CN103579337A - Semiconductor device and method for forming the same - Google Patents
Semiconductor device and method for forming the same Download PDFInfo
- Publication number
- CN103579337A CN103579337A CN201210275290.1A CN201210275290A CN103579337A CN 103579337 A CN103579337 A CN 103579337A CN 201210275290 A CN201210275290 A CN 201210275290A CN 103579337 A CN103579337 A CN 103579337A
- Authority
- CN
- China
- Prior art keywords
- gate structure
- implantation
- substrate
- type
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 79
- 238000000034 method Methods 0.000 title claims abstract description 61
- 239000000758 substrate Substances 0.000 claims abstract description 52
- 230000005669 field effect Effects 0.000 claims abstract description 29
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 19
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 19
- 239000004744 fabric Substances 0.000 claims description 7
- 238000002513 implantation Methods 0.000 abstract description 87
- 239000007943 implant Substances 0.000 description 34
- 150000002500 ions Chemical class 0.000 description 29
- 235000012431 wafers Nutrition 0.000 description 11
- 230000000694 effects Effects 0.000 description 8
- 125000001475 halogen functional group Chemical group 0.000 description 3
- 230000005684 electric field Effects 0.000 description 2
- 238000005468 ion implantation Methods 0.000 description 2
- 230000000873 masking effect Effects 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/26—Bombardment with radiation
- H01L21/263—Bombardment with radiation with high-energy radiation
- H01L21/265—Bombardment with radiation with high-energy radiation producing ion implantation
- H01L21/266—Bombardment with radiation with high-energy radiation producing ion implantation using masks
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/027—Manufacture or treatment of FETs having insulated gates [IGFET] of lateral single-gate IGFETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/20—Electrodes characterised by their shapes, relative sizes or dispositions
- H10D64/27—Electrodes not carrying the current to be rectified, amplified, oscillated or switched, e.g. gates
- H10D64/311—Gate electrodes for field-effect devices
- H10D64/411—Gate electrodes for field-effect devices for FETs
- H10D64/511—Gate electrodes for field-effect devices for FETs for IGFETs
- H10D64/512—Disposition of the gate electrodes, e.g. buried gates
Landscapes
- Physics & Mathematics (AREA)
- High Energy & Nuclear Physics (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
Description
技术领域 technical field
本发明涉及一种半导体元件及其形成方法;具体而言,本发明涉及一种与口袋型布植(pocket implant or halo implant)技术相关的半导体元件及其形成方法。The present invention relates to a semiconductor element and its forming method; in particular, the present invention relates to a semiconductor element related to pocket implant or halo implant technology and its forming method.
背景技术 Background technique
随着半导体工艺技术的演进,半导体元件已渐渐地朝着小尺寸及高密度的方向发展。当半导体元件的尺寸变小时,会面临短沟道效应(short channeleffect)的问题。With the evolution of semiconductor process technology, semiconductor devices have been gradually developed towards the direction of small size and high density. When the size of the semiconductor element becomes smaller, it will face the problem of short channel effect (short channel effect).
口袋型布植(pocket implant or halo implant)技术为改善短沟道效应的常用方法。图1A描绘公知半导体元件1的俯视图,而图1B则描绘公知半导体元件1于参考虚线14处的剖面示意图。半导体元件1包含基板10、栅极结构11、源极区12及漏极区13,而栅极结构11则包含介电层11a及栅极电极11b。公知的口袋型布植技术由四个方向10a、10b、10c、10d对半导体元件1进行口袋型布植。首先,设定离子布植(ion implantation)条件并固定离子布植的角度,接下来以同一掩模由四个方向10a、10b、10c、10d中的其中一方向(例如:方向10a)开始进行口袋型布植,之后将基板10水平地旋转九十度,再由下一方向(例如:方向10c)进行口袋型布植,依此类推,直至四个方向皆布植完毕。如此,以方向10c、10d对半导体元件1的栅极电极11b进行口袋型布植,以方向10a、10b进行与栅极电极11b垂直的另一半导体元件的栅极电极(未图示)的口袋型布植。Pocket implant or halo implant technology is a common method to improve the short channel effect. FIG. 1A depicts a top view of a known semiconductor device 1 , and FIG. 1B depicts a schematic cross-sectional view of the known semiconductor device 1 at the reference dotted
由图1B可知,对半导体元件1进行方向10c、10d的口袋型布植后,会分别于源极区12及漏极区13的内侧边缘形成口袋布植区15、16。口袋布植区15、16能分别降低源极区12与基板10间的横向电场及漏极区13与基板10间的横向电场,藉此改善短沟道效应。It can be seen from FIG. 1B that after the pocket implantation in the
然而,当半导体工艺技术进入纳米级时代(亦即,100纳米以下时代)时,对半导体元件进行口袋型布植所衍生出元件非匹配性(device mismatch)的问题愈形严重。通常,可通过调整离子布植浓度(ion implant dose)、离子布植能量(ion implant energy)、热工艺(thermal process)或采用共用布植(co-implant)等方式,在短沟道效应与元件非匹配性之间取得平衡。不过,随着工艺的不断微缩(如40纳米以下),上述的方法所能达成的效果有限。However, when the semiconductor process technology enters the nano-scale era (that is, the era below 100 nanometers), the problem of device mismatch derived from pocket-type implantation of semiconductor elements becomes more and more serious. Usually, by adjusting ion implant concentration (ion implant dose), ion implant energy (ion implant energy), thermal process (thermal process) or using common implant (co-implant), etc., the short channel effect and balance between component mismatches. However, as the technology continues to shrink (eg below 40 nanometers), the above-mentioned methods can achieve limited effects.
有鉴于此,如何在工艺的不断微缩(如40纳米以下)下,在短沟道效应与元件非匹配性两问题间取得平衡,仍是本领域亟待解决的课题。In view of this, how to strike a balance between the short-channel effect and device mismatch under the continuous shrinkage of the technology (such as below 40 nanometers) is still an urgent problem to be solved in this field.
现有技术的缺点是对半导体元件1的栅极电极11b进行口袋型布植以形成口袋布植区15、16,其中于方向10c、10d进行的口袋型布植,会对与的垂直的该另一半导体元件的栅极电极造成其元件非匹配性或其它不良影响;相同的,于方向10a、10b进行的口袋型布植亦会对栅极电极11b(半导体元件1)的元件特性造成负面的影响。The disadvantage of the prior art is that pocket implantation is performed on the
发明内容 Contents of the invention
针对现有技术中存在的问题,本发明提出以一掩模以对与半导体元件(如第一型金属氧化物半导体场效晶体管)的一栅极电极平行的栅极电极进行口袋型布植(如方向10c、10d);但如此,将使得栅极电极仅能以平行方向摆放,而不利于布局面积与晶圆的利用率。因此,本发明提出以另一掩模对与该半导体元件的该栅极电极不同方向(如与之垂直)的栅极电极进行口袋型布植(如方向10a、10b),以进一步解决公知技术与上述的问题。Aiming at the problems existing in the prior art, the present invention proposes to use a mask to perform pocket-type implantation on a gate electrode parallel to a gate electrode of a semiconductor element (such as a first-type metal-oxide-semiconductor field-effect transistor) ( Such as
因此,本发明提供一种形成半导体元件的方法及一种半导体元件。Therefore, the present invention provides a method of forming a semiconductor device and a semiconductor device.
本发明所提供的半导体元件,形成于一基板上,且包含一第一第一型金属氧化物半导体场效晶体管及一第二第一型金属氧化物半导体场效晶体管。该第一第一型金属氧化物半导体场效晶体管具有形成于该基板上的一第一栅极结构、一第一源极区、及一第一漏极区。该第二第一型金属氧化物半导体场效晶体管具有形成于该基板上的一第二栅极结构、一第二源极区、及一第二漏极区。该第一第一型金属氧化物半导体场效晶体管以一第一掩模进行一第一口袋布植,该第二第一型金属氧化物半导体场效晶体管以一第二掩模进行一第二口袋布植,且该第二栅极结构的方向与该第一栅极结构的方向不同。The semiconductor element provided by the present invention is formed on a substrate and includes a first first-type MOSFET and a second first-type MOSFET. The first first-type MOSFET has a first gate structure, a first source region, and a first drain region formed on the substrate. The second first type MOSFET has a second gate structure, a second source region, and a second drain region formed on the substrate. A first pocket implant is performed on the first first type metal oxide semiconductor field effect transistor with a first mask, and a second pocket implant is performed on the second first type metal oxide semiconductor field effect transistor with a second mask. The pockets are implanted, and the direction of the second gate structure is different from that of the first gate structure.
本发明所提供的于一基板上形成半导体元件的方法,包含下列步骤:形成一第一第一型金属氧化物半导体场效晶体管,该第一第一型金属氧化物半导体场效晶体管具有形成于该基板上的一第一栅极结构、一第一源极区及一第一漏极区;形成一第二第一型金属氧化物半导体场效晶体管,该第二第一型金属氧化物半导体场效晶体管具有形成于该基板上的一第二栅极结构、一第二源极区及一第二漏极区;以一第一掩模对该第一第一型金属氧化物半导体场效晶体管进行一第一口袋布植;以及以一第二掩模对该第二第一型金属氧化物半导体场效晶体管进行一第二口袋布植。其中,该第二栅极结构的方向与该第一栅极结构的方向不同。The method for forming a semiconductor element on a substrate provided by the present invention includes the following steps: forming a first first-type metal-oxide-semiconductor field-effect transistor, the first first-type metal-oxide-semiconductor field-effect transistor having a A first gate structure, a first source region and a first drain region on the substrate; form a second first type metal oxide semiconductor field effect transistor, the second first type metal oxide semiconductor The field effect transistor has a second gate structure, a second source region and a second drain region formed on the substrate; performing a first pocket implantation on the transistor; and performing a second pocket implantation on the second MOS field effect transistor with a second mask. Wherein, the direction of the second gate structure is different from that of the first gate structure.
本发明的有益效果在于,本发明所提供的形成半导体元件的方法,能于基板上形成二个不同方向的栅极结构,其通过不同的两道掩模,分别于各栅极结构的两侧施以口袋型布植,使口袋布植区形成于源极区及漏极区边缘。由于口袋型布植程序仅施加于栅极结构的两侧,故能减缓元件非匹配性的问题。此外,由于栅极结构间的方向不需相同,因此能缩小整体布局面积,提升晶圆的利用率。The beneficial effect of the present invention is that the method for forming a semiconductor element provided by the present invention can form two gate structures with different directions on the substrate, which are respectively placed on both sides of each gate structure through two different masks. Pocket implantation is applied to form pocket implantation regions at the edges of the source region and the drain region. Since the pocket implant procedure is only applied to two sides of the gate structure, the problem of device mismatch can be alleviated. In addition, since the directions of the gate structures do not need to be the same, the overall layout area can be reduced and the utilization rate of the wafer can be improved.
附图说明 Description of drawings
图1A描绘公知半导体元件的俯视图;FIG. 1A depicts a top view of a known semiconductor device;
图1B描绘公知半导体元件于参考虚线14处的剖面示意图;FIG. 1B depicts a schematic cross-sectional view of a known semiconductor device at reference dotted
图2A描绘第一实施例的半导体元件的俯视图;FIG. 2A depicts a top view of the semiconductor element of the first embodiment;
图2B描绘第一实施例的半导体元件于参考虚线214处的剖面示意图;FIG. 2B depicts a schematic cross-sectional view of the semiconductor device of the first embodiment at the reference dotted
图2C描绘第一实施例的半导体元件于参考虚线224处的剖面示意图;FIG. 2C depicts a schematic cross-sectional view of the semiconductor device of the first embodiment at the reference dotted
图3描绘本发明的第二实施例的例示性晶圆3;以及Figure 3 depicts an exemplary wafer 3 of a second embodiment of the invention; and
图4A、图4B及图4C描绘本发明的第三实施例的流程图。4A, 4B and 4C depict a flowchart of a third embodiment of the present invention.
其中,附图标记说明如下:Wherein, the reference signs are explained as follows:
1 半导体元件1 semiconductor components
10a 方向10a direction
10b 方向10b direction
10c 方向10c direction
10d 方向10d direction
11 栅极结构11 Gate structure
11a 介电层11a Dielectric layer
11b 栅极电极11b Gate electrode
12 源极区12 source region
13 漏极区13 Drain region
14 参考虚线14 reference dotted line
15 口袋布植区15 Pocket planting area
16 口袋布植区16 Pocket planting area
2 半导体元件2 semiconductor components
210 基板210 Substrate
210a 方向210a Direction
210b 方向210b direction
211a 第一介电层211a first dielectric layer
211b 第一栅极电极211b first grid electrode
212 第一源极区212 The first source region
213 第一漏极区213 The first drain region
214 参考虚线214 reference dotted line
215 第一口袋布植区215 First pocket planting area
216 第一口袋布植区216 First pocket planting area
217a 第一侧壁子217a First side wall
217b 第一侧壁子217b First side wall
218 参考虚线218 reference dotted line
219a 第一轻布植区219a The first light planting area
219b 第一轻布植区219b The first light planting area
220a 方向220a Direction
220b 方向220b direction
221a 第二介电层221a second dielectric layer
221b 第二栅极电极221b second grid electrode
222 第二源极区222 second source region
223 第二漏极区223 The second drain region
224 参考虚线224 reference dotted line
225 第二口袋布植区225 Second Pocket Implantation Area
226 第二口袋布植区226 second pocket implantation area
227a 第二侧壁子227a second side wall
227b 第二侧壁子227b second side wall
229a 第二轻布植区229a The second light planting area
229b 第二轻布植区229b The second light planting area
3 晶圆3 wafers
30 基板30 Substrate
31 第一N型栅极结构31 The first N-type gate structure
32 第二N型栅极结构32 The second N-type gate structure
33 第一P型栅极结构33 The first P-type gate structure
34 第二P型栅极结构34 The second P-type gate structure
36a 区域36a area
36b 区域36b area
36c 区域36c area
36d 区域36d area
具体实施方式 Detailed ways
以下将通过实施例来解释本发明所提供的半导体元件及其形成方法。然而,本发明的实施例并非用以限制本发明须在如实施例所述的任何环境、应用或方式方能实施。因此,关于实施例的说明仅为阐释本发明的目的,而非用以直接限制本发明。需说明者,以下实施例及附图中,与本发明非直接相关的元件及程序可能省略而未绘示。The semiconductor element provided by the present invention and its forming method will be explained through the following examples. However, the embodiments of the present invention are not intended to limit the present invention to be implemented in any environment, application or manner as described in the embodiments. Therefore, the descriptions about the embodiments are only for the purpose of illustrating the present invention, rather than directly limiting the present invention. It should be noted that in the following embodiments and drawings, components and procedures not directly related to the present invention may be omitted and not shown.
本发明的第一实施例为半导体元件2,请参图2A、图2B及图2C中。图2A描绘半导体元件2的俯视图,图2B描绘半导体元件2于参考虚线214处的剖面示意图,而图2C则描绘半导体元件2于参考虚线224处的剖面示意图。The first embodiment of the present invention is a
半导体元件2包含基板210、第一栅极结构、第一侧壁子217a、217b、第一源极区212、第一漏极区213、第一轻布植区219a、219b、第一口袋布植区215、216、第二栅极结构、第二侧壁子227a、227b、第二源极区222、第二漏极区223、第二轻布植区229a、229b及第二口袋布植区225、226。其中,第一栅极结构、第一源极区212、及第一漏极区213形成一第一第一型金属氧化物半导体场效晶体管的主体,而第二栅极结构、第二源极区222、及第二漏极区223形成一第二第一型金属氧化物半导体场效晶体管的主体。The
第一栅极结构及第二栅极结构分别形成于基板210上的第一区域及第二区域。于图2A中,参考虚线218上方为第一区域,而参考虚线218下方为第二区域。第一栅极结构包含第一介电层211a及第一栅极电极211b,而第二栅极结构包含第二介电层221a及第二栅极电极221b。须说明者,第一栅极结构及第二栅极结构的方向不同(亦即,于基板210上,第一栅极电极211b的摆放方向与第二栅极电极221b的摆放方向不同)。于较佳实施态样中,第一栅极结构于基板210上的摆放方向与第二栅极结构于基板210上的摆放方向呈九十度,如图2A的第一栅极电极211b及第二栅极电极221b所示。The first gate structure and the second gate structure are respectively formed on the first region and the second region on the
接着,对第一第一型金属氧化物半导体场效晶体管以第一掩模(mask)进行第一口袋布值。具体而言,以第一掩模(未绘示)以来覆盖第二区域(亦即,参考虚线218下方)及其它非相关区域。之后,第一实施例先后采用一轻布植(Lightly-Doped Drain;LDD)程序及一口袋布植(pocket implant or haloimplant)程序,由两个方向210a、210b进行轻布植及口袋型布植。通过此轻布植程序,便于基板210内位于第一栅极结构下方的两侧处分别形成第一轻布植区219a、219b。再者,通过此口袋布植程序,便于基板210内位于第一轻布植区219a、219b的内侧边缘分别形成第一口袋布植区215、216。Next, a first masking is performed on the first first-type metal-oxide-semiconductor field effect transistor with a first mask. Specifically, a first mask (not shown) is used to cover the second area (ie, below the reference dotted line 218 ) and other non-related areas. Afterwards, the first embodiment successively adopts a light-doped drain (LDD) program and a pocket implant or halo implant program, and performs light-doped drain and pocket implant from two
详细而言,前段所述的口袋布植程序,可先由方向210a进行口袋型布植,接着,将基板210水平地旋转一百八十度,再由方向210b进行口袋型布植,二者形成第一口袋布植区215及216。须说明者,于其他实施态样中,可先由方向210b进行口袋型布植,再由方向210a进行口袋型布植。In detail, in the pocket implant procedure described in the previous paragraph, the pocket implant can be performed from the
接着,对第二第一型金属氧化物半导体场效晶体管以第二掩模进行第二口袋布值。具体而言,以第二掩模(未绘示)来覆盖第一区域(亦即,参考虚线218上方)及其它非相关区域。之后,再采用轻布植程序及口袋布植程序,由两个方向220a、220b进行轻布植及口袋型布植。通过此轻布植程序,便于基板210内位于第二栅极结构下方的两侧处分别形成第二轻布植区229a、229b。再者,通过此口袋布植程序,便于基板210内位于第二轻布植区229a、229b的内侧边缘分别形成第二口袋布植区225、226。Next, a second masking process is performed on the second first-type MOSFET by using the second mask. Specifically, a second mask (not shown) is used to cover the first region (ie, above the reference dotted line 218 ) and other non-related regions. Afterwards, the light implantation program and the pocket implantation program are adopted to perform light implantation and pocket implantation from two
详细而言,前段所述的口袋布植程序,可先由方向220a进行口袋型布植,接着,将基板210水平地旋转一百八十度,再由方向220b进行口袋型布植,二者形成第二口袋布植区225及226。须说明者,于其他实施态样中,可先由方向220b进行口袋型布植,再由方向220a进行口袋型布植。In detail, in the pocket implant procedure described in the previous paragraph, the pocket implant can be performed from the
接着,于基板210上位于第一栅极结构的两侧分别形成第一侧壁子(spacer)217a、217b,且于基板210上位于第二栅极结构的两侧分别形成第二侧壁子227a、227b。之后,通过源极区及漏极布植程序,将第一源极区212及第一漏极区213分别形成于基板210内位于第一轻布植区219a、219b的外侧。同理,通过源极区及漏极布植程序,将第二源极区222及第二漏极区223分别形于基板210内位于第一轻布植区229a、229b的外侧。Next,
于一实施例中,以第一掩模进行的口袋布植所施加的角度与以第二掩模进行的第二口袋布植施加的角度实质上呈九十度。此外,于一实施例中,第一栅极结构与第二栅极结构由同一型离子掺杂而成。具体而言,若第一栅极结构、第一源极区212、第一漏极区213、第一轻布植区219a、219b、第二栅极结构、第二源极区222、第二漏极区223及第二轻布植区229a、229b由第一型离子掺杂而成,则第一口袋布植区215、216及第二口袋布植区225、226由第二型离子掺杂而成。其中,第一型离子可为P型离子或N型离子中的任一种,而第二型离子则为P型离子或N型离子中的另一种。In one embodiment, the angle applied to the pocket implant using the first mask is substantially ninety degrees from the angle applied to the second pocket implant using the second mask. In addition, in one embodiment, the first gate structure and the second gate structure are doped with the same type of ions. Specifically, if the first gate structure, the
由上述说明可知,第一实施例的半导体元件2上形成有两个不同方向的栅极结构(亦即第一栅极结构及第二栅极结构)。由于第一栅极结构及第二栅极结构的摆放方向不同,因此能缩小整体的布局面积。此外,口袋布植程序施加于第一栅极结构及第二栅极结构的两侧(或说第一栅极结构与第一源极区212及第一漏极区213所形成的第一沟道两端,以及第二栅极结构与第二源极区222及第二漏极区223所形成的第二沟道两端),故能减少半导体元件2的非匹配性问题。It can be seen from the above description that two gate structures (ie, the first gate structure and the second gate structure) with different directions are formed on the
本发明的第二实施例为例示性晶圆3,其俯视图描绘于图3。首先,于基板30上的区域36a、36b、36c、36d分别形成多个第一N型栅极结构31、多个第二N型栅极结构32、多个第一P型栅极结构33及多个第二P型栅极结构34。N型栅极结构31与N型栅极结构32的方向呈九十度,且P型栅极结构33与P型栅极结构34的方向呈九十度。A second embodiment of the present invention is an exemplary wafer 3 , the top view of which is depicted in FIG. 3 . First, a plurality of first N-type gate structures 31, a plurality of second N-type gate structures 32, a plurality of first P-type gate structures 33 and A plurality of second P-type gate structures 34 . The direction of the N-type gate structure 31 and the N-type gate structure 32 is 90 degrees, and the direction of the P-type gate structure 33 and the P-type gate structure 34 is 90 degrees.
接着,以一掩模覆盖区域36b、36c、36d,再以轻布植程序于基板30内位于第一N型栅极结构31下方的两侧处分别形成N型离子的轻布植区(未绘示),且以口袋布植程序于前述轻布植区内侧边缘分别形成P型离子的口袋布植区(未绘示)。Next, a mask is used to cover the regions 36b, 36c, and 36d, and light implantation regions (not shown) of N-type ions are respectively formed on both sides of the substrate 30 below the first N-type gate structure 31 by a light implantation procedure. shown), and pocket implantation regions (not shown) for P-type ions are respectively formed on the inner edge of the aforementioned light implantation region by the pocket implantation procedure.
类似的,以一掩模覆盖区域36a、36c、36d及其它非相关区域,再以轻布植程序于基板30内位于第二N型栅极结构32下方的两侧处分别形成N型离子的轻布植区(未绘示),且以口袋布植程序于前述轻布植区内侧边缘分别形成P型离子的口袋布植区(未绘示)。Similarly, cover regions 36a, 36c, 36d and other non-related regions with a mask, and then form N-type ions on both sides of the substrate 30 below the second N-type gate structure 32 by a light implantation procedure. The light implantation region (not shown), and pocket implantation regions (not shown) of P-type ions are respectively formed on the inner edge of the aforementioned light implantation region by the pocket implantation procedure.
之后,以一掩模覆盖区域36a、36b、36d及其它非相关区域,再以轻布植程序于基板30内位于第一P型栅极结构33下方的两侧处分别形成P型离子的轻布植区(未绘示),且以口袋布植程序于前述轻布植区内侧边缘分别形成N型离子的口袋布植区(未绘示)。Afterwards, a mask is used to cover the regions 36a, 36b, 36d and other non-related regions, and light implantation of P-type ions is respectively formed on both sides of the substrate 30 under the first P-type gate structure 33 by light implantation procedures. Implantation regions (not shown), and pocket implantation regions (not shown) for N-type ions are respectively formed on the inner edge of the light implantation region by the pocket implantation procedure.
类似的,以一掩模覆盖区域36b、36c、36d,再以轻布植程序于基板30内位于第二P型栅极结构34下方的两侧处分别形成P型离子的轻布植区(未绘示),且以口袋布植程序于前述轻布植区内侧边缘分别形成N型离子的口袋布植区(未绘示)。Similarly, the regions 36b, 36c, and 36d are covered with a mask, and lightly implanted regions ( not shown), and pocket implantation regions (not shown) for N-type ions are respectively formed on the inner edge of the aforementioned light implantation region by the pocket implantation procedure.
然后,于基板30上位于各第一N型栅极结构31的两侧、各第二N型栅极结构32的两侧、各第一P型栅极结构33的两侧及各第二P型栅极结构的两侧分别形成侧壁子。之后,以一掩模覆盖区域36c、36d,以于基板30内位于第一N型栅极结构31及第二N型栅极结构32的轻布植区的外侧形成源极区及漏极区。类似的,以一掩模覆盖区域36a、36b,以于基板30内位于第一P型栅极结构33及第二P型栅极结构34的轻布植区的外侧形成源极区及漏极区。Then, on the substrate 30, on both sides of each first N-type gate structure 31, on both sides of each second N-type gate structure 32, on both sides of each first P-type gate structure 33, and on each second P-type gate structure. Sidewalls are respectively formed on both sides of the type gate structure. Afterwards, a mask is used to cover the regions 36c, 36d to form a source region and a drain region outside the lightly implanted regions of the first N-type gate structure 31 and the second N-type gate structure 32 in the substrate 30 . Similarly, a mask is used to cover the regions 36a, 36b to form source regions and drains outside the lightly implanted regions of the first P-type gate structure 33 and the second P-type gate structure 34 in the substrate 30 district.
通过上述程序,第二实施例的例示性晶圆3上便形成有不同方向的N型金属氧化物半导体场效晶体管(N-Type Metal-Oxide-SemiconductorField-Effect Transistor,NMOS)及不同方向的P型金属氧化物半导体场效晶体管(P-Type Metal-Oxide-Semiconductor Field-Effect Transistor,PMOS),因此能缩小整体的布局面积,有效地利用晶圆3的空间。一片晶圆或一个小面积的布局区域若仅能以单一方向摆放栅极结构其晶圆或面积的使用率将受限,40纳米以下若能以不同的掩模来摆放不同方向的栅极结构将可大幅改善晶圆或面积的使用率。Through the above procedures, N-Type Metal-Oxide-Semiconductor Field-Effect Transistors (N-Type Metal-Oxide-Semiconductor Field-Effect Transistor, NMOS) in different directions and P transistors in different directions are formed on the exemplary wafer 3 of the second embodiment. Type Metal-Oxide-Semiconductor Field-Effect Transistor (P-Type Metal-Oxide-Semiconductor Field-Effect Transistor, PMOS), so the overall layout area can be reduced and the space of the wafer 3 can be effectively used. If a wafer or a small-area layout area can only place gate structures in one direction, the utilization rate of the wafer or area will be limited. If gate structures in different directions can be placed with different masks below 40 nm The pole structure will greatly improve the utilization rate of wafer or area.
本发明的第三实施例为一种形成半导体元件的方法,其流程图描绘于图4A、图4B及图4C。A third embodiment of the present invention is a method for forming a semiconductor device, the flow chart of which is depicted in FIG. 4A , FIG. 4B and FIG. 4C .
首先,此方法执行步骤S401,于基板上的一第一区域及一第二区域分别形成第一栅极结构及第二栅极结构。须说明者,第一栅极结构的方向与第二栅极结构的方向不同。于较佳的情况,第一栅极结构的方向与第二栅极结构的方向呈九十度。Firstly, the method executes step S401, forming a first gate structure and a second gate structure on a first region and a second region on the substrate respectively. It should be noted that the direction of the first gate structure is different from that of the second gate structure. In a preferred situation, the direction of the first gate structure and the direction of the second gate structure are 90 degrees.
接着执行步骤S403,以第一掩模覆盖该第二区域及其它非相关区域。于步骤S405中,以轻布植程序,于基板内位于第一栅极结构下方的两侧处,分别形成一第一轻布植区。之后,于步骤S407中,以口袋布植程序,于各第一轻布植区内侧边缘分别形成第一口袋布植区。Next, step S403 is executed to cover the second area and other non-related areas with the first mask. In step S405 , a first light implantation region is formed on both sides of the substrate below the first gate structure by light implantation procedure. Afterwards, in step S407 , first pocket implantation regions are formed on the inner edges of the first light implantation regions by the pocket implantation procedure.
进一步言,步骤S407可由步骤S407a、S407b及S407c来达成。于步骤S407a中,此方法以口袋布植程序,于该等第一轻布植区其中之一的内侧边缘形成一第一口袋布植区。接着,于步骤S407b中,将基板水平地旋转一百八十度。随后,于步骤S407c,此方法以口袋布植程序,于该等第一轻布植区其中之另一的内侧边缘形成另一第一口袋布植区。Furthermore, step S407 can be achieved by steps S407a, S407b and S407c. In step S407a, the method forms a first pocket implantation region on the inner edge of one of the first light implantation regions by a pocket implantation procedure. Next, in step S407b, the substrate is rotated horizontally by 180 degrees. Subsequently, in step S407c, the method forms another first pocket implantation region on the inner edge of another one of the first light implantation regions by a pocket implantation procedure.
之后,执行步骤S409,以第二掩模覆盖第一区域及其它非相关区域。于形成第二掩模后,此方法执行步骤S411以便以轻布植程序,于基板内位于第二栅极结构下方的两侧处,分别形成一第二轻布植区。接着,再执行步骤S413,以口袋布植程序,于各第二轻布植区内侧边缘分别形成一第二口袋布植区。于较佳实施态样中,步骤S413的口袋布植程序所施加的角度与步骤S407的口袋布植施加的角度实质上呈九十度。Afterwards, step S409 is executed to cover the first area and other non-related areas with the second mask. After the second mask is formed, the method executes step S411 to respectively form a second light implantation region on both sides of the substrate below the second gate structure by light implantation process. Next, step S413 is executed again to form a second pocket implantation area on the inner edge of each second light implantation area through the pocket implantation procedure. In a preferred embodiment, the angle applied by the pocket implanting procedure in step S413 and the angle applied by the pocket implanting in step S407 are substantially 90 degrees.
进一步言,步骤S413可由步骤S413a、S413b及S413c来达成。于步骤S413a中,此方法以口袋布植程序,于所述第二轻布植区其中之一的内侧边缘,形成一第二口袋布植区。接着,于步骤S413b中,将基板水平地旋转一百八十度。随后,于步骤S413c,此方法以口袋布植程序,于所述第二轻布植区其中之另一的内侧边缘,形成另一第二口袋布植区。Furthermore, step S413 can be achieved by steps S413a, S413b and S413c. In step S413a, the method forms a second pocket implantation region on the inner edge of one of the second light implantation regions by a pocket implantation procedure. Next, in step S413b, the substrate is rotated horizontally by 180 degrees. Subsequently, in step S413c, the method forms another second pocket implantation region on the inner edge of the other one of the second light implantation regions by a pocket implantation procedure.
之后,于步骤S415中,于基板上位于第一栅极结构的两侧分别形成第一侧壁子,且于基板上位于第二栅极结构的两侧分别形成第二侧壁子。接着,于步骤S417中,以一源极区及漏极布植程序,于基板内位于所述第一轻布植区的外侧形成一第一源极区及一第一漏极区,且于基板内位于所述第二轻布植区的外侧形成一第二源极区及一第二漏极区。Afterwards, in step S415 , first sidewalls are respectively formed on both sides of the first gate structure on the substrate, and second sidewalls are respectively formed on both sides of the second gate structure on the substrate. Next, in step S417, a first source region and a first drain region are formed outside the first light implantation region in the substrate by a source region and drain implantation procedure, and A second source region and a second drain region are formed in the substrate outside the second lightly implanted region.
须说明者,前述第一栅极结构、第一源极区及第一漏极区形成一第一第一型金属氧化物半导体场效晶体管的主体,而第二栅极结构、第二源极区及第二漏极区形成一第二第一型金属氧化物半导体场效晶体管的主体。前述步骤S407可视为以第一掩模对第一第一型金属氧化物半导体场效晶体管进行第一口袋布植。此外,第一口袋布植施加于第一栅极结构与第一源极区及第一漏极区所形成的第一沟道两端。类似的,前述步骤S413可视为以第二掩模对第二第一型金属氧化物半导体场效晶体管进行第二口袋布植。此外,第二口袋布植施加于第二栅极结构与第二源极区及第二漏极区所形成的第二沟道两端。It should be noted that the first gate structure, the first source region and the first drain region form the main body of a first first type metal oxide semiconductor field effect transistor, and the second gate structure, the second source The region and the second drain region form the body of a second MOSFET. The aforementioned step S407 can be regarded as performing the first pocket implantation on the first first-type MOSFET by using the first mask. In addition, the first pocket implant is applied to both ends of the first channel formed by the first gate structure and the first source region and the first drain region. Similarly, the aforementioned step S413 can be regarded as performing the second pocket implantation on the second Type 1 MOSFET by using the second mask. In addition, the second pocket implant is applied to both ends of the second channel formed by the second gate structure and the second source region and the second drain region.
此外,于一实施例中,第一栅极结构与第二栅极结构由同一型离子掺杂而成。具体而言,若第一栅极结构、第一轻布植区、第一源极区、第一漏极区、第二栅极结构、第二轻布植区、第二源极区及第二漏极区由第一型离子掺杂而成,则第一口袋布植区及第二口袋布植区由第二型离子掺杂而成。其中,第一型离子可为P型离子或N型离子中的任一种,而第二型离子则为P型离子或N型离子中的另一种。In addition, in one embodiment, the first gate structure and the second gate structure are doped with the same type of ions. Specifically, if the first gate structure, the first lightly implanted region, the first source region, the first drain region, the second gate structure, the second lightly implanted region, the second source region and the first The second drain region is doped by the first-type ions, and the first pocket implantation region and the second pocket implantation region are doped by the second-type ions. Wherein, the first-type ions can be any one of P-type ions or N-type ions, and the second-type ions are the other one of P-type ions or N-type ions.
通过本发明所提供的形成半导体元件的方法,能于基板上形成两个不同方向的栅极结构,再通过两道掩模,分别于各栅极结构的两侧施以口袋型布植,使口袋布植区形成于源极区及漏极区下方。由于口袋型布植程序仅施加于栅极结构的两侧(或说沟道的两端),故能减缓元件的非匹配性的问题。此外,由于栅极结构间的方向不需相同,因此能缩小整体布局面积,提升晶圆的利用率。Through the method for forming a semiconductor element provided by the present invention, two gate structures with different directions can be formed on the substrate, and then pocket-type implants are respectively applied to both sides of each gate structure through two masks, so that A pocket implant region is formed under the source region and the drain region. Since the pocket-type implantation procedure is only applied to both sides of the gate structure (or both ends of the channel), the problem of device mismatch can be alleviated. In addition, since the directions of the gate structures do not need to be the same, the overall layout area can be reduced and the utilization rate of the wafer can be improved.
由于半导体工艺可能超过几百道程序,上述的实施例仅用来例举本发明的实施态样,以及阐释本发明的技术特征,并非用来限制本发明的保护范畴。任何本技术领域的技术人员可轻易完成的改变或等同性的安排均属于本发明所主张的范围,本发明的权利保护范围应以权利要求为准。Since the semiconductor process may exceed hundreds of procedures, the above-mentioned embodiments are only used to illustrate the implementation of the present invention and explain the technical features of the present invention, and are not intended to limit the scope of protection of the present invention. Any changes or equivalent arrangements that can be easily accomplished by those skilled in the art belong to the scope of the present invention, and the protection scope of the present invention should be determined by the claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210275290.1A CN103579337A (en) | 2012-08-03 | 2012-08-03 | Semiconductor device and method for forming the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210275290.1A CN103579337A (en) | 2012-08-03 | 2012-08-03 | Semiconductor device and method for forming the same |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103579337A true CN103579337A (en) | 2014-02-12 |
Family
ID=50050710
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210275290.1A Pending CN103579337A (en) | 2012-08-03 | 2012-08-03 | Semiconductor device and method for forming the same |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103579337A (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5976937A (en) * | 1997-08-28 | 1999-11-02 | Texas Instruments Incorporated | Transistor having ultrashallow source and drain junctions with reduced gate overlap and method |
US6566204B1 (en) * | 2000-03-31 | 2003-05-20 | National Semiconductor Corporation | Use of mask shadowing and angled implantation in fabricating asymmetrical field-effect transistors |
CN101055872A (en) * | 2006-04-10 | 2007-10-17 | 台湾积体电路制造股份有限公司 | Semiconductor structure and manufacturing method thereof |
CN101068007A (en) * | 2006-05-01 | 2007-11-07 | 台湾积体电路制造股份有限公司 | Formation method of semiconductor structure and resistance |
US20090170259A1 (en) * | 2007-12-28 | 2009-07-02 | Texas Instruments Incorporated | Angled implants with different characteristics on different axes |
-
2012
- 2012-08-03 CN CN201210275290.1A patent/CN103579337A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5976937A (en) * | 1997-08-28 | 1999-11-02 | Texas Instruments Incorporated | Transistor having ultrashallow source and drain junctions with reduced gate overlap and method |
US6566204B1 (en) * | 2000-03-31 | 2003-05-20 | National Semiconductor Corporation | Use of mask shadowing and angled implantation in fabricating asymmetrical field-effect transistors |
CN101055872A (en) * | 2006-04-10 | 2007-10-17 | 台湾积体电路制造股份有限公司 | Semiconductor structure and manufacturing method thereof |
CN101068007A (en) * | 2006-05-01 | 2007-11-07 | 台湾积体电路制造股份有限公司 | Formation method of semiconductor structure and resistance |
US20090170259A1 (en) * | 2007-12-28 | 2009-07-02 | Texas Instruments Incorporated | Angled implants with different characteristics on different axes |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104124167A (en) | Mos transistor and forming method thereof | |
CN104078360A (en) | Method for producing MOS transistor | |
CN103730420A (en) | CMOS transistor manufacturing method | |
CN105702582A (en) | Formation method of transistor | |
CN102737966B (en) | Method for adjusting gate work function and transistor with metal gate | |
US9099495B1 (en) | Formation of high quality fin in 3D structure by way of two-step implantation | |
CN101231956A (en) | A Method for Realizing Body Contacts of Partially Depleted Silicon-on-Insulator Devices | |
CN103515205B (en) | A kind of FinFET channel doping process | |
CN104051344B (en) | Semiconductor arrangement and formation thereof | |
CN103632970B (en) | Suppress the method for the double-hump effect of nmos device | |
CN103579337A (en) | Semiconductor device and method for forming the same | |
CN108470680B (en) | Method of making a semiconductor structure | |
TWI765298B (en) | Transistors with separately-formed source and drain and method of forming the same | |
CN111092120B (en) | Method for manufacturing field effect transistor device | |
TWI466296B (en) | Semiconductor component and method of forming same | |
CN108198860A (en) | Vertical bilateral diffusion field-effect tranisistor and preparation method thereof | |
CN109166804B (en) | Preparation method of zero threshold voltage NMOS | |
CN110828380B (en) | Static memory cell and forming method thereof | |
US10727130B2 (en) | Semiconductor device and fabrication method thereof | |
CN106024900A (en) | Method for improving gate-induced drain leakage (GIDL), and non-uniform channel doping device | |
CN104681605B (en) | The structure and its manufacture method of power MOS pipe | |
CN111463284A (en) | N-type FET and method of manufacturing the same | |
CN105336689A (en) | Metal oxide semiconductor field device manufacturing method capable of saving photomasks | |
CN111403339B (en) | Semiconductor structure and forming method thereof | |
CN109103107A (en) | The manufacturing method of MOS transistor with the leakage of germanium silicon source |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20140212 |
|
WD01 | Invention patent application deemed withdrawn after publication |