修复的蓄电池非上述两种状态表现时,n取值1.8~2.5。iii. When the battery to be repaired is not in the above two states, n takes the value of 1.8 to 2.5.

上述技术方案中,所述的步骤4)对铅蓄电池包括:In the above technical solution, the step 4) includes for the lead storage battery:

步骤4-1)、根据待修复蓄电池的V01以及V1值结合放电前的电动势E选取初始充电的电流强度,对于E<V0、V01=V0或V1>2.10V/单格的待修复蓄电池,采用≤0.06C/A进行初始充电,初始充电0.5~4小时或充电至蓄电池的两端电压≥2.0V/单格,再变换步骤4-2);非上述情况的待修复蓄电池直接进行步骤4-2)充电;Step 4-1), according to the V 01 and V 1 values of the battery to be repaired combined with the electromotive force E before discharge, select the initial charging current intensity, for E<V 0 , V 01 =V 0 or V 1 >2.10V/cell For batteries to be repaired, use ≤0.06C/A for initial charging, initially charge for 0.5 to 4 hours or charge until the voltage at both ends of the battery is ≥2.0V/cell, and then change to step 4-2); The battery is directly charged in step 4-2);

步骤4-2)、对待修复的蓄电池以0.08~0.25C/A电流充电,直至充入由放电数据V01、T0、V1共同确定的C/Ah充电量的70~95%,再变换步骤4-3);Step 4-2), charge the storage battery to be repaired with a current of 0.08~0.25C/A until it is charged to 70~95% of the C/Ah charging capacity jointly determined by the discharge data V 01 , T 0 , and V 1 , and then change step 4-3);

步骤4-3)、对待修复的蓄电池以0.03~0.06C/A小电流充电,直至充入100%C/Ah的电量,使蓄电池恢复标准容量。Step 4-3), charge the battery to be repaired with a small current of 0.03-0.06C/A until it is charged with 100% C/Ah, so that the battery returns to the standard capacity.

上述技术方案中,步骤4-2)充电可分为两个或两个以上阶段,不同阶段之间间隔设置休眠、充电电流小于或等于0.03C/A的小电流充电,或设置浅放电;In the above technical solution, charging in step 4-2) can be divided into two or more stages, and between different stages, sleep is set at intervals, charging with a small current charging current less than or equal to 0.03C/A, or shallow discharge is set;

上述技术方案中,充电过程中的浅放电设置一次或一次以上,浅放电的电流强度≤Ie,放电电量≤0.5C/Ah;当设置浅放电时,该负充电量在后阶段充电中等量补充回,所述的由C=﹝m﹢n(1-T0/T标称额定)﹞C标称确定的修复剩充电量不变。In the above technical solution, the shallow discharge is set once or more during the charging process, the current intensity of the shallow discharge is ≤ I e , and the discharge capacity is ≤ 0.5C/Ah; when the shallow discharge is set, the negative charge is charged in the later stage It is added that the remaining charge capacity of repair determined by C=﹢m﹢n(1-T 0 /T nominal rating )﹞C nominal remains unchanged.

本发明的优点在于:The advantages of the present invention are:

1、本发明的蓄电池修复方法能够针对不同蓄电池的实际放电数据,运用通信网络手段自动选择一种确定充电量及充电程序的修复方式,提高了蓄电池的修复率。1. The storage battery repair method of the present invention can automatically select a repair method for determining the charging amount and charging procedure by means of a communication network for the actual discharge data of different storage batteries, thereby improving the repair rate of the storage battery.

2、本发明的蓄电池修复系统能够实现对蓄电池修复的远程操作,有利于将有针对性的修复方式快速地传递到各个修复现场,有利于实现修复知识的共享。2. The battery repair system of the present invention can realize the remote operation of the battery repair, which is beneficial to quickly transfer targeted repair methods to each repair site, and is beneficial to realize the sharing of repair knowledge.

附图说明 Description of drawings

图1是本发明蓄电池修复的互联网系统设备的基础结构示意图;Fig. 1 is the basic structure schematic diagram of the Internet system equipment of storage battery repair of the present invention;

图2是一种6DZM蓄电池恒定电流深放电的电压变化曲线;Figure 2 is a voltage variation curve of a constant current deep discharge of a 6DZM battery;

图3是放电设备的工作程序软件逻辑关系图;Fig. 3 is a logical relationship diagram of the working program software of the discharge device;

图4是放电设备的深放电方法的逻辑关系图;Fig. 4 is a logic diagram of the deep discharge method of the discharge device;

图5是充电设备的工作方法的逻辑关系图;Fig. 5 is a logic diagram of the working method of the charging device;

图6是实施例1根据蓄电池放电数据所对应设置充电量的充电电流曲线;Fig. 6 is the charging current curve of embodiment 1 according to the charging amount correspondingly set according to the storage battery discharge data;

图7是实施例2根据蓄电池放电数据所对应设置充电量的充电电流曲线;Fig. 7 is the charging current curve of embodiment 2 according to the charging amount correspondingly set according to the storage battery discharge data;

图8是实施例3根据蓄电池放电数据所对应设置充电量的充电电流曲线;Fig. 8 is the charging current curve of embodiment 3 according to the corresponding charging capacity of battery discharge data;

图9是实施例4根据蓄电池放电数据所对应设置充电量的充电电流曲线;Fig. 9 is the charging current curve of embodiment 4 according to the charging amount correspondingly set according to the storage battery discharge data;

图10是实施例5根据蓄电池放电数据所对应设置充电量的充电电流曲线;Fig. 10 is the charging current curve of embodiment 5 according to the charging amount correspondingly set according to the storage battery discharge data;

图11是实施例6根据蓄电池放电数据所对应的充电电压设置曲线。Fig. 11 is the charging voltage setting curve corresponding to the battery discharge data according to the sixth embodiment.

附图标识Reference sign

1、数据库    2、放电设备    3、充电设备    4、数据库控制设备1. Database 2. Discharging equipment 3. Charging equipment 4. Database control equipment

5、互联网数据线路    6、蓄电池    7、充/放电控制设备5. Internet data line 6. Storage battery 7. Charge/discharge control equipment

具体实施方式 Detailed ways

在对本发明做详细说明之前,首先对本发明中所涉及的相关概念做统一描述,以铅蓄电池为述例,其它类型电池同理类推,以助理解。Before explaining the present invention in detail, firstly, the relevant concepts involved in the present invention will be uniformly described, taking lead storage battery as an example, and analogously for other types of batteries to help understanding.

Ie(单位A):蓄电池行业国家技术标准额定时率的放电电流强度,Ie=标称额定容量C标称(Ah)/标规放电时率(h)。例如,电动自行车6DZM电池国标规定2h率放电,Ie(A)=C标称/2h;电动道路车蓄电池国标规定3h率放电,则Ie(A)=C标称/3h;通讯机站UPS用蓄电池国标规定10h率放电,则Ie(A)=C标称/10h。I e (unit A): the discharge current intensity of the national technical standard rated hour rate of the storage battery industry, I e = nominal rated capacity C nominal (Ah) / standard discharge hour rate (h). For example, the national standard of electric bicycle 6DZM battery stipulates 2h rate discharge, I e (A) = C nominal /2h; the national standard of electric road vehicle battery stipulates 3h rate discharge, then I e (A) = C nominal /3h; The national standard of UPS uses the battery to discharge at a rate of 10h, then I e (A) = C nominal / 10h.

V0(单位V):标规额定电流强度Ie放电的终止电压值,例如,2h或3h率动力电池V0=1.75V/单格,通讯机站10h率电池V0=1.80V/单格。V 0 (unit: V): the terminal voltage value of standard rated current intensity I e discharge, for example, 2h or 3h rate power battery V 0 = 1.75V/cell, communication station 10h rate battery V 0 = 1.80V/cell grid.

T0(单位h):蓄电池以额定时率电流Ie放电至标准规定终止电压V0的时间。T0的物理意义表征蓄电池的容量,容量为Ie×T0(Ah)。T 0 (unit h): The time for the battery to discharge at the rated hourly rate current I e to the end voltage V 0 specified in the standard. The physical meaning of T 0 represents the capacity of the storage battery, which is I e × T 0 (Ah).

上述均为行业技术公知值,以下是本发明中所涉及的特征数据值(凡未加以专门说明的述例,均以铅蓄电池为例进行说明):The above are all known values in the industry technology, and the following are the characteristic data values involved in the present invention (all examples that are not specifically explained are explained by taking lead-acid batteries as an example):

V01:蓄电池在T0时间段放电的平均电压值,行业公知V01与电解质的离子密度相关,例如铅蓄电池的V01与硫酸密度相关。申请人发现不同失效模式的铅蓄电池所表现的V01区间明显不同,极板活性物质典型硫酸铅结晶盐化表现为V01明显偏低,极板活性物质严重软化表现为V02明显偏高,而两种失效模式并存的蓄电池V01表现为两者之间;该三种不同V01的区间表现,为修复过程提供了一个特征依据。V 01 : The average voltage value of the battery discharged during the T 0 period. It is well known in the industry that V 01 is related to the ion density of the electrolyte. For example, V 01 of a lead battery is related to the density of sulfuric acid. The applicant found that the range of V 01 exhibited by lead-acid batteries with different failure modes is obviously different, the typical lead sulfate crystallization salinization of the active material of the plate is obviously low in V 01 , and the serious softening of the active material of the plate is obviously high in V 02 . However, the V 01 of the battery with two failure modes coexisting is in between; the interval performance of the three different V 01 provides a characteristic basis for the repair process.

T1:蓄电池修复过程中所涉及的一个时间值。蓄电池以额定电流Ie放电至V0时,暂停放电(空载,即断开放电负载)的电动势(开路电压)在一定时间会趋于基本稳定,T1取值以蓄电池的标规放电时率T标称额定为参照,在0.5~5%T标称额定区间范围选取,优选的是,1~2h率蓄电池取下限值0.5~1.5%T标称额定,3~5h率蓄电池取中值1~3%T标称额定,10~20h率蓄电池取上限值3~5%T标称额定T 1 : a time value involved in the battery repair process. When the battery is discharged to V 0 with the rated current I e , the electromotive force (open circuit voltage) of the pause discharge (no load, that is, the discharge load is disconnected) will tend to be basically stable in a certain period of time, and the value of T 1 is based on the standard discharge rate of the battery The nominal rating of T is a reference, and it is selected within the range of 0.5-5% of the nominal rating of T. Preferably, the lower limit of 0.5-1.5% of the nominal rating is taken for the 1-2h rate battery, and the median value is taken for the 3-5h rate battery 1~3%T nominal rating , 10~20h rate battery takes the upper limit value 3~5%T nominal rating .

V1:蓄电池空载运行T1时间所能达到的实时电压值。申请人发现不同失效模式蓄电池所表现的V1有明显的不同区间,例如铅蓄电池失效模式为极板活性物质典型硫酸铅结晶盐化时一般表现为V1偏低,极板活性物质严重软化时表现为V1明显偏高;而两种失效模式并存时表现为V1处于两者之间;该三种不同的实时电压V1区间表现,为铅蓄电池的修复过程提供了又一个特征依据。V 1 : The real-time voltage value that the battery can achieve during T 1 time of no-load operation. The applicant found that the V 1 of batteries with different failure modes has obvious different ranges. For example, when the failure mode of lead-acid batteries is the typical lead sulfate crystallization of the active material of the plate, the V 1 is generally low, and the active material of the plate is severely softened. It shows that V 1 is obviously high; when the two failure modes coexist, it shows that V 1 is in between; the three different real-time voltage V 1 intervals provide another characteristic basis for the repair process of lead-acid batteries.

下面结合附图对本发明作进一步的描述。The present invention will be further described below in conjunction with the accompanying drawings.

参考图1,本发明的用于蓄电池修复的远程控制系统包括数据库1、系统控制设备4、充放电控制设备7、放电设备2以及充电设备3;其中,所述的充电设备3与放电设备2能够分别连接到外部待修复的蓄电池6的正负极两端,并且分别连接到所述的充放电控制设备7上,所述的充放电控制设备7通过通信网络5与系统控制设备4连接,所述系统控制设备4与所述的数据库1连接。With reference to Fig. 1, the remote control system for storage battery repair of the present invention comprises database 1, system control device 4, charging and discharging control device 7, discharging device 2 and charging device 3; Wherein, described charging device 3 and discharging device 2 It can be respectively connected to the positive and negative ends of the external storage battery 6 to be repaired, and connected to the charge and discharge control device 7 respectively, and the charge and discharge control device 7 is connected to the system control device 4 through the communication network 5, The system control device 4 is connected to the database 1 .

