[go: up one dir, main page]

CN103576693B - Underwater robot three-dimensional path tracking and controlling method based on second order filter - Google Patents

Underwater robot three-dimensional path tracking and controlling method based on second order filter Download PDF

Info

Publication number
CN103576693B
CN103576693B CN201310553699.XA CN201310553699A CN103576693B CN 103576693 B CN103576693 B CN 103576693B CN 201310553699 A CN201310553699 A CN 201310553699A CN 103576693 B CN103576693 B CN 103576693B
Authority
CN
China
Prior art keywords
theta
psi
centerdot
zeta
robot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310553699.XA
Other languages
Chinese (zh)
Other versions
CN103576693A (en
Inventor
王宏健
陈子印
边信黔
李娟�
严浙平
陈兴华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Engineering University
Original Assignee
Harbin Engineering University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Engineering University filed Critical Harbin Engineering University
Priority to CN201310553699.XA priority Critical patent/CN103576693B/en
Publication of CN103576693A publication Critical patent/CN103576693A/en
Application granted granted Critical
Publication of CN103576693B publication Critical patent/CN103576693B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Feedback Control In General (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

本发明提供的是一种基于二阶滤波器的水下机器人三维路径跟踪控制方法,利用滤波反步法进行水下机器人三维路径跟踪控制,通过引入两个基于水下机器人三维路径跟踪运动学误差模型建立的二阶滤波器,获取姿态、速度、角速度的虚拟控制量及其导数,再结合水下机器人动力学模型获取路径跟踪控制器的控制输入,作用于机器人推进器与舵机,进而实现对三维路径的跟踪;并依据李雅普诺夫能量函数对位置、姿态控制回路设计滤波反馈补偿项,对速度控制回路引入积分环节,构成系统误差补偿回路,提升跟踪系统的精度。

The present invention provides a three-dimensional path tracking control method for an underwater robot based on a second-order filter. The filter backstepping method is used to perform three-dimensional path tracking control of the underwater robot. By introducing two kinematic errors based on the three-dimensional path tracking of the underwater robot The second-order filter established by the model obtains the virtual control variables and their derivatives of attitude, velocity, and angular velocity, and then combines the underwater robot dynamics model to obtain the control input of the path tracking controller, which acts on the robot propeller and steering gear, and then realizes Track the three-dimensional path; design filter feedback compensation items for the position and attitude control loops according to the Lyapunov energy function, and introduce an integral link for the speed control loop to form a system error compensation loop to improve the accuracy of the tracking system.

Description

基于二阶滤波器的水下机器人三维路径跟踪控制方法Three-dimensional path tracking control method for underwater robot based on second-order filter

技术领域technical field

本发明涉及的是一种水下机器人的运动控制方法,特别是涉及一种基于二阶滤波器的水下机器人三维路径跟踪控制方法。The invention relates to a motion control method of an underwater robot, in particular to a three-dimensional path tracking control method for an underwater robot based on a second-order filter.

背景技术Background technique

水下机器人的跟踪控制问题一直是国内外的研究热点。路径跟踪问题仅要求水下机器人的运动轨迹收敛到期望路径,而对何时到达何处并不作要求。路径跟踪技术通过引入期望路径上虚拟向导点的概念,避免了轨迹跟踪时由于水下机器人的动力学模型受到环境扰动作用,无法精确获得期望状态,导致跟踪控制系统性能变差的问题。路径跟踪相比于轨迹跟踪问题,由于期望位置不受时间条件约束,从而不易导致控制器输出饱和信号,符合工程实际,更具有实际应用价值。The tracking control of underwater robots has always been a research hotspot at home and abroad. The path tracking problem only requires the trajectory of the underwater robot to converge to the desired path, but does not require when and where it will arrive. By introducing the concept of virtual guide points on the desired path, the path tracking technology avoids the problem that the dynamic model of the underwater robot is disturbed by the environment, and the desired state cannot be accurately obtained during trajectory tracking, resulting in poor performance of the tracking control system. Compared with the trajectory tracking problem, the path tracking is not easy to cause the controller to output a saturated signal because the expected position is not constrained by the time condition, which is in line with the engineering reality and has more practical application value.

基于系统分层递推设计思想的反步法,为水下机器人三维跟踪控制系统的设计提供了有效的手段。然而,在反步法递推设计控制器的过程中,需要逐步计算中间虚拟控制量的导数,然后基于反馈线性化的思想通过设计后续子系统的等价输入,实现对前级子系统的镇定,通过不断迭代直到获得最终真实控制输入。当系统的阶数增加或虚拟控制的形式较为复杂时,求导过程将变得十分繁琐。为此本发明采用反馈增益反步法设计三维曲线路径跟踪控制器,通过合理选择控制器的参数消除部分非线性项,相比于传统反步法设计过程简化了虚拟控制量的形式,但仍需要逐步计算虚拟控制导数的解析形式。为克服常规反步法递推过程中对虚拟控制信号逐步求导的不足,文献《TheUseofSlidingModestoSimplifytheBacksteppingControl》和《Theuseoflinearfilteringofsimplifiedintegratorbacksteppingcontrolofnonlinearsystems》分别采用滑模滤波器和线性滤波器逼近虚拟控制的导数;文献《CommandFilteredBackstepping》提出基于滤波器设计的反步法轨迹跟踪控制(IEEETransactionsOnAutomaticControl.2009,第54卷第6期),采用二阶滤波器逼近虚拟控制信号,简化了控制器设计过程,基于奇异扰动理论证明了滤波轨迹与常规反步法的控制输出之间的误差能够收敛到零点较小邻域。文献《LandVehicleControlUsingaCommandFilteredBacksteppingApproach》将滤波反步法应用于陆地车辆的轨迹跟踪控制中;文献《基于滤波反步法的无人直升机轨迹跟踪控制》(控制与决策.2012,第27卷第4期)和文献《状态受限的小型无人直升机轨迹跟踪控制》(控制理论与应用.2012,第29卷第6期)中公开的直升机的轨迹跟踪控制中,大大简化了控制器设计过程。目前还没有相关文献讨论基于滤波器的水下机器人三维路径跟踪控制设计。The backstepping method based on the system hierarchical recursive design idea provides an effective means for the design of the 3D tracking control system of the underwater robot. However, in the process of recursively designing the controller with the backstepping method, it is necessary to gradually calculate the derivative of the intermediate virtual control variable, and then based on the idea of feedback linearization, the equivalent input of the subsequent subsystem is designed to stabilize the previous subsystem. , through continuous iteration until the final real control input is obtained. When the order of the system increases or the form of virtual control is more complex, the derivation process will become very cumbersome. For this reason, the present invention adopts the feedback gain backstepping method to design the three-dimensional curve path tracking controller, and eliminates part of the nonlinear term by rationally selecting the parameters of the controller. Compared with the traditional backstepping method design process, the form of the virtual control quantity is simplified, but still The analytical form of the virtual control derivative needs to be computed step by step. In order to overcome the deficiency of gradually deriving the virtual control signal in the recursive process of the conventional backstepping method, the literature "The Use of Sliding Modes to Simplify the Backstepping Control" and "The use of linear filtering of simplified integrator backstepping control of nonlinear systems" respectively use sliding mode filter and linear filter to approximate the derivative of virtual control; the literature "CommandFilteredBackstepping" proposes a method based on Backstepping trajectory tracking control based on filter design (IEEETransactionsOnAutomaticControl.2009, Volume 54, Issue 6), using a second-order filter to approximate the virtual control signal, which simplifies the controller design process. The error between the control outputs of the backstepping method can converge to a smaller neighborhood of zero. The literature "LandVehicleControlUsingaCommandFilteredBacksteppingApproach" applies filter backstepping method to the trajectory tracking control of land vehicles; the literature "Unmanned Helicopter Trajectory Tracking Control Based on Filtered Backstepping Method" (Control and Decision. The trajectory tracking control of the helicopter disclosed in "Track Tracking Control of Small Unmanned Helicopter with State Constraints" (Control Theory and Application. 2012, Volume 29, Issue 6) greatly simplifies the controller design process. At present, there is no relevant literature discussing the design of filter-based 3D path-tracking control for underwater vehicles.

发明内容Contents of the invention

本发明提出一种过程简化、跟踪精度高的基于二阶滤波器的水下机器人三维路径跟踪控制方法。The invention proposes a three-dimensional path tracking control method for an underwater robot based on a second-order filter with simplified process and high tracking accuracy.

本发明的基于二阶滤波器的水下机器人三维路径跟踪控制方法的具体过程为:The specific process of the three-dimensional path tracking control method of the underwater robot based on the second-order filter of the present invention is:

步骤1.建立固定坐标系、机器人载体坐标系和Serret-Frenet(路径参考)坐标系,获取期望路径,水下机器人开始路径跟踪,完成两个二阶滤波器的初始化;Step 1. Establish fixed coordinate system, robot carrier coordinate system and Serret-Frenet (path reference) coordinate system, obtain desired path, underwater robot starts path tracking, and completes the initialization of two second-order filters;

步骤2.通过水下机器人搭载的定位声纳传感器、姿态传感器,采集水下机器人当前位置、姿态角、角速度和速度数据信息,并结合期望路径的方向与速度,根据视线角导引思想计算得到水下机器人理想的姿态控制量ψco、θco,和理想速度控制量ucoStep 2. Through the positioning sonar sensor and attitude sensor carried by the underwater robot, collect the current position, attitude angle, angular velocity and speed data information of the underwater robot, and combine the direction and speed of the expected path, and calculate according to the guiding idea of the line of sight angle Ideal attitude control quantities ψ co , θ co , and ideal velocity control quantities u co of the underwater robot;

所涉及的水下机器人理想的姿态控制量ψco、θco,和理想速度控制量uco的计算表达式为:The calculation expressions of the ideal attitude control quantities ψ co , θ co , and ideal speed control quantities u co of the underwater robot involved are:

ψψ cc oo == -- arcsinarcsin (( kk 22 ee // 11 ++ (( kk 22 ee )) 22 )) -- -- -- (( 11 ))

θθ cc oo == arcsinarcsin (( kk 33 hh // 11 ++ (( kk 33 hh )) 22 )) -- -- -- (( 22 ))

uco=-k1s+urcosψcocosθco(3)u co =-k 1 s+u r cosψ co co cosθ co (3)

其中增益因子k1>0,k2>0,k3>0为视线角导引律归一化参数,变量s、e和h分别表示机器人载体坐标系下机器人与期望路径参考点的前向、横向和垂向跟踪误差。Among them, the gain factor k 1 >0, k 2 >0, k 3 >0 is the normalization parameter of the line-of-sight angle guidance law, and the variables s, e, and h represent the forward direction of the robot and the reference point of the desired path in the robot carrier coordinate system, respectively. , horizontal and vertical tracking errors.

步骤3.将步骤2中得到的理想控制量ψco、θco、uco输入至基于水下机器人三维路径跟踪运动学误差模型所建立的二阶滤波器,得到水下机器人的姿态与速度控制量ψc、θc、uc,及其导数结合机器人运动变量ψ、θ、u,得到滤波姿态与速度跟踪误差量 与理想角速度控制量rco、qcoStep 3. Input the ideal control quantities ψ co , θ co , and u co obtained in step 2 to the second-order filter established based on the 3D path tracking kinematic error model of the underwater robot to obtain the attitude and speed control of the underwater robot Quantities ψ c , θ c , u c , and their derivatives Combining the robot motion variables ψ, θ, u to obtain the filter attitude and speed tracking error and ideal angular velocity control quantities r co , q co ;

所涉及的水下机器人三维路径跟踪运动学误差模型为:The kinematic error model of the 3D path tracking of the underwater robot involved is:

sthe s ·&Center Dot; == rr ee -- qq hh ++ uu -- uu rr cosψcosψ ee cosθcosθ ee ee ·· == -- rr sthe s ++ uu rr sinψsinψ ee cosθcosθ ee ++ vv hh ·· == qq sthe s -- uu rr sinθsinθ ee ++ ww -- -- -- (( 44 ))

ψψ ·&Center Dot; ee == rr cc oo sthe s θθ -- rr Ff θθ ·· ee == qq -- qq Ff -- -- -- (( 55 ))

其中ψe=ψ-ψF,θe=θ-θF机器人纵向速度u、横向速度v和垂向速度w,艏摇角速度r和纵倾角速度q,ur为待设计期望路径上虚拟向导点的期望速度,其方向沿曲线路径的切线方向;ψF为ur速度方向与固定坐标系水平轴的夹角,θF为ur速度方向与固定坐标系垂直轴的夹角;ψ为机器人艏向角,θ为机器人纵倾角。where ψ e = ψ-ψ F , θ e = θ-θ F , Robot longitudinal velocity u, lateral velocity v and vertical velocity w, yaw angular velocity r and pitch angular velocity q, u r is the expected velocity of the virtual guide point on the desired path to be designed, and its direction is along the tangent direction of the curved path; ψ F is the angle between the u r velocity direction and the horizontal axis of the fixed coordinate system, θ F is the angle between the u r velocity direction and the vertical axis of the fixed coordinate system; ψ is the heading angle of the robot, and θ is the pitch angle of the robot.

步骤4.将步骤3中得到的水下机器人理想角速度控制量rco、qco输入至另一个基于水下机器人三维路径跟踪运动学误差模型所建立的二阶滤波器,得到水下机器人的角速度控制量rc、qc,及其导数结合机器人角运动变量r、q,得到滤波角速度跟踪误差量 Step 4. Input the ideal angular velocity control quantities r co and q co of the underwater robot obtained in step 3 to another second-order filter established based on the three-dimensional path tracking kinematic error model of the underwater robot to obtain the angular velocity of the underwater robot Controlled quantities r c , q c , and their derivatives Combined with the robot's angular motion variables r and q, the filtered angular velocity tracking error amount is obtained

步骤5.利用步骤3中得到的滤波姿态与速度跟踪误差量以及步骤4中得到的滤波角速度跟踪误差量解算得到水下机器人推进器推力Fu,与水平舵角δs、垂直舵角δr,分别作用于机器人推进器及舵机,实现三维路径跟踪控制;Step 5. Use the filtered attitude and velocity tracking error amount obtained in step 3 and the filtered angular velocity tracking error obtained in step 4 The thrust F u of the propeller of the underwater robot is obtained through calculation, and the horizontal rudder angle δ s and the vertical rudder angle δ r act on the propeller and steering gear of the robot respectively to realize three-dimensional path tracking control;

所涉及的水下机器人推进器推力Fu,与水平舵角δs、垂直舵角δr的表达式为:The expressions of the propeller thrust Fu of the underwater robot involved, the horizontal rudder angle δ s and the vertical rudder angle δ r are:

Ff uu == mm 11 (( -- kk uu uu ~~ -- kk ii uu ϵϵ 11 ++ uu ·· cc -- uu bb sthe s )) -- ff uu δδ sthe s == bb 11 -- 11 [[ mm 44 (( -- kk qq qq ~~ -- kk ii qq ϵϵ 22 ++ qq ·· cc -- qq bb sthe s )) -- ff qq ]] δδ rr == bb 22 -- 11 [[ mm 55 (( -- kk rr rr ~~ -- kk ii rr ϵϵ 33 ++ rr ·· cc -- rr bb sthe s )) -- ff rr ]] -- -- -- (( 66 ))

其中fu、fq和fr为模型非线性水动力项;ubs、qbs和rbs为反馈补偿鲁棒项;m1、m4、m5分别为由流体产生的附加质量;ku、kq、kr、kiu、kiq和kir均为控制器参数;in f u , f q and f r are nonlinear hydrodynamic items of the model; u bs , q bs and r bs are feedback compensation robust items; m 1 , m 4 , and m 5 are the additional mass produced by the fluid; k u , k q , k r , k iu , k iq and k ir are all controller parameters;

所涉及的水下机器人动力学模型为:The dynamic model of the underwater robot involved is:

uu ·· == mm 22 mm 11 vv rr -- mm 33 mm 11 ww qq -- dd 11 mm 11 uu ++ 11 mm 11 Ff uu ++ ωω 11 vv ·· == -- mm 11 mm 22 vv rr -- dd 22 mm 22 vv ++ ωω 22 ww ·· == mm 11 mm 33 uu qq -- dd 33 mm 33 ww ++ gg 11 ++ ωω 33 qq ·· == mm 33 -- mm 11 mm 55 uu ww -- dd 44 mm 55 qq -- gg 22 ++ 11 mm 55 bb 11 δδ sthe s ++ ωω 44 rr ·· == mm 11 -- mm 22 mm 66 uu vv -- dd 55 mm 66 rr ++ 11 mm 66 bb 22 δδ rr ++ ωω 55 -- -- -- (( 77 ))

其中in

mm 11 == mm -- Xx uu ·&Center Dot; ,, mm 22 == mm -- YY vv ·&Center Dot; ,, mm 33 == mm -- ZZ ww ·&Center Dot;

mm 55 == II ythe y -- Mm qq ·&Center Dot; ,, mm 66 == II zz -- NN rr ·&Center Dot;

g1=(W-B)cosθ,g2=(zgW-zbB)sinθg 1 =(WB)cosθ, g 2 =(z g Wz b B)sinθ

d1=Xu+Xu|u||u|,d2=Yv+Yv|v||v|d 1 =X u +X u| u | |u|, d 2 =Y v +Y v|v| |v|

d3=Zw+Zw|w||w|,d4=Mq+Mq|q||q|d 3 =Z w +Z w|w| |w|, d 4 =M q +M q|q| |q|

d5=Nr+Nr|r||r|d 5 =N r +N r|r| |r|

bb 11 == uu 22 Mm δδ sthe s ,, bb 22 == uu 22 NN δδ rr

其中,m和m(·)分别表示机器人质量和由流体作用产生的附加质量,Iy为机器人绕y轴的转动惯量,Iz为机器人绕z轴的转动惯量,X(·)、Y(·)、Z(·)、M(·)和N(·)为粘性流体水动力系数;zg和zb分别为载体坐标下垂直轴上重心和浮心的坐标位置,W和B分别表示机器人受到的重力和浮力,d(·)为非线性阻尼水动力项,为水平舵和垂直舵舵效系数,ω(·)表示为干扰作用项。Among them, m and m ( ) respectively represent the mass of the robot and the additional mass produced by the fluid action, I y is the moment of inertia of the robot around the y-axis, I z is the moment of inertia of the robot around the z-axis, X ( ) , Y ( ) , Z (·) , M (·) and N (·) are the hydrodynamic coefficients of the viscous fluid; z g and z b are the coordinate positions of the center of gravity and the center of buoyancy on the vertical axis under the carrier coordinates, and W and B respectively represent The gravity and buoyancy of the robot, d (·) is the nonlinear damping hydrodynamic term, and is the rudder effect coefficient of the horizontal rudder and the vertical rudder, and ω (·) is expressed as the disturbance action item.

步骤6.利用步骤3中得到的水下机器人姿态与速度控制量ψc、θc、uc,滤波姿态与速度跟踪误差量与理想角速度控制量rco、qco,结合步骤4中得到的水下机器人的角速度控制量rc、qc,以及滤波角速度跟踪误差量构造滤波误差补偿回路;Step 6. Using the underwater robot attitude and velocity control quantities ψ c , θ c , u c obtained in step 3, filter the attitude and velocity tracking error Combined with the ideal angular velocity control quantities r co , q co , the angular velocity control quantities r c , q c of the underwater robot obtained in step 4, and the filtered angular velocity tracking error Construct a filter error compensation loop;

所涉及的滤波误差补偿回路中误差补偿鲁棒项的表达式为:The expression of the error compensation robust term in the filter error compensation loop involved is:

ψψ bb sthe s == gg TT (( ψψ ~~ )) BB TT uu rr υυ xx υυ ythe y υυ zz -- -- -- (( 88 ))

θθ bb sthe s == gg TT (( θθ ~~ )) CC TT uu rr υυ xx υυ ythe y υυ zz -- -- -- (( 99 ))

uu bb sthe s == 11 pp 21twenty one AA TT υυ xx υυ ythe y υυ zz -- -- -- (( 1010 ))

rr bb sthe s == 11 pp 23twenty three υυ ψψ cc oo sthe s θθ -- -- -- (( 1111 ))

qq bb sthe s == 11 pp 22twenty two υυ θθ -- -- -- (( 1212 ))

其中,p21、p22、p23为李雅普诺夫方程的解矩阵中的元素;Among them, p 21 , p 22 , and p 23 are elements in the solution matrix of the Lyapunov equation;

AA == 11 00 00 ,, BB == cosθcosθ ee cosψcosψ cc -- cosθcosθ ee sinψsinψ cc cosθcosθ cc sinψsinψ cc cosθcosθ cc cosψcosψ cc 00 00 ,, CC == cosψcosψ ee cosθcosθ cc -- cosψcosψ ee sinθsinθ cc sinψsinψ ee cosθcosθ cc -- sinψsinψ ee sinθsinθ cc -- sinθsinθ cc -- cosθcosθ cc ,,

g ( ψ ~ ) = c o s ψ ~ - 1 ψ ~ s i n ψ ~ ψ ~ , g ( θ ~ ) = c o s θ ~ - 1 θ ~ s i n θ ~ θ ~ , 且满足 lim ψ ~ → 0 g ( ψ ~ ) = 0 1 , lim θ ~ → 0 g ( θ ~ ) = 0 1 ; g ( ψ ~ ) = c o the s ψ ~ - 1 ψ ~ the s i no ψ ~ ψ ~ , g ( θ ~ ) = c o the s θ ~ - 1 θ ~ the s i no θ ~ θ ~ , and satisfied lim ψ ~ &Right Arrow; 0 g ( ψ ~ ) = 0 1 , lim θ ~ &Right Arrow; 0 g ( θ ~ ) = 0 1 ;

位置滤波信号补偿误差为The position filter signal compensation error is

υυ xx υυ ythe y υυ zz == sthe s ~~ -- ζζ xx sthe s ~~ -- ζζ ythe y hh ~~ -- ζζ zz -- -- -- (( 1313 ))

其中位置滤波补偿动态量ζx、ζy和ζz表达式为Among them, the position filter compensation dynamic quantities ζ x , ζ y and ζ z are expressed as

ζζ ·&Center Dot; xx ζζ ·· ythe y ζζ ·&Center Dot; zz == rζrζ ythe y -- qζqζ zz -- rζrζ xx qζqζ xx -- kk xx ζζ xx -- kk ythe y ζζ ythe y -- kk zz ζζ zz ++ sthe s ·&Center Dot; cc -- sthe s ·&Center Dot; cc oo ee ·&Center Dot; cc -- ee ·&Center Dot; cc oo hh ·&Center Dot; cc -- hh ·&Center Dot; cc oo ++ uu rr [[ AA BB gg (( ψψ ~~ )) CC gg (( θθ ~~ )) ]] ζζ uu ζζ ψψ ζζ θθ -- -- -- (( 1414 ))

且有ζx(0)=0、ζy(0)=0、ζz(0)=0;sco、eco、hco为期望位置信号,sc、ec、hc为位置控制信号,ζu、ζψ和ζθ分别为构造的滤波补偿变量;And there are ζ x (0) = 0, ζ y (0) = 0, ζ z (0) = 0; s co , e co , h co are expected position signals, sc , e c , h c are position control Signal, ζ u , ζ ψ and ζ θ are constructed filter compensation variables respectively;

滤波器输出的姿态信号补偿量为:The attitude signal compensation amount output by the filter is:

υυ ψψ υυ θθ == ψψ ~~ -- ζζ ψψ θθ ~~ -- ζζ θθ -- -- -- (( 1515 ))

滤波姿态补偿动态表达式为:The dynamic expression of filter attitude compensation is:

ζζ ·&Center Dot; ψψ == -- kk ψψ ζζ ψψ ++ rr cc -- rr cc oo cc oo sthe s θθ ++ ζζ rr coscos θθ -- -- -- (( 1616 ))

ζζ ·· θθ == -- kk θθ ζζ θθ ++ (( qq cc -- qq cc oo )) ++ ζζ qq -- -- -- (( 1717 ))

且有ζψ(0)=0,ζθ(0)=0,ζr=0,ζq=0。And ζ ψ (0)=0, ζ θ (0)=0, ζ r =0, ζ q =0.

步骤7.计算当前水下机器人位置ηn=(x,y,z)与标定的转向点WPk=(xk,yk,zk)之间的距离若小于设定的切换半径R,则表示完成当前指定路径的跟踪任务,否则继续步骤2。Step 7. Calculate the distance between the current underwater robot position η n =(x,y,z) and the calibrated turning point WP k =(x k ,y k ,z k ) If it is smaller than the set switching radius R, it means that the tracking task of the currently specified path is completed, otherwise continue to step 2.

本发明采用滤波反步法进行水下机器人三维路径跟踪控制,通过设计二阶滤波器,能够实现对虚拟控制和其导数信号的估计,避免了对虚拟信号的解析求导,引入滤波补偿系统保证滤波信号的跟踪精度,基于李雅普诺夫稳定性理论保证了系统跟踪误差收敛于零点,控制性能优于动态面控制。The present invention adopts the filter backstepping method to carry out the three-dimensional path tracking control of the underwater robot. By designing a second-order filter, the estimation of the virtual control and its derivative signal can be realized, and the analytical derivation of the virtual signal is avoided, and the filter compensation system is introduced to ensure The tracking accuracy of the filtered signal is based on the Lyapunov stability theory to ensure that the system tracking error converges to zero, and the control performance is better than the dynamic surface control.

本发明具有如下优点及效果:The present invention has following advantage and effect:

1.将三维路径跟踪控制问题,分解为对位置、姿态和速度回路分别控制的问题;1. Decompose the three-dimensional path tracking control problem into separate control problems for position, attitude and velocity loops;

2.采用二阶滤波器获得虚拟控制的滤波信号及其导数形式,避免了反步法设计中由于需要逐步计算中间虚拟控制的导数形式而导致“项数膨胀”的问题,简化了控制器设计过程;2. The second-order filter is used to obtain the filtered signal and its derivative form of the virtual control, which avoids the problem of "term expansion" caused by the need to gradually calculate the derivative form of the intermediate virtual control in the design of the backstepping method, and simplifies the controller design. process;

3.通过构造滤波补偿系统,保证了滤波器对参考输入信号的跟踪精度,实现了系统跟踪误差渐近收敛到零点;3. By constructing the filter compensation system, the tracking accuracy of the filter to the reference input signal is guaranteed, and the system tracking error is asymptotically converged to zero;

4.引入速度的积分环节消除跟踪信号稳态误差。4. Introduce the integral link of speed to eliminate the steady-state error of tracking signal.

附图说明Description of drawings

图1中给出基于滤波反步法的AUV三维路径跟踪控制器框图;Figure 1 shows the block diagram of the AUV three-dimensional path tracking controller based on the filtering backstepping method;

图2机器人三维路径跟踪示意图;Fig. 2 Schematic diagram of three-dimensional path tracking of the robot;

图3二阶滤波器结构图;Fig. 3 second-order filter structure diagram;

图4机器人三维路径跟踪轨迹;Fig. 4 robot three-dimensional path tracking trajectory;

图5机器人三维路径跟踪XY平面投影;Figure 5 Robot 3D path tracking XY plane projection;

图6机器人三维路径跟踪XZ平面投影;Figure 6 Robot 3D path tracking XZ plane projection;

图7机器人三维路径跟踪误差曲线;Fig. 7 Robot 3D path tracking error curve;

图8机器人三维路径跟踪速度响应;Fig. 8 The robot's three-dimensional path tracking velocity response;

图9机器人三维路径跟踪姿态角响应;Fig. 9 The robot's three-dimensional path tracking attitude angle response;

图10机器人三维路径跟踪纵向速度及补偿项;Figure 10 Robot 3D path tracking longitudinal velocity and compensation items;

图11机器人三维路径跟踪艏摇角速度及补偿项;Fig. 11 Robot three-dimensional path tracking yaw angular velocity and compensation items;

图12机器人三维路径跟踪纵倾角速度及补偿项;Fig. 12 The three-dimensional path tracking pitch angular velocity and compensation items of the robot;

图13机器人三维路径跟踪艏向角及补偿项;Figure 13 Robot 3D path tracking heading angle and compensation items;

图14机器人三维路径跟踪纵倾角及补偿项;Fig. 14 Robot 3D path tracking pitch angle and compensation items;

图15机器人三维路径跟踪控制输入。Figure 15 Robot 3D path tracking control input.

具体实施方式detailed description

本发明内容基于二阶滤波器的水下机器人三维路径跟踪控制方法的具体实施方式如下:The specific implementation of the three-dimensional path tracking control method of the underwater robot based on the second-order filter is as follows:

1.图1中标出了AUV系统的状态信号、虚拟控制量和滤波信号及其导数值的相互关系,前向回路主要通过二阶滤波器获得虚拟控制的滤波信号和导数信号,通过设计滤波误差补偿回路保证滤波器对输入信号的跟踪精度。1. Figure 1 shows the relationship between the state signal of the AUV system, the virtual control quantity, the filter signal and its derivative value. The forward loop mainly obtains the filter signal and derivative signal of the virtual control through the second-order filter. By designing the filter error The compensation loop ensures the tracking accuracy of the filter to the input signal.

2.图3为机器人三维路径跟踪示意图,lk为期望路径,{I}、{B}和{F}分别表示固定坐标系、机器人载体坐标系和Serret-Frenet坐标系;P点为期望路径lk上的虚拟向导,Q点表示机器人质心位置,对于给定期望路径lk 为确定的路径参数,以lk上虚拟向导P的为原点的移动坐标系{F}定义为将坐标系{I}分别绕ζ轴和η旋转ψF和θF角度,然后平移使固定坐标系原点O与路径上P点重合得到,这里旋转角度定义为2. Figure 3 is a schematic diagram of the three-dimensional path tracking of the robot, l k is the expected path, {I}, {B} and {F} represent the fixed coordinate system, the robot carrier coordinate system and the Serret-Frenet coordinate system respectively; point P is the expected path The virtual guide on l k , point Q represents the position of the robot’s center of mass, for a given desired path l k is To determine the path parameters, the moving coordinate system {F} with the origin of the virtual guide P on l k is defined as rotating the coordinate system {I} around the ζ axis and η by angles ψ F and θ F respectively, and then translating to make the fixed coordinate It is obtained by coincidence of origin O and point P on the path, where the rotation angle is defined as

其中首先给出水下机器人三维路径跟踪运动学误差模型in Firstly, the 3D path tracking kinematics error model of the underwater robot is given

sthe s ·· == rr ee -- qq hh ++ uu -- uu rr cc oo sthe s ψψ ee cc oo sthe s θθ ee ee ·· == -- rr sthe s ++ uu rr sinψsinψ ee cosθcosθ ee ++ vv hh ·· == qq sthe s -- uu rr sthe s ii nno θθ ee ++ ww

ψψ ·&Center Dot; ee == rr cc oo sthe s θθ -- rr Ff θθ ·· ee == qq -- qq Ff -- -- -- (( 44 ))

其中变量s、e和h分别表示{B}坐标系下机器人与期望路径上参考点的前向、横向和垂向跟踪误差,ψ和θ为机器人当前艏向角和纵倾角,状态变量u,v,w,q和r分别表示载体坐标系下机器人的纵向速度、横向速度、垂向速度、纵倾角速度和艏摇角速度;ur为虚拟目标移动速度,其中 The variables s, e, and h represent the forward, lateral, and vertical tracking errors between the robot and the reference point on the desired path in the {B} coordinate system, respectively, ψ and θ are the current heading and pitch angles of the robot, and the state variable u, v, w, q and r respectively represent the longitudinal velocity, lateral velocity, vertical velocity, pitch angular velocity and yaw angular velocity of the robot in the carrier coordinate system; u r is the moving velocity of the virtual target, where

忽略横摇对机器人三维运动的影响,建立如下五自由度机器人动力学模型。Neglecting the influence of rolling on the three-dimensional motion of the robot, the following five-degree-of-freedom robot dynamics model is established.

uu ·&Center Dot; == mm 22 mm 11 vv rr -- mm 33 mm 11 ww qq -- dd 11 mm 11 uu ++ 11 mm 11 Ff uu ++ ωω 11 vv ·&Center Dot; == -- mm 11 mm 22 urur -- dd 22 mm 22 vv ++ ωω 22 ww ·&Center Dot; == mm 11 mm 33 uu qq -- dd 33 mm 33 ww ++ gg 11 ++ ωω 33 qq ·&Center Dot; == mm 33 -- mm 11 mm 55 uu ww -- dd 44 mm 55 qq -- gg 22 ++ 11 mm 55 bb 11 δδ sthe s ++ ωω 44 rr ·&Center Dot; == mm 11 -- mm 22 mm 66 uu vv -- dd 55 mm 66 rr ++ 11 mm 66 bb 22 δδ rr ++ ωω 55 -- -- -- (( 55 ))

其中in

mm 11 == mm -- Xx uu ·· ,, mm 22 == mm -- YY vv ·&Center Dot; ,, mm 33 == mm -- ZZ ww ·&Center Dot;

mm 55 == II ythe y -- Mm qq ·&Center Dot; ,, mm 66 == II zz -- NN rr ··

g1=(W-B)cosθ,g2=(zgW-zbB)sinθg 1 =(WB)cosθ, g 2 =(z g Wz b B)sinθ

d1=Xu+Xu|u||u|,d2=Yv+Yv|v||v|d 1 =X u +X u|u| |u|, d 2 =Y v +Y v|v| |v|

d3=Zw+Zw|w||w|,d4=Mq+Mq|q||q|d 3 =Z w +Z w|w| |w|, d 4 =M q +M q|q| |q|

d5=Nr+Nr|r||r|d 5 =N r +N r|r| |r|

bb 11 == uu 22 Mm δδ sthe s ,, bb 22 == uu 22 NN δδ rr

其中,状态变量u,v,w,q和r分别表示载体坐标系下机器人的纵向速度、横向速度、垂向速度、纵倾角速度和艏摇角速度;m和m(·)分别表示机器人质量和由流体作用产生的附加质量,Iy为机器人绕y轴的转动惯量,Iz为机器人绕z轴的转动惯量,X(·)、Y(·)、Z(·)、M(·)和N(·)为粘性流体水动力系数;zg和zb分别为载体坐标下垂直轴上重心和浮心的坐标位置,W和B分别表示机器人受到的重力和浮力,d(·)为非线性阻尼水动力项,为水平舵和垂直舵舵效系数,控制输入Fu、δs和δr分别表示AUV推进器推力、水平舵角和垂直舵角,ω(·)表示为干扰作用项。Among them, the state variables u, v, w, q and r respectively represent the longitudinal velocity, lateral velocity, vertical velocity, pitch angular velocity and yaw angular velocity of the robot in the carrier coordinate system; m and m ( ) represent the mass and The additional mass produced by the action of fluid, I y is the moment of inertia of the robot around the y-axis, I z is the moment of inertia of the robot around the z-axis, X ( ) , Y ( ) , Z ( ) , M ( ) and N (·) is the hydrodynamic coefficient of the viscous fluid; z g and z b are the coordinate positions of the center of gravity and buoyancy on the vertical axis under the carrier coordinates, W and B represent the gravity and buoyancy of the robot respectively, and d (·) is the non- The linearly damped hydrodynamic term, and are the rudder effect coefficients of the horizontal rudder and the vertical rudder, the control inputs F u , δ s and δ r represent the thrust of the AUV propeller, the horizontal rudder angle and the vertical rudder angle, respectively, and ω (·) represents the interference term.

3.步骤3中滤波器的设计过程为3. The filter design process in step 3 is

为了避免对虚拟控制量直接解析求导而引入复杂的计算过程,利用二阶滤波器的特性,将虚拟控制量作为滤波器的参考输入,通过积分而非微分的过程获得其滤波信号和导数值,滤波器结构定义如下:In order to avoid the introduction of complicated calculation process for the direct analytical derivation of the virtual control quantity, the characteristics of the second-order filter are used, the virtual control quantity is used as the reference input of the filter, and the filtered signal and derivative value are obtained through the process of integration rather than differentiation , the filter structure is defined as follows:

xx 11 xx ·&Center Dot; 22 == 00 11 -- ωω nno 22 -- 22 ζωζω nno xx 11 xx 22 ++ 00 ωω nno 22 xx ‾‾ -- -- -- (( 66 ))

其中 x 1 x 2 T = x c x · c T , 为滤波器的参考输入信号,上式为线性稳定系统,可见当为有界值,则xc均为连续有界信号,从输入信号到输出信号xc的传递函数为in x 1 x 2 T = x c x &Center Dot; c T , is the reference input signal of the filter, the above formula is a linear stable system, it can be seen that when is a bounded value, then x c and Both are continuous bounded signals, from the input signal The transfer function to the output signal x c is

Hh (( sthe s )) == Xx cc (( sthe s )) Xx ‾‾ (( sthe s )) == ωω nno 22 sthe s 22 ++ 22 ζωζω nno sthe s ++ ωω nno 22 -- -- -- (( 77 ))

其中ζ和ωn分别表示阻尼比和自然角频率;如果信号的带宽低于H(s),那么误差信号将会很小,假设在已知带宽的情况下,通过选择足够大的自然角频率ωn就能够获得xc和xc且保证逼近误差很小。从上式可以看出,信号是通过积分过程而非微分过程得到的,这可以大大减少基于状态反馈设计的控制系统中测量噪声的影响,同时选择过大的ωn又会增加系统高频噪声的影响,这就需要综合考虑,选择合理的ωn满足控制性能。where ζ and ω n denote the damping ratio and natural angular frequency, respectively; if the signal bandwidth is lower than H(s), then the error signal will be small, assuming that the known In the case of wide bandwidth, xc and xc can be obtained by selecting a sufficiently large natural angular frequency ωn and the approximation error is guaranteed very small. From the above formula, it can be seen that the signal It is obtained through the integral process rather than the differential process, which can greatly reduce the influence of measurement noise in the control system based on state feedback design. At the same time, choosing too large ω n will increase the influence of high-frequency noise in the system, which requires comprehensive consideration , choose a reasonable ω n to satisfy the control performance.

4.步骤6中针对位置跟踪回路,根据视线角导引思想给出路径跟踪的期望视线角导引律4. For the position tracking loop in step 6, the expected line of sight angle guidance law for path tracking is given according to the line of sight angle guidance idea

和纵向速度,并设计位置跟踪滤波补偿系统的过程为and longitudinal velocity, and the process of designing the position tracking filter compensation system is

对于位置跟踪误差系统(3)设计机器人的运动学控制器u、姿态角ψ和θ的虚拟控制量分别为For the position tracking error system (3), the kinematics controller u of the design robot, the virtual control quantities of attitude angles ψ and θ are respectively

uco=-k1s+urcosψcocosθco(8)u co =-k 1 s+u r cosψ co co cosθ co (8)

ψψ cc oo == -- arcsinarcsin (( kk 22 ee // 11 ++ (( kk 22 ee )) 22 )) -- -- -- (( 99 ))

θθ cc oo == arcsinarcsin (( kk 33 hh // 11 ++ (( kk 33 hh )) 22 )) -- -- -- (( 1010 ))

其中增益因子k1>0,k2>0,k3>0为视线角导引律归一化参数,则系统(3)变为Among them, the gain factor k 1 >0, k 2 >0, and k 3 >0 are the normalization parameters of the line-of-sight angle guidance law, then the system (3) becomes

sthe s ·&Center Dot; == rr ee -- qq hh -- kk 11 sthe s ee ·&Center Dot; == -- rr sthe s -- uu rr kk 22 ee 11 ++ (( kk 22 ee )) 22 11 11 ++ (( kk 33 hh )) 22 ++ vv hh ·&Center Dot; == qq sthe s -- uu rr kk 33 hh 11 ++ (( kk 33 hh )) 22 ++ ww -- -- -- (( 1111 ))

对于位置跟踪误差系统式(3),构造李雅普诺夫能量函数For the position tracking error system formula (3), construct the Lyapunov energy function

VV 11 == 11 22 ll 22 -- -- -- (( 1212 ))

其中对方程(12)求导,将式(11)代入得in Take the derivative of Equation (12), and substitute Equation (11) into

VV ·&Center Dot; 11 == -- kk 11 sthe s 22 -- kk 22 uu rr 11 11 ++ (( kk 22 ee )) 22 11 11 ++ (( kk 33 hh )) 22 ee 22 -- kk 33 uu rr 11 11 ++ (( kk 33 ee )) 22 hh 22 ++ ee vv ++ hh ww -- -- -- (( 1313 ))

为避免反步法后续设计中需要对θco和ψco进求导,引起计算“项数膨胀”的不足,定义θc和ψc为理想信号θco和ψco通过二阶滤波器的滤波信号和其导数值,滤波器定义如下In order to avoid the need to derive derivatives of θ co and ψ co in the follow-up design of the backstepping method, which will cause the shortage of "item expansion" in the calculation, define θ c , and ψ c , For the ideal signals θ co and ψ co pass through the filtered signal of the second-order filter and its derivative value, the filter is defined as follows

θθ ·&Center Dot; cc θθ ···· cc == 00 11 -- ωω nno 22 -- 22 ζωζω nno θθ cc θθ ·&Center Dot; cc ++ 00 ωω nno 22 θθ cc oo -- -- -- (( 1414 ))

滤波器的初始值θc(0)=θco(0);The initial value of the filter θ c (0) = θ co (0);

ψψ ·· cc ψψ ···· cc == 00 11 -- ωω nno 22 -- 22 ζωζω nno ψψ cc ψψ ·· cc ++ 00 ωω nno 22 ψψ cc oo -- -- -- (( 1515 ))

滤波器的初始值ψc(0)=ψco(0);The initial value of the filter ψ c (0) = ψ co (0);

这里定义位置滤波跟踪误差信号Define the position filter tracking error signal here

sthe s ~~ ee ~~ hh ~~ == sthe s -- sthe s cc ee -- ee cc hh -- hh cc -- -- -- (( 1616 ))

对式(16)两边求导,将式(3)代入得Deriving both sides of formula (16), and substituting formula (3) into

sthe s ~~ ·· ee ~~ ·· hh ~~ ·· == rr ee ~~ -- qq hh ~~ -- rr sthe s ~~ qq sthe s ~~ [[ AA AA BB gg (( ψψ ~~ )) uu rr CC gg (( θθ ~~ )) uu rr ]] uu ~~ ψψ ~~ θθ ~~ -- -- -- (( 1717 ))

其中,定义滤波跟踪误差为 u ~ = u - u c , ψ ~ = ψ e - ψ c , θ ~ = θ e - θ c , Among them, the filter tracking error is defined as u ~ = u - u c , ψ ~ = ψ e - ψ c , θ ~ = θ e - θ c ,

AA == 11 00 00 ,, BB == cosθcosθ ee cosψcosψ cc -- cosθcosθ ee sinψsinψ cc cosθcosθ cc sinψsinψ cc cosθcosθ cc cosψcosψ cc 00 00

CC == cosψcosψ cc cosθcosθ cc -- cosψcosψ cc sinθsinθ cc sinψsinψ ee cosθcosθ cc -- sinψsinψ ee sinθsinθ cc -- sinθsinθ cc -- cosθcosθ cc

g ( ψ ~ ) = c o s ψ ~ - 1 ψ ~ sin ψ ~ ψ ~ , g ( θ ~ ) = c o s θ ~ - 1 θ ~ s i n θ ~ θ ~ , 且满足 lim ψ ~ → 0 g ( ψ ~ ) = 0 1 , lim θ ~ → 0 g ( θ ~ ) = 0 1 对式(16)左右移项,增加和减少一项 s · c o e · c o h · c o T 得到 g ( ψ ~ ) = c o the s ψ ~ - 1 ψ ~ sin ψ ~ ψ ~ , g ( θ ~ ) = c o the s θ ~ - 1 θ ~ the s i no θ ~ θ ~ , and satisfied lim ψ ~ &Right Arrow; 0 g ( ψ ~ ) = 0 1 , lim θ ~ &Right Arrow; 0 g ( θ ~ ) = 0 1 Shift the left and right terms of formula (16), increase and decrease one term the s &Center Dot; c o e &Center Dot; c o h &Center Dot; c o T get

sthe s ·&Center Dot; ee ·· hh ·· == sthe s ·&Center Dot; cc oo ee ·· cc oo hh ·&Center Dot; cc oo ++ sthe s ~~ ·· ee ~~ ·&Center Dot; hh ~~ ·&Center Dot; ++ sthe s ·· cc -- sthe s ·· cc oo ee ·· cc -- ee ·· cc oo hh ·&Center Dot; cc -- hh ·&Center Dot; cc oo -- -- -- (( 1818 ))

根据跟踪控制器设计目标,选择理想期望位置信号 s · c o e · c o h · c o T According to the design goal of the tracking controller, select the ideal desired position signal the s &Center Dot; c o e &Center Dot; c o h &Center Dot; c o T for

sthe s ·&Center Dot; cc oo ee ·&Center Dot; cc oo hh ·&Center Dot; cc oo == -- kk xx sthe s ~~ ++ sthe s ·&Center Dot; cc -- kk ythe y ee ~~ ++ ee ·&Center Dot; cc -- kk zz hh ~~ ++ hh ~~ cc -- -- -- (( 1919 ))

定义角度滤波跟踪误差信号为Define the angle filter tracking error signal as

uu ~~ ψψ ~~ θθ ~~ == uu -- uu cc ψψ ee -- ψψ cc θθ ee -- θθ cc -- -- -- (( 2020 ))

将式(19)和(17)代入(18)整理得Substitute (19) and (17) into (18) to get

sthe s ~~ ·· ee ~~ ·&Center Dot; hh ~~ ·· == rr ee ~~ -- qq hh ~~ -- rr sthe s ~~ qq sthe s ~~ ++ -- kk xx sthe s ~~ -- kk ythe y ee ~~ -- kk zz hh ~~ ++ sthe s ·&Center Dot; cc -- sthe s ·&Center Dot; cc oo ee ·&Center Dot; cc -- ee ·&Center Dot; cc oo hh ·&Center Dot; cc -- hh ·&Center Dot; cc oo ++ [[ AA BB gg (( ψψ ~~ )) uu rr CC gg (( θθ ~~ )) uu rr ]] uu ~~ ψψ ~~ θθ ~~ -- -- -- (( 21twenty one ))

定义滤波信号补偿误差Define Filtered Signal Compensation Error

υυ xx υυ ythe y υυ zz == sthe s ~~ -- ζζ xx ee ~~ -- ζζ ythe y hh ~~ -- ζζ zz -- -- -- (( 22twenty two ))

其中构造位置滤波补偿动态ζx、ζy和ζz如下Wherein the construction of position filter compensation dynamic ζ x , ζ y and ζ z is as follows

ζζ ·&Center Dot; xx ζζ ·· ythe y ζζ ·&Center Dot; zz == rζrζ ythe y -- qζqζ zz -- rζrζ xx qζqζ xx -- kk xx ζζ xx -- kk ythe y ζζ ythe y -- kk zz ζζ zz ++ sthe s ·· cc -- sthe s ·· cc oo ee ·&Center Dot; cc -- ee ·· cc oo hh ·· cc -- hh ·· cc oo ++ uu rr [[ AA BB gg (( ψψ ~~ )) CC gg (( θθ ~~ )) ]] ζζ uu ζζ ψψ ζζ θθ -- -- -- (( 23twenty three ))

这里ζx(0)=0、ζy(0)=0、ζz(0)=0。Here, ζ x (0)=0, ζ y (0)=0, and ζ z (0)=0.

5.步骤6中针对姿态角跟踪回路,设计角速度控制律和姿态角跟踪滤波补偿系统的过程为:5. In step 6, for the attitude angle tracking loop, the process of designing the angular velocity control law and the attitude angle tracking filter compensation system is as follows:

对滤波跟踪误差式(20)求导,将姿态角跟踪误差模型式(4)代入得Deriving the filter tracking error formula (20), and substituting the attitude angle tracking error model formula (4) into

ψψ ~~ ·· == rr cc oo sthe s θθ -- rr Ff -- ψψ ·· cc == rr cc oo ++ (( rr cc -- rr cc oo )) ++ rr ~~ coscos θθ -- rr Ff -- ψψ ·· cc -- -- -- (( 24twenty four ))

θθ ~~ ·&Center Dot; == qq -- qq Ff -- θθ ·· cc == qq cc oo ++ (( qq cc -- qq cc oo )) ++ qq ~~ -- qq Ff -- θθ ·&Center Dot; cc -- -- -- (( 2525 ))

其中角速度跟踪误差定义为这里分别设计理想虚拟控制信号rco和qcowhere the angular velocity tracking error is defined as Here, the ideal virtual control signals r co and q co are respectively designed as

rr cc oo == cc oo sthe s θθ (( rr Ff ++ ψψ ·&Center Dot; cc -- kk ψψ ψψ ~~ -- ψψ bb sthe s )) -- -- -- (( 2626 ))

qq cc oo == qq Ff ++ θθ ·&Center Dot; cc -- kk θθ θθ ~~ -- θθ bb sthe s -- -- -- (( 2727 ))

这里qcrc分别为理想信号qco和rco通过二阶滤波器得到的滤波信号和其导数值,定义滤波器形式为where q c and r c and Respectively, the ideal signal q co and r co get the filtered signal and its derivative value through the second-order filter, and the filter form is defined as

qq ·&Center Dot; cc qq ···· cc == 00 11 -- ωω nno 22 -- 22 ζωζω nno qq cc qq ·&Center Dot; cc ++ 00 ωω nno 22 qq cc oo -- -- -- (( 2828 ))

滤波器初始条件qc(0)=qco(0);Filter initial condition q c (0) = q co (0);

rr ·&Center Dot; cc rr ···· cc == 00 11 -- ωω nno 22 -- 22 ζωζω nno rr cc rr ·· cc ++ 00 ωω nno 22 rr cc oo -- -- -- (( 2929 ))

滤波器初始条件rc(0)=rco(0);Filter initial condition r c (0) = r co (0);

将式(26)和式(27)代入式(24)和(25)得Substituting formula (26) and formula (27) into formula (24) and (25) to get

ψψ ~~ ·&Center Dot; == -- kk ψψ ψψ ~~ ++ (( rr cc -- rr cc oo )) ++ rr ~~ coscos θθ -- ψψ bb sthe s -- -- -- (( 3030 ))

θθ ~~ ·&Center Dot; == -- kk θθ θθ ~~ ++ (( qq cc -- qq cc oo )) ++ qq ~~ -- θθ bb sthe s -- -- -- (( 3131 ))

其中kψ>0和kθ>0为控制器参数,ψbs和θbs为待设计镇定项,这里通过定义补偿跟踪误差,对滤波器输出的信号进行反馈补偿Where k ψ > 0 and k θ > 0 are the controller parameters, ψ bs and θ bs are the stabilization items to be designed. Here, the compensation tracking error is defined to perform feedback compensation on the signal output by the filter

υυ ψψ υυ θθ == ψψ ~~ -- ζζ ψψ θθ ~~ -- ζζ θθ -- -- -- (( 3232 ))

这里构造滤波补偿动态Here, filter compensation dynamics are constructed

ζζ ·&Center Dot; ψψ == -- kk ψψ ζζ ψψ ++ rr cc -- rr cc oo cc oo sthe s θθ ++ ζζ rr coscos θθ -- -- -- (( 3333 ))

ζζ ·&Center Dot; θθ == -- kk θθ ζζ ·&Center Dot; θθ ++ (( qq cc -- qq cc oo )) ++ ζζ qq -- -- -- (( 3434 ))

这里初始条件ζψ(0)=0,ζθ(0)=0,ζr=0,ζq=0。Here initial conditions ζ ψ (0)=0, ζ θ (0)=0, ζ r =0, ζ q =0.

6.步骤6中针对速度控制回路,引入积分环节减小稳态误差,设计真实控制输入的具体过程如下:6. For the speed control loop in step 6, an integral link is introduced to reduce the steady-state error. The specific process of designing the real control input is as follows:

为保证跟踪系统存在外干扰下的鲁棒性,引入积分项增加系统的鲁棒性,定义 这里设计机器人三维路径跟踪控制器为In order to ensure the robustness of the tracking system in the presence of external disturbances, an integral term is introduced to increase the robustness of the system, defined as Here the robot 3D path tracking controller is designed as

Ff uu == mm 11 (( -- kk uu uu ~~ -- kk ii uu ϵϵ 11 ++ uu ·&Center Dot; cc -- uu bb sthe s )) -- ff uu δδ sthe s == bb 11 -- 11 [[ mm 44 (( -- kk qq qq ~~ -- kk ii qq ϵϵ 22 ++ qq ·· cc -- qq bb sthe s )) -- ff qq ]] δδ rr == bb 22 -- 11 [[ mm 55 (( -- kk rr rr ~~ -- kk ii rr ϵϵ 33 ++ rr ·· cc -- rr bb sthe s )) -- ff rr ]] -- -- -- (( 3535 ))

其中fu=m2vr-m3wq+d1u、fq=(m1-m3)uw+d4q-g2和fr=(m1-m2)uv+d5r为模型非线性水动力项,ubs、qbs和rbs为待设计反馈补偿鲁棒项在步骤6中进行设计。Where f u =m 2 vr-m 3 wq+d 1 u, f q =(m 1 -m 3 )uw+d 4 qg 2 and f r =(m 1 -m 2 )uv+d 5 r are models Non-linear hydrodynamic items, u bs , q bs and r bs are feedback compensation robust items to be designed and designed in step 6.

7.步骤6中反馈控制项设计的具体过程如下:7. The specific process of feedback control item design in step 6 is as follows:

首先对于步骤2中位置跟踪系统结合式(22)构造李雅普诺夫能量函数Firstly, construct the Lyapunov energy function for the position tracking system combined with Equation (22) in step 2

VV 11 == 11 22 (( υυ xx 22 ++ υυ ythe y 22 ++ υυ zz 22 )) -- -- -- (( 3636 ))

对上式求导,将式(21)和(23)代入式(36)得Taking the derivative of the above formula, substituting formula (21) and (23) into formula (36), we get

VV 11 == υυ ·· xx υυ xx ++ υυ ·· ythe y υυ ythe y ++ υυ ·&Center Dot; zz υυ zz == -- kk xx υυ xx 22 -- kk ythe y υυ ythe y 22 -- kk zz υυ zz 22 ++ [[ υυ xx υυ ythe y υυ zz ]] [[ AA BB gg (( ψψ ~~ )) uu rr CC gg (( θθ ~~ )) uu rr ]] υυ uu υυ ψψ υυ θθ == -- kk xx υυ xx 22 -- kk ythe y υυ ythe y 22 -- kk zz υυ zz 22 ++ AA TT υυ xx υυ ythe y υυ zz υυ uu ++ gg TT (( ψψ ~~ )) BB TT uu rr υυ xx υυ ythe y υυ zz υυ ψψ ++ gg TT (( θθ ~~ )) CC TT uu rr υυ xx υυ ythe y υυ zz υυ θθ -- -- -- (( 3737 ))

其中υu、υψ、υθ定义如式(32)。Among them, υ u , υ ψ , and υ θ are defined as formula (32).

然后对于姿态跟踪系统结合式(32)构造李雅普诺夫能量函数Then for the attitude tracking system combined with formula (32) to construct the Lyapunov energy function

VV 22 == 11 22 (( υυ ψψ 22 ++ υυ θθ 22 )) -- -- -- (( 3838 ))

对上式求导,将式(30)~(34)代入得:To derive the above formula, substitute the formulas (30)~(34) into:

VV ·· 22 == υυ ·&Center Dot; ψψ υυ ψψ ++ υυ ·&Center Dot; 00 υυ 00 == (( ψψ ~~ ·&Center Dot; -- ζζ ·&Center Dot; ψψ )) υυ ψψ ++ (( θθ ~~ ·&Center Dot; -- ζζ ·&Center Dot; θθ )) υυ θθ == (( -- kk ψψ ψψ ~~ ++ rr ~~ coscos θθ -- ψψ bb sthe s ++ kk ψψ ζζ ψψ -- ζζ rr coscos θθ )) υυ ψψ ++ (( -- kk θθ θθ ~~ ++ qq ~~ -- θθ bb sthe s ++ kk θθ ζζ θθ -- ζζ qq )) υυ 00 == -- kk ψψ υυ ψψ 22 -- kk θθ υυ θθ 22 ++ υυ qq υυ θθ ++ υυ rr coscos θθ υυ ψψ -- θθ bb sthe s υυ θθ -- ψψ bb sthe s υυ ψψ -- -- -- (( 3939 ))

其中 υ u = u ~ - ζ u , υ r = r ~ - ζ r , υ q = q ~ - ζ q . in υ u = u ~ - ζ u , υ r = r ~ - ζ r , υ q = q ~ - ζ q .

再次对于速度控制回路将式(35)代入式(5)得到u、q和r的误差系统为Again, for the speed control loop, substituting Equation (35) into Equation (5) to get the error system of u, q and r as

uu ~~ ·&Center Dot; == -- kk uu uu ~~ -- kk ii uu ϵϵ 11 -- uu bb sthe s qq ~~ ·&Center Dot; == -- kk qq qq ~~ -- kk ii qq ϵϵ 22 -- qq bb sthe s rr ~~ ·· == -- kk rr rr ~~ -- kk ii rr ϵϵ 33 -- rr bb sthe s -- -- -- (( 4040 ))

由于ζu=ζr=ζq=0,这里得到滤波补偿误差系统的动态为Since ζ u = ζ r = ζ q = 0, here the dynamics of the filter compensation error system is

υυ ·&Center Dot; uu == -- kk uu υυ uu -- kk ii uu ϵϵ 11 -- uu bb sthe s υυ ·&Center Dot; qq == -- kk qq υυ qq -- kk ii qq ϵϵ 22 -- qq bb sthe s υυ ·&Center Dot; rr == -- kk rr υυ rr -- kk ii rr ϵϵ 33 -- rr bb sthe s -- -- -- (( 4141 ))

由于所以系统(41)可以重写为because So the system (41) can be rewritten as

ϵϵ ···· 11 == -- kk uu ϵϵ ·&Center Dot; 11 -- kk ii uu ϵϵ 11 -- uu bb sthe s ϵϵ ···· 22 == -- kk qq ϵϵ ·&Center Dot; 22 -- kk ii qq ϵϵ 22 -- qq bb sthe s ϵϵ ···· 33 == -- kk rr ϵϵ ·&Center Dot; 33 -- kk ii rr ϵϵ 33 -- rr bb sthe s -- -- -- (( 4242 ))

定义误差向量ε=[ε123]T则系统(42)可以表示为Define the error vector ε=[ε 123 ] T , Then the system (42) can be expressed as

EE. ·· == AA EE. ++ BB Uu -- -- -- (( 4343 ))

其中KI=diag{-kiu,-kiq,-kir},KP=diag{-ku,-kq,-kr}in K I =diag{-k iu ,-k iq ,-k ir }, K P =diag{-k u ,-k q ,-k r }

最后结合式(36)、(43)和式(38)构造李雅普诺夫能量函数Finally, combine formula (36), (43) and formula (38) to construct the Lyapunov energy function

VV 33 == VV 11 ++ VV 22 ++ 11 22 EE. TT PP EE. -- -- -- (( 4444 ))

其中正定对称矩阵P为线性李雅普诺夫方程的解where the positive definite symmetric matrix P is the solution of the linear Lyapunov equation

ATP+PA=-Q(45) ATP +PA=-Q(45)

其中 P = P 1 0 3 × 3 0 3 × 3 P 2 , Pi=diag{pi1,pi2,pi3},i=1,2为正定对称矩阵,如果选择P1=KIP2,则 Q = 0 3 × 3 0 3 × 3 0 3 × 3 2 K I P 2 ; 对式(44)进行求导,将式(37)、(39)和(43)代入整理得in P = P 1 0 3 × 3 0 3 × 3 P 2 , P i =diag{p i1 ,p i2 ,p i3 }, i=1,2 is positive definite symmetric matrix, if choose P 1 =K I P 2 , then Q = 0 3 × 3 0 3 × 3 0 3 × 3 2 K I P 2 ; Deriving formula (44), substituting formulas (37), (39) and (43) into

VV ·&Center Dot; 33 == VV ·· 11 ++ VV ·· 22 ++ EE. TT PP EE. ·&Center Dot; == -- kk xx υυ xx 22 -- kk ythe y υυ ythe y 22 -- kk zz υυ zz 22 -- kk uu υυ uu 22 -- kk ψψ υυ ψψ 22 -- kk θθ υυ θθ 22 -- 11 22 EE. TT QQ EE. ++ AA TT υυ xx υυ ythe y υυ zz υυ uu ++ gg TT (( ψψ ~~ )) BB TT uu rr υυ xx υυ ythe y υυ zz υυ ψψ -- ψψ bb sthe s υυ ψψ ++ υυ rr coscos θθ υυ ψψ ++ gg TT (( θθ ~~ )) CC TT uu rr υυ xx υυ ythe y υυ zz υυ θθ ++ υυ qq υυ θθ -- θθ bb sthe s υυ θθ ++ EE. TT PP BB Uu -- -- -- (( 4646 ))

式(46)进一步变为Equation (46) further becomes

VV ·&Center Dot; 33 == -- kk xx υυ xx 22 -- kk ythe y υυ ythe y 22 -- kk zz υυ zz 22 -- kk uu υυ uu 22 -- kk ψψ υυ ψψ 22 -- kk θθ υυ θθ 22 -- 11 22 EE. TT QQ EE. ++ AA TT υυ xx υυ ythe y υυ zz υυ uu ++ gg TT (( ψψ ~~ )) BB TT uu rr υυ xx υυ ythe y υυ zz υυ ψψ ++ υυ qq υυ θθ ++ υυ rr coscos θθ υυ ψψ ++ gg TT (( θθ ~~ )) CC TT uu rr υυ xx υυ ythe y υυ zz υυ θθ -- ψψ bb sthe s υυ ψψ -- θθ bb sthe s υυ θθ -- pp 21twenty one υυ uu uu bb sthe s -- pp 22twenty two υυ qq qq bb sthe s -- pp 23twenty three υυ rr rr bb sthe s -- -- -- (( 4747 ))

如果设计反馈补偿项为If the design feedback compensation term is

ψψ bb sthe s == gg TT (( ψψ ~~ )) BB TT uu rr υυ xx υυ ythe y υυ zz -- -- -- (( 4848 ))

θθ bb sthe s == gg TT (( θθ ~~ )) CC TT uu rr υυ xx υυ ythe y υυ zz -- -- -- (( 4949 ))

uu bb sthe s == 11 pp 21twenty one AA TT υυ xx υυ ythe y υυ zz -- -- -- (( 5050 ))

rr bb sthe s == 11 pp 23twenty three υυ ψψ cc oo sthe s θθ -- -- -- (( 5151 ))

qq bb sthe s == 11 pp 22twenty two υυ θθ -- -- -- (( 5252 ))

将式(48)(48)~(52)(52)代入式(47)(47)整理得Substitute formula (48)(48)~(52)(52) into formula (47)(47) to get

VV ·· 33 == -- kk xx υυ xx 22 -- kk ythe y υυ ythe y 22 -- kk zz υυ zz 22 -- kk ψψ υυ ψψ 22 -- kk θθ υυ θθ 22 -- 11 22 EE. TT QQ EE. ≤≤ 00 -- -- -- (( 5353 ))

上述定理证明了补偿跟踪误差系统υi的指数收敛性,由二阶滤波器的设计过程可知,当选择合适的自然频率ωn,xco为滤波器的参考输入信号,滤波器为线性稳定系统,可见当xco为有界值,则xc均为连续有界信号,如果信号xco的带宽低于滤波器设计带宽,那么误差信号|xco(t)-xc(t)|将会很小,由于ζi是一阶稳定线性系统,所以ζi将趋近于零值,从而系统跟踪误差指数趋近于零值。由于在控制回路中引入了滤波器,滤波器的跟踪精度直接影响系统的控制性能,动态面控制由于未考虑滤波信号的跟踪精度,只能够保证系统跟踪误差收敛到原点较小的邻域。这里通过构造滤波补偿系统,提高滤波信号跟踪精度,通过稳定性分析保证闭环系统跟踪误差收敛到零点。The above theorem proves the exponential convergence of the compensating tracking error system υ i . From the design process of the second-order filter, it can be seen that when an appropriate natural frequency ω n is selected, x co is the reference input signal of the filter, and the filter is a linear stable system , it can be seen that when x co is a bounded value, then x c and Both are continuous and bounded signals, if the bandwidth of the signal x co is lower than the filter design bandwidth, then the error signal |x co (t)-x c (t)| will be very small, because ζ i is a first-order stable linear system , so ζ i will approach zero value, so the system tracking error index will approach zero value. Since the filter is introduced in the control loop, the tracking accuracy of the filter directly affects the control performance of the system. The dynamic surface control can only ensure that the system tracking error converges to a smaller neighborhood of the origin because the tracking accuracy of the filtered signal is not considered. Here, the filter compensation system is constructed to improve the tracking accuracy of the filter signal, and the stability analysis is used to ensure that the tracking error of the closed-loop system converges to zero.

仿真验证Simulation

下面举例说明,验证本发明方法的有效性:Illustrate below, verify the effectiveness of the inventive method:

根据水动力系数建立机器人六自由度仿真模型,采用Matlab环境搭建机器人三维路径跟踪控制仿真系统。A six-degree-of-freedom simulation model of the robot is established according to the hydrodynamic coefficient, and a three-dimensional path tracking control simulation system of the robot is built using the Matlab environment.

针对机器人螺旋下潜作业,规划期望三维曲线路径为(单位:m)For the robot spiral dive operation, the expected three-dimensional curved path of planning is (unit: m)

选取机器人的初始位置为[x,y,z]T=[10,-5,1]T(m),初始艏向为ψ=π/4(rad),纵倾角θ=0(rad),机器人初始速度为[u,v,w]T=0(m/s),初始角速度q=0(rad/s),r=0(rad/s),控制器参数kx=ky=kz2=,kψ=kθ=5,ku=kq=kr=20,kiu=kiq=kir=10,p21=p22=p23=5。The initial position of the robot is selected as [x,y,z] T = [10,-5,1] T (m), the initial heading is ψ=π/4(rad), and the pitch angle θ=0(rad), The initial velocity of the robot is [u,v,w] T =0(m/s), the initial angular velocity q=0(rad/s), r=0(rad/s), the controller parameter k x =ky y =k z 2 =, k ψ =k θ =5, k u =k q =k r =20, k iu =k iq =k ir =10, p 21 =p 22 =p 23 =5.

为了避免对虚拟控制量直接解析求导,引入复杂的计算过程,本文利用二阶滤波器的特性,将理想虚拟控制量aco作为滤波器的参考输入,信号是通过积分而非微分的过程获得的,这可以大大减少基于状态反馈设计的控制系统中测量噪声的影响,假设在已知aco带宽的情况下,通过选择足够大的自然角频率ωn就能够获得ac且保证逼近误差|αco(t)-αc(t)|很小;同时选择过大的ωn又会增加系统高频噪声的影响,这就需要综合考虑,选择合理的ωn满足控制性能,这里选取ζ=0.9,ωn=20;In order to avoid direct analytic derivation of the virtual control variable and introduce complex calculation process, this paper uses the characteristics of the second-order filter to take the ideal virtual control variable a co as the reference input of the filter, and the signal is obtained through the process of integration rather than differentiation, which can greatly reduce the influence of measurement noise in the control system based on state feedback design. Assuming that a co bandwidth is known, by selecting a large enough natural angular frequency ω n able to obtain a c and And ensure that the approximation error |α co (t)-α c (t) | is very small; at the same time, choosing too large ω n will increase the influence of high-frequency noise in the system, which requires comprehensive consideration, and choosing a reasonable ω n satisfies the control Performance, here choose ζ=0.9, ω n =20;

图2~图13给出机器人三维曲线路径跟踪控制仿真对比结果。Figures 2 to 13 show the comparison results of the three-dimensional curve path tracking control simulation of the robot.

图2为机器人三维螺旋下潜路径跟踪轨迹,图3和图4分别为机器人三维路径跟踪轨迹在XY平面和XZ平面的投影曲线。从中可以看出由于常规反步法基于精确数学模型设计的控制器应用于真实模型时,直接对虚拟控制求导获得其导数得解析形式,在存在模型不确定性和测量噪声时控制效果较差,而本文基于滤波器设计的非线性控制器,通过积分过程而非微分过程获得虚拟控制的滤波值和导数值因而对测量噪声具有一定的滤波作用,通过滤波补偿系统,能够保证理想虚拟控制量的滤波值对真实状态的逼近,进而补偿标称模型的状态响应与真实模型状态响应的偏差,对模型不确定性具有较好的鲁棒性,能够很好的实现跟踪控制,提高了跟踪精度。Fig. 2 is the tracking trajectory of the robot's three-dimensional spiral dive path, and Fig. 3 and Fig. 4 are the projection curves of the robot's three-dimensional path tracking trajectory on the XY plane and the XZ plane, respectively. It can be seen that when the controller designed by the conventional backstepping method based on the precise mathematical model is applied to the real model, the analytic form of its derivative is directly derived from the virtual control, and the control effect is poor when there is model uncertainty and measurement noise. , and the nonlinear controller based on the filter design in this paper obtains the filter value and derivative value of the virtual control through the integral process rather than the differential process, so it has a certain filtering effect on the measurement noise. Through the filter compensation system, the ideal virtual control quantity can be guaranteed Approximation of the filtered value to the real state, and then compensate the deviation between the state response of the nominal model and the state response of the real model, which has good robustness to model uncertainty, can realize tracking control well, and improves tracking accuracy .

图5为机器人三维路径跟踪控制中跟踪误差曲线,与常规反步法控制器相比,可以看出本文设计的三维路径控制器提高了路径跟踪的精度,缩短了机器人的冗余航程,具有更加稳定的控制能力保证机器人较快的跟踪并收敛到期望路径,使得跟踪误差最终收敛到零,表明了控制器具有良好的跟踪精度和响应速度。Figure 5 is the tracking error curve in the three-dimensional path tracking control of the robot. Compared with the conventional backstepping controller, it can be seen that the three-dimensional path controller designed in this paper improves the accuracy of path tracking, shortens the redundant voyage of the robot, and has more The stable control ability ensures that the robot can quickly track and converge to the desired path, so that the tracking error eventually converges to zero, which shows that the controller has good tracking accuracy and response speed.

图6和图7分别为机器人三维里路径跟踪控制过程中各状态变量包括线速度和姿态角的变化曲线,可以看出机器人在沿螺旋线下潜过程中横向速度和垂向速度相比于纵向速度较小,且为有界值,常规反步法设计过程无法处理系统状态的测量噪声,而本文基于滤波器设计的控制器对系统的测量噪声具有一定的滤波效果。Fig. 6 and Fig. 7 are respectively the change curves of various state variables including linear velocity and attitude angle during the path tracking control process of the robot in three dimensions. It can be seen that the lateral velocity and vertical velocity of the robot are compared with the The speed is small and has a bounded value. The conventional backstepping design process cannot deal with the measurement noise of the system state, but the controller based on the filter design in this paper has a certain filtering effect on the measurement noise of the system.

图8为机器人纵向速度u、理想虚拟控制量uco和其滤波信号uc的响应曲线,从局部放大图中可以看出滤波信号uc较好的跟踪了理想虚拟信号uco,滤波器对于状态u包含的测量噪声具有一定的滤波作用,ubs为滤波补偿项,当跟踪系统稳定时ubs最终稳定且收敛于零。图9为机器人艏摇角速度r、理想虚拟控制量rco和其滤波信号rc的响应曲线,从局部放大图中可以看出滤波信号rc较好的跟踪了理想虚拟信号rco,滤波器对于艏摇角速度r包含的测量噪声具有一定的滤波作用,rbs为滤波补偿项,当跟踪系统稳定时rbs最终收敛到零。Figure 8 is the response curve of the robot's longitudinal velocity u, the ideal virtual control variable u co and its filtered signal u c . From the partially enlarged diagram, it can be seen that the filtered signal u c tracks the ideal virtual signal u co well. The measurement noise contained in the state u has a certain filtering effect, and u bs is a filter compensation item. When the tracking system is stable, u bs is finally stable and converges to zero. Figure 9 shows the response curves of the robot's yaw angular velocity r, the ideal virtual control value r co and its filtered signal r c . From the partially enlarged figure, it can be seen that the filtered signal r c tracks the ideal virtual signal r co well, and the filter The measurement noise contained in the yaw rate r has a certain filtering effect, r bs is a filter compensation item, and r bs eventually converges to zero when the tracking system is stable.

图10为机器人纵倾角速度q、理想虚拟控制量qco和其滤波信号qc的响应曲线,从局部放大图中可以看出滤波信号qc较好的跟踪了理想虚拟信号qco,滤波器对于艏摇角速度q包含的测量噪声具有一定的滤波作用,qbs为滤波补偿项,当跟踪系统稳定时qbs最终稳定收敛于零。Fig. 10 is the response curve of the robot pitch angular velocity q, the ideal virtual control quantity q co and its filtered signal q c . From the partially enlarged figure, it can be seen that the filtered signal q c tracks the ideal virtual signal q co well, and the filter The measurement noise contained in the yaw rate q has a certain filtering effect, and q bs is a filter compensation item. When the tracking system is stable, q bs eventually converges to zero stably.

图11和12分别为滤波反步法设计中的机器人艏摇角和纵倾角、理想控制信号和滤波信号变化曲线,从局部放大图可以看出滤波信号ψc和θc较好的跟踪了理想虚拟信号ψco和θco,滤波器对于艏摇角ψ和纵倾角θ中包含的测量噪声具有一定的滤波作用,从滤波补偿项ψbs和θbs的变化趋势可以看出,当跟踪系统稳定时ψbs和θbs将最终收敛到零点。Figures 11 and 12 are the change curves of the yaw angle and pitch angle of the robot, the ideal control signal and the filtered signal in the design of the filtered backstepping method respectively. The virtual signals ψ co and θ co , the filter has a certain filtering effect on the measurement noise contained in the yaw angle ψ and the pitch angle θ. From the change trend of the filter compensation items ψ bs and θ bs , it can be seen that when the tracking system is stable When ψ bs and θ bs will eventually converge to zero.

图13为机器人三维路径跟踪控制输入响应,由图可知本发明的方法响应曲线更加平滑。Fig. 13 is the input response of the three-dimensional path tracking control of the robot. It can be seen from the figure that the response curve of the method of the present invention is smoother.

Claims (5)

1. the underwater robot three-dimensional path tracking and controlling method based on second order filter, it is characterised in that comprise the steps of
Step 1. sets up fixed coordinate system, robot carrier coordinate system and Serret-Frenet coordinate system, obtains expected path, and underwater robot starts path trace, completes the initialization of two second order filters;
Fixed sonar sensor that step 2. is carried by underwater robot, attitude transducer, gather underwater robot current location, attitude angle, angular velocity and speed data information, and in conjunction with the direction of expected path and speed, guide thought according to the angle of sight and calculate and obtain the desirable attitude control quantity ψ of underwater robotco、θco, and ideal velocity controlled quentity controlled variable uco
The desirable controlled quentity controlled variable ψ that step 3. will obtain in step 2co、θco、ucoInput, to the second order filter set up based on underwater robot three-dimensional path pursuit movement error model, obtains attitude and the rate controlling amount ψ of underwater robotc、θc、uc, and derivativeIn conjunction with robot motion variable ψ, θ, u, obtain filtering attitude and the speed Tracking margin of error With desirable angle rate controlling amount rco、qco
The underwater robot desirable angle rate controlling amount r that step 4. will obtain in step 3co、qcoInput, to another second order filter set up based on underwater robot three-dimensional path pursuit movement error model, obtains the angular velocity controlled quentity controlled variable r of underwater robotc、qc, and derivativeIn conjunction with robot angular movement variable r, q, obtain filtering angular velocity tracking error amount
Step 5. utilizes the filtering attitude and the speed Tracking margin of error that obtain in step 3And the filtering angular velocity tracking error amount obtained in step 4Resolving obtains underwater robot propeller thrust Fu, with diving-plane angleVertical rudder angle δr, it is respectively acting on robot propeller and steering wheel, it is achieved three-dimensional path tracing control;
Step 6. utilizes the underwater robot attitude and rate controlling amount ψ that obtain in step 3c、θc、uc, filtering attitude and the speed Tracking margin of errorWith desirable angle rate controlling amount rco、qco, the angular velocity controlled quentity controlled variable r of the underwater robot obtained in integrating step 4c、qc, and filtering angular velocity tracking error amountStructure filtering error compensates loop;
Step 7. calculates current underwater robot position ηn=(x, y, z) with the turning point WP demarcatedk=(xk,yk,zk) between distanceIf less than the switching radius R set, then it represents that complete the tracing task in currently assigned path, otherwise continue step 2.
2. the underwater robot three-dimensional path tracking and controlling method based on second order filter according to claim 1, it is characterised in that the desirable attitude control quantity ψ of underwater robot involved in step 2co、θco, and ideal velocity controlled quentity controlled variable ucoCalculation expression be:
ψ c o = - a r c s i n ( k 2 e / 1 + ( k 2 e ) 2 ) - - - ( 1 )
θ c o = a r c s i n ( k 3 h / 1 + ( k 3 h ) 2 ) - - - ( 2 )
uco=-k1s+urcosψcocosθco(3)
Wherein gain factor k1> 0, k2> 0, k3> 0 is angle of sight guidance law normalized parameter, and variable s, e and h represent robot and the forward direction of expected path reference point, transverse direction and vertical tracking error under robot carrier coordinate system respectively.
3. the underwater robot three-dimensional path tracking and controlling method based on second order filter according to claim 1, it is characterised in that step 3, underwater robot three-dimensional path pursuit movement error model involved in 4 be:
s · = r e - q h + u - u r cosψ e cosθ e e · = - r s + u r sinψ e cosθ e + v h · = q s - u r sinθ e + w - - - ( 4 )
ψ · e = r c o s θ - r F θ · e = q - q F - - - ( 5 )
Wherein ψe=ψ-ψF, θe=θ-θF,Robot longitudinal velocity u, lateral velocity v and vertical velocity w, yaw angle speed r and pitch velocity q, urFor the desired speed of virtual guide point on expected path to be designed, its direction is along the tangential direction of curved path;ψFFor urThe angle of velocity attitude and fixed coordinate system trunnion axis, θFFor urThe angle of velocity attitude and fixed coordinate system vertical axis;ψ be robot bow to angle, θ is robot Angle of Trim.
4. the underwater robot three-dimensional path tracking and controlling method based on second order filter according to claim 1, it is characterised in that the underwater robot propeller thrust F related in step 5u, with diving-plane angle δs, vertical rudder angle δrExpression formula be:
F u = m 1 ( - k u u ~ - k i u ϵ 1 + u · c - u b s ) - f u δ s = b 1 - 1 [ m 4 ( - k q q ‾ - k i q ϵ 2 + q · c - q b s ) - f q ] δ r = b 2 - 1 [ m 5 ( - k r r ~ - k i r ϵ 3 + r · c - r b s ) - f r ] - - - ( 6 )
Whereinfu、fqAnd frFor model nonlinear hydrodynamic force item;Ubs、qbsAnd rbsFor feedback compensation robust item;M1、m4、m5The additional mass respectively produced by fluid;Ku、kq、kr、kiu、kiqAnd kirIt is controller parameter;
Involved underwater human occupant dynamic model is:
u · = m 2 m 1 v r - m 3 m 1 w q - d 1 m 1 u + 1 m 1 F u + ω 1
v · = - m 1 m 2 u r - d 2 m 2 v + ω 2
w · = m 1 m 3 u q - d 3 m 3 w + g 1 + ω 3 - - - ( 7 )
q · = m 3 - m 1 m 5 u w - d 4 m 5 q - g 2 + 1 m 5 b 1 δ s + ω 4
r · = m 1 - m 2 m 6 u v - d 5 m 6 r + 1 m 6 b 2 δ r + ω 5
Wherein
m 1 = m - X u · , m 2 = m - Y v · , m 3 = m - Z w ·
m 5 = I y - M q · , m 6 = I z - N r ·
g1=(W-B) cos θ, g2=(zgW-zbB)sinθ
d1=Xu+Xu|u||u|,d2=Yv+Yv|v||v|
d3=Zw+Zw|w||w|,d4=Mq+Mq|q||q|
d5=Nr+Nr|r||r|
b 1 = u 2 M δ s , b 2 = u 2 N δ r
Wherein, m and m(·)Represent robot quality and the additional mass produced by fluid matasomatism, I respectivelyyFor the robot rotary inertia around y-axis, IzFor the robot rotary inertia around z-axis, X(·)、Y(·)、Z(·)、M(·)And N(·)For viscous fluid hydrodynamic force coefficient;ZgAnd zbThe respectively coordinate position of center of gravity and centre of buoyancy on vertical axis under carrier coordinate, W and B represents the gravity and buoyancy, d that robot is subject to respectively(·)For nonlinear dampling hydrodynamic force item,WithFor hydroplane and vertical rudder steerage coefficient, ω(·)It is expressed as interference effect item.
5. the underwater robot three-dimensional path tracking and controlling method based on second order filter according to claim 1, it is characterised in that the filtering error related in step 6 compensates the expression formula of error compensation robust item in loop and is:
ψ b s = g T ( ψ ~ ) B T u r υ x υ y υ z - - - ( 8 )
θ b s = g T ( θ ~ ) C T u r υ x υ y υ z - - - ( 9 )
u b s = 1 p 21 A T υ x υ y υ z - - - ( 10 )
r b s = 1 p 23 υ ψ c o s θ - - - ( 11 )
q b s = 1 p 22 υ θ - - - ( 12 )
Wherein, p21、p22、p23For the element in the dematrix of Lyapunov Equation;
A = 1 0 0 , B = cosθ e cosψ c - cosθ e sinψ c cosθ c sinψ c cosθ c cosψ c 0 0 , C = cosψ c cosθ c - cosψ c sinθ c sinψ e cosθ c - sinψ e sinθ c - sinθ c - cosθ c ,
g ( ψ ~ ) = c o s ψ ~ - 1 ψ ~ s i n ψ ~ ψ ~ , g ( θ ~ ) = c o s θ ~ - 1 θ ~ s i n θ ~ θ ~ , And meet lim ψ ~ → 0 g ( ψ ~ ) = 0 1 , lim θ ~ → 0 g ( θ ~ ) = 0 1 ;
Involved position filtering signal compensation error is
υ x υ y υ z = s ~ - ζ x e ~ - ζ y h ~ - ζ z - - - ( 13 )
In formula, position filtering compensates and dynamically measures ζx、ζyAnd ζzExpression formula is
ζ · x ζ · y ζ · z = rζ y - qζ z - rζ x qζ x - k x ζ x - k y ζ y - k z ζ z + s · c - s · c o e · c - e · c o h · c - h · c o + u r A B g ( ψ ~ ) C g ( θ ~ ) ζ u ζ ψ ζ θ - - - ( 14 )
And have ζx(0)=0, ζy(0)=0, ζz(0)=0;Sco、eco、hcoFor expectation position signalling, sc、ec、hcFor position control signal;Kx=ky=kz=2;
The attitude signal compensation dosage of involved wave filter output is:
υ ψ υ θ = ψ ~ - ζ ψ θ ~ - ζ θ - - - ( 15 )
In formula, filtering attitude compensates Expression formula and is:
ζ · ψ = - k ψ ζ ψ + r c - r c o c o s θ + ζ r cos θ - - - ( 16 )
And have ζψ(0)=0, ζθ(0)=0, ζr=0, ζq=0;Kψ=kθ=5.
CN201310553699.XA 2013-11-11 2013-11-11 Underwater robot three-dimensional path tracking and controlling method based on second order filter Active CN103576693B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310553699.XA CN103576693B (en) 2013-11-11 2013-11-11 Underwater robot three-dimensional path tracking and controlling method based on second order filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310553699.XA CN103576693B (en) 2013-11-11 2013-11-11 Underwater robot three-dimensional path tracking and controlling method based on second order filter

Publications (2)

Publication Number Publication Date
CN103576693A CN103576693A (en) 2014-02-12
CN103576693B true CN103576693B (en) 2016-06-29

Family

ID=50048695

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310553699.XA Active CN103576693B (en) 2013-11-11 2013-11-11 Underwater robot three-dimensional path tracking and controlling method based on second order filter

Country Status (1)

Country Link
CN (1) CN103576693B (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104483977B (en) * 2014-10-11 2016-11-30 国家电网公司 The dynamic surface control method without velocity feedback of a kind of steering wheel The Cloud Terrace and controller
CN105676674B (en) * 2016-04-20 2017-08-25 北京航空航天大学 Unmanned plane front-wheel steer control method based on instruction wave filter
CN105867382B (en) * 2016-05-12 2018-08-31 哈尔滨工程大学 A kind of ship power-positioning control system based on equivalent interference compensation
CN106773713B (en) * 2017-01-17 2020-02-07 北京航空航天大学 High-precision nonlinear path tracking control method for under-actuated marine vehicle
CN106950974B (en) * 2017-04-19 2020-07-28 哈尔滨工程大学 A three-dimensional path understanding and tracking control method for an underactuated autonomous underwater vehicle
CN108363400B (en) * 2018-01-29 2020-12-22 哈尔滨工程大学 A 3D control area stabilization control method for underactuated AUV based on virtual mooring
CN108762280B (en) * 2018-04-12 2021-09-28 哈尔滨工程大学 UUV (unmanned underwater vehicle) remote navigation path planning method based on energy consumption optimization and considering ocean circulation influence
CN111290414B (en) * 2018-12-10 2024-09-27 中国科学院沈阳自动化研究所 Underwater equipment control method and device based on attitude control
CN109693774B (en) * 2018-12-29 2020-11-03 中国科学院声学研究所 Method and system for controlling track of underwater vehicle
CN109634308B (en) * 2019-01-16 2020-07-07 中国海洋大学 Speed model assisted underwater intelligent navigation method based on dynamics
CN110427040B (en) * 2019-07-16 2022-07-15 哈尔滨工程大学 Depth backstepping control method of under-actuated cable-free underwater robot based on dynamic surface sliding mode
CN111623777B (en) * 2020-05-12 2021-10-15 清华大学 A Contour Tracking Method Based on Field Strength Information
CN111522351B (en) * 2020-05-15 2021-05-18 中国海洋大学 Three-dimensional formation and obstacle avoidance method of underwater robot
CN112631277B (en) * 2020-12-08 2022-01-18 中山大学 Balance control method and system for four-legged robot standing posture conversion
CN112527018B (en) * 2020-12-26 2023-02-07 九江职业技术学院 Three-dimensional stabilization control method for under-actuated autonomous underwater vehicle
CN112859853B (en) * 2021-01-08 2022-07-12 东南大学 Intelligent harvesting robot path control method considering time delay and environmental constraints
CN117369481B (en) * 2023-12-05 2024-02-20 南京邮电大学 Unmanned underwater vehicle obstacle avoidance tracking control method under condition limitation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101825903A (en) * 2010-04-29 2010-09-08 哈尔滨工程大学 Water surface control method for remotely controlling underwater robot
CN102385316A (en) * 2011-09-16 2012-03-21 哈尔滨工程大学 Deepening controlling method of underactuated automatic underwater vehicle based on neural network back stepping method
CN102722177A (en) * 2012-06-27 2012-10-10 哈尔滨工程大学 Autonomous underwater vehicle (AUV) three-dimensional straight path tracking control method with PID (Piping and Instruments Diagram) feedback gain
CN102768539A (en) * 2012-06-26 2012-11-07 哈尔滨工程大学 Iteration-based three-dimensional curve path tracking control method for autonomous underwater vehicle

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0776680B2 (en) * 1991-04-17 1995-08-16 防衛庁技術研究本部長 Control method for twin-steering vehicle
US20060058931A1 (en) * 2004-09-15 2006-03-16 Honeywell International Inc. Collision avoidance involving radar feedback

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101825903A (en) * 2010-04-29 2010-09-08 哈尔滨工程大学 Water surface control method for remotely controlling underwater robot
CN102385316A (en) * 2011-09-16 2012-03-21 哈尔滨工程大学 Deepening controlling method of underactuated automatic underwater vehicle based on neural network back stepping method
CN102768539A (en) * 2012-06-26 2012-11-07 哈尔滨工程大学 Iteration-based three-dimensional curve path tracking control method for autonomous underwater vehicle
CN102722177A (en) * 2012-06-27 2012-10-10 哈尔滨工程大学 Autonomous underwater vehicle (AUV) three-dimensional straight path tracking control method with PID (Piping and Instruments Diagram) feedback gain

Also Published As

Publication number Publication date
CN103576693A (en) 2014-02-12

Similar Documents

Publication Publication Date Title
CN103576693B (en) Underwater robot three-dimensional path tracking and controlling method based on second order filter
CN102722177B (en) Autonomous underwater vehicle (AUV) three-dimensional straight path tracking control method with PID (Piping and Instruments Diagram) feedback gain
CN102768539B (en) AUV (autonomous underwater vehicle) three-dimension curve path tracking control method based on iteration
Xiang et al. Smooth transition of AUV motion control: From fully-actuated to under-actuated configuration
CN107024863B (en) A UUV Trajectory Tracking Control Method to Avoid Differential Explosion
CN108008720B (en) Fuzzy sliding mode trajectory tracking control and method for wheeled mobile robot
CN107992069B (en) Guidance law design method for unmanned aerial vehicle path tracking control
CN106444806B (en) The drive lacking AUV three-dimensional track tracking and controlling method adjusted based on biological speed
CN105045284B (en) A kind of anti-interference unmanned vehicle path tracking control method
CN106773713A (en) For the high precision nonlinear path tracking control method of drive lacking ocean navigation device
CN107168312A (en) A kind of space tracking tracking and controlling method of compensation UUV kinematics and dynamic disturbance
CN105929842A (en) Underactuated UUV plane trajectory tracking control method based on dynamic speed adjustment
CN106054884B (en) L1 self-adaptive ship dynamic positioning Double Loop Control System neural network based
CN109857100B (en) Composite track tracking control algorithm based on inversion method and fast terminal sliding mode
CN105843224A (en) AUV horizontal planar path tracking control method based on neural dynamic model and backstepping method
CN113126644A (en) Unmanned aerial vehicle three-dimensional track tracking method based on adaptive line-of-sight method
CN106292294A (en) Shipborne UAV auto landing on deck based on model reference self-adapting control controls device
CN108519736A (en) A kind of USV track followings contragradience sliding-mode control
CN105974930A (en) Method for tracking movement mother ship by UUV (Unmanned Underwater Vehicle) based on nonlinear model predictive control
Zhu et al. A bio-inspired neurodynamics-based backstepping path-following control of an AUV with ocean current
CN112486018B (en) Model-free unmanned vehicle path tracking method based on speed adaptive preview
KR102336197B1 (en) Control device and control method
Qi et al. Three-dimensional formation control based on filter backstepping method for multiple underactuated underwater vehicles
CN114253288B (en) Multi-spacecraft orbit distributed collaborative tracking optimal control method
CN112578814B (en) A control method for multi-autonomous underwater vehicle formation linear track tracking

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant