CN103579282A - Multi-channel integrated optical couplers and method for manufacturing same - Google Patents
Multi-channel integrated optical couplers and method for manufacturing same Download PDFInfo
- Publication number
- CN103579282A CN103579282A CN201310456024.3A CN201310456024A CN103579282A CN 103579282 A CN103579282 A CN 103579282A CN 201310456024 A CN201310456024 A CN 201310456024A CN 103579282 A CN103579282 A CN 103579282A
- Authority
- CN
- China
- Prior art keywords
- organic
- component
- electrode
- optocoupler
- isolation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Electroluminescent Light Sources (AREA)
Abstract
本发明所述的一种多通道集成光耦器件,光耦单元设置在基板同侧,无需增大光耦单元面积就可实现有机电致发光部件和有机光敏部件的一一对应,且各独立光耦无需单独封装,集成度高;各光耦单元之间设置有不透光的隔离柱,相邻光耦单元之间无光信号串扰问题,抗干扰能力强;各部件为有机材料制成,使得所述多通道集成光耦器件具备柔性,轻、薄、体积小,适用范围广。本发明所述的一种多通道集成光耦器件的制备方法,采用有机薄膜器件制备工艺,将各光耦单元设置在基板同侧,集成度高,而且各光耦单元之间设置有不透光的隔离柱,相邻光耦单元之间无光信号串扰问题,抗干扰能力强且采用现有有机薄膜器件的生产工艺,工艺成熟、制备成本低。
In the multi-channel integrated optocoupler device described in the present invention, the optocoupler units are arranged on the same side of the substrate, and the one-to-one correspondence between the organic electroluminescent components and the organic photosensitive components can be realized without increasing the area of the optocoupler units, and each is independent The optocoupler does not need to be packaged separately, and the integration level is high; there are light-proof isolation columns between the optocoupler units, and there is no optical signal crosstalk between adjacent optocoupler units, and the anti-interference ability is strong; each component is made of organic materials , so that the multi-channel integrated optocoupler device is flexible, light, thin, small in size and wide in application. The preparation method of a multi-channel integrated optocoupler device according to the present invention adopts the preparation process of an organic thin film device, arranges each optocoupler unit on the same side of the substrate, has a high degree of integration, and is provided with an impermeable barrier between each optocoupler unit. The optical isolation column has no optical signal crosstalk between adjacent optocoupler units, has strong anti-interference ability, and adopts the existing production technology of organic thin film devices, with mature technology and low preparation cost.
Description
技术领域technical field
本发明涉及光电子领域,具体涉及一种多通道集成光耦器件及其制备方法。The invention relates to the field of optoelectronics, in particular to a multi-channel integrated optocoupler device and a preparation method thereof.
背景技术Background technique
光耦器件是一种通常用于电隔离时能传输信号的光电子器件。它可以把一种信号转化为光信号,再把光信号转化为另一种可以探测的信号,一般至少包括三个重要的功能部件:能把电信号转化为光并输出光的功能部件、具有电绝缘且可以传输光的电绝缘隔离部件和以光信号为输入而输出为可探测信号的光敏功能部件。最常用的光耦器件,如图1所示,利用一个电致发光部件A把一个电信号转化为光信号,再利用一个光敏部件B,比如光敏电阻、光敏电容、光敏二极管或者光敏三极管等把光信号转化为电信号,A和B之间通过电绝缘隔离部件C电隔离。光耦器件应用范围很广,比如可以应用到高压电隔离控制中,在低压端把控制电信号加载到电致发光部件上,得到反映电信号的光信号,然后光照射到处于高电压电位的光敏器件上得到加载于高压上的电信号,该电信号就可以用来控制高压端的电路、设备等。An optocoupler is an optoelectronic device that is usually used to transmit signals while being electrically isolated. It can convert a signal into an optical signal, and then convert the optical signal into another signal that can be detected. It generally includes at least three important functional components: a functional component that can convert electrical signals into light and output light, and has Electrically insulating and isolating components that are electrically insulated and capable of transmitting light, and photosensitive functional components that take optical signals as input and output as detectable signals. The most commonly used optocoupler device, as shown in Figure 1, uses an electroluminescent component A to convert an electrical signal into an optical signal, and then uses a photosensitive component B, such as a photosensitive resistor, photosensitive capacitor, photodiode or phototransistor, etc. The optical signal is converted into an electrical signal, and A and B are electrically isolated by an electrical insulation isolation component C. Optocoupler devices have a wide range of applications. For example, they can be applied to high-voltage electrical isolation control. The control electrical signal is loaded on the electroluminescent component at the low-voltage end to obtain an optical signal reflecting the electrical signal, and then the light is irradiated to the high-voltage potential. The electrical signal loaded on the high voltage is obtained from the photosensitive device, and the electrical signal can be used to control the circuit and equipment at the high voltage end.
集成电路的体积小、重量轻、引出线和焊点少、可靠性高;相对于分离元器件电路而言,采用集成电路构成的整机电路性能指标更高,设备的稳定工作时间也可大大提高,同时成本价格更低,便于大规模生产。因此它在工业、民用电子设备以及军事、通讯、遥控等方面得到广泛的应用,对于实现电子设备的小型化以及高分辨率更是有着不可替代的作用。然而,目前光耦器件多数是由无机发光部件和无机光敏部件组成,由于无机发光器件很难高密度集成,因此多通道集成光耦难于实现,更不可能原位制备高密度的多通道集成光耦。因此,实现光耦的高度集成,对于光耦在电子行业中的应用具有十分重要的意义。The integrated circuit is small in size, light in weight, less in lead wires and solder joints, and high in reliability; compared with separate component circuits, the performance index of the whole machine circuit composed of integrated circuits is higher, and the stable working time of the equipment can also be greatly improved. Improvement, while the cost price is lower, which is convenient for large-scale production. Therefore, it is widely used in industry, civilian electronic equipment, military, communication, remote control, etc., and it plays an irreplaceable role in realizing the miniaturization and high resolution of electronic equipment. However, at present, most optocoupler devices are composed of inorganic light-emitting components and inorganic photosensitive components. Since inorganic light-emitting devices are difficult to integrate in high density, it is difficult to realize multi-channel integrated optocouplers, and it is impossible to prepare high-density multi-channel integrated photocouplers in situ. couple. Therefore, it is of great significance to realize the high integration of optocouplers for the application of optocouplers in the electronics industry.
有机发光二极管和有机半导体光敏器件是利用有机半导体材料制备的薄膜器件,可实现高分辨率集成,这就使得利用有机发光和有机半导体光敏技术实现光耦器件的高密度集成成为可能。Organic light-emitting diodes and organic semiconductor photosensitive devices are thin-film devices made of organic semiconductor materials, which can achieve high-resolution integration, which makes it possible to realize high-density integration of optocoupler devices using organic light-emitting and organic semiconductor photosensitive technologies.
目前已经有一些关于有机光耦器件的应用研究(参见专利文献CN101442043A、CN1897311A、CN101783358A),但是在这些研究中通常以基底为电隔离绝缘部件,发光部件和光敏部件共同使用一个基底,且分别设置在基底两侧。在光耦器件中发光部件和光敏部件需一一对应,在此条件下,设置在基底两侧的发光部件和光敏部件必须具有一定大小的面积才能满足对应要求,因而限制了其在集成电路中的应用,并没有有效发挥有机薄膜器件在高分辨率集成方面的优势。There have been some researches on the application of organic optocoupler devices (see patent documents CN101442043A, CN1897311A, CN101783358A), but in these studies, the substrate is usually used as an electrically isolated insulating part, and the light-emitting part and the photosensitive part share a substrate, and are set separately on both sides of the base. In optocoupler devices, the light-emitting components and photosensitive components need to correspond one-to-one. Under this condition, the light-emitting components and photosensitive components arranged on both sides of the substrate must have a certain size to meet the corresponding requirements, thus limiting their use in integrated circuits. However, the advantages of organic thin film devices in high-resolution integration have not been effectively utilized.
发明内容Contents of the invention
为此,本发明所要解决的现有有机光耦器件无法实现高度集成的技术问题,提供一种可实现高度集成的多通道集成光耦器件及其制备方法。Therefore, the present invention aims to solve the technical problem that the existing organic optocoupler devices cannot achieve high integration, and provides a highly integrated multi-channel integrated optocoupler device and a preparation method thereof.
为解决上述技术问题,本发明采用的技术方案如下:In order to solve the problems of the technologies described above, the technical scheme adopted in the present invention is as follows:
本发明所述的一种多通道集成光耦器件,包括设置在基板同侧的多个光耦单元,相邻所述光耦单元之间设置有不透光且绝缘的隔离柱,所述隔离柱用于对相邻所述光耦单元进行光隔离。A multi-channel integrated optocoupler device according to the present invention includes a plurality of optocoupler units arranged on the same side of the substrate, and a light-tight and insulating isolation column is arranged between adjacent optocoupler units. The posts are used for optically isolating the adjacent optocoupler units.
所述光耦单元包括叠加设置在所述基板上的有机电致发光部件、透明的电绝缘隔离部件和有机光敏部件,所述有机电致发光部件和有机光敏部件设置在所述电绝缘隔离部件的两侧,有机电致发光部件和有机光敏部件中靠近所述电绝缘隔离部件的电极为相同或不同的透明电极。The optocoupler unit includes an organic electroluminescence component, a transparent electrical insulation isolation component and an organic photosensitive component stacked on the substrate, and the organic electroluminescence component and the organic photosensitive component are arranged on the electrical insulation isolation component. On both sides of the organic electroluminescent component and the organic photosensitive component, the electrodes close to the electrically insulating and isolating component are the same or different transparent electrodes.
所述有机电致发光部件进一步包括有机电致发光部件的第一电极、有机发光功能层、有机电致发光部件的第二电极。The organic electroluminescent component further includes a first electrode of the organic electroluminescent component, an organic light-emitting functional layer, and a second electrode of the organic electroluminescent component.
所述有机光敏部件为含有光电导效应或光敏性的有机半导体材料的有机光敏器件,进一步包括有机光敏部件的第一电极、光敏功能层、有机光敏部件的第二电极。The organic photosensitive component is an organic photosensitive device containing a photoconductive or photosensitive organic semiconductor material, and further includes a first electrode of the organic photosensitive component, a photosensitive functional layer, and a second electrode of the organic photosensitive component.
所述隔离柱包括设置在所述基板上的多组第一隔离柱,同组中第一隔离柱相互平行,不同组第一隔离柱所在直线相交;所述第一隔离柱由高隔离柱组和低隔离柱组组成;所述高隔离柱组将所述光耦单元划分为列,所述高隔离柱组的高度等于所述有机发光功能层和所述光敏功能层中远离所述基板的一层中的上表面高度,所述低隔离柱组的高度等于所述有机发光功能层和所述光敏功能层中靠近所述基板的一层中的下表面高度。The isolation columns include multiple sets of first isolation columns arranged on the substrate, the first isolation columns in the same group are parallel to each other, and the straight lines where the first isolation columns of different groups intersect; the first isolation columns are composed of high isolation column groups and a low isolation column group; the high isolation column group divides the optocoupler unit into columns, and the height of the high isolation column group is equal to the distance away from the substrate in the organic light-emitting functional layer and the photosensitive functional layer The height of the upper surface in one layer, the height of the low spacer column group is equal to the height of the lower surface in the layer close to the substrate among the organic light-emitting functional layer and the photosensitive functional layer.
所述隔离柱还包括与所述电绝缘隔离部件同层设置的第二隔离柱,所述第二隔离柱的高度与所述电绝缘隔离部件的厚度相同,所述第二隔离柱在所述基板上的投影与所述低隔离柱组在所述基板上的投影重合。The isolation column also includes a second isolation column arranged on the same layer as the electrical insulation isolation component, the height of the second isolation column is the same as the thickness of the electrical insulation isolation component, and the second isolation column is placed on the same layer as the electrical insulation isolation component. The projection on the base plate coincides with the projection of the set of low isolation posts on the base plate.
所有所述光耦单元中所述有机电致发光部件与所述有机光敏部件的相对位置相同。The relative positions of the organic electroluminescence component and the organic photosensitive component in all the optocoupler units are the same.
所述有机电致发光部件为有机发光二极管或有机电化学池。The organic electroluminescent component is an organic light emitting diode or an organic electrochemical cell.
所述有机光敏器件为有机光敏电阻、有机光敏二极管、有机光敏三极管或有机光敏晶体管中的一种。The organic photosensitive device is one of an organic photoresistor, an organic photodiode, an organic phototransistor or an organic phototransistor.
所述隔离柱为氮化硅、碳化硅、氧化硅、聚酰亚胺或者光刻胶中的一种或多种的堆叠结构。The isolation column is a stacked structure of one or more of silicon nitride, silicon carbide, silicon oxide, polyimide or photoresist.
所述电绝缘隔离部件为氟聚合物、聚甲基丙烯酸甲酯、聚二甲基硅氧烷中的一种或多种堆叠形成的透明膜结构。The electrical insulation isolating part is a transparent film structure formed by stacking one or more of fluoropolymer, polymethyl methacrylate and polydimethylsiloxane.
所述透明电极为锂、镁、钙、锶、铝、铟、铜、金、银中的一种或多种的合金,或锂、镁、钙、锶、铝、铟、铜、金、银中的一种或多种与其氟化物交替形成的电极层,或氧化铟锡、聚噻吩/聚乙烯基苯磺酸钠、聚苯胺、碳纳米管、石墨烯中的一种。The transparent electrode is an alloy of one or more of lithium, magnesium, calcium, strontium, aluminum, indium, copper, gold, and silver, or an alloy of lithium, magnesium, calcium, strontium, aluminum, indium, copper, gold, or silver One or more electrode layers formed alternately with its fluoride, or one of indium tin oxide, polythiophene/sodium polyvinylbenzenesulfonate, polyaniline, carbon nanotubes, and graphene.
所述基板为柔性基板。The substrate is a flexible substrate.
所述光耦单元上方还设置有封装层,用于所述过通道集成光耦器件的封装。An encapsulation layer is also provided above the optocoupler unit for encapsulation of the through-channel integrated optocoupler device.