在蓄电池修复过程中,所述远程控制系统中的放电设备2、充电设备3以及充放电控制设备7位于修复蓄电池的现场,而所述的数据库1、系统控制设备4可以在修复蓄电池的现场,也能在远离修复现场的远端。用于连接充放电控制设备7与系统控制设备4之间的通信网络5可以为互联网,也可以是局域网。在图1中只示出了数据库1、系统控制设备4对包括放电设备2、充电设备3、充放电控制设备7在内的一套充放电设备实现充放电控制,但在实际使用中,所述数据库1、系统控制设备4可以通过通信网络同时对位于不同场所的多套充放电装备进行控制。During the battery repair process, the discharge device 2, the charging device 3 and the charge and discharge control device 7 in the remote control system are located at the scene of the battery repair, and the database 1 and the system control device 4 can be at the scene of the battery repair, It can also be at a remote location away from the restoration site. The communication network 5 used to connect the charging and discharging control device 7 and the system control device 4 may be the Internet or a local area network. In Fig. 1, only the database 1 and the system control device 4 are shown to control the charge and discharge of a set of charge and discharge devices including the discharge device 2, the charge device 3 and the charge and discharge control device 7, but in actual use, all The database 1 and the system control device 4 can simultaneously control multiple sets of charging and discharging equipment located in different places through the communication network.

所述的放电设备2用于将待修复的蓄电池6中的电能释放出去。在一个实施例中,所述放电设备2包括恒定电流放电负载电阻、微型数据读/写储存器、放电时间计数器、实时显示电压表、数据输入/输出接口、恒流放电及实时电压管理单元。该放电设备2在工作过程中,接收充放电控制设备7所发出的指令,并能够根据该指令对蓄电池6执行一系列的放电操作,并向充放电控制设备7返回相应的数据。The discharge device 2 is used for releasing the electric energy in the storage battery 6 to be repaired. In one embodiment, the discharge device 2 includes a constant current discharge load resistor, a micro data read/write memory, a discharge time counter, a real-time display voltmeter, a data input/output interface, a constant current discharge and a real-time voltage management unit. During the working process, the discharge device 2 receives instructions from the charge and discharge control device 7 , and can perform a series of discharge operations on the storage battery 6 according to the instructions, and return corresponding data to the charge and discharge control device 7 .

所述的充电设备3用于向待修复的蓄电池6充电。在一个实施例中,所述的充电设备3包括恒定电流充电实时管理单元、充电时间计数器、实时显示电流/电压表、微型数据读/写储存器以及数据输入/输出接口。该充电设备3在工作过程中,接收充放电控制设备7所发出的指令,并能够根据该指令对蓄电池6执行一系列的充电操作,并向充放电控制设备7返回相应的数据。The charging device 3 is used to charge the storage battery 6 to be repaired. In one embodiment, the charging device 3 includes a constant current charging real-time management unit, a charging time counter, a real-time display current/voltage meter, a micro data read/write memory, and a data input/output interface. During the working process, the charging device 3 receives instructions issued by the charging and discharging control device 7 , and can perform a series of charging operations on the storage battery 6 according to the instructions, and return corresponding data to the charging and discharging controlling device 7 .

在本实施例中,放电设备2与充电设备3是独立的两台设备,在其他实施例中,也可以通过放/充电一体机实现。In this embodiment, the discharging device 2 and the charging device 3 are two independent devices, and in other embodiments, it can also be realized by an integrated discharging/charging machine.

所述的充放电控制设备7用于接收所述系统控制设备4所发送的命令,将所述命令发送到放电设备2与充电设备3。在本实施例中,所述充放电控制设备7是一台独立的物理设备,但在其他实施例中,也可与所述放电设备2和充电设备3在同一物理设备上实现。The charge and discharge control device 7 is used to receive the command sent by the system control device 4 and send the command to the discharge device 2 and the charge device 3 . In this embodiment, the charging and discharging control device 7 is an independent physical device, but in other embodiments, it can also be implemented on the same physical device as the discharging device 2 and the charging device 3 .

所述的系统控制设备4根据放电设备2对待修复的蓄电池6以标规额定电流Ie放电至终止电压V0时反馈的时间值T0、在T0时间的放电平均电压值V01以及放电暂停时间T1时反馈的实时电压值V1,读取所述数据库1储存的修复充电量C(Ah)与所述V01、T0、V1之间的对应关系,根据这一关系选择合适的修复方式,将这一修复方式所对应的命令通过充放电控制设备7发送到充电设备3。充电设备3采用该修复方式实现对蓄电池6的修复。The system control device 4 is based on the time value T 0 fed back by the discharge device 2 when the storage battery 6 to be repaired is discharged to the end voltage V 0 with the standard rated current I e , the discharge average voltage value V 01 at the time T 0 , and the discharge Pause the real-time voltage value V 1 fed back at time T 1 , read the corresponding relationship between the repaired charging capacity C (Ah) stored in the database 1 and the V 01 , T 0 , and V 1 , and select according to this relationship For a suitable repairing method, the command corresponding to the repairing method is sent to the charging device 3 through the charging and discharging control device 7 . The charging device 3 uses this repair method to repair the battery 6 .

所述数据库1用于存储修复充电量C与所述V01、T0、V1之间的对应关系以及与这些对应关系相对应的修复方式的命令。The database 1 is used to store the corresponding relationship between the repairing charging amount C and the V 01 , T 0 , V 1 and the order of the repairing method corresponding to these corresponding relationships.

以上是对本发明的用于蓄电池修复的远程控制系统的描述,下面对基于该系统所实现的蓄电池修复方法主要以铅蓄电池为述例进行说明。The above is the description of the remote control system for battery repair of the present invention, and the battery repair method realized based on the system will be described below mainly by taking lead battery as an example.

铅蓄电池主要存在两种典型失效模式:极板硫酸铅结晶盐化、极板活性物质软化。对处于上述两种失效模式下的铅蓄电池都可采用充电的方法实现一定程度的修复。铅蓄电池无论是哪种失效模式,一般在单格1~1.6V存在一个二级能量平台,附图2给出了一只6DZM失效电池恒流放电的电压变动曲线,表明失效电池在9V左右区间虽堆积有较大的能量,但远远低于正常工作电压下限,对蓄电池正常工作无意义。蓄电池进行深放电能够有效释放这一低电压平台的能量,在深放电后再通过充电对蓄电池进行修复,将使得蓄电池修复效果更佳。There are two typical failure modes in lead-acid batteries: the crystallization of lead sulfate on the plate and the softening of the active material on the plate. The charging method can be used to repair the lead-acid batteries in the above two failure modes to a certain extent. Regardless of the failure mode of the lead-acid battery, there is generally a secondary energy platform at 1 to 1.6V in a single cell. Attachment 2 shows the voltage variation curve of a 6DZM failed battery constant current discharge, indicating that the failed battery is in the range of about 9V Although there is a large amount of energy accumulated, it is far below the lower limit of the normal working voltage, which is meaningless to the normal operation of the battery. Deep discharge of the battery can effectively release the energy of this low-voltage platform, and repairing the battery by charging after deep discharge will make the battery repair effect better.

申请人通过研究还发现:放电特征数据对于确定蓄电池修复过程中所需要的修复充电量的大小有着十分重要的意义。微观蓄电池活性物质的团簇颗粒图像,容量正常时极向排布高度一致,容量大衰减时团簇颗粒的尺度分布、团簇间距和极向排布都呈现出杂乱无章,需要在外加有效添加剂作用的前提下一次性地注入足够的能量激活,否则会形成“记忆”使电池容量无法恢复设计值,因此以放电特征数据确定修复充电量,是使蓄电池恢复正常容量的有效技术方法。The applicant also found through research that the discharge characteristic data is of great significance for determining the amount of repair charge required in the battery repair process. The cluster particle image of the active material of the micro-battery, the polar arrangement height is consistent when the capacity is normal, and the scale distribution, cluster spacing and polar arrangement of the cluster particles are chaotic when the capacity is large and attenuated, which requires the addition of effective additives On the premise of injecting enough energy to activate at one time, otherwise it will form a "memory" and make the battery capacity unable to restore the design value. Therefore, determining the repair charge amount based on the discharge characteristic data is an effective technical method to restore the normal capacity of the battery.

对于一些现阶段技术不适宜深放电的电池,例如常规锂电池、镍氢电池,放电深度宜控制。从技术原理,任何电池只要其电极材料不因放电电压过低而分解或相变,修复过程中进行深放电均有助于释放低电压平台的能量,修复效果会更好。For some batteries that are not suitable for deep discharge at the current stage, such as conventional lithium batteries and nickel-metal hydride batteries, the depth of discharge should be controlled. From the technical principle, as long as the electrode material of any battery does not decompose or phase change due to low discharge voltage, deep discharge during the repair process will help release the energy of the low-voltage platform, and the repair effect will be better.

以上述发现为基础,所述的蓄电池修复方法包括:Based on the above findings, the battery repair method described includes:

步骤1)、以恒压限流方式为待修复的蓄电池充满电,然后静置一段时间,在本实施例中,所述静置时间大于10分钟。Step 1), fully charge the storage battery to be repaired in a constant-voltage and current-limiting manner, and then let it stand for a period of time. In this embodiment, the stand-by time is greater than 10 minutes.

本步骤所述的预充电,其目的是防止待修复的蓄电池放置时间过长而影响放电数据采集的准确性,提升后续步骤的技术效果。The purpose of the pre-charging described in this step is to prevent the storage battery to be repaired from being placed for too long and affect the accuracy of discharge data collection, and to improve the technical effect of the subsequent steps.

步骤2)、设定以Ie强度、终止电压V0进行检测放电,得到放电前电动势E、放电至终止电压V0的时间T0、在T0时间的放电平均电压值V01以及放电至V0后空载运行T1时的实时电压值V1。平均电压值V01是在放电过程中,充/放电控制设备7通过采样蓄电池的实时电压值(采样时间依精度要求而定)暂存、放电至V0后通过充/放电控制设备7或远程数据库1内置的平均值计数器计算得出。Step 2), set the intensity of I e and the end voltage V 0 to detect the discharge, and obtain the electromotive force E before discharge, the time T 0 of discharge to the end voltage V 0 , the average discharge voltage value V 01 at T 0 time, and the discharge to The real-time voltage value V 1 when running T 1 without load after V 0 . The average voltage value V 01 is during the discharge process. The charging/discharging control device 7 samples the real-time voltage value of the storage battery (the sampling time depends on the accuracy requirements) and stores it temporarily. Calculated by the built-in average counter in database 1.

本步骤所述的以Ie强度放电,其目的是为采集放电特征数据,Ie强度放电属优选而非必须,所述的V0和T1取值同理,Ie强度、V0和T1取值的变换仅是影响对放电数据的取值判断范围及其所对应的充电量值关系表述。Discharge with I e intensity described in this step, its purpose is to collect discharge characteristic data, and I e intensity discharge is preferred but not necessary, and described V 0 and T Values are the same, I e intensity, V 0 and The transformation of the value of T1 only affects the judgment range of the value of the discharge data and the corresponding expression of the relationship between the charging value.

步骤3)、根据步骤2)所得到的V01、时间T0、实时电压值V1确定对待修复的蓄电池进行修复充电时所需要的修复充电量C;其中,修复充电量C(Ah)=﹝m﹢n(1-T0/T标称额定)﹞C标称;其中,m=1.1~1.3,n=1.0~3.2;mC标称取值范围是蓄电池行业的公知值,同时与蓄电池所处的环境温度相关,取值趋势与环境温度呈反比;n的取值范围由V01和V1的量值共同决定。对铅蓄电池包括以下情况:Step 3), according to V 01 , time T 0 , and real-time voltage value V 1 obtained in step 2), determine the repairing charging capacity C required for repairing and charging the storage battery to be repaired; among them, the repairing charging capacity C (Ah) = ﹢m﹢n(1 T 0 /T nominal rating )﹞C nominal ; among them, m=1.1~1.3, n=1.0~3.2; The ambient temperature is related, and the value trend is inversely proportional to the ambient temperature; the value range of n is determined by the values of V 01 and V 1 . Lead-acid batteries include the following situations:

i、待修复的蓄电池V01≤1.98V/单格时,n取值2.5~3.5:其中,V1<2.0V/单格时n取值2.9~3.5,V1≥2.0V/单格时n取值2.5~2.8;i. When the V 01 of the battery to be repaired is ≤1.98V/cell, the value of n is 2.5~3.5: Among them, when V 1 <2.0V/cell, the value of n is 2.9~3.5, when V 1 ≥2.0V/cell The value of n is 2.5~2.8;

ii、待修复的蓄电池V01>2.02V/单格时,n取值1.0~1.8:其中,V1≥2.05V/单格时n取值1.0~1.3,V1<2.05V/单格时n取值1.3~1.8;ii. When the V 01 of the battery to be repaired is >2.02V/cell, the value of n is 1.0~1.8: Among them, when V 1 ≥2.05V/cell, the value of n is 1.0~1.3, when V 1 <2.05V/cell The value of n is 1.3~1.8;

iii、非上述两种典型状态表现时,n取值1.8~2.5。iii. When the above two typical states are not manifested, n takes the value of 1.8 to 2.5.

在本步骤中,修复充电量C的表达式反映了蓄电池失效状态与修复充电量的关系,其物理含义是:在经过深放电空荷的状态下,蓄电池修复在充入mC标称=1.1~1.3C标称电量的基础上,需继续补充﹝n(1-T0/T标称额定)﹞C标称的电量,T0越小,蓄电池修复所需要的充电量就越大。In this step, the expression of the repaired charging capacity C reflects the relationship between the failure state of the battery and the repaired charging capacity. On the basis of 1.3C nominal power, it is necessary to continue to supplement [n(1-T 0 /T nominal rating )]C nominal power. The smaller T 0 is, the greater the charging capacity required for battery repair.

本步骤中计算的修复充电量大小关系到蓄电池修复的效果,若修复充电量过小将不能激活待修复的蓄电池,若修复充电量过大,又容易把蓄电池充坏,尤其是因长期过充电引致极板活性物质严重软化失效的蓄电池,因此n的合适取值很重要。The amount of repair charge calculated in this step is related to the effect of battery repair. If the repair charge is too small, the battery to be repaired cannot be activated. If the repair charge is too large, the battery is easily damaged, especially due to long-term overcharging. The active material of the plate severely softens the failed battery, so an appropriate value of n is very important.

本步骤所述的恒定电流定电量充电(不限制充电电压)的方式,对于超出限压过充电易爆的蓄电池不适用(例如普通技术制造的常规锂电池、常规镍氢电池等),这类蓄电池宜使用标规恒定电压的限流充电方式,例如常规锂电池可设置为4.2V限流0.15C/A充电,当充电电流自然下降至小于0.01C/A时视为充满。这类蓄电池虽然通过特殊充放电也可以使容量得到一定程度恢复,但现阶段因配套修复材料技术研发不足和受到充放电手段限制,修复效果远不及铅蓄电池显著。The method of charging with constant current and constant quantity described in this step (without limiting the charging voltage) is not suitable for batteries that are overcharged and explode beyond the limit voltage (such as conventional lithium batteries and conventional nickel-metal hydride batteries manufactured by ordinary technology, etc.). The storage battery should use the standard constant voltage current-limited charging method. For example, a conventional lithium battery can be charged at 4.2V with a current-limited 0.15C/A. When the charging current naturally drops to less than 0.01C/A, it is considered fully charged. Although the capacity of this type of battery can be restored to a certain extent through special charging and discharging, the repair effect is far less significant than that of lead-acid batteries due to insufficient research and development of supporting repair material technology and the limitation of charging and discharging methods at this stage.

步骤4)、根据步骤2)得到的数据和步骤3)得到的修复充电量C的数据进行分阶段充电,实现对蓄电池的修复。Step 4), according to the data obtained in step 2) and the data of the repaired charging capacity C obtained in step 3), charge in stages to realize the repair of the battery.

作为一种优选实现方式,在所述的步骤2)之后、步骤4)之前,还包括:As a preferred implementation, after step 2) and before step 4), it also includes:

步骤a)、根据步骤2)得到的数据确定待修复的蓄电池的失效模式,根据不同的失效模式为所述的待修复的蓄电池添加修复材料,并为该蓄电池补足电解液。Step a), according to the data obtained in step 2), determine the failure mode of the battery to be repaired, add repair materials to the battery to be repaired according to different failure modes, and supplement electrolyte for the battery.

之前已经提到,铅蓄电池的主要失效模式有两种,分别是极板硫酸铅结晶盐化和极板活性物质软化。本申请人经实验发现,当待修复的蓄电池符合E<2.15V/单格、V01≤1.98V/单格、V1<2.00V/单格三项特征中的两项或三项时,失效模式以极板硫酸铅结晶盐化为主,优选外加抗极板硫酸铅结晶的修复材料;当待修复的蓄电池符合E>2.23V/单格、V01>2.02V/单格、V1>2.05V/单格三项特征中的两项或三项时,失效模式以极板活性物质软化为主,优选外加抑制极板活性物质软化的修复材料;对于非上述两种典型状态表现的情况,通常是两种失效模式并存,可优先外加抗硫化材料通过充电治理极板硫酸铅结晶盐化,然后再外加固晶材料通过充电治理极板活性物质软化。As mentioned before, there are two main failure modes of lead-acid batteries, namely the crystallization of lead sulfate on the plate and the softening of the active material on the plate. The applicant found through experiments that when the battery to be repaired meets two or three of the three characteristics of E<2.15V/single cell, V 01 ≤1.98V/single cell, and V 1 <2.00V/single cell, The failure mode is mainly lead sulfate crystallization salinization on the plate, and it is preferable to add repair materials that resist lead sulfate crystallization on the plate; when the battery to be repaired meets E>2.23V/cell, V 01 >2.02V/cell, V 1 When two or three of the three characteristics of >2.05V/single cell, the failure mode is mainly the softening of the active material of the plate, and it is preferable to add repair materials that inhibit the softening of the active material of the plate; Usually, two failure modes coexist, and anti-sulfurization materials can be added first to control the lead sulfate crystallization and salinization of the plate through charging, and then the crystal-fixing material can be added to control the softening of the active material of the plate through charging.

对于其它种类的蓄电池,目前行业鲜有对修复材料研究的公开文献,一个重要的技术原因是:在鼓励快速消费的商业背景下,普通商品锂电池、镍氢电池等习惯设计为完全密封结构,用完即废弃,产品设计及消费观念有待改变,因此修复材料运用对普通锂电池、镍氢电池等是一个新的研究领域,随着动力用大功率磷酸铁锂电池如铅蓄电池般设计安全防爆阀的技术出现,磷酸铁锂电池也可能如同铅蓄电池那样利用安全防爆阀孔外加修复专用材料,其它种类的蓄电池同理。For other types of storage batteries, there are few public documents on the research of repair materials in the industry. An important technical reason is: under the commercial background of encouraging rapid consumption, ordinary commodity lithium batteries, nickel-metal hydride batteries, etc. are customarily designed as completely sealed structures. Discard after use, product design and consumption concepts need to be changed, so the application of repair materials is a new research field for ordinary lithium batteries, nickel-metal hydride batteries, etc. With the design of high-power lithium iron phosphate batteries for power, it is safe and explosion-proof like lead-acid batteries. With the emergence of valve technology, lithium iron phosphate batteries may also use safety explosion-proof valve holes and repair special materials like lead batteries, and the same is true for other types of batteries.

下面对蓄电池修复方法中各个步骤的具体实现过程加以说明。The specific implementation process of each step in the storage battery repair method will be described below.

如图3所示,所述步骤2)中对待修复蓄电池的放电过程具体包括:As shown in Figure 3, the discharge process of the battery to be repaired in step 2) specifically includes:

步骤2-1)、在蓄电池以额定电流强度Ie放电至V0,记录放电时间T0,然后执行下一步;若E≤V0,蓄电池不可能放电,或蓄电池瞬间(例如1秒内)放完电,精确记录该放电时间值无实用意义,该两种情况均记录T0=0,然后执行下一步。Step 2-1), when the battery is discharged to V 0 at the rated current intensity I e , record the discharge time T 0 , and then execute the next step; if E≤V 0 , the battery cannot be discharged, or the battery is instantaneous (for example, within 1 second) After the electricity is discharged, there is no practical significance in accurately recording the value of the discharge time. In both cases, record T 0 =0, and then proceed to the next step.

步骤2-2)、在步骤2-1放电过程中,连续采样实时电压值(采样间隔时间依精度要求而定)暂存,放电至V0后经控制设备7计算出实时电压采样的平均值并暂存,然后执行下一步。Step 2-2), during the discharge process of step 2-1, the real-time voltage value is continuously sampled (the sampling interval depends on the accuracy requirements) and temporarily stored, and the average value of real-time voltage sampling is calculated by the control device 7 after discharging to V 0 And temporarily save, and then execute the next step.

步骤2-3)、将待修复的蓄电池在Ie放电至V0时,暂停放电,记录蓄电池空载运行T1时间反弹的实时电压值V1,然后结束本阶段放电操作。Step 2-3), when the battery to be repaired is discharged to V 0 , the discharge is suspended, and the real-time voltage value V 1 rebounded during the no-load operation T 1 of the battery is recorded, and then the discharge operation at this stage is ended.

在本步骤中,所述T1时间的大小与蓄电池的放电时率有关,在之前的描述中已经有相应的说明,此处不再重复。In this step, the T1 time is related to the discharge time rate of the storage battery, which has been explained in the previous description and will not be repeated here.

对于极板硫酸铅结晶盐化或活性物质软化严重的铅蓄电池,仅以Ie强度放电至V0一般达不到极板荷电基本放空、使深层活性物质充分接触修复添加剂的目的,因此,作为一个优选实施例中,在所述的步骤2-3)之后还包括:For lead-acid batteries with serious lead sulfate crystallization salinization or active material softening on the plate, only discharging to V 0 at Ie intensity generally cannot achieve the purpose of basically emptying the plate and making the deep active material fully contact the repair additive. Therefore, as In a preferred embodiment, after said step 2-3), it also includes:

步骤2-4)、对待修复的蓄电池深放电至V2,然后放电电流的强度分阶段递减,继续深放电至V2,V2≤80%V0/单格。Step 2-4), deeply discharge the battery to be repaired to V 2 , then decrease the intensity of the discharge current in stages, and continue deep discharge to V 2 , V 2 ≤80%V 0 /cell.

在本实施例中,所述的V2为小于或等于80%V0/单格,在其他实施例中,也可根据待修复蓄电池的大小、类别确定所述V2的值,例如选择V2为30%V0/单格。In this embodiment, the V 2 is less than or equal to 80% V 0 /cell. In other embodiments, the value of V 2 can also be determined according to the size and category of the storage battery to be repaired, for example, select V 2 is 30% V 0 / single cell.

如图4所示,在本实施例中,对待修复的蓄电池进行深放电的电流强度递减规则设置为I=MKIe,其中M表示递减系数,正整数K表示递减阶数,本实施例优选0.618。蓄电池进行深放电开始阶段的放电电流强度为Ie,放电电压达到V2时,电流强度开始第一阶的递减,K为1,放电电流强度下降为0.618Ie,因为电流减小即放电负载减轻,蓄电池电压会自然反弹,当蓄电池放电电压再次达到V2,放电电流强度开始第二阶的递减,此时K变为2,放电电流强度下降为0.6182Ie=0.382Ie……依次类推,直到蓄电池以设定的小电流强度深放电至V2,在时间允许的情况下尽量实现3阶以上深放电。在其他实施例中,深放电的放电电流强度也可采用其他方式实现分阶递减,如采用1/2Ie等分递减的方式,即连续用1/2Ie、1/4Ie、1/8Ie……分别深放电至V2。末阶深放电至V2时的电流强度,一般优选≤0.05C标称/A。As shown in Figure 4, in this embodiment, the current intensity decreasing rule for deep discharge of the storage battery to be repaired is set as I=M K I e , where M represents the decreasing coefficient, and the positive integer K represents the decreasing order. In this embodiment Preferably 0.618. The discharge current intensity at the initial stage of the deep discharge of the battery is I e , and when the discharge voltage reaches V 2 , the current intensity begins to decrease in the first order, K is 1, and the discharge current intensity drops to 0.618I e , because the current decreases to discharge the load When the discharge voltage of the battery reaches V 2 again, the discharge current intensity begins to decrease in the second stage. At this time, K becomes 2, and the discharge current intensity drops to 0.618 2 I e = 0.382I e ... in order By analogy, until the battery is deeply discharged to V 2 at the set low current intensity, try to achieve deep discharge of more than 3 stages if time permits. In other embodiments, the discharge current intensity of the deep discharge can also be reduced step by step in other ways, such as the method of 1/2I e equal-divided decrease, that is, continuous use of 1/2I e , 1/4I e , 1/8I e ... deep discharge to V 2 respectively. The current intensity when the final deep discharge reaches V2 is generally preferably ≤0.05Cnominal /A.

如前所述,对现有普通技术制造的常规锂电池、常规镍氢电池,修复过程中不宜进行终止电压远低于V0的深放电(避免因放电电压过低引致电极材料易分解或相变),但是,用限定放电电压V0、放电电流强度分阶递减“先放空电”的技术方案,对这类蓄电池容量修复而言仍然很有意义。例如厂商习惯误导消费者锂电池没有记忆效应,如果长期使用中在半荷至满荷状态下充放电,很少甚至没有进行定期放空电,锂电池同样会出现记忆效应,因此锂电池的修复过程,仍然应采取放电电流强度分阶递减先完全放空电、再充电的方法,才能得到较好的容量修复效果。As mentioned above, for the conventional lithium batteries and conventional nickel-hydrogen batteries manufactured by the existing common technology, it is not suitable to carry out deep discharge with the termination voltage much lower than V 0 during the repair process (to avoid the electrode material being easily decomposed or related to each other due to the low discharge voltage). change), however, the technical solution of limiting the discharge voltage V 0 and decreasing the discharge current intensity step by step and "discharging first" is still very meaningful for this type of battery capacity restoration. For example, manufacturers are used to misleading consumers that lithium batteries have no memory effect. If they are charged and discharged from half to full charge during long-term use, with few or no regular discharges, lithium batteries will also have memory effects. Therefore, the repair process of lithium batteries However, the method of decreasing the discharge current intensity in steps should still be adopted to completely discharge the battery and then recharge it, so as to obtain a better capacity restoration effect.

参考图5,所述步骤4)中对待修复铅蓄电池的充电过程具体包括:Referring to Fig. 5, the charging process of the lead-acid battery to be repaired in the step 4) specifically includes:

步骤4-1)、根据待修复电池的V01、V1值结合检测放电前的电动势E选取初始充电的电流强度,对于E<V0、V01=V0或V1>2.10V/单格的待修复蓄电池,采用≤0.06C/A进行初始充电,初始充电0.5~4小时或充电至蓄电池的两端电压≥2.0V/单格,再变换步骤4-2);非上述情况的待修复蓄电池直接进行步骤4-2)充电;Step 4-1), according to the V 01 and V 1 values of the battery to be repaired combined with the detection of the electromotive force E before discharge, select the initial charging current intensity, for E<V 0 , V 01 =V 0 or V 1 >2.10V/unit For batteries to be repaired, use ≤0.06C/A for initial charging, initially charge for 0.5 to 4 hours or charge until the voltage at both ends of the battery is ≥2.0V/cell, and then change to step 4-2); Repair the battery and proceed to step 4-2) charging directly;

铅蓄电池极板硫酸铅结晶盐化通常还有另一类极端情况,电动势E表现正常或较高,但放电至V0的时间值T0很小,往往T0<1%T标称额定甚至<1S,而放电至V0伴随的反弹V1值很高,往往>2.05V/单格甚至趋近放电前的电动势E,凡此类情况的铅蓄电池,在步骤4-1)中优选用≤0.06C/A进行初始充电。There is usually another extreme case of lead battery plate lead sulfate crystal salinization, the electromotive force E is normal or high, but the time value T 0 of discharge to V 0 is very small, often T 0 <1%T nominal rating or even < 1S, and the rebound V 1 value accompanied by discharge to V 0 is very high, often > 2.05V/cell or even approaching the electromotive force E before discharge. For such lead-acid batteries, it is preferred to use them in step 4-1). ≤0.06C/A for initial charging.

步骤4-2)、对待修复的蓄电池以0.08~0.25C/A电流充电,直至充入由放电数据T0、V01、V1共同确定的C/Ah充电量的70~95%,再变换步骤4-3);本步骤的充电可采用分阶段充电的方式,它包括两个或两个以上阶段,不同阶段之间间隔设置休眠、充电电流小于或等于0.03C/A的小电流充电以及浅放电;Step 4-2), charge the storage battery to be repaired with a current of 0.08~0.25C/A until it is charged to 70~95% of the C/Ah charging capacity jointly determined by the discharge data T 0 , V 01 , and V 1 , and then change Step 4-3); The charging in this step can be carried out in stages, which includes two or more stages, and sleep is set between different stages, the charging current is less than or equal to 0.03C/A small current charging and Shallow discharge;

步骤4-3)、对待修复的蓄电池以0.03~0.06C/A小电流充电,直至充入100%C/Ah的充电量,使蓄电池恢复标准容量。Step 4-3), charge the battery to be repaired with a small current of 0.03-0.06C/A until it is charged with 100% C/Ah, so that the battery returns to the standard capacity.

在步骤4-2)中,所述的分阶段充电可采用业内公知的常规分阶降流方法,即递减式分阶段恒流充电,包括使用正/负脉冲电流。蓄电池受充接近满荷态时,内阻会升高,受电能力降低,多余电能转化为热量积累在蓄电池内部,当内部热量积累过高会损坏蓄电池。蓄电池修复所需的充电量较大,较之常规蓄电池充电更易发热,在步骤4-2)间隔变换小电流充电或暂停充电一定时间(例如0.2~1h),特别是设置一定方式的浅放电(放出蓄电池部分电能),对消除蓄电池内部产生的气泡、削弱内部极板周边电解质的极化浓差、提高下一阶段充电效率有明显作用。In step 4-2), the step-by-step charging can adopt a conventional step-by-step current reduction method known in the industry, that is, a step-by-step constant-current charge of decreasing type, including the use of positive/negative pulse currents. When the battery is charged close to the full state, the internal resistance will increase, and the power receiving capacity will decrease. The excess electric energy will be converted into heat and accumulate inside the battery. When the internal heat accumulation is too high, the battery will be damaged. The amount of charging required for battery repair is relatively large, and it is more prone to heat than conventional battery charging. In step 4-2), change small current charging at intervals or suspend charging for a certain period of time (for example, 0.2~1h), especially set a certain method of shallow discharge ( Release part of the electric energy of the battery), which has a significant effect on eliminating the bubbles generated inside the battery, weakening the polarization concentration of the electrolyte around the internal plate, and improving the charging efficiency of the next stage.

当电池修复充电中期设置浅放电时,剩充电量应相应减除放出的电量;一般来说,对于常规技术意义上无放电记忆的蓄电池(例如铅蓄电池),当残余容量<70%C标称时在充电中期设置若干次浅放电的修复效果会更佳。需要说明的是,之前所述的电池修复充电前进行的Ie放电与此处所述修复充电中期设置的浅放电,是两个完全不同的操作阶段,前者目的是以Ie放电至V0取得所需的充电程序相关数据。When shallow discharge is set in the mid-term of battery repair and charging, the remaining charge should be deducted from the discharged electricity accordingly; generally speaking, for batteries without discharge memory in the conventional technical sense (such as lead batteries), when the residual capacity is less than 70%C The repair effect of setting several shallow discharges in the middle of charging will be better. It should be noted that the previously described I e discharge before the battery repair charging and the shallow discharge set in the middle of the repair charging described here are two completely different operating stages. The former aims to discharge I e to V 0 Obtain the required data related to the charging procedure.

本发明的修复充电方法可使大部分蓄电池达到原设计的容量,但有些蓄电池很难一次性充电达到原设计容量,例如一些放置时间太长的、极板活性物质软化的铅蓄电池,不宜修复初次充电量过多(极板活性物质软化后的结晶重组是一个渐进的过程,其对应充电量已在之前所述的待修复蓄电池的T0、V01和V1等放电数据共同确定的量值设定关系中得到自动控制),该情况下,可以在实施本发明电池修复充电方法之后,辅助选用一些常规分阶段恒定电流方式进行第二次充电,例如辅以恒定电流分阶段补充1.4~1.8C标称的充电量。在本发明具体实施时,还可根据实际需要,增加蓄电池修复后自动/人机对话重启放电检验容量的功能,优选通过恒流Ie放电至V0的放电时间检验修复容量,以提升本发明实施的实用价值。The repairing and charging method of the present invention can make most of the storage batteries reach the original design capacity, but some storage batteries are difficult to charge to the original design capacity at one time, for example, some lead storage batteries that have been placed for too long and the active material of the plate has softened are not suitable for repairing for the first time. Excessive charging (the crystallization and reorganization of the active material of the plate after softening is a gradual process, which corresponds to the amount of charging that has been jointly determined by the T 0 , V 01 and V 1 discharge data of the battery to be repaired previously. automatically controlled in the setting relationship), in this case, after implementing the battery restoration and charging method of the present invention, some conventional phase-by-stage constant current methods can be assisted to carry out the second charge, for example, supplementing 1.4-1.8 phase-by-stage constant current C Nominal charging capacity. When the present invention is implemented, it is also possible to increase the function of automatic/man-machine dialogue to restart the discharge inspection capacity after the storage battery is repaired according to actual needs, preferably by constant current Ie discharge to the discharge time inspection repair capacity of V 0 , to improve the present invention practical value of implementation.

下面结合具体的实施例,对本发明的远程控制系统及其修复方法进行说明。The remote control system and repair method thereof of the present invention will be described below in conjunction with specific embodiments.

实施例1Example 1

在一个实施例中,要为用于电动自行车的6DZM12铅蓄电池实现远程修复。数据库1和系统控制设备4设置在系统管理中心,放电设备2、充电设备3设置在电池修复现场,通过互联网进行数据远程交互对接。In one embodiment, remote repair is to be implemented for 6DZM12 lead storage batteries used in electric bicycles. The database 1 and the system control device 4 are set in the system management center, the discharge device 2 and the charging device 3 are set in the battery repair site, and the data is remotely interactively docked through the Internet.

本实施例包括数据库1、充放电控制设备7、放电设备2以及充电设备3;其中充电设备3与放电设备2分别连接到外部待修复的蓄电池6的正负极两端,充电设备3与放电设备2还分别连接到充放电控制设备7上,控制设备7通过数据线5、系统控制设备4连接到所述的数据库1;放电设备2根据所述充放电控制设备7所发出的指令对蓄电池6进行放电操作,并向充放电设备7返回相应的数据。This embodiment includes a database 1, a charging and discharging control device 7, a discharging device 2, and a charging device 3; wherein the charging device 3 and the discharging device 2 are respectively connected to the positive and negative ends of the external storage battery 6 to be repaired, and the charging device 3 and the discharging device are connected to each other. The device 2 is also connected to the charge and discharge control device 7 respectively, and the control device 7 is connected to the database 1 through the data line 5 and the system control device 4; 6 to perform a discharge operation, and return corresponding data to the charging and discharging device 7 .

根据6DZM12标示的条件(12V12Ah,2h放电率,标规放电电流强度为6A,标规放电终止电压为10.50V),系统控制设备4/充放电控制设备7为放电设备2所设定的数据为V0=10.50V、V2=3.0V,通过放电设备2所实现的放电、数据采集过程包括:为蓄电池以6A放电至10.50V,读取放电时间值T0,该放电过程中每分钟采样一次实时电压值,暂存采样数据并在放电至10.50V中止时经计算得出放电电压平均值V01;放电至10.50V时休眠70秒,读取蓄电池空载第71秒的反弹电压值V1According to the conditions marked by 6DZM12 (12V12Ah, 2h discharge rate, standard discharge current intensity is 6A, standard discharge termination voltage is 10.50V), the data set by system control device 4/charge and discharge control device 7 for discharge device 2 is V 0 =10.50V, V 2 =3.0V, the discharge and data collection process realized by the discharge device 2 includes: discharge the battery at 6A to 10.50V, read the discharge time value T 0 , and sample every minute during the discharge process A real-time voltage value, temporarily store the sampling data and calculate the average value of the discharge voltage V 01 when the discharge reaches 10.50V and stop; sleep for 70 seconds when the discharge reaches 10.50V, and read the rebound voltage value V of the 71st second when the battery is no-load 1 .

该放电过程结束后,系统控制设备4根据放电设备2对待修复的蓄电池6以额定电流6A放电至10.50V反馈的数据,得出T0值为56.6分钟,V01值为12.23V,放电至10.50V空载第71秒的反弹电压值V1为11.89V,判定主要失效模式为极板硫酸铅结晶盐化;系统控制设备4通过远程控制通知充/放电控制设备7暂停运行,并将对该蓄电池判定的主要失效模式显示,以便操作者优选外加抗硫化材料与密度为1.20的稀硫酸混和加入电池内部,添加量至电池内部极群的上部见液面。接着以人机对话方式重启,使系统控制设备4通过充放电控制设备7控制放电设备2分别以6A、3A、1.5A、0.75A电流分阶段连续深放电至3.0V;深放电完成后,控制休眠15分钟后启动充电设备3进入充电程序。After the discharge process is over, the system control device 4, based on the data fed back by the discharge device 2 to discharge the battery 6 to be repaired with a rated current of 6A to 10.50V, obtains that the T0 value is 56.6 minutes, the V01 value is 12.23V, and discharges to 10.50V. The rebound voltage value V1 of the 71st second with no load on V is 11.89V, and it is determined that the main failure mode is the crystallization of lead sulfate on the plate; the system control device 4 notifies the charging/discharging control device 7 to suspend operation through remote control, and will The main failure mode determined by the battery is displayed, so that the operator can preferably add an anti-sulfur material and mix it with dilute sulfuric acid with a density of 1.20 and add it to the inside of the battery. Then restart in a man-machine dialogue mode, so that the system control device 4 controls the discharge device 2 through the charge and discharge control device 7 to continuously deep discharge to 3.0V in stages with a current of 6A, 3A, 1.5A, and 0.75A; after the deep discharge is completed, the control After 15 minutes of dormancy, start the charging device 3 and enter the charging program.

系统控制设备4据上述T0、V01、V1数据在数据库1中自动设定m(1.1~1.3)取中值1.2,n(2.8~3.2)同样取中值3.0,通过与数据库1储存的数据作比较,为充放电控制设备7配送出该电池的修复充电量为:C(Ah)=﹝m﹢n(1-T0/T标称额 )﹞C标称=﹝1.2﹢3.0(1-56.6/120)﹞C标称=2.785C标称=2.785×12Ah=33.42Ah。又因空载第71秒的反弹电压值V1为11.89V,无需设置起始小电流充电,系统控制设备4为充放电控制设备7自动选择数据库1储存的常规3阶梯充电数据:2.0A充电8h、1.2A充电10h、0.6A充电9h,计修复充电量33.4Ah,共耗时27h;在该6DZM12电池完成深放电后第16分钟,充电设备3依据充放电控制设备7的指令,实现对该蓄电池的修复充电。附图6标出了本实施例的修复充电I/T曲线。The system control device 4 automatically sets m (1.1-1.3) in the database 1 to take the median value of 1.2, and n (2.8-3.2) also takes the median value of 3.0 according to the above-mentioned T 0 , V 01 , and V 1 data. For comparison with the data, the repaired charging capacity of the battery delivered by the charge and discharge control device 7 is: C (Ah) = [m﹢n (1-T 0 /T nominal rating ) ﹞ C nominal = [1.2﹢ 3.0 (1-56.6/120) ﹞C nominal =2.785C nominal =2.785×12Ah=33.42Ah. And because the rebound voltage value V1 at the 71st second of no-load is 11.89V, there is no need to set the initial low current charging, the system control device 4 automatically selects the conventional 3-step charging data stored in the database 1 for the charge and discharge control device 7: 2.0A charging 8h, 1.2A charging for 10h, and 0.6A charging for 9h, the repaired charging capacity is 33.4Ah, and it takes a total of 27h; at the 16th minute after the 6DZM12 battery completes deep discharge, the charging device 3 implements the The reconditioning charge of the battery. Accompanying drawing 6 marks the restoration charging I/T curve of this embodiment.

本实施例的6DZM12电池经深放电和常规三阶梯电流递减方法充电33.4Ah后,首次放电容量可达10Ah以上的技术预期效果,一般二次充电后可达到标称容量。After the 6DZM12 battery of this embodiment is deeply discharged and charged for 33.4Ah by the conventional three-step current decreasing method, the first discharge capacity can reach the technical expected effect of more than 10Ah, and generally the nominal capacity can be reached after the second charge.

实施例2Example 2

在另一个实施例中,也对实施例1所述的6DZM12专用蓄电池进行远程修复,本实施例在充电阶段前与实施例1相同,但在充电修复的过程中,自动选用数据库1储存的优化充电方式。具体地说,系统控制设备4在6DZM12电池完成深放电后第16分钟,选用数据库1储存的优化级5阶梯“准两充一放”充电方法,与该充电方法有关的数据包括:2.0A充电6h、1.2A充电8h、1.2A放电2h、1.2A充电8h、0.6A充电8h,共计修复剩充电量33.6Ah,耗时32h。附图7为与本实施例有关的修复充电I/T曲线,采用5阶梯“准两充一放”方法对蓄电池6剩充入33.6Ah电量后,6A放电容量一般可一次性达到标称12Ah的技术预期效果。In another embodiment, the 6DZM12 special storage battery described in Embodiment 1 is also remotely repaired. This embodiment is the same as Embodiment 1 before the charging stage, but in the process of charging and repairing, the optimized battery stored in database 1 is automatically selected. charging method. Specifically, at 16 minutes after the 6DZM12 battery completes the deep discharge, the system control device 4 selects the optimized level 5-step "quasi-two charge and one discharge" charging method stored in the database 1, and the data related to the charging method includes: 2.0A charging 6h, 1.2A charging for 8h, 1.2A discharging for 2h, 1.2A charging for 8h, and 0.6A charging for 8h. The total repair remaining charge is 33.6Ah, which takes 32h. Accompanying drawing 7 is the recovery charging I/T curve related to this embodiment, after using the 5-step "quasi-two charge and one discharge" method to charge the battery 6 with 33.6Ah of electricity, the 6A discharge capacity can generally reach the nominal 12Ah at one time technical expectations.

本实施例在实施例1的基础上,还增加了蓄电池修复后自动放电检验容量的功能,充放电控制设备7控制充电设备3在充电程序结束1小时,继续控制放电设备2以恒流6A放电至10.50V,记录显示放电时间,使蓄电池修复容量一目了然。On the basis of Embodiment 1, this embodiment also adds the function of automatic discharge and inspection capacity after the battery is repaired. The charging and discharging control device 7 controls the charging device 3 to continue to control the discharging device 2 to discharge at a constant current of 6A after the charging procedure ends for 1 hour. To 10.50V, the record shows the discharge time, so that the battery repair capacity can be seen at a glance.

实施例3Example 3

针对北方地区冬季需要对蓄电池加大充电量的需要,在又一个实施例中,在对实施例1所述的蓄电池进行修复时,需要强化修复充电量。在对蓄电池进行修复时,深放电过程不变,但在充电时,计算充电量所设置的参数m的大小为1.3,该6DZM12电池在北方地区冬季进行强化充电时的修复充电量为:C(Ah)=﹝m﹢n(1-T0/T标称额定)﹞C标称=﹝1.3﹢3.0(1-56.6/120)﹞C标称=2.885C标称,为充电设备3配送C=2.9C标称(Ah)=2.886×12Ah=34.63Ah充电量的修复方式。In view of the need to increase the charging capacity of the storage battery in winter in northern regions, in another embodiment, when repairing the storage battery described in Embodiment 1, it is necessary to strengthen the charging capacity for repairing. When repairing the battery, the deep discharge process remains unchanged, but when charging, the parameter m set for calculating the charging capacity is 1.3, and the repairing charging capacity of the 6DZM12 battery during intensive charging in winter in the northern region is: C ( Ah)=﹝m﹢n(1-T 0 /T nominal rating )﹞C nominal =﹝1.3﹢3.0(1-56.6/120)﹞C nominal =2.885C nominal , for charging equipment 3 delivery C = 2.9C nominal (Ah) = 2.886 x 12Ah = 34.63Ah charging capacity repair method.

在所述6DZM12电池完成深放电后第16分钟,系统控制设备4自动为充电设备3选取数据库1储存的八阶段“准三充两放”的充电方式,相关数据为:2.0A充电6h、1.2A充电8h、1.2A放电2h、1.2A充电6h、间歇(休眠)0.5h、1.2A放电1h、1.2A充电4h、0.6A充电8h,共计修复剩充电量34.8Ah,修复耗时35.5h。附图8为与本实施例有关的修复充电I/T曲线。本实施例通过改变m取值1.3,强化了修复充电量,适应北方地区冬季修复充电(蓄电池受充能力随温度下降而降低),所采用的八阶段“准两充一放”方法对蓄电池6剩充入35.40Ah电量后,6A放电容量一般可一次性达到标称12Ah的技术预期效果。In the 16th minute after the 6DZM12 battery completes the deep discharge, the system control device 4 automatically selects the eight-stage "quasi three charge and two discharge" charging method stored in the database 1 for the charging device 3. The relevant data are: 2.0A charging 6h, 1.2 A charge for 8h, 1.2A discharge for 2h, 1.2A charge for 6h, intermittent (sleep) 0.5h, 1.2A discharge for 1h, 1.2A charge for 4h, and 0.6A charge for 8h. The total repair remaining charge is 34.8Ah, and the repair takes 35.5h. Accompanying drawing 8 is the restoration charging I/T curve related to this embodiment. In this embodiment, by changing the value of m to 1.3, the repair charging capacity is strengthened, and it is suitable for repair charging in winter in the northern region (the charging capacity of the battery decreases as the temperature drops), and the eight-stage "quasi-two charging and one discharging" method adopted is for the battery 6 After the remaining 35.40Ah is charged, the 6A discharge capacity can generally reach the technical expected effect of the nominal 12Ah at one time.

实施例4Example 4

为常用于低速电动三轮车、四轮车的3D180铅蓄电池实现远程修复。数据库1和系统控制设备4设置在系统管理中心,放电设备2、充电设备3设置在电池修复现场,通过互联网进行数据远程交互对接。Realize remote repair for 3D180 lead-acid batteries commonly used in low-speed electric tricycles and four-wheelers. The database 1 and the system control device 4 are set in the system management center, the discharge device 2 and the charging device 3 are set in the battery repair site, and the data is remotely interactively docked through the Internet.

根据3D180标示的条件(6V180Ah,5h放电率,标规放电电流强度为36A,标规放电终止电压为5.25V),系统控制设备4/充放电控制设备7为放电设备2所设定的数据为V0=5.25V、V2=1.2V,通过放电设备2所实现的放电、数据采集过程包括:为待修复的蓄电池以36A放电至5.25V,读取放电时间值T0,在该放电过程中,每2分钟采样一次实时电压值,暂存采样数据并在放电至5.25V中止时经计算得出放电电压平均值V01;放电设备2休眠5分钟后,充放电控制设备7继续读取蓄电池空载第301秒的反弹电压值V1According to the conditions marked by 3D180 (6V180Ah, 5h discharge rate, standard discharge current intensity is 36A, standard discharge termination voltage is 5.25V), the data set by system control device 4/charge and discharge control device 7 for discharge device 2 is V 0 =5.25V, V 2 =1.2V, the discharge and data acquisition process realized by the discharge device 2 includes: discharge the battery to be repaired at 36A to 5.25V, read the discharge time value T 0 , during the discharge process In the process, the real-time voltage value is sampled every 2 minutes, the sampled data is temporarily stored and the average value V 01 of the discharge voltage is calculated when the discharge reaches 5.25V; after the discharge device 2 sleeps for 5 minutes, the charge and discharge control device 7 continues to read The rebound voltage value V 1 of the 301st second of no-load battery;

该放电过程结束后,系统控制设备4根据放电设备2对待修复的蓄电池6以额定电流36A放电至5.25V反馈的数据,得出该蓄电池的放电前电动势(开路电压值)E为6.82V,T0值为91分钟,V01值为6.31V,V1为6.21V,通过互联网反馈给系统控制设备4,通过与数据库1储存的数据比较,判定主要失效模式为极板活性物质严重软化;系统控制设备4通过远程控制通知充/放电控制设备7暂停运行,并将对该蓄电池判定的主要失效模式显示,以便操作者外加极板固晶材料与密度为1.08的稀硫酸混和加入电池内部,添加量至电池内部极群的上部见正常液面。接着以人机对话方式重启,充放电控制设备7控制放电设备2分别以22A、14A、8.5A、5A的电流强度分阶段连续放电至1.2V;深放电完成后,充放电控制设备7休眠20分钟后启动充电设备3进入充电程序。After the discharge process is over, the system control device 4 obtains that the electromotive force (open circuit voltage value) E of the battery before discharge is 6.82V, T The value of 0 is 91 minutes, the value of V 01 is 6.31V, and the value of V 1 is 6.21V. It is fed back to the system control device 4 through the Internet, and compared with the data stored in database 1, it is determined that the main failure mode is severe softening of the active material of the plate; the system The control device 4 notifies the charging/discharging control device 7 to suspend operation through remote control, and displays the main failure mode determined by the battery, so that the operator can add the polar plate crystal-bonding material and dilute sulfuric acid with a density of 1.08 to the inside of the battery, adding Measure to the upper part of the electrode group inside the battery to see the normal liquid level. Then restart in a man-machine dialogue mode, the charge and discharge control device 7 controls the discharge device 2 to continuously discharge to 1.2V in stages at the current intensity of 22A, 14A, 8.5A, and 5A respectively; after the deep discharge is completed, the charge and discharge control device 7 sleeps for 20 Start the charging device 3 after minutes to enter the charging program.

系统控制设备4据上述36A放电至5.25V反馈的V01和V1数据,自动设定m(1.1~1.3)取中值1.2,n(1.0~1.3)取中值1.15,通过与数据库1储存的数据作比较,为充放电控制设备7配送出该3D180电池的修复充电量为:C(Ah)=﹝m﹢n(1-T0/T标称额定)﹞C标称=﹝1.2﹢1.15(1-91/300)﹞C标称=2.00C标称=2.00×180Ah=360Ah。又因E为6.82V,优选设置起始小电流充电,系统控制设备4为充放电控制设备7自动选择数据库1储存的常规3阶梯充电数据:9A充电3h、18A充电12h、9A充电13h,计修复充电量360Ah,共耗时28h;在该3D180电池完成深放电后第21分钟,充电设备3依据充放电控制设备7的充电指令,实现对该蓄电池的修复充电。附图9标出了与该实施例有关的修复充电I/T曲线。The system control device 4 automatically sets m (1.1~1.3) to take the median value of 1.2 and n (1.0~1.3) to take the median value of 1.15 according to the V 01 and V 1 data fed back from the above 36A discharge to 5.25V, and store them in the database 1 Compared with the data, the repaired charging capacity of the 3D180 battery delivered by the charge and discharge control device 7 is: C (Ah) = [m﹢n (1-T 0 /T nominal rating ) ﹞ C nominal = [1.2﹢ 1.15 (1-91/300) ﹞C nominal =2.00C nominal =2.00×180Ah=360Ah. Because E is 6.82V, it is preferable to set the initial low current charging. The system control device 4 automatically selects the conventional 3-step charging data stored in the database 1 for the charging and discharging control device 7: 9A charging for 3 hours, 18A charging for 12 hours, and 9A charging for 13 hours. The restoration charging capacity is 360Ah, which takes a total of 28 hours; 21 minutes after the deep discharge of the 3D180 battery is completed, the charging device 3 implements the restoration charging of the battery according to the charging command of the charging and discharging control device 7 . Accompanying drawing 9 marks the restoration charge I/T curve relevant to this embodiment.

实施例5Example 5

本发明的方法也适用于通讯机站用的大容量铅蓄电池。在另一个实施例中,对通讯机站常见的大容量2V500Ah蓄电池进行远程修复。数据库1和系统控制设备4设置在系统管理中心,放电设备2、充电设备3设置在电池修复现场,通过局域网进行数据远程交互对接。The method of the present invention is also applicable to large-capacity lead storage batteries used in communication station. In another embodiment, the large-capacity 2V500Ah storage battery common in communication stations is remotely repaired. The database 1 and the system control device 4 are set up in the system management center, the discharge device 2 and the charging device 3 are set up in the battery repair site, and data remote interactive docking is carried out through the local area network.

根据通讯机站UPS电池行业的条件,这类蓄电池标规10h放电率,500Ah蓄电池标规放电电流强度为50A,常规放电终止电压为1.80V,为放电设备2所设定的数据为V0=1.80V,V2=0.50V。According to the conditions of the communication station UPS battery industry, the standard discharge rate of this type of battery is 10h, the standard discharge current intensity of a 500Ah battery is 50A, and the conventional discharge termination voltage is 1.80V. The data set for the discharge device 2 is V 0 = 1.80V, V 2 =0.50V.

在放电过程中,放电设备2依程序对蓄电池6以50A放电至1.80V,将放电时间T0值返回给充放电控制设备4;在该放电过程中,控制设备4每3分钟采样一次实时电压值,暂存采样数据并在放电至1.80V中止时,经计算得出放电平均电压值V01返回给系统控制设备4;然后,放电设备2休眠10分钟,控制设备4继续读取蓄电池6空载反弹的实时电压值V1During the discharge process, the discharge device 2 discharges the battery 6 at 50A to 1.80V according to the procedure, and returns the discharge time T0 value to the charge and discharge control device 4; during the discharge process, the control device 4 samples the real-time voltage every 3 minutes value, temporarily store the sampling data and when the discharge reaches 1.80V and stop, the calculated discharge average voltage value V 01 is returned to the system control device 4; then, the discharge device 2 sleeps for 10 minutes, and the control device 4 continues to read the battery 6 empty Real-time voltage value V 1 of load rebound.

系统控制设备4根据放电设备2对蓄电池6以额定电流50A放电至1.80V反馈的数据,得出V01=V0,放电时间T0值<1S(记录T0=0),休眠10分钟的空载反弹电压值V1为2.09V,据此判定主要失效模式为极板硫酸铅完全结晶盐化;系统控制设备4通过远程控制通知充/放电控制设备7暂停运行,以便操作者外加抗硫化材料与密度为1.15的稀硫酸混和加入电池内部,添加量至电池内部极群的上部见液面。接着以人机对话方式重启,使系统控制设备4通过充放电控制设备7控制放电设备2分别以50A、30A、10A的电流强度连续放电至0.50V;深放电完成后,充放电控制设备7休眠30分钟后启动充电设备3进入充电程序。The system control device 4 obtains V 01 =V 0 based on the data fed back by the discharge device 2 to discharge the storage battery 6 at a rated current of 50A to 1.80V, the value of the discharge time T 0 <1S (record T 0 =0), and sleep for 10 minutes The no-load rebound voltage value V 1 is 2.09V. Based on this, it is determined that the main failure mode is the complete crystallization and salinization of lead sulfate on the plate; the system control device 4 notifies the charging/discharging control device 7 to suspend operation through remote control, so that the operator can add anti-sulfurization The material is mixed with dilute sulfuric acid with a density of 1.15 and added to the inside of the battery, and the amount added is until the upper part of the electrode group inside the battery meets the liquid surface. Then restart in a man-machine dialogue mode, so that the system control device 4 controls the discharge device 2 to continuously discharge to 0.50V with the current intensity of 50A, 30A, and 10A respectively through the charge and discharge control device 7; after the deep discharge is completed, the charge and discharge control device 7 sleeps After 30 minutes, start the charging device 3 and enter the charging program.

系统控制设备4据上述50A放电至1.80V反馈的V01和V1数据,参数m自动设定为1.3,n自动设定为上限3.2,通过与数据库1储存的数据作比较,为充放电控制设备7配送出该蓄电池的修复充电量为:C(Ah)=﹝m﹢n(1-T0/T标称额定)﹞C标称=﹝1.3﹢3.2(1-0/600)﹞C标称=4.5C标称=4.5×500Ah=2250Ah。因为V01=V0、T0<1S,自动选择小电流起始充电,从数据库1中选择十阶段8充2放修复方式相关的数据及指令:25A充电2h、100A充电6h、50A充电6h、50A放电1h、100A充电4h、间歇(休眠)0.5h、100A充电2h、50A充电8h、50A放电2h、50A充电5h、25A充电8h,共计修复剩充电量2250Ah,修复耗时44.5h,充放电控制设备7在该电池完成深放电程序第31分钟,控制充电设备3依据该程序指令对蓄电池实现修复充电。在图10中标出了与本实施例有关的修复充电量2250Ah的I/T曲线。The system control device 4 is based on the V 01 and V 1 data fed back from 50A discharged to 1.80V, the parameter m is automatically set to 1.3, and the n is automatically set to the upper limit of 3.2. By comparing with the data stored in the database 1, the charge and discharge control The repaired charging capacity of the battery delivered by equipment 7 is: C (Ah) = [m﹢n (1-T 0 /T nominal rating ) ﹞ C nominal = [1.3﹢3.2 (1-0/600) ﹞ C Nominal = 4.5C Nominal = 4.5 x 500Ah = 2250Ah. Because V 01 = V 0 , T 0 < 1S, start charging with low current automatically, and select ten-stage 8 charge 2 discharge repair methods related data and instructions from database 1: 25A charge for 2h, 100A charge for 6h, 50A charge for 6h , 50A discharge for 1h, 100A charge for 4h, intermittent (sleep) 0.5h, 100A charge for 2h, 50A charge for 8h, 50A discharge for 2h, 50A charge for 5h, 25A charge for 8h, a total of 2250Ah of remaining charge for repair, repair time 44.5h, charge The discharge control device 7 controls the charging device 3 to implement repair charging on the storage battery according to the program instruction at the 31st minute after the battery completes the deep discharge program. The I/T curve of the restoration charging capacity 2250Ah related to this embodiment is marked in FIG. 10 .

本实施例一般依程序充入2250Ah电量后,50A放电可达到标称容量的技术预期效果;对于一些在使用中充电机恒压值过高、使用环境温度四季差异大而充电机又不配置充电恒压值温度补偿的蓄电池,失效模式有可能伴随极板严重软化,该情况下,应继续为蓄电池添加可固化极板晶格的专用添加剂,重复本实施例所述的检测性放电、深放电以及对应定量充电的过程,使蓄电池较好地保持修复的容量。In this embodiment, after charging 2250Ah electricity according to the procedure, 50A discharge can achieve the technical expected effect of the nominal capacity; for some chargers in use, the constant voltage value is too high, the ambient temperature varies greatly in four seasons, and the charger does not configure charging. For batteries with constant voltage and temperature compensation, the failure mode may be accompanied by severe softening of the plates. In this case, you should continue to add special additives that can cure the plate lattice, and repeat the detection discharge and deep discharge described in this example. And corresponding to the process of quantitative charging, so that the battery can better maintain the repaired capacity.

实施例6Example 6

本发明的充放电方法同样适用于锂离子电池。在本实施例中,对电动汽车用的大容量2V120Ah磷酸铁锂电池组模块进行远程修复。数据库1和系统控制设备4设置在系统管理中心,放电设备2、充电设备3设置在电池修复现场,通过局域网进行数据远程交互对接。The charging and discharging method of the present invention is also applicable to lithium ion batteries. In this embodiment, a large-capacity 2V120Ah lithium iron phosphate battery pack module for electric vehicles is remotely repaired. The database 1 and the system control device 4 are set up in the system management center, the discharge device 2 and the charging device 3 are set up in the battery repair site, and data remote interactive docking is carried out through the local area network.

磷酸铁锂电池一般电动势3.6V,厂商一般标称电压3.2~3.3V,电动汽车锂电池行业标规3h放电率,120Ah蓄电池标规放电电流强度为40A,常规放电终止电压V0为2.75~2.90V。本实施例为放电设备2所设定的数据为V0=2.90V,V2=2.50V。在放电过程中,放电设备2依程序对该磷酸铁锂电池分别以40A、20A、10A、5A的电流强度连续放电至2.50V,休眠15分钟后再充电。The general electromotive force of lithium iron phosphate battery is 3.6V, the manufacturer's general nominal voltage is 3.2-3.3V, the electric vehicle lithium battery industry standard 3h discharge rate, the 120Ah battery standard discharge current intensity is 40A, and the conventional discharge termination voltage V0 is 2.75-2.90 V. In this embodiment, the data set for the discharge device 2 are V 0 =2.90V, V 2 =2.50V. During the discharge process, the discharge device 2 continuously discharges the lithium iron phosphate battery to 2.50V at current intensities of 40A, 20A, 10A, and 5A according to the program, and recharges after sleeping for 15 minutes.

常规技术制造的磷酸铁锂电池虽超出限压过充电不易爆,但仅是相对其它种类的锂离子电池而言,因此修复充电采用标规恒定电压的限流充电方式,设置为对该磷酸铁锂电池恒定电压4.2V限流18A充电,当在恒定电压的限制条件下、充电电流自然下降至小于1.2A或充电时间达到24小时视为充满。本实施例中,修复充电量及修复耗时是由该磷酸铁锂电池内部状态决定,通过内部受充状态自动选择。在图11中标出了与本实施例有关的修复充电的V/T曲线。Although the lithium iron phosphate battery manufactured by conventional technology is not easy to explode when overcharged beyond the limit voltage, it is only compared to other types of lithium-ion batteries. The lithium battery is charged with a constant voltage of 4.2V and a current-limited 18A. When the charging current naturally drops to less than 1.2A or the charging time reaches 24 hours under the condition of constant voltage limitation, it is considered fully charged. In this embodiment, the repair charging amount and repair time are determined by the internal state of the lithium iron phosphate battery, and are automatically selected according to the internal charged state. In FIG. 11, the V/T curve of the repair charging related to this embodiment is marked.

以上是对本发明的蓄电池修复方法的说明。上述方法不仅可以用于单个蓄电池的修复,也能对由多个蓄电池所组成的蓄电池组进行修复。在修复蓄电池组时,作为一种优选实现方式,在进行放电操作时,将蓄电池组中的每个电池放电至同一基准,然后将众多经深放电表现T0和V1类同的电池串联成一组充电,这样对修复质量一致性控制、产品配组、提高修复效率都有较大优势。The above is the description of the storage battery repair method of the present invention. The above method can not only be used for the repair of a single storage battery, but also can be used for repairing a storage battery group composed of a plurality of storage batteries. When repairing the storage battery pack, as a preferred implementation method, during the discharge operation, each battery in the storage battery pack is discharged to the same standard, and then many batteries with the same performance as T 0 and V 1 after deep discharge are connected in series into one Group charging, which has great advantages in the consistency control of repair quality, product matching, and improvement of repair efficiency.

对铅蓄电池制造工艺方法稍深入了解的普通专业人士,都不难在本发明所述的技术方案基础上,举一反三地变形实施本发明内容。本发明所述的技术方案,不仅适用于电动自行车和电动汽车电池修复,同样适用于通讯机站UPS蓄电池、风能和太阳能储能蓄电池及其它种类的蓄电池;本发明所述的以额定电流Ie放电特征数据T0、V01和V1对应设计的特征充电定量方法、电池修复深放电的基本技术方案,以及本发明方案衍生的技术变形实施,均应被列入本发明的保护范围。Ordinary professionals who have a little in-depth understanding of the lead-acid battery manufacturing process are not difficult to implement the contents of the present invention by analogy on the basis of the technical solutions described in the present invention. The technical scheme of the present invention is not only applicable to electric bicycles and electric car battery repairs, but also applicable to UPS accumulators of communication station stations, wind energy and solar energy storage accumulators and other types of accumulators ; The discharge characteristic data T 0 , V 01 and V 1 correspond to the designed characteristic charging quantitative method, the basic technical solution for battery repair and deep discharge, and the technical deformation implementation derived from the solution of the present invention, all of which should be included in the protection scope of the present invention.

本发明的装置与方法除了可以用于铅蓄电池的修复外,还可用于诸如锂电池、镍氢电池等多种类型的电池,其方法原理并非仅局限于铅蓄电池,所述的放电前电动势E、放电至终止电压V0的时间T0以及在T0时间的放电平均电压值V01、放电至V0后空载运行T1时间的实时电压值V1等概念,均可根据不同类型的电池平移概念运用,只不过不同类型电池的量值不同。The device and method of the present invention can not only be used for repairing lead-acid batteries, but also for various types of batteries such as lithium batteries and nickel-metal hydride batteries. The principle of the method is not limited to lead-acid batteries. The electromotive force E , time T 0 from discharge to end voltage V 0 , average discharge voltage value V 01 at time T 0 , real-time voltage value V 1 during no-load operation T 1 after discharge to V 0 , etc., can be based on different types of The concept of battery translation is used, but the values of different types of batteries are different.

最后所应说明的是,以上实施例仅用以说明本发明的技术方案而非限制。尽管参照实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,对本发明的技术方案进行修改或者等同替换,都不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention rather than limit them. Although the present invention has been described in detail with reference to the embodiments, those skilled in the art should understand that modifications or equivalent replacements to the technical solutions of the present invention do not depart from the spirit and scope of the technical solutions of the present invention, and all of them should be included in the scope of the present invention. within the scope of the claims.

Claims (10)

1.一种能够实现远程控制的蓄电池修复系统,其特征在于,包括数据库(1)、系统控制设备(4)、充放电控制设备(7)、放电设备(2)以及充电设备(3);其中,所述的充电设备(3)与放电设备(2)外部连接到待修复的蓄电池(6)的正负极两端、内部分别连接到所述的充放电控制设备(7)上,所述的充放电控制设备(7)通过通信网络(5)与系统控制设备(4)连接,所述系统控制设备(4)与所述的数据库(1)连接;1. A battery repair system capable of remote control, characterized in that it includes a database (1), system control equipment (4), charge and discharge control equipment (7), discharge equipment (2) and charging equipment (3); Wherein, the charging device (3) and the discharging device (2) are externally connected to the positive and negative terminals of the storage battery (6) to be repaired, and internally connected to the charging and discharging control device (7). The charging and discharging control device (7) is connected to the system control device (4) through the communication network (5), and the system control device (4) is connected to the database (1); 所述的放电设备(2)根据所述充放电控制设备(7)所发出的指令对所述蓄电池(6)进行放电操作,并向所述充放电设备(7)返回相应的数据;所述数据包括:所述蓄电池(6)以标规额定电流Ie放电至标规终止电压V0时反馈的时间值T0,在T0时间的放电平均电压值V01以及放电至V0时暂停放电时间T1反馈的实时电压值V1;其中,所述T1的取值为0.5~5%T标称额定The discharge device (2) discharges the storage battery (6) according to the instructions issued by the charge and discharge control device (7), and returns corresponding data to the charge and discharge device (7); the The data include: the time value T 0 fed back when the storage battery (6) is discharged to the end voltage V 0 of the standard standard with the rated current I e of the standard, the average discharge voltage value V 01 at the time T 0 and the pause when discharging to V 0 The real-time voltage value V 1 fed back by discharge time T 1 ; wherein, the value of T 1 is 0.5 to 5% of T nominal rating ; 所述的充电设备(3)根据所述充放电控制设备(7)所发出的指令对所述蓄电池(6)进行充电操作,所述充电操作包括向所述蓄电池(6)充入指定的电量;The charging device (3) performs a charging operation on the storage battery (6) according to an instruction issued by the charging and discharging control device (7), and the charging operation includes charging the storage battery (6) with a specified amount of electricity ; 所述的充放电控制设备(7)将所述系统控制设备(4)所发出的指令传输到所述的放电设备(2)或充电设备(3),还将所述放电设备(2)返回的数据传输到所述系统控制设备(4);The charge and discharge control device (7) transmits the instructions issued by the system control device (4) to the discharge device (2) or the charge device (3), and returns the discharge device (2) transmission of data to said system control device (4); 所述的系统控制设备(4)根据反馈的T0、V01以及V1量值读取所述数据库(1)中所储存的修复充电量C与所述T0、V01、V1之间的对应关系,根据这一对应关系选择修复方式,将所选择的修复方式所对应的命令从所述数据库(1)读取并通过所述充放电控制设备(7)发送到所述充电设备(3);其中,所述修复充电量C与所述T0、V01、V1之间的对应关系为C=﹝m﹢n(1-T0/T标称额定)﹞C标称;其中,m=1.1~1.3;n=1.0~3.5,其取值范围由V01和V1的量值共同决定;The system control device (4) reads the difference between the repair charge C stored in the database (1) and the T 0 , V 01 , V 1 according to the fed back values of T 0 , V 01 , and V 1 . According to the corresponding relationship, select the repairing method, read the command corresponding to the selected repairing method from the database (1) and send it to the charging device through the charge and discharge control device (7) (3); Wherein, the corresponding relationship between the repaired charging capacity C and the T 0 , V 01 , and V 1 is C=﹝m﹢n(1-T 0 /T nominal rating )﹞C nominal ; Among them, m=1.1~1.3; n=1.0~3.5, and its value range is determined by the value of V 01 and V 1 ; 所述的Ie、V0、T标称额定与C标称为国家技术标准规定的公知值。The above-mentioned I e , V 0 , T nominal rating and C nominal are known values stipulated by national technical standards. 2.根据权利要求1所述的能够实现远程控制的蓄电池修复系统,其特征在于,所述的数据库(1)与系统控制设备(4)组成远程控制端,所述的充放电控制设备(7)、放电设备(2)以及充电设备(3)组成本地修复端,所述远程控制端能够对至少一个本地修复端进行控制。2. The battery repair system capable of remote control according to claim 1, characterized in that the database (1) and the system control device (4) form a remote control terminal, and the charge and discharge control device (7 ), the discharge device (2) and the charging device (3) form a local repair terminal, and the remote control terminal can control at least one local repair terminal. 3.根据权利要求1所述的能够实现远程控制的蓄电池修复系统,其特征在于:所述通信网络为互联网或为局域网。3. The battery repair system capable of remote control according to claim 1, characterized in that: the communication network is the Internet or a local area network. 4.一种基于权利要求1—3之一所述的能够实现远程控制的蓄电池修复系统上实现的蓄电池修复方法,包括:4. A battery repair method implemented on the battery repair system capable of realizing remote control according to any one of claims 1-3, comprising: 步骤1)、以恒压限流方式为待修复的蓄电池充满电,然后静置,静置时间大于10分钟;Step 1), fully charge the battery to be repaired by means of constant voltage and current limiting, and then let it stand still for more than 10 minutes; 步骤2)、设定以Ie强度、终止电压V0进行检测放电,得到放电前电动势E、放电至终止电压V0的时间T0、在T0时间的放电平均电压值V01以及放电至V0后空载运行T1时间反弹的实时电压值V1Step 2), set the intensity of I e and the end voltage V 0 to detect the discharge, and obtain the electromotive force E before discharge, the time T 0 of discharge to the end voltage V 0 , the average discharge voltage value V 01 at T 0 time, and the discharge to The real-time voltage value V 1 rebounded at T 1 time after no-load operation after V 0 ; 步骤3)、根据步骤2)所得到的数据确定对待修复的蓄电池进行修复充电时所需要的修复充电量C;Step 3), according to the data obtained in step 2), determine the repair charging capacity C required for repair charging of the storage battery to be repaired; 步骤4)、根据步骤2)得到的数据和步骤3)得到的修复充电量C的数据进行分阶段充电,实现对蓄电池的修复。Step 4), according to the data obtained in step 2) and the data of the repaired charging capacity C obtained in step 3), charge in stages to realize the repair of the battery. 5.根据权利要求4所述的蓄电池修复方法,其特征在于,在所述的步骤2)之后、步骤4)之前,还包括步骤a):根据步骤2)得到的数据确定待修复的蓄电池的失效模式,根据不同的失效模式为蓄电池添加修复材料,并为蓄电池补足电解液。5. The battery repair method according to claim 4, characterized in that, after step 2) and before step 4), step a) is further included: determining the battery to be repaired according to the data obtained in step 2). Failure mode, add repair materials to the battery according to different failure modes, and replenish electrolyte for the battery. 6.根据权利要求4所述的蓄电池修复方法,其特征在于,在所述的步骤a)中,所述的根据不同的失效模式为待修复的蓄电池添加修复材料,对铅蓄电池包括:6. The battery repair method according to claim 4, characterized in that, in the step a), the said repair materials are added to the battery to be repaired according to different failure modes, including for lead-acid batteries: 步骤a-1)、当待修复的蓄电池符合E<2.15V/单格、V01≤1.98V/单格、V1<2.00V/单格三项特征中的两项或三项时,执行步骤a-2);当待修复的蓄电池符合E>2.23V/单格、V01>2.02V/单格、V1>2.05V/单格三项特征中的两项或三项时,执行步骤a-3);非上述两种状态表现,执行步骤a-4);Step a-1), when the battery to be repaired meets two or three of the three characteristics of E<2.15V/single cell, V 01 ≤1.98V/single cell, and V 1 <2.00V/single cell, execute Step a-2); when the battery to be repaired meets two or three of the three characteristics of E>2.23V/single cell, V 01 >2.02V/single cell, V 1 >2.05V/single cell, execute Step a-3); if it is not the performance of the above two states, execute step a-4); 步骤a-2)、为待修复的蓄电池外加抗极板硫酸铅结晶盐化的修复材料,然后结束本步骤的操作;Step a-2), adding a repairing material to the battery to be repaired to resist crystallization of lead sulfate on the plate, and then ending the operation of this step; 步骤a-3)、为待修复的蓄电池外加抑制极板活性物质软化的修复材料,然后结束本步骤的操作;Step a-3), add a repair material to the battery to be repaired to inhibit the softening of the active material of the plate, and then end the operation of this step; 步骤a-4)、为待修复的蓄电池先外加抗硫化材料,通过充电治理极板硫酸铅结晶盐化,然后再外加固晶材料通过充电治理极板活性物质软化。Step a-4), first add anti-sulfur material to the battery to be repaired, control the lead sulfate crystal salinization of the plate through charging, and then add the crystal-fixing material to control the softening of the active material of the plate through charging. 7.根据权利要求4所述的蓄电池修复方法,其特征在于,所述的步骤2)包括:7. The storage battery repair method according to claim 4, characterized in that, said step 2) includes: 步骤2-1)、将待修复的蓄电池以额定电流强度Ie放电至V0,记录放电时间T0;若E<V0,则记录放电时间值T0=0;Step 2-1), discharge the battery to be repaired to V 0 at the rated current intensity I e , and record the discharge time T 0 ; if E<V 0 , record the discharge time value T 0 =0; 步骤2-2)、在蓄电池以电流Ie放电至V0过程中,连续采样蓄电池在T0放电时间的实时电压值,根据采样结果计算出采样平均值V01并储存记录;Step 2-2), during the process of discharging the battery with the current Ie to V0 , continuously sample the real-time voltage value of the battery at T0 discharge time, calculate the sampling average value V01 according to the sampling result and store the record; 步骤2-3)、将待修复的蓄电池以Ie电流强度放电至V0时,空载T1时间,记录此时反弹的实时电压值V1Step 2-3), when the battery to be repaired is discharged to V 0 with the current intensity of I e , it is no-loaded for T 1 time, and the real-time voltage value V 1 rebounded at this time is recorded; 步骤2-4)、对待修复的蓄电池深放电至V2,然后放电电流的强度分阶段递减继续深放电至V2,V2≤80%V0/单格;其中,所述的放电电流的强度分阶段递减包括:Ie电流强度的1/2等分递减,或以任意形式递减,递减阶数设置1阶以上。Step 2-4), deeply discharge the storage battery to be repaired to V 2 , then gradually decrease the intensity of the discharge current and continue deep discharge to V 2 , V 2 ≤ 80% V 0 /cell; wherein, the discharge current The step-by-step reduction of intensity includes: the current intensity of I e is reduced by 1/2 equal parts, or reduced in any form, and the order of reduction is set to be more than 1 order. 8.根据权利要求4或5所述的蓄电池修复方法,其特征在于:所述步骤3)的修复充电量C(Ah),与所述T0、V1之间的对应关系为C=﹝m﹢n(1-T0/T标称额定)﹞C标称;其中m=1.1~1.3,n=1.0~3.5,n的取值范围根据蓄电池种类结合V01、V1的量值区间而定;对铅蓄电池包括:8. The storage battery repair method according to claim 4 or 5, characterized in that: the corresponding relationship between the repair charging capacity C (Ah) in the step 3) and the T 0 and V 1 is C== m﹢n (1-T 0 /T nominal rating )﹞C nominal ; where m=1.1~1.3, n=1.0~3.5, the value range of n depends on the battery type combined with the value range of V 01 and V 1 Depends; for lead batteries include: i、待修复的蓄电池V01≤1.98V/单格时,n取值2.5~3.2:其中,V1<2.0V/单格时n取值2.9~3.5,V1≥2.0V/单格时n取值2.5~2.8;i. When the V 01 of the battery to be repaired is ≤1.98V/cell, the value of n is 2.5~3.2: Among them, when V 1 <2.0V/cell, the value of n is 2.9~3.5, when V 1 ≥2.0V/cell The value of n is 2.5~2.8; ii、待修复的蓄电池V01>2.02V/单格时,n取值1.0~1.8:其中,V1≥2.05V/单格时n取值1.0~1.3,V1<2.05V/单格时n取值1.3~1.8;ii. When the V 01 of the battery to be repaired is >2.02V/cell, the value of n is 1.0~1.8: Among them, when V 1 ≥2.05V/cell, the value of n is 1.0~1.3, when V 1 <2.05V/cell The value of n is 1.3~1.8; iii、非上述两种典型状态表现时,n取值1.8~2.5。iii. When the above two typical states are not manifested, n takes the value of 1.8 to 2.5. 9.根据权利要求4所述的蓄电池修复方法,其特征在于,所述的步骤4)对铅蓄电池包括:9. The storage battery repair method according to claim 4, characterized in that, said step 4) includes for lead storage batteries: 步骤4-1)、根据待修复电池的V01、V1值结合检测放电前的电动势E选取初始充电的电流强度,对于E<V0、V01﹦V0或V1>2.10V/单格的待修复蓄电池,采用≤0.06C/A进行初始充电,初始充电0.5~4小时或充电至蓄电池的两端电压≥2.0V/单格,再变换步骤4-2);非上述情况的待修复蓄电池直接进行步骤4-2)充电;Step 4-1), according to the V 01 and V 1 values of the battery to be repaired combined with the detection of the electromotive force E before discharge, select the initial charging current intensity. For E<V 0 , V 01 ﹦V 0 or V 1 >2.10V/ For batteries to be repaired, use ≤0.06C/A for initial charging, initially charge for 0.5 to 4 hours or charge until the voltage at both ends of the battery is ≥2.0V/cell, and then change to step 4-2); Repair the battery and proceed to step 4-2) charging directly; 步骤4-2)、对待修复的蓄电池以0.08~0.2C/A电流充电,直至充入由放电数据T0、V01、V1共同确定的C/Ah充电量的70~95%,再变换步骤4-3);本步骤充电分为两个或两个以上阶段,不同阶段之间间隔设置休眠、充电电流小于或等于0.03C/A的小电流充电以及浅放电;Step 4-2), charge the battery to be repaired with a current of 0.08~0.2C/A until it is charged to 70~95% of the C/Ah charge determined by the discharge data T 0 , V 01 , and V 1 , and then change Step 4-3); charging in this step is divided into two or more stages, and sleep, charging current less than or equal to 0.03C/A small current charging and shallow discharge are set between different stages; 步骤4-3)、对待修复的蓄电池以0.03~0.06C/A小电流充电,直至充入100%C/Ah的电量,使蓄电池恢复标准容量。Step 4-3), charge the battery to be repaired with a small current of 0.03-0.06C/A until it is charged with 100% C/Ah, so that the battery returns to the standard capacity. 10.根据权利要求9所述的蓄电池修复方法,其特征在于,充电过程中的浅放电设置一次或一次以上,浅放电的电流强度≤Ie,放电电量≤0.5C/Ah;当设置浅放电时,该负充电量在后阶段充电中等量补充回,所述的由C=﹝m﹢n(T标称额定﹣T0)/T标称额定﹞C标称确定的修复剩充电量不变。10. The storage battery repair method according to claim 9, characterized in that the shallow discharge is set once or more during the charging process, the current intensity of the shallow discharge is ≤ I e , and the discharge power is ≤ 0.5C/Ah; when the shallow discharge is set When the negative charge is added back in the later stage of charging, the repair remaining charge determined by C=﹢n(T nominal rating -T 0 )/T nominal rating ﹞C nominal is not Change.
CN201210257920.2A 2012-07-24 2012-07-24 A kind of accumulator repairing system and restorative procedure thereof that can realize Long-distance Control Expired - Fee Related CN103579690B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210257920.2A CN103579690B (en) 2012-07-24 2012-07-24 A kind of accumulator repairing system and restorative procedure thereof that can realize Long-distance Control

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210257920.2A CN103579690B (en) 2012-07-24 2012-07-24 A kind of accumulator repairing system and restorative procedure thereof that can realize Long-distance Control

Publications (2)

Publication Number Publication Date
CN103579690A true CN103579690A (en) 2014-02-12
CN103579690B CN103579690B (en) 2015-10-07

Family

ID=50050984

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210257920.2A Expired - Fee Related CN103579690B (en) 2012-07-24 2012-07-24 A kind of accumulator repairing system and restorative procedure thereof that can realize Long-distance Control

Country Status (1)

Country Link
CN (1) CN103579690B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106410884A (en) * 2016-06-14 2017-02-15 杭州莱力置能电源有限公司 Control device and control method for charging and discharging motor
CN107863577A (en) * 2017-11-02 2018-03-30 郑州云海信息技术有限公司 BBU capacity restorative procedure and system in a kind of storage system
CN111497684A (en) * 2019-01-31 2020-08-07 北京新能源汽车股份有限公司 Power battery system, repairing method and device thereof, BMS (battery management system) and automobile
CN112865269A (en) * 2021-04-08 2021-05-28 国网湖北省电力有限公司随州供电公司 Intelligent online monitoring, maintaining and managing system for storage battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004100338A1 (en) * 2003-05-12 2004-11-18 Envirolec Limited Llc Lead battery conditioner
EP1786057A2 (en) * 2005-11-14 2007-05-16 Hitachi Vehicle Energy, Ltd. Secondary battery and battery management
CN101894981A (en) * 2010-05-28 2010-11-24 深圳市金一泰实业有限公司 Intelligent monitoring, repair and control method of lead-acid battery pack and system thereof
CN102117941A (en) * 2010-01-05 2011-07-06 中国移动通信集团甘肃有限公司 Method and device for monitoring and maintaining faults of storage battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004100338A1 (en) * 2003-05-12 2004-11-18 Envirolec Limited Llc Lead battery conditioner
EP1786057A2 (en) * 2005-11-14 2007-05-16 Hitachi Vehicle Energy, Ltd. Secondary battery and battery management
CN102117941A (en) * 2010-01-05 2011-07-06 中国移动通信集团甘肃有限公司 Method and device for monitoring and maintaining faults of storage battery
CN101894981A (en) * 2010-05-28 2010-11-24 深圳市金一泰实业有限公司 Intelligent monitoring, repair and control method of lead-acid battery pack and system thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106410884A (en) * 2016-06-14 2017-02-15 杭州莱力置能电源有限公司 Control device and control method for charging and discharging motor
CN107863577A (en) * 2017-11-02 2018-03-30 郑州云海信息技术有限公司 BBU capacity restorative procedure and system in a kind of storage system
CN111497684A (en) * 2019-01-31 2020-08-07 北京新能源汽车股份有限公司 Power battery system, repairing method and device thereof, BMS (battery management system) and automobile
CN112865269A (en) * 2021-04-08 2021-05-28 国网湖北省电力有限公司随州供电公司 Intelligent online monitoring, maintaining and managing system for storage battery

Also Published As

Publication number Publication date
CN103579690B (en) 2015-10-07

Similar Documents

Publication Publication Date Title
CN103579691B (en) Storage battery repairing system and repairing method thereof
CN103579694B (en) The system that a kind of storage battery is repaired and restorative procedure thereof
CN108767909A (en) A kind of charging curve and charging method of standard
US20180183245A1 (en) Improved maintenance method of power battery pack
CN105489962A (en) Recycling method for waste power lithium ion batteries
CN103682508B (en) A kind of spacecraft lithium-ions battery group state-of-charge defining method
CN105842629A (en) Power battery cascade utilization detection assessment method
CN202076821U (en) Lithium iron phosphate battery emergency power supply system and battery charge-discharge management system
CN101976744A (en) Charging and discharging method for secondary battery
CN112162204B (en) Lithium battery integrated system for simulating electrical characteristics of lead-acid battery and control method
CN103579690A (en) A storage battery repair system capable of remote control and its repair method
CN101964431B (en) Multi-stage constant-voltage charging method of lithium secondary battery
CN207868809U (en) A kind of vehicle-to-vehicle charging system of new energy vehicle
CN109742468A (en) A kind of charging method of battery
CN103576093B (en) A kind of battery discharging datalogger and discharge data record using method thereof
CN103579693B (en) A kind of storage battery Long-distance Control repair system and restorative procedure thereof
CN103579692B (en) A kind of accumulator repairing system and restorative procedure thereof
CN102709614B (en) Method for charging and discharging lithium secondary battery
CN110518659A (en) A kind of electric motor car with two wheels charger control method and electric motor car with two wheels charger
CN107123835B (en) A kind of electrochemical method and system of lead-acid accumulator desulfurization
CN109245143A (en) A kind of energy storage peak shaving power optimization operation method considering the lithium ion battery service life
CN205017080U (en) Electric vehicle charging ware intelligent control circuit
CN203278304U (en) Lithium iron phosphate emergency power supply with preheating function
CN203562820U (en) Positive/negative pulse type recovery charger for lead-acid battery
CN207772912U (en) Battery management system

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20161020

Address after: 518000 Guangdong city of Shenzhen province Qianhai Shenzhen Hong Kong cooperation zone before Bay Road No. 1 building 201 room A (located in Shenzhen Qianhai business secretary Co. Ltd.)

Patentee after: Shenzhen Beauty Energy Company Limited

Address before: 211100 Jiangsu Economic Development Zone, Jiangning, Zhuang Pai Road No. 5, building two, floor 157, layer

Patentee before: NANJING JIEXIANG ENERGY TECHNOLOGY CO., LTD.

TR01 Transfer of patent right

Effective date of registration: 20170614

Address after: 523808 B413 room, No. nine, 9 hi tech Industrial Development Zone, Songshan Lake, Guangdong, Dongguan, China

Patentee after: Dongguan constant Amperex Technology Limited

Address before: 518000 Guangdong city of Shenzhen province Qianhai Shenzhen Hong Kong cooperation zone before Bay Road No. 1 building 201 room A (located in Shenzhen Qianhai business secretary Co. Ltd.)

Patentee before: Shenzhen Beauty Energy Company Limited

TR01 Transfer of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20151007

Termination date: 20190724

CF01 Termination of patent right due to non-payment of annual fee