[go: up one dir, main page]

CN103579405B - 具有强吸收结构的高速snspd及其制备方法 - Google Patents

具有强吸收结构的高速snspd及其制备方法 Download PDF

Info

Publication number
CN103579405B
CN103579405B CN201310596327.5A CN201310596327A CN103579405B CN 103579405 B CN103579405 B CN 103579405B CN 201310596327 A CN201310596327 A CN 201310596327A CN 103579405 B CN103579405 B CN 103579405B
Authority
CN
China
Prior art keywords
layer
superconducting
single crystal
snspd
nanowires
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310596327.5A
Other languages
English (en)
Other versions
CN103579405A (zh
Inventor
成日盛
刘建设
李铁夫
陈炜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN201310596327.5A priority Critical patent/CN103579405B/zh
Priority claimed from CN201210333661.7A external-priority patent/CN102829884B/zh
Publication of CN103579405A publication Critical patent/CN103579405A/zh
Application granted granted Critical
Publication of CN103579405B publication Critical patent/CN103579405B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/30Devices switchable between superconducting and normal states
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/4204Photometry, e.g. photographic exposure meter using electric radiation detectors with determination of ambient light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details
    • H10N60/83Element shape
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

具有强吸收结构的高速SNSPD及其制备方法,该SNSPD基于高折射率入射介质和空气腔结构,可以进一步提高超导纳米线的光子吸收率,与现有技术相比,本发明用相同材料和厚度的超导超薄膜制成纳米线的条件下,用更低的占空比就可以实现接近于100%的吸收率,这使得电子束曝光步骤的难度大大降低,这尤其对于超细纳米线的制备来说更为有利,而SOI衬底的采用则可以同时保证超导薄膜的高质量生长,不影响探测器的本征量子效率,另外,在保证同样大的有效探测面积的条件下,由于需要的纳米线的总长度显著减小,探测器的最高计数率可以得到提升,制备过程中发生缺陷的概率显著降低。

Description

具有强吸收结构的高速SNSPD及其制备方法
技术领域
本发明属于单光子探测领域,适用于在近红外波段实现超快速以及高效率的单光子探测,涉及一种具有强吸收结构的高速SNSPD及其制备方法。
背景技术
近年来,G.N.Gol’tsman et al.,“Picosecond superconductingsingle-photon optical detector,”Applied Physics Letter,vol.79,pp.705–707,2001.记载的超导纳米线单光子探测器(SNSPD),由于其在可见光和红外波段优异的单光子探测能力、超高计数率、低的暗计数、很小的时间抖动越来越受到人们广泛的关注,尤其是其在近红外波段能实现的量子效率和最高计数率均已超过已有的基于复合半导体材料的雪崩光电二极管,使得其已经成为量子通讯和远程光通信等领域最有力的候选探测器。目前,由最常用的氮化铌(NbN)超导材料做成的SNSPD的本征量子效率可以达到90%以上,但它有限的光吸收率成了限制SNSPD总系统量子效率的一个瓶颈。由于SNSPD的核心感光区域是由超薄的纳米线构成的,所以它对入射光子的吸收率非常有限,光子会以相当一部分的概率从纳米线之间的间隙穿过,或者直接穿过薄膜,又或者从超导薄膜反射回去。K.M.Rosfjord et al.,“Nanowire single-photon detector with an integrated optical cavityand anti-reflection coating,”Optics Express,vol.14,pp.527–534,2006.记载着给SNSPD增加光学谐振腔结构来显著提高其光子吸收率的方法。但对于比较典型的4nm厚、50%占空比的NbN纳米线来说,用这种方法只能得到70%左右的吸收率。如果要进一步提高吸收率,则需要增加纳米线的占空比或者厚度,但前者在样品制备上提出了更苛刻的要求,而后者会导致探测器本征量子效率的下降。US2012/0077680A1“Nanowire-based detector”K.K.Berggren,X.Hu,D.Masciarelli等人提出的基于纳米天线增加吸收率的方法可以在4nm厚、50%占空比NbN纳米线的条件下,可以实现接近于100%的吸收率,但这种方案同样在样品制备上提出了比较高的要求,最终实验结果表明其成品率并不高。
发明内容
为了克服上述现有技术的不足,本发明的目的在于提供一种具有强吸收结构的高速SNSPD及其制备方法,可在低占空比的条件下实现高吸收率,具有结构简单、工艺可控的特点。
为了实现上述目的,本发明采用的技术方案分别是:
一种具有强吸收结构的高速SNSPD,包括金属薄膜反射镜8,金属薄膜反射镜8下方有透明介质材料构成的上层谐振腔9,上层谐振腔9下方为超导纳米线二10,超导纳米线二10下方为外延单晶Si层11,外延单晶Si层11下方为Si衬底二12,Si衬底二12朝向外延单晶Si层11开有底层谐振腔二13,Si衬底二12下方有防反射膜二14。
所述透明介质材料为SiO2,上层谐振腔9厚度需要事先通过仿真来优化,优化值为入射光在该介质内等效波长的四分之一左右,但会根据超导纳米线的材料、厚度及占空比不同有稍微的差异。
所述金属薄膜反射镜8由60nm以上厚度的Au膜构成,与构成上层谐振腔9的介质材料之间有1-2nm厚度的Ti作为粘附层。
所述底层谐振腔二13由外延单晶Si层11和空气层构成,空气层的厚度为入射光波长的四分之一,外延单晶Si层11的厚度需要事先通过仿真来优化,优化值为入射光波长的二分之一左右,但会根据超导纳米线的材料、厚度及占空比不同有稍微的差异。
制备上述高速SNSPD的方法,包括如下步骤:
(a)准备一个双面抛光的Si片,在其中一面刻出凹槽;
(b)准备SOI衬底,事先通过仿真得到所需要的外延单晶Si层的精确厚度,机械减薄背面的Si层,用Si-Si键合的方法,把SOI衬底和上述带有凹槽的Si片键合在一起;
(c)用KOH腐蚀液腐蚀SOI衬底的背Si层,再用氢氟酸缓冲腐蚀液去掉SiO2埋层,露出单晶Si层;
(d)在单晶Si层上溅射生长超导薄膜,并用电子束曝光以及反应离子刻蚀形成超导纳米线;衬底的另一面用制备Al2O3薄膜作为防反射膜;
(e)在超导纳米线上制作Au/Ti图形,作为探测器的共面波导读出电路;最后制作上层谐振腔和反射镜。
与现有技术相比,本发明的有益效果是:
基于高折射率入射介质和空气腔结构进一步提高超导纳米线光子的吸收率,同样,在4nm厚的NbN纳米线条件下,仿真结果表明,用这两种方案,仅用25%左右的纳米线占空比,就可以达到接近于100%的吸收率,这使得电子束曝光步骤的难度大大降低,这尤其对于超细纳米线(宽度在50nm以下)的制备来说更为有利。而SOI衬底的采用则可以同时保证超导薄膜的高质量生长,不影响探测器的本征量子效率。另外,在保证同样大的有效探测面积的条件下,由于我们需要的纳米线的总长度显著减小,探测器的最高计数率可以得到提升,制备过程中发生缺陷的概率显著降低。
附图说明
图1为本发明第一种具有强吸收结构的SNSPD结构示意图。
图2为本发明第二种具有强吸收结构的SNSPD结构示意图。
图3为本发明第一种具有强吸收结构的SNSPD制备流程图。
图4为本发明第二种具有强吸收结构的SNSPD制备流程图。
图5为本发明第一种具有强吸收结构的SNSPD光子吸收率随纳米线占空比的变化仿真结果。
图6为本发明第一种具有强吸收结构的SNSPD光子反射率和透射率随纳米线占空比的变化仿真结果。
图7为本发明两种具有强吸收结构的SNSPD光子吸收率与现有其它技术的比较。
具体实施方式
下面结合附图和实施例对本发明做进一步详细说明。
本发明提供一种对比SNSPD,称为“第一种结构”,本发明SNSPD称为“第二种结构”。
如图1所示为第一种具有强吸收结构的超导纳米线单光子探测器,包括底层Si衬底一1,在底层Si衬底一1沉积有多层Si/SiO2周期排布构成的布拉格反射镜2,布拉格反射镜2顶端设置有外延单晶Si形成的底层谐振腔一3,在底层谐振腔一3上方有超导纳米线一4,超导纳米线一4上有上层空气谐振腔5,上层空气谐振腔5上方有Si片6,Si片6上有防反射膜一7。
由多层Si/SiO2周期排布的布拉格反射镜2,当它的周期数较大时(大于6),在相当大的波长范围内具有极高的反射率,反射率大于99%。并且由于空气和Si材料的折射率差异较大,空气谐振腔和上层Si片之间的界面也能形成一个很好的反射面。当上层的空气谐振腔和底层的Si谐振腔厚度正好合适的时候,入射光正好在两个反射面之间形成驻波,超导纳米线则正好处于光强最大的波腹位置,因此该结构可以显著地增加纳米线的光子吸收率。
如图3所示,其制备过程包括如下步骤:
(a)准备SOI衬底,事先通过仿真得到所需要的外延单晶Si层的精确厚度,机械减薄背面的Si层。
(b)氧化SOI衬底,需要精确控制SiO2的厚度。
(c)用CVD方法生长多晶Si层,并部分氧化Si层,得到SiO2层,如此反复n(n≥3)次,得到n+1个周期的Si/SiO2布拉格反射镜,需要精确控制每一层的厚度。
(d)用Si-Si键合的方法,把上述衬底和另一个Si片键合在一起,作为新的衬底。
(e)分别用氢氟酸(HF)缓冲腐蚀液和KOH腐蚀液依次腐蚀SOI衬底背面的SiO2和Si层,再用氢氟酸(HF)缓冲腐蚀液去掉单晶Si层底部的SiO2埋层,露出单晶Si层,单晶Si层构成底层谐振腔一,底层谐振腔一厚度近似于入射光在该介质内等效波长的二分之一,但会根据超导纳米线的材料、厚度及占空比不同有稍微的差异。
(f)在单晶Si层上用磁控溅射等方法生长高质量的超导薄膜,并用电子束曝光以及反应离子刻蚀(RIE)形成超导纳米线。超导纳米线的厚度一般在4-6nm之间,宽度一般在20-200nm之间,采用的超导材料为NbN、NbTiN、TaN、NbSi、Nb、WxSi1-x或者其它材料。
(g)通过光学曝光、溅射(或者电子束蒸发)、剥离等步骤形成Au/Ti图形,作为探测器的共面波导读出电路,同时为后续的Au-Au键合做准备。
(h)再准备一个双面抛光的Si片,先在其中一面用ALD或者溅射等方法制备Al2O3薄膜,折射率需要在1.7-2.0之间,厚度等于入射光在该介质内等效波长的四分之一,需要精确控制。在另一面,通过光学曝光、溅射(或者电子束蒸发)、剥离等步骤形成Au/Ti图形。
(i)通过Au-Au键合的方法,最终形成上层空气谐振腔,上层空气谐振腔的厚度可以通过控制两边Au/Ti层的厚度决定,近似于入射光波长的四分之一,根据超导纳米线的材料、厚度及占空比不同有稍微的差异。但需要事先考虑Au-Au键合前后厚度的变化。
如图2所示为第二种具有强吸收结构的超导纳米线单光子探测器,包括金属薄膜反射镜8,金属薄膜反射镜8下方有透明介质材料构成的上层谐振腔9,上层谐振腔9下方为超导纳米线二10,超导纳米线二10下方为外延单晶Si层11,外延单晶Si层11下方为Si衬底二12,Si衬底二12朝向外延单晶Si层11开有底层谐振腔二13,Si衬底二12下方有防反射膜二14。
第二种结构和第一种结构提高光子吸收率的原理完全一样,只是在超导纳米线和光的入射介质之间,第二种结构比第一种结构多了一个谐振腔,而且反射镜由金属薄膜而不是布拉格反射镜构成,但仿真结果显示,如果不考虑入射光在金属薄膜内的损耗,两种结构的吸收率完全相同。
如图4所示,第二种结构的制备过程包括如下步骤:
(a)准备一个双面抛光的Si片,在其中一面用光学曝光、反应离子刻蚀(RIE)的方法(或者用传统的体硅腐蚀的方法)刻出凹槽,凹槽的厚度需要精确控制。
(b)准备SOI衬底,事先通过仿真得到所需要的外延单晶Si层的精确厚度,机械减薄背面的Si层,用Si-Si键合的方法,把SOI衬底和上述带有凹槽的Si片键合在一起。
(c)用KOH腐蚀液腐蚀SOI衬底的背Si层,再用氢氟酸(HF)缓冲腐蚀液去掉SiO2埋层,露出单晶Si层。SiO2构成上层谐振腔二,上层谐振腔二的厚度需要事先通过仿真来优化,优化值近似于入射光在该介质内等效波长的四分之一,但会根据超导纳米线的材料、厚度及占空比不同有稍微的差异。
(d)在单晶Si层上用磁控溅射等方法生长高质量的超导薄膜,并用电子束曝光以及反应离子刻蚀(RIE)形成超导纳米线;衬底的另一面用原子层淀积(ALD)或者溅射等方法制备Al2O3薄膜作为防反射膜,折射率需要在1.7-2.0之间,厚度等于入射光在该介质内等效波长的四分之一,需要精确控制。
(e)通过光学曝光、溅射(或者电子束蒸发)、剥离等步骤形成Au/Ti图形,作为探测器的共面波导读出电路;通过光学曝光、依次溅射(或者电子束蒸发)SiO2、Ti、Au以及剥离等步骤形成上层谐振腔和反射镜,SiO2介质层的厚度需要精确控制。
如图5所示,随着布拉格反射镜的周期数p的增加,上述第一种具有强吸收结构的SNSPD光子吸收率得到显著的提高。当p等于4时,仿真结果显示其吸收率已非常接近采用完全理想的反射层情况(p=∞),所以在实际制备的过程中,布拉格反射镜的周期数取为4或者其以上较为合适。如图6所示的反射率和透射率仿真结果也表明,随着周期数p的增加,布拉格反射镜的反射率确实得到增加,越接近理想的反射面,从而减少整个结构的透射率,最终纳米线的吸收率得到提高。
图7为上述两种具有强吸收结构的SNSPD光子吸收率与现有其它技术的比较。图中曲线“1”代表上述两种结构;曲线“2”代表E.A.Dauler et al.,“Superconducting nanowire single photon detectors,”IEEE PhotonicsConference(PHO),2011.记载的结构;曲线“3”代表B.Baek et al.,“Superconducting nanowire single-photon detector in an optical cavityfor front-side illumination,”Appled Physics Letters,vol.95,p.1911102009.所记载的结构;曲线“4”代表K.M.Rosfjord et al.,“Nanowire single-photon detector with an integrated optical cavityand anti-reflection coating,”Optics Express,vol.14,pp.527–534,2006.记载的结构;曲线“5”和“6”分别代表不带任何附加结构的NbN纳米线在背照光和前照光条件下得到的吸收率,采用的衬底均为最常用的蓝宝石衬底。在仿真过程中,未考虑光在Au金属反射镜内的损耗(小于4%),如果要消除这部分的损耗,可以用周期数较高的布拉格反射镜代替金属薄膜。
图5-7所有的仿真及优化只针对最常用的1550nm通信波长,采用的超导材料为NbN,入射光垂直入射于纳米线,并且电场偏振方向平行于纳米线的方向。NbN纳米线的厚度为4nm,且仿真结果显示,吸收率只和NbN纳米线的占空比有关,而和纳米线本身的宽度无关。从仿真结果的比较可以清楚地看到,在同样的占空比条件下,本发明提出的结构吸收率显著高于目前现有的所有技术,可以用非常低的纳米线占空比(25%左右)就可以实现接近于100%的光子吸收率,这使得纳米线制备过程中电子束曝光步骤的难度大大降低,这尤其对于超细纳米线(宽度在50nm以下)的制备来说更为有利。另外,在保证同样大的有效探测器面积的条件下,由于我们需要的纳米线的总长度只有50%占空比时候的一半,所以探测器的最高计数率可以提升一倍,制备过程中发生缺陷的概率降低为一半。

Claims (1)

1.制备具有强吸收结构的高速SNSPD的方法,所述高速SNSPD包括金属薄膜反射镜,金属薄膜反射镜下方有透明介质材料构成的上层谐振腔,上层谐振腔下方为超导纳米线二,超导纳米线二下方为外延单晶Si层,外延单晶Si层下方为Si衬底二,Si衬底二朝向外延单晶Si层开有底层谐振腔二,Si衬底二下方有防反射膜二,
其特征在于,包括如下步骤:
(a)准备一个双面抛光的Si片,在其中一面刻出凹槽;
(b)准备SOI衬底,事先通过仿真得到所需要的外延单晶Si层的精确厚度,并按照该厚度生长外延单晶Si层,机械减薄背面的Si层,用Si-Si键合的方法,把SOI衬底和步骤(a)中带有凹槽的Si片键合在一起;
(c)用KOH腐蚀液腐蚀SOI衬底的背Si层,再用氢氟酸缓冲腐蚀液去掉SiO2埋层,露出外延单晶Si层;
(d)在外延单晶Si层上溅射生长超导薄膜,并用电子束曝光以及反应离子刻蚀形成超导纳米线;衬底的另一面用制备Al2O3薄膜作为防反射膜;
(e)在超导纳米线上制作Au/Ti图形,作为探测器的共面波导读出电路;最后制作上层谐振腔和反射镜。
CN201310596327.5A 2012-09-10 2012-09-10 具有强吸收结构的高速snspd及其制备方法 Expired - Fee Related CN103579405B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310596327.5A CN103579405B (zh) 2012-09-10 2012-09-10 具有强吸收结构的高速snspd及其制备方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310596327.5A CN103579405B (zh) 2012-09-10 2012-09-10 具有强吸收结构的高速snspd及其制备方法
CN201210333661.7A CN102829884B (zh) 2012-09-10 2012-09-10 具有强吸收结构的高速snspd及其制备方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201210333661.7A Division CN102829884B (zh) 2012-09-10 2012-09-10 具有强吸收结构的高速snspd及其制备方法

Publications (2)

Publication Number Publication Date
CN103579405A CN103579405A (zh) 2014-02-12
CN103579405B true CN103579405B (zh) 2015-09-30

Family

ID=50050761

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310596327.5A Expired - Fee Related CN103579405B (zh) 2012-09-10 2012-09-10 具有强吸收结构的高速snspd及其制备方法

Country Status (1)

Country Link
CN (1) CN103579405B (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104979420B (zh) * 2014-04-02 2017-11-14 中国人民解放军军械工程学院 一种基于微腔的量子点场效应单光子探测器
CN106558632B (zh) * 2015-09-17 2018-04-03 中国科学院上海微系统与信息技术研究所 高偏振消光比超导纳米线单光子探测器
CN105870315A (zh) * 2016-04-05 2016-08-17 南京大学 极化敏感的高效超导纳米线单光子探测器及其设计方法
CN107393984B (zh) * 2017-06-27 2019-08-20 上海集成电路研发中心有限公司 一种提高光吸收率的量子阱红外探测器及其制作方法
CN107369738B (zh) * 2017-06-27 2019-08-20 上海集成电路研发中心有限公司 一种多频段探测的量子阱探测器及其制造方法
CN107564990B (zh) * 2017-07-27 2019-05-17 南京大学 一种双带宽的超导纳米线单光子探测器
CN107910400B (zh) * 2017-11-10 2019-12-24 中国科学院上海微系统与信息技术研究所 一种调控超导纳米线的单光子探测器及其制备方法
CN110932694A (zh) * 2019-11-20 2020-03-27 电子科技大学 一种薄膜体声波谐振器
TWI753759B (zh) 2020-02-03 2022-01-21 美商應用材料股份有限公司 具有整合化氮化鋁種晶或波導層的超導奈米線單光子偵測器
TWI780579B (zh) 2020-02-03 2022-10-11 美商應用材料股份有限公司 具有整合化氮化鋁晶種或波導層的超導奈米線單光子偵測器
CN113035979B (zh) * 2021-03-09 2022-08-19 南京大学 用于太阳能热光伏电池的吸收-辐射器结构的制备方法
CN113517363B (zh) * 2021-05-19 2022-11-11 西安电子科技大学 红外光电探测器及其制作方法
CN113659350B (zh) * 2021-08-19 2024-02-20 海宁利伊电子科技有限公司 一种超高频超宽带的复合电磁吸波结构
CN114335213B (zh) * 2021-11-17 2024-04-30 南京大学 一种在绝缘衬底上制备高精度、大面积纳米结构的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1328347A (zh) * 2001-07-11 2001-12-26 北京邮电大学 具有平顶和陡边响应的半导体光电探测器及实现方法
CN101626043A (zh) * 2008-07-10 2010-01-13 三菱电机株式会社 半导体受光元件
CN101958362A (zh) * 2009-07-17 2011-01-26 北京邮电大学 纳米波导结构半导体光探测器制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011508430A (ja) * 2007-12-21 2011-03-10 クォルコム・メムズ・テクノロジーズ・インコーポレーテッド 多接合光起電力セル

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1328347A (zh) * 2001-07-11 2001-12-26 北京邮电大学 具有平顶和陡边响应的半导体光电探测器及实现方法
CN101626043A (zh) * 2008-07-10 2010-01-13 三菱电机株式会社 半导体受光元件
CN101958362A (zh) * 2009-07-17 2011-01-26 北京邮电大学 纳米波导结构半导体光探测器制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating";Kristine M.Rosfjord 等;《OPTICS EXPESS》;20060123;第14卷(第2期);第527-534页 *
"新型三腔谐振腔增强型光探测器的理论分析和数值模拟";刘凯 等;《中国激光》;20000430;第27卷(第4期);第332-336页 *
"新型红外探测器可动薄膜微腔的腐蚀工艺研究";李兰 等;《红外与激光工程》;20031231;第32卷(第6期);第651-654页 *

Also Published As

Publication number Publication date
CN103579405A (zh) 2014-02-12

Similar Documents

Publication Publication Date Title
CN103579405B (zh) 具有强吸收结构的高速snspd及其制备方法
CN102829884B (zh) 具有强吸收结构的高速snspd及其制备方法
Eyderman et al. Near perfect solar absorption in ultra-thin-film GaAs photonic crystals
CN110187419A (zh) 一种基于半导体超表面的可见光宽带完美吸收器
CN110133771A (zh) 一种利用结构对称性破缺实现超窄带吸收和传感的方法
KR101081499B1 (ko) 무반사 나노구조의 제조방법
KR20120012555A (ko) 점진적으로 굴절률이 변하는 실리콘 다층 무반사막 및 그 제조방법 및 이를 구비하는 태양전지 및 그 제조방법
CN109901257B (zh) 一种可见光超材料偏振转换器
CN101726769B (zh) 叠层亚波长减反结构及其制备方法
CN113782621A (zh) 一种等离激元增强的碲镉汞微腔红外探测器及制备方法
CN112420852B (zh) 一种二维材料光探测器及其制备方法
CN103132084B (zh) 一种高折射率半导体表面减反钝化复合结构的制备方法
CN110137301A (zh) 基于金属阵列结构的石墨烯光电探测器及其制备方法
CN104160518B (zh) 用于具有较高光提取率的led的结构化基底
CN110391314B (zh) 一种窄带光电探测器及其制备方法
US20230261124A1 (en) High absorption photovoltaic material and methods of making the same
CN215867429U (zh) 一种改善SiC光导器件量子效率的器件结构
CN103309119A (zh) 非对称dmd结构的金属表面态双稳全光逻辑控制器件
CN204290028U (zh) 基于二维层状材料的实用化可饱和吸收器件
CN108445567B (zh) 一种高损伤阈值的高反膜及制备方法
CN113391470A (zh) 一种改善SiC光导器件量子效率的器件结构
CN107706261A (zh) 一种叠层双色红外焦平面探测器及其制备方法
CN115799356A (zh) 一种用于增强二硫化钼光学吸收的光吸收器及其制备方法
CN210040233U (zh) 一种窄光谱响应的热电子光电探测器
CN110133800B (zh) 可实现宽频带单向高透射的波导型光子晶体异质结构

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150930

CF01 Termination of patent right due to non-payment of annual fee