本发明所述的一种多通道集成光耦器件的制备方法,包括如下步骤:A method for preparing a multi-channel integrated optocoupler device according to the present invention comprises the following steps:
S1、在基板上形成有机电致发光部件的第一电极,以及有机电致发光部件的第二电极引脚、有机光敏部件的第一电极引脚、有机光敏部件的第二电极引脚;S1, forming the first electrode of the organic electroluminescent component, the second electrode pin of the organic electroluminescent component, the first electrode pin of the organic photosensitive component, and the second electrode pin of the organic photosensitive component on the substrate;
S2、在所述有机电致发光部件的第一电极上形成多组第一隔离柱,同组中第一隔离柱相互平行,不同组第一隔离柱所在直线相交,形成露出部分所述有机电致发光部件的第一电极的开口阵列以限定光耦单元,所述第一隔离柱由高隔离柱组和低隔离柱组组成;所述高隔离柱组将所述开口划分为列,所述高隔离柱组的高度等于有机光敏部件中光敏功能层上表面所在的高度,所述低隔离柱组的高度等于所述有机电致发光部件中有机发光功能层上表面所在的高度;S2. Form a plurality of sets of first isolation columns on the first electrode of the organic electroluminescent component. The first isolation columns in the same group are parallel to each other, and the lines where the first isolation columns of different groups intersect to form the exposed part of the organic electroluminescent component. An array of openings of the first electrode of the luminescence component to define an optocoupler unit, the first isolation column is composed of a high isolation column group and a low isolation column group; the high isolation column group divides the opening into columns, the The height of the high spacer group is equal to the height of the upper surface of the photosensitive functional layer in the organic photosensitive component, and the height of the low spacer group is equal to the height of the upper surface of the organic light-emitting functional layer in the organic electroluminescent component;
S3、在所述开口中依次形成有机发光功能层,以及覆盖所述低隔离柱组的有机电致发光部件的第二电极,所述有机电致发光部件的第二电极与所述有机电致发光部件的第二电极引脚电连接;S3, sequentially forming an organic light-emitting functional layer in the opening, and the second electrode of the organic electroluminescent component covering the low spacer column group, the second electrode of the organic electroluminescent component is connected to the organic electroluminescent component the second electrode pin of the light emitting component is electrically connected;
S4、在所述有机电致发光部件的第二电极上直接形成第二隔离柱,所述第二隔离柱与被所述有机电致发光部件的第二电极覆盖的所述第一隔离柱在所述基板上投影的位置相同,所述第二隔离柱与所述第一隔离柱中未被覆盖部分形成露出部分所述有机电致发光部件的第二电极的开口阵列;所述开口于步骤S2中限定的所述光耦单元一一对应,在所述开口阵列中形成覆盖所述有机电致发光部件的第二电极的电绝缘隔离部件,所述电绝缘隔离部件的厚度与所述第二隔离柱的高度相同;S4. Directly forming a second isolation column on the second electrode of the organic electroluminescent component, the second isolation column and the first isolation column covered by the second electrode of the organic electroluminescent component The position of the projection on the substrate is the same, and the uncovered part of the second spacer column and the first spacer column forms an array of openings exposing part of the second electrode of the organic electroluminescent component; The optocoupler units defined in S2 correspond one-to-one, and an electrically insulating isolating member covering the second electrode of the organic electroluminescent component is formed in the opening array, and the thickness of the electrically insulating isolating member is the same as that of the first electrode. The height of the two spacers is the same;
S5、在所述电绝缘隔离部件上直接形成覆盖所述第二隔离柱的有机光敏部件的第一电极,所述有机光敏部件的第一电极与所述有机光敏部件的第一电极引脚电连接;S5, directly forming the first electrode of the organic photosensitive component covering the second isolation column on the electrically insulating isolation component, the first electrode of the organic photosensitive component is electrically connected to the first electrode pin of the organic photosensitive component connect;
S6、通过光罩工艺在所述有机光敏部件的第一电极上形成彼此分离的光敏单元,所述光敏单元与步骤S2中限定的所述光耦单元一一对应;S6, forming photosensitive units separated from each other on the first electrode of the organic photosensitive component through a photomask process, the photosensitive units correspond to the photocoupler units defined in step S2 one by one;
S7、在所述光敏单元上直接形成覆盖所述高隔离柱组的所述有机光敏部件的第二电极,所述有机光敏部件的第二电极与所述有机光敏部件的第二电极引脚电连接。S7, directly forming the second electrode of the organic photosensitive component covering the high spacer column group on the photosensitive unit, the second electrode of the organic photosensitive component is electrically connected to the second electrode pin of the organic photosensitive component connect.
本发明所述的一种多通道集成光耦器件的制备方法,包括如下步骤:A method for preparing a multi-channel integrated optocoupler device according to the present invention comprises the following steps:
S1、在基板上形成有机光敏部件的第二电极,以及有机光敏部件的第一电极引脚、有机电致发光部件的第一电极引脚、有机电致发光部件的第二电极引脚;S1, forming the second electrode of the organic photosensitive component, the first electrode pin of the organic photosensitive component, the first electrode pin of the organic electroluminescent component, and the second electrode pin of the organic electroluminescent component on the substrate;
S2、在所述有机光敏部件的第二电极上形成多组第一隔离柱,同组中第一隔离柱相互平行,不同组第一隔离柱所在直线相交,形成露出部分所述有机光敏部件的第二电极的开口阵列以限定光耦单元,所述第一隔离柱由高隔离柱组和低隔离柱组组成;所述高隔离柱组将所述开口划分为列,所述高隔离柱组的高度等于有机电致发光部件中有机发光功能层上表面所在的高度,所述低隔离柱组的高度等于有机光敏部件中光敏功能层上表面所在的高度;S2. Form multiple groups of first spacer columns on the second electrode of the organic photosensitive component, the first spacer columns in the same group are parallel to each other, and the lines where the first spacer columns of different groups intersect to form a part of the organic photosensitive component exposed The opening array of the second electrode is to define the optocoupler unit, and the first isolation column is composed of a high isolation column group and a low isolation column group; the high isolation column group divides the opening into columns, and the high isolation column group The height is equal to the height of the upper surface of the organic light-emitting functional layer in the organic electroluminescent component, and the height of the low spacer group is equal to the height of the upper surface of the photosensitive functional layer in the organic photosensitive component;
S3、在所述开口中自下而上依次形成光敏功能层,以及覆盖所述低隔离柱组的有机光敏部件的第一电极,所述有机光敏部件的第一电极与所述有机光敏部件的第一电极引脚电连接;S3, sequentially forming a photosensitive functional layer in the opening from bottom to top, and the first electrode of the organic photosensitive component covering the low spacer group, the first electrode of the organic photosensitive component and the organic photosensitive component the first electrode pin is electrically connected;
S4、在所述有机光敏部件的第一电极上直接形成第二隔离柱,所述第二隔离柱与被所述有机光敏部件的第一电极覆盖的所述第一隔离柱在所述基板上投影的位置相同,所述第二隔离柱与所述第一隔离柱中未被覆盖部分形成露出部分所述有机电致发光部件的第二电极的开口阵列;所述开口于步骤S2中限定的所述光耦单元一一对应,在所述开口阵列中形成覆盖所述有机光敏部件的第一电极的电绝缘隔离部件,所述电绝缘隔离部件的厚度与所述第二隔离柱的高度相同;S4, directly forming a second isolation column on the first electrode of the organic photosensitive component, the second isolation column and the first isolation column covered by the first electrode of the organic photosensitive component are on the substrate The positions of the projections are the same, and the uncovered part of the second spacer column and the first spacer column forms an array of openings exposing part of the second electrode of the organic electroluminescent component; the openings are defined in step S2 The optocoupler units are in one-to-one correspondence, and an electrically insulating spacer covering the first electrode of the organic photosensitive component is formed in the opening array, and the thickness of the electrically insulating spacer is the same as the height of the second spacer column ;
S5、在所述电绝缘隔离部件上直接形成覆盖所述第二隔离柱的有机电致发光部件的第二电极,所述有机电致发光部件与所述有机电致发光部件引脚电连接;S5. Directly forming a second electrode of an organic electroluminescent component covering the second isolation column on the electrically insulating isolation component, the organic electroluminescent component is electrically connected to a pin of the organic electroluminescent component;
S6、通过光罩工艺在所述有机电致发光部件上形成彼此分离的有机发光功能单元,所述有机发光功能单元与步骤S2中限定的所述光耦单元一一对应;S6. Forming organic light-emitting functional units separated from each other on the organic electroluminescent component through a photomask process, the organic light-emitting functional units correspond to the optocoupler units defined in step S2 one by one;
S7、在所述有机发光功能单元上直接形成覆盖所述高隔离柱组的所述有机电致发光部件的第一电极,所述有机电致发光部件的第一电极与所述有机电致发光部件的第一电极引脚电连接。S7. Directly form the first electrode of the organic electroluminescent component covering the high spacer column group on the organic light emitting functional unit, the first electrode of the organic electroluminescent component is connected with the organic electroluminescent component The first electrode pins of the components are electrically connected.
步骤S7之后还包括形成封装层,对所述多通道集成光耦器件进行封装的步骤。After step S7, a step of forming an encapsulation layer and encapsulating the multi-channel integrated optocoupler device is also included.
所述有机光敏部件的第一电极与有机电致发光部件的第二电极均为透明电极。Both the first electrode of the organic photosensitive component and the second electrode of the organic electroluminescence component are transparent electrodes.
所述透明电极为锂、镁、钙、锶、铝、铟、铜、金、银中的一种或多种的合金,或锂、镁、钙、锶、铝、铟、铜、金、银中的一种或多种与其氟化物交替形成的电极层,或氧化铟锡、聚噻吩/聚乙烯基苯磺酸钠、聚苯胺、碳纳米管、石墨烯中的一种。The transparent electrode is an alloy of one or more of lithium, magnesium, calcium, strontium, aluminum, indium, copper, gold, and silver, or an alloy of lithium, magnesium, calcium, strontium, aluminum, indium, copper, gold, or silver One or more electrode layers formed alternately with its fluoride, or one of indium tin oxide, polythiophene/sodium polyvinylbenzenesulfonate, polyaniline, carbon nanotubes, and graphene.
所述隔离柱为氮化硅、碳化硅、氧化硅、聚酰亚胺或者光刻胶中的一种或多种的堆叠结构。The isolation column is a stacked structure of one or more of silicon nitride, silicon carbide, silicon oxide, polyimide or photoresist.
所述电绝缘隔离部件为氟聚合物、聚甲基丙烯酸甲酯、聚二甲基硅氧烷中的一种或多种堆叠形成的透明膜结构。The electrical insulation isolating part is a transparent film structure formed by stacking one or more of fluoropolymer, polymethyl methacrylate and polydimethylsiloxane.
本发明的上述技术方案相比现有技术具有以下优点:The above technical solution of the present invention has the following advantages compared with the prior art:
1、本发明所述的一种多通道集成光耦器件,光耦单元设置在基板同侧,无需增大光耦单元面积就可实现有机电致发光部件和有机光敏部件的一一对应,而且各光耦单元之间无需单独封装,集成度高;而且各光耦单元之间设置有不透光的隔离柱,相邻光耦单元之间无光信号串扰问题,抗干扰能力强。1. In the multi-channel integrated optocoupler device of the present invention, the optocoupler unit is arranged on the same side of the substrate, so that the one-to-one correspondence between the organic electroluminescence component and the organic photosensitive component can be realized without increasing the area of the optocoupler unit, and Each optocoupler unit does not need to be individually packaged, and the integration level is high; moreover, there is an opaque isolation column between each optocoupler unit, so there is no optical signal crosstalk problem between adjacent optocoupler units, and the anti-interference ability is strong.
2、本发明所述的一种多通道集成光耦器件,各部件为有机材料制成,使得所述多通道集成光耦器件具备柔性,适用范围广。2. In the multi-channel integrated optocoupler device of the present invention, each component is made of organic materials, so that the multi-channel integrated optocoupler device is flexible and has a wide range of applications.
3、本发明所述的一种多通道集成光耦器件,各部件均为有机薄膜器件,轻、薄、体积小。3. A multi-channel integrated optocoupler device according to the present invention, each component is an organic thin film device, which is light, thin and small in size.
4、本发明所述的一种多通道集成光耦器件的制备方法,采用有机薄膜器件制备工艺,将各光耦单元设置在基板同侧,各光耦单元之间无需单独封装,不仅集成度高而且制备工艺简单;同时,各光耦单元之间设置有不透光的隔离柱,相邻光耦单元之间无光信号串扰问题,抗干扰能力强。4. The preparation method of a multi-channel integrated optocoupler device according to the present invention adopts the preparation process of an organic thin film device, and each optocoupler unit is arranged on the same side of the substrate, and there is no need for separate packaging between each optocoupler unit, not only the integration degree High and simple preparation process; at the same time, opaque isolation columns are arranged between each optocoupler unit, so there is no optical signal crosstalk problem between adjacent optocoupler units, and the anti-interference ability is strong.
5、本发明所述的一种多通道集成光耦器件的制备方法,采用现有有机薄膜器件的生产工艺,工艺成熟、制备成本低。5. The method for preparing a multi-channel integrated optocoupler device according to the present invention adopts the existing production technology of organic thin film devices, and has mature technology and low preparation cost.
附图说明Description of drawings
为了使本发明的内容更容易被清楚的理解,下面根据本发明的具体实施例并结合附图,对本发明作进一步详细的说明,其中In order to make the content of the present invention more easily understood, the present invention will be described in further detail below according to specific embodiments of the present invention in conjunction with the accompanying drawings, wherein
图1是现有技术中单通道有机光耦器件原理示意图;1 is a schematic diagram of the principle of a single-channel organic optocoupler device in the prior art;
图2是实施例1中所述多通道集成光耦器件结构示意图;Fig. 2 is the structural representation of multi-channel integrated optocoupler device described in
图3是实施例2中所述多通道集成光耦器件结构示意图;Fig. 3 is the structural representation of multi-channel integrated optocoupler device described in
图4是有机电致发光部件结构示意图;Fig. 4 is a schematic structural diagram of an organic electroluminescence component;
图5是有机光敏部件结构示意图;5 is a schematic structural view of an organic photosensitive component;
图6-1~图6-10是图2中所示多通道集成光耦器件的制备流程图;Figures 6-1 to 6-10 are the flow charts of the preparation of the multi-channel integrated optocoupler device shown in Figure 2;
图7是图6-1~图6-10中所示多通道集成光耦器件的剖视图;Fig. 7 is a cross-sectional view of the multi-channel integrated optocoupler device shown in Fig. 6-1 to Fig. 6-10;
图8是图7中所示多通道集成光耦器件电路图;Fig. 8 is a circuit diagram of a multi-channel integrated optocoupler device shown in Fig. 7;
图9是实施例1中所述多通道集成光耦器件中两个光耦单元的输入电流信号和输出电流信号的关系图;Fig. 9 is a relation diagram of the input current signal and the output current signal of two optocoupler units in the multi-channel integrated optocoupler device described in
图10是实施例1中所述多通道集成光耦器件的频率响应图。FIG. 10 is a frequency response diagram of the multi-channel integrated optocoupler device described in
图中附图标记表示为:A-有机电致发光部件、B-有机光敏部件、C-电绝缘隔离部件、D-隔离柱、D11-高隔离柱组、D12-低隔离柱组、D2-第二隔离柱、1-基板、41-有机电致发光部件的第一电极、42-有机发光功能层、43-有机电致发光部件的第二电极、431-有机电致发光部件的第二电极、51-有机光敏部件的第一电极、511-有机光敏部件的第一电极引脚、52-光敏功能层、53-有机光敏部件的第二电极、531-有机光敏部件的第二电极引脚、6-封装层。The reference signs in the figure are represented as: A-organic electroluminescent component, B-organic photosensitive component, C-electrical insulation isolation component, D-isolation column, D11-high isolation column group, D12-low isolation column group, D2- The second spacer column, 1-substrate, 41-the first electrode of the organic electroluminescent component, 42-the organic light-emitting functional layer, 43-the second electrode of the organic electroluminescent component, 431-the second electrode of the organic electroluminescent component Electrode, 51-first electrode of organic photosensitive component, 511-first electrode pin of organic photosensitive component, 52-photosensitive functional layer, 53-second electrode of organic photosensitive component, 531-second electrode lead of organic photosensitive component Pin, 6-package layer.
具体实施方式Detailed ways
为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明的实施方式作进一步地详细描述。In order to make the purpose, technical solution and advantages of the present invention clearer, the following will further describe in detail the embodiments of the present invention in conjunction with the accompanying drawings.
本发明可以以许多不同的形式实施,而不应该被理解为限于在此阐述的实施例。相反,提供这些实施例,使得本公开将是彻底和完整的,并且将把本发明的构思充分传达给本领域技术人员,本发明将仅由权利要求来限定。在附图中,为了清晰起见,会夸大层和区域的尺寸和相对尺寸。应当理解的是,当元件例如层、区域或基板被称作“形成在”或“设置在”另一元件“上”时,该元件可以直接设置在所述另一元件上,或者也可以存在中间元件。相反,当元件被称作“直接形成在”或“直接设置在”另一元件上时,不存在中间元件。This invention may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete and will fully convey the concept of the invention to those skilled in the art, and the present invention will only be defined by the appended claims. In the drawings, the size and relative sizes of layers and regions may be exaggerated for clarity. It will be understood that when an element such as a layer, region or substrate is referred to as being "formed on" or "disposed on" another element, it can be directly on the other element or present middle element. In contrast, when an element is referred to as being "directly formed on" or "directly disposed on" another element, there are no intervening elements present.
实施例1Example 1
本实施例提供一种多通道集成光耦器件,如附图2所示,包括设置在基板1上的多个光耦单元,所述光耦单元进一步包括有机电致发光部件A、垂直设置在所述有机电致发光部件A上方的有机光敏部件B,以及隔离有机电致发光部件A和有机光敏部件B的透明电绝缘隔离部件C,有机电致发光部件A和有机光敏部件B中靠近所述电绝缘隔离部件C的电极为相同或不同的透明电极。所有所述光耦单元设置在所述基板1的同侧;相邻所述光耦单元之间设置有不透光且绝缘的隔离柱D,对相邻所述光耦单元进行光隔离。This embodiment provides a multi-channel integrated optocoupler device, as shown in FIG. The organic photosensitive component B above the organic electroluminescent component A, and the transparent electrically insulating isolating component C that isolates the organic electroluminescent component A and the organic photosensitive component B, the organic electroluminescent component A and the organic photosensitive component B are close to all The electrodes of the electrically insulating and isolating part C are the same or different transparent electrodes. All the optocoupler units are disposed on the same side of the
所述基板1可以为玻璃基板或聚合物基板,本实施例优选柔性聚酰亚胺基板。The
本实施例中,有机电致发光部件A优选有机发光二极管,可以是有机小分子发光器件也可以是聚合物发光器件,包括有机电致发光部件的第一电极41、有机发光功能层42、有机电致发光部件的第二电极42,如图4所示,所述有机发光功能层42进一步包括有机发光层,以及空穴注入层、空穴传输层、电子注入层、电子传输层中的一种或多种的组合。In this embodiment, the organic electroluminescent component A is preferably an organic light-emitting diode, which may be an organic small molecule light-emitting device or a polymer light-emitting device, including a
本实施例中,所述有机电致发光部件在垂直于所述基板1的方向上由下至上依次包括有机电致发光部件的第一电极41、空穴注入层、空穴传输层、发光层、有机电致发光部件的第二电极42。In this embodiment, the organic electroluminescent component includes a
有机电致发光部件的第一电极41,可以采用无机导电材料或有机导电材料,无机材料一般为氧化铟锡(以下简称ITO)、氧化锌、氧化锡锌等金属氧化物或金、铜、银,镍铝合金等功函数较高的金属,有机导电材料一般为聚噻吩/聚乙烯基苯磺酸钠(以下简称PEDOT:PSS)、聚苯胺(以下简称PANI)、碳纳米管、石墨烯,本实施例优选镍铝合金。The
空穴注入层、空穴传输层、发光层所用材料和制备方法同现有技术,本实施例中所述空穴注入层优选铜酞菁(CuPc);空穴传输层可以采用芳胺类和枝聚物族类低分子材料,优选为N,N’-二-(1-萘基)-N,N’-二苯基-1,1-联苯基-4,4-二胺(NPB);发光层可以为荧光材料或磷光材料,如金属有机配合物,可选自三(8-羟基喹啉)铝(Alq3)、(水杨醛缩邻胺苯酚)-(8-羟基喹啉)合铝(Ⅲ)(Al(Saph-q))类化合物,该小分子材料中可掺杂染料,掺杂浓度为小分子材料的0.01wt﹪~20wt﹪,染料一般为芳香稠环类材料,如5,6,11,12-四苯基并四苯(简称rubrene),香豆素类材料,如N,N’-二甲基喹吖啶酮(简称DMQA)、10-(2-苯并噻唑)-1,1,7,7,-四甲基-2,3,6,7-四氢-1H,5H,11H-苯并[1]吡喃[6,7,8-ij]喹啉嗪(简称C545T),或为双吡喃类材料,如4-4-二氰基亚甲基-2-叔丁基-6-(1,1,7,7-四甲基-久洛尼定-9-乙烯基)-4H-吡喃(简称DCJTB);发光层材料也可采用咔唑衍生物如4,4’-N,N’-二咔唑-联苯(简称CBP)、聚乙烯咔唑(PVK),该材料中可掺杂磷光染料,如三(2-苯基吡啶)铱(Ir(ppy)3),二(2-苯基吡啶)(乙酰丙酮)铱(Ir(ppy)2(acac)),八乙基卟啉铂(PtOEP)等,本实施例优选Alq3和DCJTB。The material used for the hole injection layer, the hole transport layer, and the light-emitting layer and the preparation method are the same as those of the prior art. The hole injection layer described in this embodiment is preferably copper phthalocyanine (CuPc); the hole transport layer can use aromatic amines and branched Polymer family low molecular material, preferably N,N'-di-(1-naphthyl)-N,N'-diphenyl-1,1-biphenyl-4,4-diamine (NPB) ; The light-emitting layer can be a fluorescent material or a phosphorescent material, such as a metal-organic complex, which can be selected from three (8-hydroxyquinoline) aluminum (Alq 3 ), (salicylaldehyde anteline phenol)-(8-hydroxyquinoline ) Al(Ⅲ) (Al(Saph-q)) compounds, the small molecule material can be doped with dyes, the doping concentration is 0.01wt%~20wt% of the small molecule material, and the dyes are generally aromatic fused ring materials , such as 5,6,11,12-tetraphenyltetracene (rubrene for short), coumarin materials, such as N,N'-dimethylquinacridone (DMQA for short), 10-(2- Benzothiazole)-1,1,7,7,-tetramethyl-2,3,6,7-tetrahydro-1H,5H,11H-benzo[1]pyran[6,7,8-ij ] quinolinazine (referred to as C545T), or bispyran materials, such as 4-4-dicyanomethylene-2-tert-butyl-6-(1,1,7,7-tetramethyl- Julonidine-9-vinyl)-4H-pyran (DCJTB for short); carbazole derivatives such as 4,4'-N,N'-dicarbazole-biphenyl (CBP for short) can also be used as the light-emitting layer material ), polyvinylcarbazole (PVK), the material can be doped with phosphorescent dyes, such as tris(2-phenylpyridine) iridium (Ir(ppy)3), bis(2-phenylpyridine) (acetylacetonate) iridium (Ir(ppy)2(acac)), platinum octaethylporphyrin (PtOEP), etc. Alq 3 and DCJTB are preferred in this embodiment.
有机电致发光部件的第二电极43一般采用锂、镁、钙、锶、铝、铟等功函数较低的金属或它们与铜、金、银的合金,或上述金属与其氟化物交替形成的电极层,或者也使用ITO,有机发光部件A所发出的光必须透过该层射出,本实施例优选Ag电极。The
有机光敏部件B为含有光电导效应或光敏性的有机半导体材料的有机光敏器件,可以是有机光敏电阻、有机光敏二极管、有机光敏三极管、有机光敏晶体管中的一种。The organic photosensitive component B is an organic photosensitive device containing photoconductive or photosensitive organic semiconductor materials, and can be one of organic photoresistors, organic photodiodes, organic phototransistors, and organic phototransistors.
本实施例优选有机光敏电阻,结构如附图5所示,在垂直于所述基板1的方向上由下至上依次包括有机光敏部件的第一电极51、光敏功能层52以及有机光敏部件的第二电极53。In this embodiment, an organic photoresistor is preferred, and its structure is shown in Figure 5, which includes the
所述光敏电阻的制备材料与方法同现有技术,其中,光敏功能层52可以为并苯类、酞菁类和偶氮苯类材料,本实施例优选并五苯薄膜;有机光敏部件的第一电极51应为透明引出电极,可以为锂、镁、钙、锶、铝、铟、The preparation materials and methods of the photoresistor are the same as those of the prior art, wherein the photosensitive
铜、金、银中的一种或多种的合金,或锂、镁、钙、锶、铝、铟、铜、金、银中的一种或多种与其氟化物交替形成的电极层,或氧化铟锡、聚噻吩/聚乙烯基苯磺酸钠、聚苯胺、碳纳米管、石墨烯中的一种,本实施例优选ITO电极;有机光敏部件的第二电极53可以为不透明的金属电极,优选Ag电极。An alloy of one or more of copper, gold, silver, or an electrode layer formed alternately of one or more of lithium, magnesium, calcium, strontium, aluminum, indium, copper, gold, silver and its fluoride, or One of indium tin oxide, polythiophene/sodium polyvinylbenzenesulfonate, polyaniline, carbon nanotubes, and graphene, the preferred ITO electrode in this embodiment; the
所述电绝缘隔离部件C为氟聚合物、聚甲基丙烯酸甲酯、聚二甲基硅氧烷中的一种或多种堆叠形成的透明膜结构,本实施例优选透明的氟聚合物薄膜。The electrical insulation isolation part C is a transparent film structure formed by stacking one or more of fluoropolymer, polymethyl methacrylate, and polydimethylsiloxane. In this embodiment, a transparent fluoropolymer film is preferred. .
所述多通道集成光耦器件的制备流程如图6-1~图6-10所示,具体制备方法为:The preparation process of the multi-channel integrated optocoupler device is shown in Figure 6-1 to Figure 6-10, and the specific preparation method is as follows:
S1、如图6-1所示,通过磁控溅射工艺在所述基板1上形成镍铝合金导电薄膜,利用光刻和刻蚀工艺把它制备成横向条状有机电致发光部件的第一电极41,以及有机电致发光部件的第二电极引脚431、有机光敏部件的第一电极引脚511、有机光敏部件的第二电极引脚531。S1. As shown in Figure 6-1, a nickel-aluminum alloy conductive film is formed on the
S2、如图6-2所示,通过感光胶曝光、显影的方法制备在所述有机电致发光部件的第一电极41上形成两组第一隔离柱D11和D12,同组中第一隔离柱相互平行,不同组第一隔离柱所在直线相交,所述第一隔离柱优先台湾新应材公司生产的RS1100型光刻胶;形成露出部分所述有机电致发光部件的第一电极41的开口阵列以限定光耦单元。S2. As shown in Figure 6-2, two sets of first isolation pillars D11 and D12 are formed on the
本实施例中所述第一隔离柱中纵向高隔离柱组D11和横向低隔离柱组D12将开口阵列划分为开口列,从而得到黑色网状的第一隔离柱层;低隔离柱组D12的高度与有机电致发光部件A的厚度有关,本实施例中低隔离柱组D12的高度为100nm,与所述有机发光功能层上表面所在高度相同;高隔离柱组D11的高度与有机电致发光部件A、有机光敏部件B和电绝缘隔离部件C的总厚度有关,本实施例中高隔离柱组D11的高度为680nm,与所述有机光敏部件中光敏功能层上表面所在的高度相同。Among the first spacers described in this embodiment, the vertical high spacer group D11 and the horizontal low spacer group D12 divide the opening array into opening columns, thereby obtaining the first spacer layer of black mesh; the low spacer group D12 The height is related to the thickness of the organic electroluminescent component A. In this embodiment, the height of the low spacer group D12 is 100 nm, which is the same as the height of the upper surface of the organic light-emitting functional layer; the height of the high spacer group D11 is related to the height of the organic electroluminescent component A. The total thickness of the light-emitting component A, the organic photosensitive component B and the electrical insulation isolation component C is related. The height of the high isolation column group D11 in this embodiment is 680nm, which is the same as the height of the upper surface of the photosensitive functional layer in the organic photosensitive component.
本实施例中第一隔离柱仅有2组,所述光耦单元被限定为四边形,作为本发明的其他实施例,所述第一隔离柱可以为多组,所述光耦单元可以为任意多边形,均可以实现本发明的目的,属于本发明的保护范围。In this embodiment, there are only two groups of first isolation columns, and the optocoupler unit is limited to a quadrilateral. As other embodiments of the present invention, there can be multiple groups of the first isolation columns, and the optocoupler unit can be any Polygons can all achieve the purpose of the present invention and belong to the protection scope of the present invention.
S3、如图6-3所示,通过真空蒸镀工艺在带有隔离柱D的基底1上逐层沉积有机电致发光部件A中的有机发光功能层42,即100nm的铜酞菁、20nm的NPB,以及通过真空中二源共蒸的方法,蒸镀30nm Alq3和DCJTB;它们被网状的隔离柱分为不同的发光单元。如图6-4所示,在所述有机发光功能层42上直接真空蒸镀30nm的Ag电极,形成覆盖所述共用隔离柱的有机电致发光部件的第二电极43,有机电致发光部件的第二电极43覆盖了横向低隔离柱组D12,在纵向被高隔离柱组D11隔离成条状,每一条状电极的所述有机电致发光部件的第二电极43与所述有机电致发光部件的第二电极引脚431电连接。S3. As shown in FIG. 6-3, the organic light-emitting
S4、如图6-5所示,真空蒸镀的方法沉积一层300nm的不透明光刻胶(台湾新应材公司生产的RS1100型光刻胶),通过干法去胶光刻工艺形成第二隔离柱D2,所述第二隔离柱D2与被所述有机电致发光部件的第二电极43覆盖的所述第一隔离柱(即D12)在所述基板1上投影的位置相同,所述第二隔离柱D2与所述第一隔离柱中未被覆盖部分(即D11)形成露出部分所述有机电致发光部件的第二电极43的开口阵列;所述开口于步骤S2中限定的所述光耦单元一一对应。如图6-6所示,真空蒸镀的方法沉积一层300nm的透明的氟聚合物(优选杜邦公司生产的Teflon聚四氟乙烯树脂)薄膜,形成覆盖所述有机电致发光部件的第二电极43的电绝缘隔离部件C,电绝缘隔离部件C在纵向被高隔离柱组D11分割为条状。在所述开口阵列中形成覆盖所述有机电致发光部件的第二电极43的电绝缘隔离部件C。S4. As shown in Figure 6-5, a layer of 300nm opaque photoresist (RS1100 photoresist produced by Taiwan New Applied Materials Co., Ltd.) is deposited by vacuum evaporation, and the second layer is formed by dry stripping photolithography. isolation column D2, the second isolation column D2 is projected on the same position as the first isolation column (that is, D12) covered by the
S5、如图6-7所示,通过磁控溅射的方法在所述电绝缘隔离部件C上直接沉积覆盖所述第二隔离柱的D2的80nm ITO透明薄膜,作为有机光敏部件的第一电极51,该电极也被高隔离柱组D11分割为条状,所述有机光敏部件的第一电极51与所述有机光敏部件的第一电极引脚电511连接。S5, as shown in Figure 6-7, directly deposit the 80nm ITO transparent film covering the D2 of the second isolation column on the electrical insulation isolation member C by the method of magnetron sputtering, as the first organic photosensitive member The
S6、如图6-8所示,通过光罩工艺在所述有机光敏部件的第一电极51上真空蒸镀50nm的并五苯薄膜作为光敏电阻层,形成光敏功能层52,在光罩和高隔离柱组D11的共同作用下,将所述光敏功能层52分割为彼此独立的光敏单元,所述光敏单元与步骤S2中限定的光耦单元一一对应。S6, as shown in Fig. 6-8, on the
S7、如图6-9所示,通过真空蒸镀工艺在所述光敏单元上直接沉积150nm Ag电极,形成覆盖所述相连隔离柱D的所述有机光敏部件的第二电极53,在模板的作用下该电极为横向的条状薄膜,所述有机光敏部件的第二电极53与所述有机光敏部件的第二电极引脚531电连接。S7, as shown in Figure 6-9, directly deposit 150nm Ag electrode on described photosensitive unit by vacuum evaporation process, form the
S8、如图6-10所示,通过磁控溅射工艺在所述有机光敏部件的第二电极53上再沉积一层Al2O3薄膜作为封装层6,这时,集成在一个基底1上彼此隔离的多通道光耦器件制备完成,所述多通道集成光耦器件的剖视图如图7所示,图8是图7中所示结构的电路图。S8. As shown in FIG. 6-10, deposit a layer of Al 2 O 3 thin film as
对所述多通道集成光耦器件进行测试,使用安捷伦器件分析仪进行电信号的测试,并提取各光耦单元的电信号导入处理终端进行数据处理,数据如图9和图10所示。The multi-channel integrated optocoupler device is tested, and the Agilent device analyzer is used to test the electrical signal, and the electrical signal of each optocoupler unit is extracted and imported into the processing terminal for data processing. The data are shown in Figures 9 and 10.
附图9中的图(a)和图(b)分别是所述多通道集成光耦器件中两个光耦单元的输入电流信号和输出电流信号间的关系,从图可见该器件的光耦单元之间具有良好的一致性,而且输入和输出有非常好的线性关系,可以与现有技术中的无机光耦器件相媲美。Figure (a) and figure (b) in accompanying drawing 9 are respectively the relationship between the input current signal and the output current signal of two optocoupler units in the described multi-channel integrated optocoupler device, and the optocoupler of this device can be seen from the figure The units have good consistency, and the input and output have a very good linear relationship, which can be compared with the inorganic optocoupler devices in the prior art.
附图10是所述所述多通道集成光耦器件的频率响应图,从图可见该器件的输入和输出有非常好的线性关系,而且其截止频率可以大于400kHz,与现有技术中的无机光耦器件相媲美。又因为此有机光耦的基底使用了有机聚合物柔性材料,所以整个光耦都是柔性可弯曲的,大大拓展了所述多通道集成光耦器件的广阔领域。Accompanying drawing 10 is the frequency response figure of described multi-channel integrated optocoupler device, as seen from the figure, the input and output of this device have very good linear relationship, and its cut-off frequency can be greater than 400kHz, and inorganic in the prior art comparable to optocoupler devices. And because the organic polymer flexible material is used as the substrate of the organic optocoupler, the entire optocoupler is flexible and bendable, which greatly expands the broad field of the multi-channel integrated optocoupler device.
实施例2Example 2
本实施例提供一种多通道集成光耦器件,如附图3所示,制备方法及使用材料同实施例1,唯一不同的是在基板上先制备只是在基底上自下而上依次制备有机光敏部件B、电绝缘隔离部件C和有机电致发光部件A。具体制备方法为:This embodiment provides a multi-channel integrated optocoupler device, as shown in Figure 3, the preparation method and the materials used are the same as in
S1、在基板1上形成有机光敏部件的第二电极,以及有机光敏部件的第一电极引脚、有机电致发光部件的第一电极引脚、有机电致发光部件的第二电极引脚;S1, forming the second electrode of the organic photosensitive component, the first electrode pin of the organic photosensitive component, the first electrode pin of the organic electroluminescent component, and the second electrode pin of the organic electroluminescent component on the
S2、在所述有机光敏部件的第二电极上形成多组第一隔离柱,同组中第一隔离柱相互平行,不同组第一隔离柱所在直线相交,形成露出部分所述有机光敏部件的第二电极的开口阵列以限定光耦单元,形成的同列所述开口中各相连第一隔离柱的高度大于其中共用第一隔离柱的高度;S2. Form multiple groups of first spacer columns on the second electrode of the organic photosensitive component, the first spacer columns in the same group are parallel to each other, and the lines where the first spacer columns of different groups intersect to form a part of the organic photosensitive component exposed The opening array of the second electrode is used to define the optocoupler unit, and the height of each connected first isolation column in the openings of the same column is greater than the height of the shared first isolation column;
S3、在所述开口中自下而上依次形成光敏功能层,以及覆盖同列开口中所述共用第一隔离柱的有机光敏部件的第一电极,所述有机光敏部件的第一电极与所述有机光敏部件的第一电极引脚电连接;S3, sequentially forming a photosensitive functional layer in the opening from bottom to top, and covering the first electrode of the organic photosensitive component sharing the first spacer column in the same row of openings, the first electrode of the organic photosensitive component and the first electrode of the organic photosensitive component The first electrode pin of the organic photosensitive component is electrically connected;
S4、在所述有机光敏部件的第一电极上直接形成第二隔离柱,所述第二隔离柱与被所述有机光敏部件的第一电极覆盖的所述第一隔离柱在所述基板上投影的位置相同,所述第二隔离柱与所述第一隔离柱中未被覆盖部分形成露出部分所述有机电致发光部件的第二电极的开口阵列;所述开口于步骤S2中限定的所述光耦单元一一对应,在所述开口阵列中形成覆盖所述有机光敏部件的第一电极的电绝缘隔离部件;S4, directly forming a second isolation column on the first electrode of the organic photosensitive component, the second isolation column and the first isolation column covered by the first electrode of the organic photosensitive component are on the substrate The positions of the projections are the same, and the uncovered part of the second spacer column and the first spacer column forms an array of openings exposing part of the second electrode of the organic electroluminescent component; the openings are defined in step S2 The optocoupler units are in one-to-one correspondence, and an electrically insulating isolation member covering the first electrode of the organic photosensitive member is formed in the opening array;
S5、在所述电绝缘隔离部件上直接形成覆盖所述第二隔离柱的有机电致发光部件的第二电极,所述有机电致发光部件与所述有机电致发光部件引脚电连接;S5. Directly forming a second electrode of an organic electroluminescent component covering the second isolation column on the electrically insulating isolation component, the organic electroluminescent component is electrically connected to a pin of the organic electroluminescent component;
S6、通过光罩工艺在所述有机电致发光部件上形成彼此分离的有机发光功能单元,所述有机发光功能单元与步骤S2中限定的所述光耦单元一一对应;S6. Forming organic light-emitting functional units separated from each other on the organic electroluminescent component through a photomask process, the organic light-emitting functional units correspond to the optocoupler units defined in step S2 one by one;
S7、在所述有机发光功能单元上直接形成覆盖所述相连隔离柱的所述有机电致发光部件的第一电极,所述有机电致发光部件的第一电极与所述有机电致发光部件的第一电极引脚电连接;S7, directly forming the first electrode of the organic electroluminescent component covering the connected isolation column on the organic light emitting functional unit, the first electrode of the organic electroluminescent component is connected to the organic electroluminescent component The first electrode pin is electrically connected;
S8、在所述有机电致发光部件的第一电极上制备一层封装层。S8. Prepare an encapsulation layer on the first electrode of the organic electroluminescence component.
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明的保护范围之中。Apparently, the above-mentioned embodiments are only examples for clear description, rather than limiting the implementation. For those of ordinary skill in the art, other changes or changes in different forms can be made on the basis of the above description. It is not necessary and impossible to exhaustively list all the implementation manners here. However, the obvious changes or changes derived therefrom still fall within the scope of protection of the present invention.
Claims (21)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310456024.3A CN103579282B (en) | 2013-09-29 | 2013-09-29 | Integrated optocoupler of a kind of multichannel and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310456024.3A CN103579282B (en) | 2013-09-29 | 2013-09-29 | Integrated optocoupler of a kind of multichannel and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103579282A true CN103579282A (en) | 2014-02-12 |
CN103579282B CN103579282B (en) | 2016-04-06 |
Family
ID=50050678
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310456024.3A Active CN103579282B (en) | 2013-09-29 | 2013-09-29 | Integrated optocoupler of a kind of multichannel and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103579282B (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104022135A (en) * | 2014-05-19 | 2014-09-03 | 清华大学 | A kind of optocoupler device and preparation method thereof |
CN105790732A (en) * | 2014-12-24 | 2016-07-20 | 清华大学 | A multi-channel signal superposition device |
CN107256900A (en) * | 2017-06-27 | 2017-10-17 | 苏州楚博生物技术有限公司 | A kind of light-sensitive material for sensor |
CN114499555A (en) * | 2022-02-24 | 2022-05-13 | 南京亿高微波系统工程有限公司 | Communication signal high-voltage isolation module and device |
CN114503374A (en) * | 2019-10-02 | 2022-05-13 | 赛峰电子与防务公司 | Method for electrically insulating an electronic device and device obtained by said method |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1881552A (en) * | 2005-06-16 | 2006-12-20 | 夏普株式会社 | Method for manufacturing optocoupler |
CN1897311A (en) * | 2006-05-16 | 2007-01-17 | 清华大学 | Organic light-coupling device |
EP1811579A1 (en) * | 2006-01-18 | 2007-07-25 | STMicroelectronics S.r.l. | Galvanic optocoupler structure and corresponding hybrid integration process |
WO2007148066A1 (en) * | 2006-06-19 | 2007-12-27 | Cambridge Display Technology Limited | Organic electroluminescent optocouplers |
CN101442043A (en) * | 2008-12-31 | 2009-05-27 | 清华大学 | Organic light coupling device |
US7989822B2 (en) * | 2007-11-08 | 2011-08-02 | Eugene R. Worley | Optocoupler using silicon based LEDs |
-
2013
- 2013-09-29 CN CN201310456024.3A patent/CN103579282B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1881552A (en) * | 2005-06-16 | 2006-12-20 | 夏普株式会社 | Method for manufacturing optocoupler |
EP1811579A1 (en) * | 2006-01-18 | 2007-07-25 | STMicroelectronics S.r.l. | Galvanic optocoupler structure and corresponding hybrid integration process |
CN1897311A (en) * | 2006-05-16 | 2007-01-17 | 清华大学 | Organic light-coupling device |
WO2007148066A1 (en) * | 2006-06-19 | 2007-12-27 | Cambridge Display Technology Limited | Organic electroluminescent optocouplers |
US7989822B2 (en) * | 2007-11-08 | 2011-08-02 | Eugene R. Worley | Optocoupler using silicon based LEDs |
CN101442043A (en) * | 2008-12-31 | 2009-05-27 | 清华大学 | Organic light coupling device |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104022135A (en) * | 2014-05-19 | 2014-09-03 | 清华大学 | A kind of optocoupler device and preparation method thereof |
CN104022135B (en) * | 2014-05-19 | 2017-05-03 | 清华大学 | Optical coupler and preparation method for same |
CN105790732A (en) * | 2014-12-24 | 2016-07-20 | 清华大学 | A multi-channel signal superposition device |
CN105790732B (en) * | 2014-12-24 | 2018-05-29 | 清华大学 | A kind of multiple signals stacking apparatus |
CN107256900A (en) * | 2017-06-27 | 2017-10-17 | 苏州楚博生物技术有限公司 | A kind of light-sensitive material for sensor |
CN114503374A (en) * | 2019-10-02 | 2022-05-13 | 赛峰电子与防务公司 | Method for electrically insulating an electronic device and device obtained by said method |
CN114503374B (en) * | 2019-10-02 | 2024-05-17 | 赛峰电子与防务公司 | Method for electrically insulating an electronic device and device obtained by said method |
CN114499555A (en) * | 2022-02-24 | 2022-05-13 | 南京亿高微波系统工程有限公司 | Communication signal high-voltage isolation module and device |
CN114499555B (en) * | 2022-02-24 | 2024-05-31 | 南京亿高医疗科技股份有限公司 | Communication signal high-voltage isolation module and device |
Also Published As
Publication number | Publication date |
---|---|
CN103579282B (en) | 2016-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Stranks et al. | The physics of light emission in halide perovskite devices | |
JP5090587B2 (en) | Organic photosensitive optoelectronic device | |
KR101332490B1 (en) | Low resistance thin film organic solar cell electrodes | |
US9431621B2 (en) | Metal oxide charge transport material doped with organic molecules | |
CN103579282B (en) | Integrated optocoupler of a kind of multichannel and preparation method thereof | |
JP7377008B2 (en) | IR organic photoelectric device and organic image sensor including the same | |
JP5118041B2 (en) | Encapsulated electrodes for organic devices | |
EP3509108A1 (en) | Photoelectric devices and image sensors and electronic devices | |
CN104168682B (en) | Light-emitting component, light-emitting device, electronic equipment and illuminator | |
Tang et al. | Improving cathodes with a polymer interlayer in reversed organic solar cells | |
EP2439805A1 (en) | Organic electroluminescent element | |
TW201526329A (en) | Organic light emitting device and preparation method thereof | |
Yu et al. | Calibrating the hole mobility measurements implemented by transient electroluminescence technology | |
WO2017159192A1 (en) | Photoelectric conversion element and optical sensor | |
CN101442043A (en) | Organic light coupling device | |
CN106415874B (en) | Opto-electronic device and method for manufacturing opto-electronic device | |
Krotkus et al. | Influence of bilayer resist processing on pin OLEDs: towards multicolor photolithographic structuring of organic displays | |
CN104022135B (en) | Optical coupler and preparation method for same | |
Maindron | OLED: Theory and Principles | |
US20120118366A1 (en) | Double-sided light-collecting organic solar cell | |
CN115413373A (en) | Solar battery | |
Okada et al. | Mixed single-layer and self-alignment technology of organic light-emitting diodes and multi-functional integration in organic devices | |
CN1897311A (en) | Organic light-coupling device | |
CN105790732B (en) | A kind of multiple signals stacking apparatus | |
Takimoto et al. | Semitransparent Organic Position Sensitive Detector with Thin Ag Electrode Toward the Angle Detection of Incident Light Using Stacked‐Type Device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |