CN103579372A - Schottky barrier diode and manufacturing method thereof - Google Patents
Schottky barrier diode and manufacturing method thereof Download PDFInfo
- Publication number
- CN103579372A CN103579372A CN201210268452.9A CN201210268452A CN103579372A CN 103579372 A CN103579372 A CN 103579372A CN 201210268452 A CN201210268452 A CN 201210268452A CN 103579372 A CN103579372 A CN 103579372A
- Authority
- CN
- China
- Prior art keywords
- layer
- gallium nitride
- conductive layer
- substrate
- barrier diode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000004888 barrier function Effects 0.000 title claims abstract description 27
- 238000004519 manufacturing process Methods 0.000 title abstract description 9
- 229910002601 GaN Inorganic materials 0.000 claims abstract description 51
- 239000000758 substrate Substances 0.000 claims abstract description 34
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 claims abstract description 33
- 238000000034 method Methods 0.000 claims description 7
- 239000010410 layer Substances 0.000 claims 36
- 239000000956 alloy Substances 0.000 claims 16
- 229910045601 alloy Inorganic materials 0.000 claims 16
- 229910052782 aluminium Inorganic materials 0.000 claims 16
- 239000004411 aluminium Substances 0.000 claims 16
- -1 aluminium gallium nitride Chemical class 0.000 claims 14
- 238000005036 potential barrier Methods 0.000 claims 10
- 239000011229 interlayer Substances 0.000 claims 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims 2
- 239000004020 conductor Substances 0.000 claims 2
- RNQKDQAVIXDKAG-UHFFFAOYSA-N aluminum gallium Chemical compound [Al].[Ga] RNQKDQAVIXDKAG-UHFFFAOYSA-N 0.000 abstract description 7
- 230000005684 electric field Effects 0.000 description 14
- 238000010586 diagram Methods 0.000 description 7
- 238000004088 simulation Methods 0.000 description 6
- 230000015556 catabolic process Effects 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052594 sapphire Inorganic materials 0.000 description 2
- 239000010980 sapphire Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 230000007547 defect Effects 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D8/00—Diodes
- H10D8/60—Schottky-barrier diodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/20—Electrodes characterised by their shapes, relative sizes or dispositions
- H10D64/23—Electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. sources, drains, anodes or cathodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/60—Electrodes characterised by their materials
- H10D64/64—Electrodes comprising a Schottky barrier to a semiconductor
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D8/00—Diodes
- H10D8/01—Manufacture or treatment
- H10D8/051—Manufacture or treatment of Schottky diodes
Landscapes
- Electrodes Of Semiconductors (AREA)
Abstract
Description
技术领域 technical field
本发明涉及一肖特基位障二极管(Schottky barrier diode,SBD)及其制造方法,特别是指一种降低漏电流的SBD及其制造方法。The present invention relates to a Schottky barrier diode (Schottky barrier diode, SBD) and its manufacturing method, in particular to an SBD with reduced leakage current and its manufacturing method.
背景技术 Background technique
图1显示一种现有技术肖特基位障二极管(SBD)100,形成于硅基板11上,包含氮化镓(GaN)层、氮化铝镓(AlGaN)层、阳极导电层14、与阴极导电层15。SBD为一半导体元件,相较于p-n接面二极管,其利用金属与半导体的肖特基接触(Schottky contact)所产生的肖特基位障(Schottky barrier),使得操作时顺向电流较大,且回复时间较短。然而由于使得SBD操作于逆向偏压时,会产生很大的漏电流,因此造成电能的损失。1 shows a prior art Schottky barrier diode (SBD) 100, formed on a
有鉴于此,本发明即针对上述现有技术的不足,提出一种肖特基位障二极管及其制造方法,使得肖特基位障二极管操作时,降低漏电流,以减少肖特基位障二极管操作时的电能损耗。In view of this, the present invention aims at the above-mentioned deficiencies in the prior art, and proposes a Schottky barrier diode and a manufacturing method thereof, so that when the Schottky barrier diode is in operation, the leakage current is reduced to reduce the Schottky barrier diode. Power loss during diode operation.
发明内容 Contents of the invention
本发明目的在于克服现有技术的不足与缺陷,提出一种肖特基位障二极管及其制造方法。The purpose of the present invention is to overcome the deficiencies and defects of the prior art, and propose a Schottky barrier diode and a manufacturing method thereof.
为达上述目的,就其中一个观点言,本发明提供了一种肖特基位障二极管,形成于一基板上,包含:一氮化镓(gallium nitride,GaN)层,形成于该基板上;一氮化铝镓(aluminum gallium nitride,AlGaN)层,形成于该GaN层上;一绝缘层,形成于该AlGaN层上;一阳极导电层,形成于该绝缘层上,且部分该阳极导电层与该GaN层或该AlGaN层,形成肖特基接触,且另一部分该阳极导电层与该AlGaN层间,由该绝缘层隔开;以及一阴极导电层,形成于该AlGaN层上,并与该AlGaN层间,形成一欧姆接触,且该阴极导电层与该阳极导电层不直接连接。In order to achieve the above object, in terms of one of the viewpoints, the present invention provides a Schottky barrier diode formed on a substrate, comprising: a gallium nitride (gallium nitride, GaN) layer formed on the substrate; An aluminum gallium nitride (aluminum gallium nitride, AlGaN) layer formed on the GaN layer; an insulating layer formed on the AlGaN layer; an anode conductive layer formed on the insulating layer, and part of the anode conductive layer A Schottky contact is formed with the GaN layer or the AlGaN layer, and another part of the anode conductive layer is separated from the AlGaN layer by the insulating layer; and a cathode conductive layer is formed on the AlGaN layer and is connected with the AlGaN layer. An ohmic contact is formed between the AlGaN layers, and the cathode conductive layer is not directly connected to the anode conductive layer.
就另一观点言,本发明也提供了一种肖特基位障二极管制造方法,包含:形成一氮化镓(gallium nitride,GaN)层于一基板上;形成一氮化铝镓(aluminum gallium nitride,AlGaN)层于该GaN层上;形成一绝缘层于该AlGaN层上;形成一阳极导电层于该绝缘层上,且部分该阳极导电层与该GaN层或该AlGaN层,形成肖特基接触,且另一部分该阳极导电层与该AlGaN层间,由该绝缘层隔开;以及形成一阴极导电层于该AlGaN层上,并与该AlGaN层间,形成一欧姆接触,且该阴极导电层与该阳极导电层不直接连接。From another point of view, the present invention also provides a Schottky barrier diode manufacturing method, comprising: forming a gallium nitride (gallium nitride, GaN) layer on a substrate; forming an aluminum gallium nitride (aluminum gallium Nitride, AlGaN) layer on the GaN layer; form an insulating layer on the AlGaN layer; form an anode conductive layer on the insulating layer, and part of the anode conductive layer and the GaN layer or the AlGaN layer form a Schott base contact, and another part of the anode conductive layer is separated from the AlGaN layer by the insulating layer; and a cathode conductive layer is formed on the AlGaN layer, and forms an ohmic contact with the AlGaN layer, and the cathode The conductive layer is not directly connected to the anode conductive layer.
在其中一种较佳实施型态中,该绝缘层由俯视图视之为格状,形成于该阳极导电层与该GaN层或该AlGaN层之间。In one of the preferred implementation forms, the insulating layer is in a grid shape viewed from a plan view, and is formed between the anode conductive layer and the GaN layer or the AlGaN layer.
在另一种较佳实施型态中,该基板包含一绝缘基板或一导体基板。In another preferred embodiment, the substrate includes an insulating substrate or a conductive substrate.
在又一种较佳实施型态中,该绝缘层厚度小于1微米(um)。In yet another preferred implementation form, the thickness of the insulating layer is less than 1 micron (um).
在另一种较佳实施型态中,该绝缘层具有一高于3.9的介电质常数。In another preferred embodiment, the insulating layer has a dielectric constant higher than 3.9.
下面通过具体实施例详加说明,当更容易了解本发明的目的、技术内容、特点及其所达成的功效。The following will be described in detail through specific embodiments, so that it is easier to understand the purpose, technical content, characteristics and effects of the present invention.
附图说明 Description of drawings
图1显示一种现有技术肖特基位障二极管(SBD)100;Figure 1 shows a prior art Schottky barrier diode (SBD) 100;
图2显示本发明的第一个实施例;Figure 2 shows a first embodiment of the present invention;
图3显示本发明的第二个实施例;Figure 3 shows a second embodiment of the present invention;
图4A-4C显示本发明的第三个实施例;4A-4C show a third embodiment of the present invention;
图5显示本发明的第四个实施例;Figure 5 shows a fourth embodiment of the present invention;
图6A-6B显示现有技术SBD(图6A)与利用本发明的SBD(图6B)的阳极电流对阳极电压的特性图;6A-6B show plots of anodic current versus anode voltage for prior art SBDs (FIG. 6A) and SBDs utilizing the present invention (FIG. 6B);
图7A-7B显示现有技术SBD(图7A)与利用本发明的SBD(图7B)的剖面二维的电场模拟特性图;7A-7B show the cross-sectional two-dimensional electric field simulation characteristic diagrams of the prior art SBD (FIG. 7A) and the SBD using the present invention (FIG. 7B);
图8A-8B显示现有技术SBD(图8A)与利用本发明的SBD(图8B)在阳极边缘的垂直方向的电场模拟特性图;Figures 8A-8B show the electric field simulation characteristic diagrams of the prior art SBD (Figure 8A) and the SBD using the present invention (Figure 8B) in the vertical direction of the anode edge;
图9A-9B显示现有技术SBD(图9A)与利用本发明的SBD(图9B)在通道横向方向的电场模拟特性图。9A-9B show the electric field simulation characteristic diagrams of the prior art SBD (FIG. 9A) and the SBD using the present invention (FIG. 9B) in the transverse direction of the channel.
图中符号说明Explanation of symbols in the figure
11,21 基板11,21 Substrate
12,22 GaN层12,22 GaN layers
13,23 AlGaN层13,23 AlGaN layer
14,24,34 阳极导电层14,24,34 anode conductive layer
15,25,35 阴极导电层15,25,35 Cathode conductive layer
26 绝缘层26 insulation layer
100,200,300,400 肖特基位障二极管100,200,300,400 Schottky barrier diodes
Et,Ep 阳极边缘电场Et,Ep Anode edge electric field
具体实施方式 Detailed ways
本发明中的图式均属示意,主要意在表示制程步骤以及各层之间的上下次序关系,至于形状、厚度与宽度则并未依照比例绘制。The drawings in the present invention are all schematic, mainly intended to represent the manufacturing process steps and the upper and lower sequence relationship between each layer, as for the shape, thickness and width, they are not drawn to scale.
图2显示本发明的第一个实施例。如图2所示,SBD200例如形成于基板21上,而基板21例如但不限于为硅基板、碳化硅基板、或蓝宝石基板等绝缘基板或导体基板。且于基板21上,例如但不限于以外延技术形成氮化镓(GaN)层22。除GaN层22外,SBD200还包含氮化铝镓(AlGaN)层23、绝缘层24、阳极导电层25、以及阴极导电层26。其中,AlGaN层23,形成于GaN层22上;绝缘层24形成于AlGaN层23上;阳极导电层25形成于绝缘层24上,且一部分A阳极导电层25与AlGaN层24,形成肖特基接触,且另一部分B阳极导电层25与AlGaN层23间,由绝缘层24隔开;阴极导电层26,形成于AlGaN层23上,并与AlGaN层23间,形成欧姆接触,且阴极导电层26与阳极导电层25不直接连接。Figure 2 shows a first embodiment of the invention. As shown in FIG. 2 , the SBD 200 is, for example, formed on a
本实施例与现有技术不同之处,主要在于利用绝缘层24,形成多电场平板,并调整阳极金属层25与AlGaN层23之间的肖特基位障,以提高SBD不导通时的崩溃电压。The difference between this embodiment and the prior art is that the
图3显示本发明的第二个实施例。本实施例显示应用本发明的SBD300的剖视示意图。与第一个实施例不同的是,本实施例的部分阳极导电层35与GaN层22而并非与AlGaN层23,形成肖特基接触。Fig. 3 shows a second embodiment of the present invention. This embodiment shows a schematic cross-sectional view of an SBD300 applying the present invention. Different from the first embodiment, part of the anode
请参阅图4A-4C,显示本发明的第三个实施例,SBD200的制造流程剖视示意图。如图4A所示,于基板21上,形成GaN层22于基板21上。其中基板21可以为不导电的绝缘基板,例如但不限于为蓝宝石(sapphire)基板,亦可以为导体基板,例如但不限于为碳化硅(SiC)基板。接着形成AlGaN层23于GaN层22上。Please refer to FIGS. 4A-4C , which show a schematic cross-sectional view of the manufacturing process of the SBD 200 according to the third embodiment of the present invention. As shown in FIG. 4A , on the
然后如图4B所示,形成绝缘层24于AlGaN层23上其中,绝缘层24例如但不限于以高介电材料制作,其介电常数例如高于二氧化硅的3.9。Then, as shown in FIG. 4B , an
接着如图4C所示,于绝缘层24上,形成阳极导电层25;并于AlGaN层23上,形成阴极导电层26。其中,部分阳极导电层25与AlGaN层23,形成肖特基接触,且另一部分阳极导电层25与AlGaN层23间,由绝缘层24隔开;而阴极导电层26与AlGaN23层间,形成欧姆接触(Ohmic contact),且阴极导电层26与阳极导电层25不直接连接。Next, as shown in FIG. 4C , an anode
图5显示本发明的第四个实施例。本实施例显示应用本发明的SBD400的剖视示意图。与第一个实施例不同的是,本实施例的绝缘层34由俯视图(未示出)视之为格状,形成于阳极导电层25与GaN层22或AlGaN层23之间。Fig. 5 shows a fourth embodiment of the present invention. This embodiment shows a schematic cross-sectional view of an SBD400 applying the present invention. Different from the first embodiment, the insulating
请参阅图6A-6B,显示现有技术SBD与利用本发明的SBD的阳极电流对阳极电压的特性图,如图6A-6B所示,相较于现有技术SBD,利用本发明的SBD在相同阳极电压下,阳极电流较大,表示利用本发明的SBD,其导通特性较佳。Please refer to Figures 6A-6B, which show the characteristic diagrams of the anode current to the anode voltage of the SBD of the prior art and the SBD of the present invention, as shown in Figures 6A-6B, compared with the prior art SBD, the SBD of the present invention is used in Under the same anode voltage, the anode current is larger, indicating that the SBD of the present invention has better conduction characteristics.
请参阅图7A-7B,显示现有技术SBD与利用本发明的SBD的剖面二维的电场模拟特性图,如图6A-6B所示,相较于现有技术的SBD,利用本发明的SBD在相同操作电压下,阳极边缘的电场被分散为两个峰值,且其峰值较低,表示利用本发明的SBD,其电场得到舒缓,因而可增加崩溃电压。Please refer to Figures 7A-7B, which show the two-dimensional electric field simulation characteristic diagrams of the cross-section of the prior art SBD and the SBD utilizing the present invention, as shown in Figure 6A-6B, compared with the SBD of the prior art, the SBD of the present invention is utilized Under the same operating voltage, the electric field at the edge of the anode is dispersed into two peaks, and the peak value is lower, which means that the electric field is relieved by using the SBD of the present invention, thereby increasing the breakdown voltage.
请参阅图8A-8B,显示现有技术SBD与利用本发明的SBD在阳极边缘的垂直方向的电场模拟特性图,如图8A-8B所示,相较于现有技术的SBD,利用本发明的SBD在相同操作电压下,阳极边缘的电场较低,表示利用本发明的SBD,其电场得到舒缓,因而可增加崩溃电压。Please refer to Figures 8A-8B, which show the electric field simulation characteristic diagrams of the prior art SBD and the SBD using the present invention in the vertical direction of the anode edge, as shown in Figures 8A-8B, compared with the prior art SBD, using the present invention Under the same operating voltage of the SBD, the electric field at the edge of the anode is lower, which means that the electric field is relieved by using the SBD of the present invention, thereby increasing the breakdown voltage.
请参阅图9A-9B,显示现有技术SBD与利用本发明的SBD在通道横向方向的电场模拟特性图,如图9A-9B所示,相较于现有技术的SBD,利用本发明的SBD在相同操作电压下,阳极边缘的电场较低,也就是Ep<Et,表示利用本发明的SBD,其电场得到舒缓,因而可增加崩溃电压。Please refer to Figures 9A-9B, which show the electric field simulation characteristic diagrams of the SBD of the prior art and the SBD of the present invention in the lateral direction of the channel, as shown in Figures 9A-9B, compared with the SBD of the prior art, the SBD of the present invention is used Under the same operating voltage, the electric field at the edge of the anode is lower, that is, Ep<Et, which means that the electric field is relaxed by using the SBD of the present invention, thereby increasing the breakdown voltage.
需说明的是,应用本发明的SBD,其绝缘层厚度小于1微米(um),更佳的实施方式为小于0.1微米(um)。表示此绝缘层是用以改变阳极导电层的功函数,并非直接利用较厚的绝缘层来隔离电场,使其减弱。It should be noted that the thickness of the insulating layer applied to the SBD of the present invention is less than 1 micron (um), and a more preferred embodiment is less than 0.1 micron (um). It means that the insulating layer is used to change the work function of the anode conductive layer, instead of directly using a thicker insulating layer to isolate the electric field and weaken it.
以上已针对较佳实施例来说明本发明,只是以上所述,仅为使本领域技术人员易于了解本发明的内容,并非用来限定本发明的权利范围。在本发明的相同精神下,本领域技术人员可以思及各种等效变化。例如,在不影响元件主要的特性下,可加入其它制程步骤或结构,如在形成阴极导电层前,先于SBD的阴极位置,定义并蚀刻出欧姆接触区等。本发明的范围应涵盖上述及其它所有等效变化。The present invention has been described above with reference to preferred embodiments, but the above description is only for those skilled in the art to easily understand the content of the present invention, and is not intended to limit the scope of rights of the present invention. Under the same spirit of the present invention, various equivalent changes can be conceived by those skilled in the art. For example, without affecting the main characteristics of the device, other process steps or structures can be added, such as defining and etching the ohmic contact area before the cathode position of the SBD before forming the cathode conductive layer. The scope of the present invention is intended to cover the above and all other equivalent variations.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210268452.9A CN103579372A (en) | 2012-07-30 | 2012-07-30 | Schottky barrier diode and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210268452.9A CN103579372A (en) | 2012-07-30 | 2012-07-30 | Schottky barrier diode and manufacturing method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103579372A true CN103579372A (en) | 2014-02-12 |
Family
ID=50050735
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210268452.9A Pending CN103579372A (en) | 2012-07-30 | 2012-07-30 | Schottky barrier diode and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103579372A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115775730A (en) * | 2023-02-13 | 2023-03-10 | 江苏能华微电子科技发展有限公司 | Quasi-vertical structure GaN Schottky diode and preparation method thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060108659A1 (en) * | 2004-11-25 | 2006-05-25 | Matsushita Electric Industrial Co., Ltd. | Schottky barrier diode and diode array |
US20060197175A1 (en) * | 2005-03-02 | 2006-09-07 | Manabu Yanagihara | Semiconductor device and method for manufacturing the same |
CN101569014A (en) * | 2007-08-31 | 2009-10-28 | 住友电气工业株式会社 | Schottky barrier diode |
US20100078683A1 (en) * | 2008-09-30 | 2010-04-01 | Sanken Electric Co., Ltd. | Semiconductor device |
-
2012
- 2012-07-30 CN CN201210268452.9A patent/CN103579372A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060108659A1 (en) * | 2004-11-25 | 2006-05-25 | Matsushita Electric Industrial Co., Ltd. | Schottky barrier diode and diode array |
US20060197175A1 (en) * | 2005-03-02 | 2006-09-07 | Manabu Yanagihara | Semiconductor device and method for manufacturing the same |
CN101569014A (en) * | 2007-08-31 | 2009-10-28 | 住友电气工业株式会社 | Schottky barrier diode |
US20100078683A1 (en) * | 2008-09-30 | 2010-04-01 | Sanken Electric Co., Ltd. | Semiconductor device |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115775730A (en) * | 2023-02-13 | 2023-03-10 | 江苏能华微电子科技发展有限公司 | Quasi-vertical structure GaN Schottky diode and preparation method thereof |
CN115775730B (en) * | 2023-02-13 | 2023-06-06 | 江苏能华微电子科技发展有限公司 | GaN Schottky diode with quasi-vertical structure and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6522102B2 (en) | Field effect diode and method of manufacturing the same | |
CN105845724B (en) | A kind of vertical HEMT device of accumulation type | |
CN103975438A (en) | Vertical gan jfet with gate and source electrodes on regrown gate | |
CN107810559B (en) | Transistor with high electron mobility | |
CN108807524A (en) | Semiconductor devices and its manufacturing method | |
CN107946362A (en) | A kind of MOSFET element for improving pressure-resistant scope and preparation method thereof | |
CN103579372A (en) | Schottky barrier diode and manufacturing method thereof | |
TWI513010B (en) | Junction energy barrier Schottky diode and manufacturing method thereof | |
CN107230719A (en) | HEMT and preparation method thereof | |
US9786776B2 (en) | Vertical semiconductor device and manufacturing method thereof | |
US9466552B2 (en) | Vertical semiconductor device having a non-conductive substrate and a gallium nitride layer | |
US20130270571A1 (en) | Schottky barrier diode and manufacturing method thereof | |
TW201336071A (en) | Semiconductor structure and method for forming the same | |
TW201338130A (en) | Vertical semiconductor device and manufacturing method thereof | |
US20140048815A1 (en) | Schottky barrier diode and manufacturing method thereof | |
CN103887325A (en) | Semiconductor device for enhancing voltage resistance of device and preparation method thereof | |
CN104347732A (en) | Junction barrier Schottky diode and manufacturing method thereof | |
TW201340335A (en) | Schottky barrier diode and manufacturing method thereof | |
CN103618003B (en) | High-electronic-mobility transistor with improved grid electrode | |
JP5914097B2 (en) | Semiconductor device and method for manufacturing semiconductor device | |
CN103383968A (en) | Interface charge compensation Schottky semiconductor device and manufacturing method for same | |
TW201405838A (en) | Schottky barrier diode and manufacturing method thereof | |
JP2012182199A (en) | Semiconductor device | |
CN107104154A (en) | Schottky diode and preparation method thereof | |
CN106981508B (en) | Horizontal type semiconductor element with vertical type jumper structure electrodes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20140212 |