[go: up one dir, main page]

CN103566362B - Restructuring ADAMTS13 is preparing the purposes in cerebral hemorrhage medicine - Google Patents

Restructuring ADAMTS13 is preparing the purposes in cerebral hemorrhage medicine Download PDF

Info

Publication number
CN103566362B
CN103566362B CN201210256097.3A CN201210256097A CN103566362B CN 103566362 B CN103566362 B CN 103566362B CN 201210256097 A CN201210256097 A CN 201210256097A CN 103566362 B CN103566362 B CN 103566362B
Authority
CN
China
Prior art keywords
tpa
recombinant adamts13
adamts13
akt
rhoa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201210256097.3A
Other languages
Chinese (zh)
Other versions
CN103566362A (en
Inventor
范文英
赵冰樵
王丽香
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudan University
Original Assignee
Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudan University filed Critical Fudan University
Priority to CN201210256097.3A priority Critical patent/CN103566362B/en
Publication of CN103566362A publication Critical patent/CN103566362A/en
Application granted granted Critical
Publication of CN103566362B publication Critical patent/CN103566362B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

本发明属生物制药领域,涉及重组ADAMTS13在制备脑出血药物中的用途,尤其是重组ADAMTS13在制备减少脑缺血后tPA溶栓治疗引起的脑出血药物中的用途。本发明经实验结果显示,在缺血条件下tPA诱导产生的VEGF能被RhoA或Akt的特异性抑制剂所阻断,而重组ADAMTS13显著降低RhoA的激活和Akt的磷酸化,表明重组ADAMTS13通过RhoA和Akt通路实现对tPA诱导的VEGF表达的抑制。本发明所述的重组ADAMTS13通过抑制RhoA和Akt介导的脑血管通透性增加,减轻tPA对血脑屏障的损害从而减少其引起的脑出血,因此,联合使用重组ADAMTS13和tPA是增加溶栓安全性的一种新型对策和手段。The invention belongs to the field of biopharmaceuticals, and relates to the use of recombinant ADAMTS13 in the preparation of cerebral hemorrhage drugs, especially the use of recombinant ADAMTS13 in the preparation of drugs for reducing cerebral hemorrhage caused by tPA thrombolysis after cerebral ischemia. The experimental results of the present invention show that the VEGF induced by tPA can be blocked by specific inhibitors of RhoA or Akt under ischemic conditions, while the recombinant ADAMTS13 significantly reduces the activation of RhoA and the phosphorylation of Akt, indicating that the recombinant ADAMTS13 can pass through RhoA and Akt pathway to achieve the inhibition of tPA-induced VEGF expression. The recombinant ADAMTS13 of the present invention reduces the damage of tPA to the blood-brain barrier by inhibiting the increase of cerebrovascular permeability mediated by RhoA and Akt, thereby reducing the cerebral hemorrhage caused by it. Therefore, the combined use of recombinant ADAMTS13 and tPA is to increase thrombolytic A new countermeasure and means of security.

Description

重组ADAMTS13在制备脑出血药物中的用途Application of recombinant ADAMTS13 in preparation of cerebral hemorrhage medicine

技术领域 technical field

本发明属生物制药领域,涉及重组ADAMTS13在制备脑出血药物中的用途,尤其是重组ADAMTS13在制备减少脑缺血后tPA溶栓治疗引起的脑出血药物中的用途。The invention belongs to the field of biopharmaceuticals, and relates to the use of recombinant ADAMTS13 in the preparation of cerebral hemorrhage drugs, especially the use of recombinant ADAMTS13 in the preparation of drugs for reducing cerebral hemorrhage caused by tPA thrombolysis after cerebral ischemia.

背景技术 Background technique

研究表明,脑中风是导致人类残疾和死亡的主要原因之一;而组织型纤溶酶原激活剂tPA(Tissue Plasminogen Activator)因其具有强大的溶栓作用,成为当前治疗卒中最有效的药物;但使用tPA溶栓有增加脑出血的风险,因此,如何克服tPA引起的脑出血,对降低脑中风的致残和致死率具有重要的意义。Studies have shown that stroke is one of the main causes of human disability and death; tissue plasminogen activator tPA (Tissue Plasminogen Activator) has become the most effective drug for the treatment of stroke because of its powerful thrombolytic effect; However, the use of tPA for thrombolysis increases the risk of cerebral hemorrhage. Therefore, how to overcome the cerebral hemorrhage caused by tPA is of great significance to reduce the disability and fatality rate of stroke.

所述的tPA为一种丝氨酸蛋白酶,其在维持血液凝固和纤维蛋白溶解过程中起着重要的作用;tPA不仅对正常中枢神经系统生理和神经元可塑性起调节作用,在中枢神经系统病理方面也起着关键的作用。所述tPA促进兴奋性毒素引起的神经元死亡、增加缺血性脑损伤,基因敲除tPA或者药物抑制tPA对缺血大脑均起到显著的保护作用。此外,tPA已被证明可通过促进基质金属蛋白酶-9(MMP-9)和转录因子NF-κB的活化以及促进Akt磷酸化和细胞外基质的降解,加剧缺血内皮的损伤和血脑屏障的破裂。已有大量的实验和临床证据表明,tPA引起血脑屏障的破裂是其造成脑出血的最直接原因之一;因此,减轻tPA介导的血脑屏障破裂,将会有效地降低tPA溶栓引起的脑出血。The tPA is a serine protease, which plays an important role in maintaining blood coagulation and fibrinolysis; tPA not only regulates the normal central nervous system physiology and neuronal plasticity, but also regulates the central nervous system pathology. plays a key role. The tPA promotes neuron death caused by excitotoxins and increases ischemic brain injury, and knocking out tPA or inhibiting tPA with drugs can significantly protect the ischemic brain. In addition, tPA has been shown to exacerbate ischemic endothelial damage and blood-brain barrier damage by promoting the activation of matrix metalloproteinase-9 (MMP-9) and transcription factor NF-κB, as well as promoting Akt phosphorylation and degradation of extracellular matrix. rupture. A large number of experimental and clinical evidences have shown that the rupture of the blood-brain barrier caused by tPA is one of the most direct causes of cerebral hemorrhage; cerebral hemorrhage.

有研究显示,血管性血友病因子von Willebrand factor(VWF)是内皮细胞和巨核细胞产生的复合糖蛋白;此外,ADAMTS13(a disintegrin-like and metalloprotease withthrombospondin type I repeats-13)是近年新发现的一种存在于血浆中的金属蛋白酶,所述ADAMTS13最重要的功能是将新分泌的超大VWF裂解成较小的粘附性低的复合受体形式,从而减少血栓的形成;所述VWF是ADAMTS13目前已知的唯一裂解底物,在中枢神经系统,内皮细胞中VWF表达丰富,可是,对VWF在调节血脑屏障通透性中所起的作用却知之甚少。有研究表明,在缺血性中风、脑出血和蛛网膜下出血这些与血脑屏障破裂有关的疾病中,血浆中的VWF表达明显升高;此外,患有心血管疾病的患者在进行溶栓治疗后,血浆中的VWF也明显升高。最近有研究发现,VWF基因缺失对脑缺血小鼠起保护作用,与之相反,ADAMTS13基因敲除导致脑缺血病灶明显增大,而重组ADAMTS13则显著减轻急性脑缺血损伤。Studies have shown that von Willebrand factor (VWF) is a complex glycoprotein produced by endothelial cells and megakaryocytes; in addition, ADAMTS13 (a disintegrin-like and metalloprotease withthrombospondin type I repeats-13) is newly discovered in recent years A metalloprotease present in blood plasma, the most important function of the ADAMTS13 is to cleave the newly secreted super large VWF into smaller complex receptor forms with low adhesion, thereby reducing the formation of thrombus; the VWF is ADAMTS13 The only cleavage substrate known so far, in the central nervous system, VWF is abundantly expressed in endothelial cells, however, little is known about the role of VWF in regulating the permeability of the blood-brain barrier. Studies have shown that in ischemic stroke, cerebral hemorrhage and subarachnoid hemorrhage, which are related to the breakdown of the blood-brain barrier, the expression of VWF in plasma is significantly increased; Afterwards, the VWF in the plasma also increased significantly. Recent studies have found that VWF gene deletion has a protective effect on mice with cerebral ischemia. On the contrary, ADAMTS13 gene knockout leads to a significant increase in cerebral ischemic lesions, while recombinant ADAMTS13 can significantly reduce acute cerebral ischemic injury.

迄今为止,尚未见有关重组ADAMTS13用于减少脑缺血后tPA溶栓治疗引起的脑出血的报道。So far, there is no report about the use of recombinant ADAMTS13 to reduce cerebral hemorrhage caused by tPA thrombolysis after cerebral ischemia.

与本发明有关的参考文献有:References relevant to the present invention are:

1.Zivin JA.Acute stroke therapy with tissue plasminogen activator(tPA)since it wasapproved by the U.S.Food and Drug Administration(FDA).Ann Neurol2009;66:6-10.1.Zivin JA.Acute stroke therapy with tissue plasminogen activator(tPA)since it was approved by the U.S.Food and Drug Administration(FDA).Ann Neurol2009;66:6-10.

2.Lansberg MG,Albers GW,Wijman CA.Symptomatic intracerebral hemorrhagefollowing thrombolytic therapy for acute ischemic stroke:a review of the risk factors.Cerebrovasc Dis 2007;24:1-10.2. Lansberg MG, Albers GW, Wijman CA. Symptomatic intracerebral hemorrhage following thrombolytic therapy for acute ischemic stroke: a review of the risk factors. Cerebrovasc Dis 2007; 24: 1-10.

3.Wardlaw JM,Sandercock PA,Berge E.Thrombolytic therapy with recombinant tissueplasminogen activator for acute ischemic stroke:Where do we go from here?Acumulative meta-analysis.Stroke 2003;34:1437-1442.3. Wardlaw JM, Sandercock PA, Berge E. Thrombolytic therapy with recombinant tissueplasminogen activator for acute ischemic stroke: Where do we go from here? Acumulative meta-analysis. Stroke 2003; 34: 1437-1442.

4.Vivien D,Buisson A.Serine protease inhibitors:Novel therapeutic targets for stroke?JCereb Blood Flow Metab 2000;20:755-764.4. Vivien D, Buisson A. Serine protease inhibitors: Novel therapeutic targets for stroke? JCereb Blood Flow Metab 2000; 20: 755-764.

5.Lo EH,Dalkara T,Moskowitz MA.Mechanisms,challenges and opportunities in stroke.Nat Rev Neurosci 2003;4:399-415.5. Lo EH, Dalkara T, Moskowitz MA. Mechanisms, challenges and opportunities in stroke. Nat Rev Neurosci 2003;4:399-415.

6.Nicole O,Docagne F,AliC,et al.The proteolytic activity of tissue-plasminogenactivator enhances nmda receptor-mediated signaling.Nat Med 2001;7:59-64.6. Nicole O, Docagne F, Ali C, et al. The proteolytic activity of tissue-plasminogen activator enhances nmda receptor-mediated signaling. Nat Med 2001; 7: 59-64.

7.Wang YF,Tsirka SE,Strickland S,et al.Tissue plasminogen activator(tpa)increasesneuronal damage after focal cerebral ischemia in wild-type and tpa-deficient mice.NatMed 1998;4:228-231.7. Wang YF, Tsirka SE, Strickland S, et al. Tissue plasminogen activator(tpa) increases neuronal damage after focal cerebral ischemia in wild-type and tpa-deficient mice. NatMed 1998; 4: 228-231.

8.Yepes M,Sandkvist M,Wong MK,et al.Neuroserpin reduces cerebral infarct volumeand protects neurons from ischemia-induced apoptosis.Blood 2000;96:569-576.8. Yepes M, Sandkvist M, Wong MK, et al. Neuroserpin reduces cerebral infarct volume and protects neurons from ischemia-induced apoptosis. Blood 2000; 96: 569-576.

9.Wang X,Lee SR,Arai K,et al.Lipoprotein receptor-mediated induction of matrixmetalloproteinase by tissue plasminogen activator.Nat Med 2003;9:1313-1317.9. Wang X, Lee SR, Arai K, et al. Lipoprotein receptor-mediated induction of matrixmetalloproteinase by tissue plasminogen activator. Nat Med 2003; 9: 1313-1317.

10.Morancho A,Rosell A,Garcia-Bonilla L,Montaner J.Metalloproteinase and strokeinfarct size:Role for anti-inflammatory treatment? Ann N Y Acad Sci2010;1207:123-133.10. Morancho A, Rosell A, Garcia-Bonilla L, Montaner J. Metalloproteinase and strokeinfarct size: Role for anti-inflammatory treatment? Ann N Y Acad Sci2010; 1207: 123-133.

11.Cheng T,Petraglia AL,Li Z,et al.Activated protein c inhibits tissue plasminogenactivator-induced brain hemorrhage.Nat Med 2006;12:1278-1285.11. Cheng T, Petraglia AL, Li Z, et al. Activated protein c inhibits tissue plasminogen activator-induced brain hemorrhage. Nat Med 2006; 12:1278-1285.

12.Jian Liu K,Rosenberg GA.Matrix metalloproteinases and free radicals in cerebralischemia.Free Radic Biol Med 2005;39:71-80.12. Jian Liu K, Rosenberg GA. Matrix metalloproteinases and free radicals in cerebralischemia. Free Radic Biol Med 2005; 39: 71-80.

13.An J,Zhang C,Polavarapu R,et al.Tissue-type plasminogen activator and thelow-density lipoprotein receptor-related protein induce akt phosphorylation in theischemic brain.Blood 2008;112:2787-2794.13. An J, Zhang C, Polavarapu R, et al. Tissue-type plasminogen activator and the low-density lipoprotein receptor-related protein induce akt phosphorylation in theischemic brain. Blood 2008; 112: 2787-2794.

14.Dijkhuizen RM,Asahi M,Wu O,et al.Rapid breakdown of microvascular barriers andsubsequent hemorrhagic transformation after delayed recombinant tissueplasminogen activator treatment in a rat embolic stroke model.Stroke2002;33:2100-2104.14. Dijkhuizen RM, Asahi M, Wu O, et al. Rapid breakdown of microvascular barriers and subsequent hemorrhagic transformation after delayed recombinant tissueplasminogen activator treatment in a rat embolic stroke model. Stroke2002; 33: 2010; 33: 2

15.Neumann-Haefelin C,Brinker G,Uhlenkuken U,et al.Prediction of hemorrhagictransformation after thrombolytic therapy of clot embolism:An mri investigation in ratbrain.Stroke 2002;33:2100-2104.15. Neumann-Haefelin C, Brinker G, Uhlenkuken U, et al. Prediction of hemorrhagic transformation after thrombolytic therapy of clot embolism: An mri investigation in ratbrain. Stroke 2002; 33: 2100-2104.

16.Kastrup A,Groschel K,Ringer TM,et al.Early disruption of the blood-brain barrierafter thrombolytic therapy predicts hemorrhage in patients with acute stroke.Stroke2008;39:2385-2387.16. Kastrup A, Groschel K, Ringer TM, et al. Early disruption of the blood-brain barrier after thrombolytic therapy predicts hemorrhage in patients with acute stroke. Stroke2008; 39: 2385-2387.

17.Sadler JE.Von willebrand factor,adamts13,and thrombotic thrombocytopenicpurpura.Blood 2008;112:11-18.17. Sadler JE. Von willebrand factor, adamts13, and thrombotic thrombocytopenic purpura. Blood 2008; 112: 11-18.

18.Crawley JT,de Groot R,Xiang Y,et al.Unraveling the scissile bond:How adamts13recognizes and cleaves von willebrand factor.Blood 2011;118:3212-3221.18. Crawley JT, de Groot R, Xiang Y, et al. Unraveling the scissile bond: How adamts13 recognizes and cleaves von willebrand factor. Blood 2011; 118: 3212-3221.

19.Soejima K,Nakamura H,Hirashima M,et al.Analysis on the molecular species andconcentration of circulating adamts13 in blood.J biochem 2006;139:147-154.19. Soejima K, Nakamura H, Hirashima M, et al. Analysis on the molecular species and concentration of circulating adamts13 in blood. J biochem 2006; 139: 147-154.

20.Dong JF,Moake JL,Nolasco L,et al.Adamts-13 rapidly cleaves newly secretedultralarge von willebrand factor multimers on the endothelial surface under flowingconditions.Blood 2002;100:4033-4039.20. Dong JF, Moake JL, Nolasco L, et al. Adamts-13 rapidly cleaves newly secreted ultralarge von willebrand factor multimers on the endothelial surface under flowing conditions. Blood 2002; 100: 4033-4039.

21.Yamamoto K,de Waard V,Fearns C,Loskutoff DJ.Tissue distribution and regulationof murine von willebrand factor gene expression in vivo.Blood 1998;92:2791-2801.21. Yamamoto K, de Waard V, Fearns C, Loskutoff DJ. Tissue distribution and regulation of murine von willebrand factor gene expression in vivo. Blood 1998; 92: 2791-2801.

22.Bath PM,Blann A,Smith N,Butterworth RJ.Von willebrand factor,p-selectin andfibrinogen levels in patients with acute ischaemic and haemorrhagic stroke,and theirrelationship with stroke sub-type and functional outcome.Platelets 1998;9:155-159.22. Bath PM, Blann A, Smith N, Butterworth RJ. Von willebrand factor, p-selectin and fibrinogen levels in patients with acute ischaemic and haemorrhagic stroke, and their relationship with stroke sub-type and let functional 15-9 outcome. 159.

23.Vergouwen MD,Bakhtiari K,van Geloven N,et al.Reduced adamts13 activity indelayed cerebral ischemia after aneurysmal subarachnoid hemorrhage.J Cereb BloodFlow Metab 2009;29:1734-1741.23. Vergouwen MD, Bakhtiari K, van Geloven N, et al. Reduced adamts13 activity indelayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. J Cereb BloodFlow Metab 2009; 29: 1734-1741.

24.Federici AB,Berkowitz SD,Zimmerman TS,Mannucci PM.Proteolysis of vonwillebrand factor after thrombolytic therapy in patients with acute myocardial infarction.Blood 1992;79:38-44.24. Federici AB, Berkowitz SD, Zimmerman TS, Mannucci PM. Proteolysis of vonwillebrand factor after thrombolytic therapy in patients with acute myocardial infarction. Blood 1992; 79: 38-44.

25.Zhao BQ,Chauhan AK,Canault M,et al.Von willebrand factor-cleaving proteaseadamts13 reduces ischemic brain injury in experimental stroke.Blood2009;114:3329-3334.25. Zhao BQ, Chauhan AK, Canault M, et al. Von willebrand factor-cleaving protease adamts13 reduces ischemic brain injury in experimental stroke. Blood2009; 114: 3329-3334.

26.Fujioka M,Hayakawa K,Mishima K,et al.Adamts13 gene deletion aggravatesischemic brain damage:A possible neuroprotective role of adamts13 by amelioratingpostischemic hypoperfusion.Blood 2010;115:1650-1653.26. Fujioka M, Hayakawa K, Mishima K, et al. Adamts13 gene deletion aggravateschemic brain damage: A possible neuroprotective role of adamts13 by ameliorating postischemic hypoperfusion. Blood 2010; 115: 1650-1653.

27.Zhao BQ,Wang S,Kim HY,et al.Role of matrix metalloproteinases in delayed corticalresponses after stroke.Nat med 2006;12:441-445.27. Zhao BQ, Wang S, Kim HY, et al. Role of matrix metalloproteinases in delayed cortical responses after stroke. Nat med 2006; 12: 441-445.

28.Su EJ,Fredriksson L,Geyer M,et al.Activation of pdgf-cc by tissue plasminogenactivator impairs blood-brain barrier integrity during ischemic stroke.Nat Med2008;14:731-737.28. Su EJ, Fredriksson L, Geyer M, et al. Activation of pdgf-cc by tissue plasminogen activator impairs blood-brain barrier integrity during ischemic stroke. Nat Med2008;14:731-737.

29.Won SJ,Tang XN,Suh SW,et al.Hyperglycemia promotes tissue plasminogenactivator-induced hemorrhage by increasing superoxide production.Ann Neurol2011;70:583-590.29. Won SJ, Tang XN, Suh SW, et al. Hyperglycemia promotes tissue plasminogen activator-induced hemorrhage by increasing superoxide production. Ann Neurol2011;70:583-590.

30.Zhao BQ,Ikeda Y,Ihara H,et al.Essential role of endogenous tissue plasminogenactivator through matrix metalloproteinase 9 induction and expression onheparin-produced cerebral hemorrhage after cerebral ischemia in mice.Blood2004;103:2610-2616.30. Zhao BQ, Ikeda Y, Ihara H, et al. Essential role of endogenous tissue plasminogen activator through matrix metalloproteinase 9 induction and expression onheparin-produced cerebral hemorrhage after cerebral ischemia in mice -3.61 20.61; 20.61

31.Yepes M,Sandkvist M,Moore EG,et al.Tissue-type plasminogen activator inducesopening of the blood-brain barrier via the ldl receptor-related protein.J clin invest2003;112:1533-1540.31. Yepes M, Sandkvist M, Moore EG, et al. Tissue-type plasminogen activator induces opening of the blood-brain barrier via the ldl receptor-related protein. J clin invest2003; 112: 1533-1540.

32.Zhang ZG,Zhang L,Jiang Q,et al.Vegf enhances angiogenesis and promotesblood-brain barrier leakage in the ischemic brain.J Clin Invest 2000;106:829-838.32. Zhang ZG, Zhang L, Jiang Q, et al. Vegf enhances angiogenesis and promotes blood-brain barrier leakage in the ischemic brain. J Clin Invest 2000; 106: 829-838.

33.Abumiya T,Yokota C,Kuge Y,Minematsu K.Aggravation of hemorrhagictransformation by early intraarterial infusion of low-dose vascular endothelial growthfactor after transient focal cerebral ischemia in rats.Brain Res 2005;1049:95-103.33. Abumiya T, Yokota C, Kuge Y, Minematsu K. Aggravation of hemorrhagic transformation by early intraarterial infusion of low-dose vascular endothelial growth factor after transient focal cerebral ischemia in rats. Brain Res 14905: 5; 10

34.Kanazawa M,Igarashi H,Kawamura K,et al.Inhibition of vegf signaling pathwayattenuates hemorrhage after tpa treatment.J Cereb Blood Flow Metab2011;31:1461-1474.34. Kanazawa M, Igarashi H, Kawamura K, et al. Inhibition of vegf signaling pathway attenuates hemorrhage after tpa treatment. J Cereb Blood Flow Metab2011; 31: 1461-1474.

35.Beck H,Acker T,Wiessner C,et al.Expression of angiopoietin-1,angiopoietin-2,andtie receptors after middle cerebral artery occlusion in the rat.Am J Pathol2000;157:1473-1483.35. Beck H, Acker T, Wiessner C, et al. Expression of angiopoietin-1, angiopoietin-2, and tie receptors after middle cerebral artery occlusion in the rat. Am J Pathol2000; 157: 1473-1483.

36.Kilic E,Kilic U,Wang Y,et al.The phosphatidylinositol-3 kinase/akt pathway mediatesvegf′s neuroprotective activity and induces blood brain barrier permeability after focalcerebral ischemia.FASEB J 2006;20:1185-1187.36. Kilic E, Kilic U, Wang Y, et al. The phosphatidylinositol-3 kinase/akt pathway mediates vegf′s neuroprotective activity and induces blood brain barrier permeability after focal cerebral ischemia. FASEB J 2008.5-18:18

37.Bryan BA,Dennstedt E,Mitchell DC,et al.Rhoa/rock signaling is essential for multipleaspects of vegf-mediated angiogenesis.FASEB J 2010;24:3186-3195.37. Bryan BA, Dennstedt E, Mitchell DC, et al. Rhoa/rock signaling is essential for multiple aspects of vegf-mediated angiogenesis. FASEB J 2010;24:3186-3195.

38.Yagita Y,Kitagawa K,Sasaki T,et al.Rho-kinase activation in endothelial cellscontributes to expansion of infarction after focal cerebral ischemia.J Neurosci Res2007;85:2460-2469.38. Yagita Y, Kitagawa K, Sasaki T, et al. Rho-kinase activation in endothelial cells contributes to expansion of infarction after focal cerebral ischemia. J Neurosci Res2007; 85: 2460-2469.

39.Kleinschnitz C,De Meyer SF,Schwarz T,et al.Deficiency of von willebrand factorprotects mice from ischemic stroke.Blood 2009;113:3600-3603.39. Kleinschnitz C, De Meyer SF, Schwarz T, et al. Deficiency of von willebrand factor protects mice from ischemic stroke. Blood 2009; 113: 3600-3603.

40.Bergmeier W,Chauhan AK,Wagner DD.Glycoprotein ibalpha and von willebrandfactor in primary platelet adhesion and thrombus formation:Lessons from mutant mice.Thrombo Haemost.2008;99(2):264-270.40. Bergmeier W, Chauhan AK, Wagner DD. Glycoprotein ibalpha and von willebrandfactor in primary platelet adhesion and thrombosis formation: Lessons from mutant mice. Thrombo Haemost. 2008; 99(2): 264-270.

41.Nieswandt B,Stoll G.The smaller,the better:Vwf in stroke.Blood2010;115:1477-1478.41. Nieswandt B, Stoll G. The smaller, the better: Vwf in stroke. Blood2010; 115: 1477-1478.

42.Rodansky1 ES SJ,Fryer HJL,Greenfield RS,Rodgers GM.Inhibition of endothelialcell tube formation by adamts13 occurs via interaction with vegf.Annual meeting ofthe American Society of Hematology.December 6,2010.San Diego,USA.Abstract4307.42. Rodansky1 ES SJ, Fryer HJL, Greenfield RS, Rodgers GM. Inhibition of endothelial cell tube formation by adamts13 occurs via interaction with vegf. Annual meeting of the American Society of Hematology. December 6, 2010, 4 US Dstr.

43.Yamashita T,Kamiya T,Deguchi K,et al.Dissociation and protection of theneurovascular unit after thrombolysis and reperfusion in ischemic rat brain.J cerebblood flow metab 2009;29:715-725.43. Yamashita T, Kamiya T, Deguchi K, et al. Dissociation and protection of the neurovascular unit after thrombolysis and reperfusion in ischemic rat brain. J cerebblood flow metab 2009; 29: 715-725.

44.Suzuki Y,Nagai N,Umemura K,et al.Stromelysin-1(mmp-3)is critical for intracranialbleeding after t-pa treatment of stroke in mice.J Thrombo haemost 2007;5:1732-1739.44. Suzuki Y, Nagai N, Umemura K, et al. Stromelysin-1(mmp-3) is critical for intracranial bleeding after t-pa treatment of stroke in mice. J Thrombo haemost 2007; 5: 1732-1739.

45.Hoang MV,Whelan MC,Senger DR.Rho activity critically and selectively regulatesendothelial cell organization during angiogenesis.Proc Natl Acad Sci U S A2004;101:1874-1879.45. Hoang MV, Whelan MC, Senger DR. Rho activity critically and selectively regulatesendothelial cell organization during angiogenesis. Proc Natl Acad Sci U S A2004; 101: 1874-1879.

46.Miyagi Y,Carpenter RC,Meguro T,et al.Upregulation of rho a and rho kinasemessenger rnas in the basilar artery of a rat model of subarachnoid hemorrhage.JNeurosurg 2000;93:471-476.46. Miyagi Y, Carpenter RC, Meguro T, et al. Upregulation of rho a and rho kinase messenger rnas in the basilar artery of a rat model of subarachnoid hemorrhage. JNeurosurg 2000; 93: 471-476.

47.Allen C,Srivastava K,Bayraktutan U.Small gtpase rhoa and its effector rho kinasemediate oxygen glucose deprivation-evoked in vitro cerebral barrier dysfunction.Stroke 2010;41:2056-2063.47. Allen C, Srivastava K, Bayraktutan U. Small gtpase rhoa and its effector rho kinasemediate oxygen glucose deprivation-evoked in vitro cerebral barrier dysfunction. Stroke 2010; 41: 2056-2063.

48.Wang S,Lee SR,Guo SZ,et al.Reduction of tissue plasminogen activator-inducedmatrix metalloproteinase-9 by simvastatin in astrocytes.Stroke 2006;37:1910-1912.。48. Wang S, Lee SR, Guo SZ, et al. Reduction of tissue plasminogen activator-induced matrix metalloproteinase-9 by simvastatin in astrocytes. Stroke 2006; 37: 1910-1912.

发明内容 Contents of the invention

本发明的目的是提供重组ADAMTS13在制备脑出血药物中的用途,尤其是重组ADAMTS13在制备减少脑缺血后tPA溶栓治疗引起的脑出血药物中的用途。The purpose of the present invention is to provide the use of recombinant ADAMTS13 in the preparation of cerebral hemorrhage drugs, especially the use of recombinant ADAMTS13 in the preparation of drugs for reducing cerebral hemorrhage caused by tPA thrombolysis after cerebral ischemia.

本发明经实验证实脑室内注射VWF引起非缺血小鼠血脑屏障通透性的快速增加,且还证实VWF裂解酶ADAMTS13可阻断脑缺血后tPA对脑血管的破坏作用,从而减少tPA溶栓诱发的脑出血。The present invention has been proved by experiments that intracerebroventricular injection of VWF causes a rapid increase in the permeability of the blood-brain barrier in non-ischemic mice, and it is also confirmed that VWF lyase ADAMTS13 can block the destructive effect of tPA on cerebral blood vessels after cerebral ischemia, thereby reducing tPA Thrombolysis-induced intracerebral hemorrhage.

具体而言,本发明进行了包括以下步骤的实验:Specifically, the present invention has carried out the experiment comprising the following steps:

(1)脑室内注射和脑血管通透性测定;(1) Intraventricular injection and cerebral vascular permeability measurement;

(2)动物脑缺血模型;(2) Animal models of cerebral ischemia;

(3)行为测定;(3) Behavior measurement;

(4)脑出血的测量;(4) Measurement of cerebral hemorrhage;

(5)Western印迹实验;(5) Western blot experiment;

(6)免疫组化;(6) Immunohistochemistry;

(7)数据分析。(7) Data analysis.

结果显示,The results show that,

(1)重组ADAMTS13阻断非缺血脑内tPA注射引起的血脑屏障通透性的增加(1) Recombinant ADAMTS13 blocked the increase of blood-brain barrier permeability caused by tPA injection in the non-ischemic brain

首先证实正常小鼠侧脑室注射tPA可引起血脑屏障通透性的增加;然后使用非缺血小鼠,通过脑室注射VWF,然后静脉注射Evans blue,1小时后灌流取脑,定量检测脑中Evans blue的渗出量,结果显示,类似于注射tPA,VWF显著增加血脑屏障的通透性;然而,tPA和VWF联合注射引起血脑屏障通透性增加的程度与两者单独使用没有明显差异,表明tPA和VWF通过同一条通路影响血脑屏障的通透性;进一步,结果显示,侧脑室给予50ng或100ng重组ADAMTS13都能显著减少注射tPA的小鼠脑内的Evans blue渗出量,而单独注射重组ADAMTS13对血脑屏障的通透性没有影响;Firstly, it was confirmed that injection of tPA into the lateral ventricle of normal mice could increase the permeability of the blood-brain barrier; then non-ischemic mice were injected with VWF through the ventricle, and then injected with Evans blue intravenously, and the brain was perfused 1 hour later to quantitatively detect the blood-brain barrier. Exudation of Evans blue, the results showed that, similar to the injection of tPA, VWF significantly increased the permeability of the blood-brain barrier; however, the combined injection of tPA and VWF caused no significant increase in the permeability of the blood-brain barrier compared with the two alone The differences indicate that tPA and VWF affect the permeability of the blood-brain barrier through the same pathway; further, the results show that administration of 50ng or 100ng recombinant ADAMTS13 in the lateral ventricle can significantly reduce the amount of Evans blue exudation in the brain of mice injected with tPA, However, single injection of recombinant ADAMTS13 had no effect on the permeability of the blood-brain barrier;

(2)重组ADAMTS13抑制脑缺血后tPA对血脑屏障的破坏作用(2) Recombinant ADAMTS13 inhibits the damage effect of tPA on the blood-brain barrier after cerebral ischemia

采用小鼠45分钟局部脑缺血再灌注模型,检测了ZO-1(一种主要的紧密连接蛋白)和collagen IV(一种主要的血管基底膜蛋白)表达的变化,结果显示,脑缺血明显减少ZO-1的表达,适当减少collagen IV的表达;与PBS处理组相比,脑缺血两小时后静脉注射tPA导致ZO-1和collagen IV的明显减少;然而,脑缺血后3小时侧脑室给予重组ADAMTS13显著减轻tPA引起的ZO-1和collagene IV的降解;进一步,与对照组比较,tPA显著增加缺血脑半球Evans blue的渗出量;结果表明,注射重组ADAMTS13完全逆转tPA引起的小鼠血脑屏障通透性的改变,单用重组ADAMTS13对脑缺血后血脑屏障的通透性没有影响;The expression changes of ZO-1 (a major tight junction protein) and collagen IV (a major vascular basement membrane protein) were detected using a 45-minute regional cerebral ischemia-reperfusion model in mice. The results showed that cerebral ischemia Significantly reduced the expression of ZO-1 and moderately reduced the expression of collagen IV; compared with the PBS-treated group, intravenous injection of tPA two hours after cerebral ischemia resulted in a significant reduction of ZO-1 and collagen IV; however, 3 hours after cerebral ischemia The administration of recombinant ADAMTS13 into the lateral ventricle significantly alleviated the degradation of ZO-1 and collagen IV caused by tPA; further, compared with the control group, tPA significantly increased the exudation of Evans blue in the ischemic cerebral hemisphere; the results showed that the injection of recombinant ADAMTS13 completely reversed the degradation caused by tPA. Changes in the permeability of the blood-brain barrier in mice, single use of recombinant ADAMTS13 has no effect on the permeability of the blood-brain barrier after cerebral ischemia;

(3)重组ADAMTS13对脑出血和神经功能的影响(3) Effects of recombinant ADAMTS13 on cerebral hemorrhage and neurological function

通过分光光度计的定量测量,结果显示,脑缺血后2小时注入tPA导致24小时后的脑出血明显增加;脑缺血后3小时脑室内给予重组ADAMTS13抑制tPA诱导的脑出血;单独给予重组ADAMTS13对脑出血没有明显影响;Quantitative measurement by spectrophotometer showed that injection of tPA 2 hours after cerebral ischemia led to a significant increase in cerebral hemorrhage 24 hours later; intraventricular administration of recombinant ADAMTS13 3 hours after cerebral ischemia inhibited tPA-induced cerebral hemorrhage; administration of recombinant ADAMTS13 alone ADAMTS13 has no significant effect on cerebral hemorrhage;

此外,神经功能评分表明,与PBS处理组的小鼠相比,tPA处理组小鼠表现出严重的神经功能缺失和运动功能的下降;而重组ADAMTS13+tPA组小鼠的神经功能评分和运动功能明显好于单独给予tPA的小鼠;In addition, the neurological function scores showed that compared with the mice in the PBS-treated group, the mice in the tPA-treated group showed severe neurological deficits and decreased motor functions; while the neurological function scores and motor functions of mice in the recombinant ADAMTS13+tPA group Significantly better than mice given tPA alone;

(4)重组ADAMTS13降低tPA引起的血管内皮细胞中VEGF的表达(4) Recombinant ADAMTS13 reduces the expression of VEGF in vascular endothelial cells induced by tPA

采用Western印迹实验,结果显示,与假手术组相比,脑缺血显著增加VEGF的表达(与以前的报道一致34);与给予PBS的脑缺血小鼠相比,给予tPA引起VEGF的表达进一步增加;Using Western blot experiments, the results showed that cerebral ischemia significantly increased the expression of VEGF compared with the sham group (consistent with previous reports34); compared with cerebral ischemic mice given PBS, administration of tPA caused VEGF expression further increase;

免疫组化染色结果显示,给予tPA引起VEGF在梗死周边区的血管内皮细胞中的表达显著增加;虽然在星形胶质细胞和神经元中也可观察到VEGF的表达,但不受tPA处理的影响;The results of immunohistochemical staining showed that the administration of tPA caused a significant increase in the expression of VEGF in the vascular endothelial cells in the peri-infarct area; although the expression of VEGF could also be observed in astrocytes and neurons, it was not affected by tPA treatment. Influence;

Western印迹实验的结果表明,重组ADAMTS13显著抑制tPA引起的VEGF表达的增加,与该结果相一致,梗死周边区血管内皮细胞中tPA诱导的VEGF的免疫活性也显著降低;The results of Western blot experiments showed that recombinant ADAMTS13 significantly inhibited the increase of VEGF expression induced by tPA, consistent with this result, the immune activity of VEGF induced by tPA in the vascular endothelial cells in the peri-infarct area was also significantly reduced;

测定脑组织中Ang-1和Ang-2的表达量,结果显示,Ang-1和Ang-2的表达在各处理组之间基本一致,表明Ang-1和Ang-2没有参与调节tPA诱导的脑出血;The expression levels of Ang-1 and Ang-2 in the brain tissue were measured, and the results showed that the expressions of Ang-1 and Ang-2 were basically consistent among the treatment groups, indicating that Ang-1 and Ang-2 were not involved in the regulation of tPA-induced cerebral hemorrhage;

(5)重组ADAMTS13抑制tPA诱导的VEGF表达与RhoA和Akt通路有关(5) The inhibition of tPA-induced VEGF expression by recombinant ADAMTS13 is related to the RhoA and Akt pathways

将小鼠分成脑缺血组和tPA处理组,静脉注射RhoA的抑制剂法舒地尔和Akt的抑制剂渥曼青霉素,结果显示,法舒地尔和渥曼青霉素均能抑制tPA诱导的VEGF表达的上调;The mice were divided into the cerebral ischemia group and the tPA treatment group, and the RhoA inhibitor fasudil and the Akt inhibitor wortmannin were injected intravenously. The results showed that both fasudil and wortmannin could inhibit tPA-induced VEGF upregulation of expression;

Western印迹实验结果表明,脑缺血明显增加RhoA的活性,并诱导Akt的磷酸化;当给予tPA后,上述作用被进一步扩大;相反,重组ADAMTS13显著抑制tPA诱导的RhoA激活和Akt的磷酸化;总Akt的表达在各组之间没有检测到差异;The results of Western blot experiments showed that cerebral ischemia significantly increased the activity of RhoA and induced the phosphorylation of Akt; when tPA was administered, the above effects were further amplified; on the contrary, recombinant ADAMTS13 significantly inhibited the activation of RhoA and the phosphorylation of Akt induced by tPA; The expression of total Akt was not detected to be different among the groups;

上述结果表明,重组ADAMTS13通过抑制RhoA的激活和Akt的磷酸化而起到干扰tPA-VEGF通路的作用。The above results indicated that recombinant ADAMTS13 interfered with the tPA-VEGF pathway by inhibiting the activation of RhoA and the phosphorylation of Akt.

本发明的实验结果显示,在缺血条件下tPA诱导产生的VEGF能被RhoA或Akt的特异性抑制剂所阻断,而重组ADAMTS13显著降低RhoA的激活和Akt的磷酸化,表明重组ADAMTS13对tPA诱导的VEGF表达的抑制通过RhoA和Akt通路实现。The experimental results of the present invention show that under ischemic conditions, the VEGF induced by tPA can be blocked by specific inhibitors of RhoA or Akt, while recombinant ADAMTS13 significantly reduces the activation of RhoA and the phosphorylation of Akt, indicating that recombinant ADAMTS13 has a strong effect on tPA Inhibition of induced VEGF expression is achieved through the RhoA and Akt pathways.

本发明所述的重组ADAMTS13通过抑制RhoA和Akt介导的脑血管通透性增加,减轻tPA对血脑屏障的损害从而减少其引起的脑出血,因此,联合使用重组ADAMTS13和tPA是增加溶栓安全性的一种新型对策和手段。The recombinant ADAMTS13 of the present invention reduces the damage of tPA to the blood-brain barrier by inhibiting the increase of cerebrovascular permeability mediated by RhoA and Akt, thereby reducing the cerebral hemorrhage caused by it. Therefore, the combined use of recombinant ADAMTS13 and tPA is to increase thrombolytic A new countermeasure and means of security.

附图说明 Description of drawings

图1显示了在非缺血条件下,重组ADAMTS13抑制tPA引起的血脑屏障通透性的增加,其中,Figure 1 shows that under non-ischemic conditions, recombinant ADAMTS13 inhibits the increase in the permeability of the blood-brain barrier caused by tPA, wherein,

A:侧脑室注射PBS,tPA,VWF或tPA加VWF后,静脉注射Evans blue 1小时后脑内Evans blue渗出量的测定值;A: After intracerebroventricular injection of PBS, tPA, VWF or tPA plus VWF, the measured value of Evans blue exudation in the brain 1 hour after intravenous injection of Evans blue;

B:静脉注射PBS,tPA,tPA与50或100ng重组ADAMTS13联合注射,重组ADAMTS13单独注射后,静脉注射Evans blue 1小时后脑内Evans blue渗出量的测定值;B: After intravenous injection of PBS, tPA, combined injection of tPA and 50 or 100ng recombinant ADAMTS13, single injection of recombinant ADAMTS13, the measured value of Evans blue exudation in the brain after intravenous injection of Evans blue for 1 hour;

数值采用均数+标准差,每组n=7-8,*P<0.05。Values are mean + standard deviation, n=7-8 for each group, *P<0.05.

图2显示了重组ADAMTS13抑制脑缺血后tPA诱导的血脑屏障破裂,其中,Figure 2 shows that recombinant ADAMTS13 inhibits tPA-induced blood-brain barrier breakdown after cerebral ischemia, wherein,

A、C:脑缺血24小时,假手术组及对照组,tPA给药组,tPA+重组ADAMTS13给药组,zo-1和collagen IV的代表性免疫印迹照片;A, C: 24 hours of cerebral ischemia, sham operation group and control group, tPA administration group, tPA+recombinant ADAMTS13 administration group, representative western blot photos of zo-1 and collagen IV;

B、D:各处理组的ZO-1和collagen IV的定量测定;值采用均数+标准差,假手术组n=4,其它各组n=6,*P<0.05;B, D: Quantitative determination of ZO-1 and collagen IV in each treatment group; the value adopts mean + standard deviation, n=4 in the sham operation group, n=6 in other groups, *P<0.05;

E:脑缺血24小时,对照组,tPA给药组,tPA+重组ADAMTS13给药组以及重组ADAMTS13单独给药组的Evans blue渗出的代表性图;E: Representative graphs of Evans blue exudation in the control group, tPA administration group, tPA+recombinant ADAMTS13 administration group and recombinant ADAMTS13 administration group alone at 24 hours of cerebral ischemia;

F:各处理组的Evans blue渗出的定量分析;值采用均数+标准差,每组n=7,*P<0.05。F: Quantitative analysis of Evans blue exudation in each treatment group; the value adopts mean + standard deviation, n=7 for each group, *P<0.05.

图3显示了重组ADAMTS13对脑出血和脑缺血后神经功能的影响,其中,Figure 3 shows the effect of recombinant ADAMTS13 on neurological function after cerebral hemorrhage and cerebral ischemia, wherein,

A:代表性的脑背侧面和冠状切片显示脑缺血24小时的脑出血情况,图片分别来自于对照组,tPA给药组,tPA+重组ADAMTS13给药组以及重组ADAMTS13单独给药组的小鼠;箭头所指的是给予tPA的小鼠脑缺血区的大面积出血;A: Representative dorsal and coronal sections of the brain showing intracerebral hemorrhage at 24 hours of cerebral ischemia. The pictures are from mice in the control group, tPA administration group, tPA+recombinant ADAMTS13 administration group and recombinant ADAMTS13 administration group ; What the arrow points to is the massive hemorrhage in the cerebral ischemic area of the mice given tPA;

B:用分光光度计对脑出血定量检测的结果;值采用均数+标准差,每组n=8,*P<0.05。(C)神经功能评分和(D)脑缺血24小时,对照组,tPA给药组,tPA+重组ADAMTS13给药组以及重组ADAMTS13单独给药组小鼠的运动行为;值采用均数+标准差,每组n=8,*P<0.05。B: Quantitative detection results of cerebral hemorrhage with a spectrophotometer; the value is the mean + standard deviation, n=8 for each group, *P<0.05. (C) Neurological function score and (D) Motor behavior of mice in the control group, tPA administration group, tPA+recombinant ADAMTS13 administration group and recombinant ADAMTS13 administration group alone at 24 hours of cerebral ischemia; the values are mean + standard deviation , each group n=8, *P<0.05.

图4显示了重组ADAMTS13降低tPA诱导的血管内皮细胞中的VEGF表达,其中,Figure 4 shows that recombinant ADAMTS13 reduces tPA-induced VEGF expression in vascular endothelial cells, wherein,

A:脑缺血24小时,假手术组小鼠,对照组,tPA给药组,tPA+重组ADAMTS13给药组以及重组ADAMTS13单独给药组的VEGF表达的代表性免疫印迹图片;A: 24 hours of cerebral ischemia, representative western blot pictures of VEGF expression in mice in sham operation group, control group, tPA administration group, tPA+recombinant ADAMTS13 administration group and recombinant ADAMTS13 administration group alone;

B:各处理组的VEGF表达的定量测定结果;值采用均数+标准差,假手术组n=4,其它各组n=6,*P<0.05;B: Quantitative measurement results of VEGF expression in each treatment group; the value adopts mean + standard deviation, n=4 in the sham operation group, n=6 in other groups, *P<0.05;

C:脑缺血24小时,给予tPA组或tPA+重组ADAMTS13组小鼠梗死周边区VEGF(暗)和内皮细胞(CD31,亮)免疫组化的共聚焦图片;星号指示血管腔;标尺:15μm;C: Immunohistochemical confocal images of VEGF (dark) and endothelial cells (CD31, bright) in the peri-infarct area of mice given tPA group or tPA+recombinant ADAMTS13 group after 24 hours of cerebral ischemia; asterisks indicate vascular lumen; scale bar: 15 μm ;

D、E:脑缺血24小时,假手术组小鼠,对照组,tPA给药组,tPA+重组ADAMTS13给药组Ang-1和Ang-2表达的有代表性免疫印迹图片;D, E: Representative western blot pictures of Ang-1 and Ang-2 expression in sham operation group mice, control group, tPA administration group, tPA+recombinant ADAMTS13 administration group after 24 hours of cerebral ischemia;

F、G:各组Ang-1和Ang-2表达的定量测定结果;值采用均数+标准差,各组n=6,*P<0.05。F, G: Quantitative measurement results of Ang-1 and Ang-2 expression in each group; the values are mean + standard deviation, n=6 in each group, *P<0.05.

图5显示了重组ADAMTS13抑制tPA诱导的VEGF表达与RhoA和Akt通路有关,其中,Figure 5 shows that the inhibition of tPA-induced VEGF expression by recombinant ADAMTS13 is related to the RhoA and Akt pathways, wherein,

A、C:脑缺血24小时,给予tPA组,tPA+渥曼青霉素或法舒地尔组的小鼠缺血侧脑中VEGF表达的代表性免疫印迹图片;A, C: Representative western blot pictures of VEGF expression in the ischemic brain of mice given tPA group, tPA+wortmannin or fasudil group after 24 hours of cerebral ischemia;

B、D:各组VEGF表达的定量测定结果;值采用均数+标准差,每组组n=5,*P<0.05;B, D: Quantitative measurement results of VEGF expression in each group; the value is the mean + standard deviation, each group n=5, *P<0.05;

E、F:脑缺血24小时,假手术组小鼠,对照组,tPA给药组,tPA+重组ADAMTS13给药组磷酸化Akt,总Akt和RhoA代表性的免疫印迹图片;E, F: Representative western blot pictures of phosphorylated Akt, total Akt and RhoA in mice in sham operation group, control group, tPA administration group, tPA+recombinant ADAMTS13 administration group after 24 hours of cerebral ischemia;

G、H:各组磷酸化Akt和RhoA的定量测定结果;值采用均数+标准差,假手术组n=4,其它各组n=6,*P<0.05。G, H: Quantitative determination results of phosphorylated Akt and RhoA in each group; the values are mean + standard deviation, n=4 in the sham operation group, n=6 in other groups, *P<0.05.

具体实施例 specific embodiment

实施例1Example 1

1、材料和方法1. Materials and methods

(1)试剂和抗体(1) Reagents and antibodies

Evans blue,Drabkin,多聚甲醛,D-葡萄糖,甲酰胺,渥曼青霉素(购买于Sigma-Aldrich)(St Louis,MO,美国),人重组tPA(爱通立)购自BoehringerIngelheim(Mannheim,Germany),人VWF蛋白购买自Haematologic Tecnologies(EssexJunction,VT,美国),人重组ADAMTS13购买自R&D systems(neapolis,MN,美国),法舒地尔购买自Calbiochem(San Diego,CA,美国)。一抗包括rabbit anti-zonulaoccludens(ZO-1)(Invitrogen,Camarillo,CA,美国),rabbit anti-collagen IV(Santa Cruz Biotechnology,Santa Cruz,CA,美国),rabbit anti-VEGF(血管内皮生长因子)(Abcam,MA,美国),goat anti-Angiopoietin(Ang)-1(Santa CruzBiotechnology,Santa Cruz,CA,美国),goat anti-Ang-2(Santa Cruz Biotechnology,Santa Cruz,CA,美国),rabbit anti-phospho-Akt(serine 473)(Cell SignalingTecnology,Beverly,MA,美国),rabbit anti-Akt(Cell Signaling Technology,Beverly,MA,美国),rabbit anti-RhoA(Santa Cruz Biotechnology,Santa Cruz,CA,美国)rat anti-CD31(PECAM-1,BD Pargen,San Diego,CA,美国),rabbit anti-β-actin(Cell Signaling technology,Beverly,MA,美国).二抗包括:Alexa Fluor 594donkey anti-rabbit immunoglobulin G(IgG),Alexa Fluor 488 donkey anti-rat IgG(Invitrogen,Camarillo,CA,美国)。Evans blue, Drabkin, paraformaldehyde, D-glucose, formamide, wortmannin (purchased from Sigma-Aldrich) (St Louis, MO, USA), human recombinant tPA (Aitongli) was purchased from BoehringerIngelheim (Mannheim, Germany ), human VWF protein was purchased from Haematologic Tecnologies (EssexJunction, VT, USA), human recombinant ADAMTS13 was purchased from R&D systems (neapolis, MN, USA), and fasudil was purchased from Calbiochem (San Diego, CA, USA). Primary antibodies include rabbit anti-zonulaoccludens (ZO-1) (Invitrogen, Camarillo, CA, USA), rabbit anti-collagen IV (Santa Cruz Biotechnology, Santa Cruz, CA, USA), rabbit anti-VEGF (vascular endothelial growth factor) (Abcam, MA, USA), goat anti-Angiopoietin (Ang)-1 (Santa Cruz Biotechnology, Santa Cruz, CA, USA), goat anti-Ang-2 (Santa Cruz Biotechnology, Santa Cruz, CA, USA), rabbit anti -phospho-Akt (serine 473) (Cell Signaling Tecnology, Beverly, MA, USA), rabbit anti-Akt (Cell Signaling Technology, Beverly, MA, USA), rabbit anti-RhoA (Santa Cruz Biotechnology, Santa Cruz, CA, USA) ) rat anti-CD31 (PECAM-1, BD Pargen, San Diego, CA, USA), rabbit anti-β-actin (Cell Signaling technology, Beverly, MA, USA). Secondary antibodies include: Alexa Fluor 594donkey anti-rabbit immunoglobulin G (IgG), Alexa Fluor 488 donkey anti-rat IgG (Invitrogen, Camarillo, CA, USA).

(2)脑室内注射和脑血管通透性测定(2) Intraventricular injection and measurement of cerebral vascular permeability

所有实验经过复旦大学上海医学院动物关爱和使用委员会核准。本发明采用雄性成年C57小鼠(上海斯莱克实验动物有限公司提供,上海,中国)。All experiments were approved by the Animal Care and Use Committee of Shanghai Medical College, Fudan University. The present invention uses male adult C57 mice (provided by Shanghai Slack Experimental Animal Co., Ltd., Shanghai, China).

将小鼠置于立体定位仪(Narisige Scientific Instrument Laboratory,东京,日本),用含1-1.5%异氟烷、30%氧气的混合气体持续麻醉,在如下坐标:前囟后0.2mm,旁开1.0mm,腹侧深度3mm,颅内分别注射3μl PBS、tPA(585ng)、VWF(540ng)、tPA和VWF、tPA和重组ADAMTS13(50或100ng)或者重组ADAMTS13(100ng),注射时间为15分钟;然后,静脉注射Evans blue dye(4%,溶于PBS,4ml/kg),60分钟后小鼠经心脏灌流PBS,脑组织置于甲酰胺溶液中浸泡72小时;采用分光光度计(ThermoBioMate 3S,Thermo Scientific,美国)在620nm波长处测量脑组织中Evans blue的外渗量。The mice were placed in a stereotaxic instrument (Narisige Scientific Instrument Laboratory, Tokyo, Japan), anesthetized continuously with a gas mixture containing 1-1.5% isoflurane and 30% oxygen, at the following coordinates: 0.2 mm behind the anterior bregma, side opening 1.0mm, ventral depth 3mm, intracranial injection of 3μl PBS, tPA (585ng), VWF (540ng), tPA and VWF, tPA and recombinant ADAMTS13 (50 or 100ng) or recombinant ADAMTS13 (100ng), the injection time is 15 minutes Then, intravenous injection of Evans blue dye (4%, dissolved in PBS, 4ml/kg), 60 minutes later, the mice were perfused with PBS through the heart, and the brain tissue was soaked in formamide solution for 72 hours; using a spectrophotometer (ThermoBioMate 3S , Thermo Scientific, USA) at 620nm wavelength to measure the extravasation of Evans blue in brain tissue.

(3)动物脑缺血模型(3) Animal cerebral ischemia model

脑缺血模型(MCAO)按照现有技术的方法制作25,27,即雄性小鼠用含1-1.5%异氟烷、30%氧气、70%氮气的混合气体麻醉后,经右侧颈内动脉插入经硅胶包裹末端的7.0尼龙拴线阻断大脑中动脉;缺血45分钟后退出拴线实施再灌注;使用加热板(WorldPrecision Instruments,Sarasota,FL,美国)维持小鼠体温在37±0.5℃;通过激光多普勒血流仪(Perimed,Stockholm,瑞典)确认大脑中动脉的栓塞与再灌注情况;为增加脑出血量,脑缺血15分钟后给予小鼠腹腔注射50%D-葡萄糖(6ml/kg)28,29;脑缺血后2小时,用微量进样泵(World Precision Instruments,Sarasota,FL,美国)静脉注入1mg/kg(bolus)tPA(10mg/kg)或PBS,剩余的9mg/kg经30分钟缓慢注入;重组ADAMTS13(100ng溶于3μl PBS)或PBS在脑缺血后3小时经右脑侧脑室给予;渥曼青霉素(15μg/kg溶于100μl含1%二甲基亚砜[DMSO]的生理盐水中)或含1%二甲基亚砜的生理盐水在脑缺血之前经静脉注射;法舒地尔(10mg/kg溶于100μl生理盐水)或生理盐水在脑缺血后30分钟由静脉注射;小鼠脑缺血后23小时,由静脉注射2%的Evans blue(2ml/kg);缺血侧脑半球的Evans blue外渗量按前文叙述的方法测量。The cerebral ischemia model (MCAO) was made according to the method of the prior art25,27 , that is, after the male mice were anesthetized with a mixed gas containing 1-1.5% isoflurane, 30% oxygen, and 70% nitrogen, they were injected through the right side of the neck. The middle cerebral artery was blocked by inserting a 7.0 nylon tether with a silicone-coated end into the artery; after 45 minutes of ischemia, the tether was withdrawn for reperfusion; a heating plate (WorldPrecision Instruments, Sarasota, FL, USA) was used to maintain the body temperature of the mouse at 37±0.5 ℃; the embolism and reperfusion of the middle cerebral artery were confirmed by laser Doppler flowmeter (Perimed, Stockholm, Sweden); in order to increase the amount of cerebral hemorrhage, mice were given intraperitoneal injection of 50% D-glucose after 15 minutes of cerebral ischemia (6ml/kg) 28,29 ; 2 hours after cerebral ischemia, inject 1mg/kg (bolus) tPA (10mg/kg) or PBS intravenously with a micro-injection pump (World Precision Instruments, Sarasota, FL, USA), and the remaining 9 mg/kg was slowly infused over 30 minutes; recombinant ADAMTS13 (100 ng dissolved in 3 μl PBS) or PBS was administered through the right lateral ventricle 3 hours after cerebral ischemia; wortmannin (15 μg/kg dissolved in 100 μl containing 1% dimethyl DMSO) or 1% dimethyl sulfoxide in normal saline before cerebral ischemia; fasudil (10 mg/kg dissolved in 100 μl normal saline) or normal saline in Intravenous injection 30 minutes after cerebral ischemia; 23 hours after cerebral ischemia in mice, intravenous injection of 2% Evans blue (2ml/kg); the amount of Evans blue extravasation in the cerebral hemisphere of the ischemic side was measured by the method described above .

(4)行为测定(4) Behavior measurement

脑缺血后24小时,采用双盲法对小鼠神经功能损伤进行评分:24 hours after cerebral ischemia, the neurological damage of mice was scored by double-blind method:

0分,无神经功能损伤;0 points, no neurological impairment;

1分,不能完全伸展左侧前爪;1 point, inability to fully extend the left front paw;

2分,对推力的抵抗力减弱;2 points, the resistance to thrust is weakened;

3分,自发性地向左转圈;3 points, turn left spontaneously;

4分,自主活动缺失或无意识。4 points, lack of voluntary activity or unconsciousness.

在运动行为测试中,将小鼠放入27.3×27.3×40cm的测试箱内(Med Associates,美国),通过红外摄像头自动记录小鼠在30分钟内行进的距离,采用SOD-811分析软件(Med Associates Inc.,St Alban's,VT,美国)分析数据。In the motor behavior test, the mice were put into a test box of 27.3×27.3×40cm (Med Associates, USA), and the distance traveled by the mice within 30 minutes was automatically recorded by an infrared camera, and the SOD-811 analysis software (Med Associates, USA) was used to analyze the distance. Associates Inc., St Alban's, VT, USA) analyzed the data.

(5)脑出血的测量(5) Measurement of cerebral hemorrhage

缺血后24小时,给小鼠注射过量水合氯醛,用PBS进行心脏灌流;收集缺血侧脑组织,加入500μl Drabkin溶液、匀浆、4℃ 13000rpm离心30分钟;收集上清液,用分光光度计(Thermo BioMate 3S,Thermo Scientific,美国)在540nm波长测量其光密度值;采用小鼠同源的血液制作标准曲线,按标准曲线计算出光密度值对应的出血量25,30。24 hours after ischemia, inject excess chloral hydrate into the mice, and perfuse the heart with PBS; collect the brain tissue on the ischemic side, add 500 μl Drabkin solution, homogenate, and centrifuge at 13,000 rpm at 4°C for 30 minutes; collect the supernatant and use spectrophotometer A photometer (Thermo BioMate 3S, Thermo Scientific, USA) measured the optical density at a wavelength of 540nm; a standard curve was prepared using homologous mouse blood, and the amount of bleeding corresponding to the optical density value was calculated according to the standard curve25,30.

(6)Western印迹实验(6) Western blot experiment

将缺血侧脑组织和假手术组相对应的脑组织经裂解液裂解;将脑组织在含有蛋白酶抑制剂cocktails的RIPA裂解液(Millipore,Billerica,MA,美国)中匀浆、离心后,用BCA蛋白测定法(Thermo BioMate 3S,Thermo Scientific,美国)检测蛋白浓度;等量的蛋白样品分别经8%、10%或12%的Tris-甘氨酸凝胶电泳后,转移到PVDF膜上;使用1XTBST的5%脱脂牛奶室温封闭1小时,一抗4℃孵育过夜,经漂洗后加二抗室温孵育1小时;化学发光剂(Millipore,Billerica,MA,美国)处理后,用Bio-Image测定系统(Bio-Rad,美国)进行扫描和定量分析;使用β-actin作为内参。The brain tissue of the ischemic side and the corresponding brain tissue of the sham operation group were lysed with lysate; the brain tissue was homogenized and centrifuged in RIPA lysate (Millipore, Billerica, MA, USA) containing protease inhibitor cocktails, and then washed with BCA protein assay (Thermo BioMate 3S, Thermo Scientific, USA) was used to detect the protein concentration; equal amounts of protein samples were subjected to 8%, 10% or 12% Tris-glycine gel electrophoresis, respectively, and then transferred to PVDF membrane; using 1XTBST 5% skimmed milk was used to block at room temperature for 1 hour, and the primary antibody was incubated overnight at 4°C. After rinsing, the secondary antibody was added and incubated at room temperature for 1 hour; Bio-Rad, USA) for scanning and quantitative analysis; β-actin was used as an internal reference.

(7)免疫组化(7) Immunohistochemistry

脑缺血后24小时,将小鼠用过量的水合氯醛深麻,然后依次用PBS和4%的多聚甲醛溶液灌流、取脑;脑组织经30%蔗糖脱水;脑冠状切片(20μm)用含1%的牛血清蛋白和5%正常驴血清的PBS封闭液封闭,用兔抗VEGF和大鼠抗CD31的抗体混合液4℃孵育过夜;将切片漂洗后,用Alexa Fluor 594驴抗兔IgG和Alexa Fluor 488驴抗大鼠Ig的混合物孵育;使用Olympus FV1000共聚焦显微镜获得图像,FV10-ASW软件进行图像处理。24 hours after cerebral ischemia, the mice were deeply anesthetized with an excessive amount of chloral hydrate, then perfused with PBS and 4% paraformaldehyde solution in turn, and the brain was taken; the brain tissue was dehydrated with 30% sucrose; the brain was sliced coronally (20 μm) Block with PBS blocking solution containing 1% bovine serum albumin and 5% normal donkey serum, and incubate overnight at 4°C with rabbit anti-VEGF and rat anti-CD31 antibody mixture; after rinsing the sections, use Alexa Fluor 594 donkey anti-rabbit The mixture of IgG and Alexa Fluor 488 donkey anti-rat Ig was incubated; the images were obtained using Olympus FV1000 confocal microscope, and the FV10-ASW software was used for image processing.

(8)数据分析(8) Data analysis

数据用平均值±SD表示,采用单因素方差分析后经Boneferroni多组比较进行统计分析;采用Kruskal–Wallis test分析后经Dunn多组比较进行行为学数据的统计分析;两组比较时,采用未配对双尾Student t检验。P<0.05视为有统计学差异。The data are expressed as mean ± SD, and statistical analysis is performed by Boneferroni multi-group comparison after one-way analysis of variance; statistical analysis of behavioral data is performed by Dunn multi-group comparison after Kruskal–Wallis test analysis; Paired two-tailed Student's t test. P<0.05 was considered to be statistically different.

2、结果2. Results

(1)重组ADAMTS13阻断非缺血脑内tPA注射引起的血脑屏障通透性的增加(1) Recombinant ADAMTS13 blocked the increase of blood-brain barrier permeability caused by tPA injection in the non-ischemic brain

首先证实正常小鼠侧脑室注射tPA可引起血脑屏障通透性的增加(如图1A所示)28,31;为了检测VWF是否也能够诱导血脑屏障通透性的增加,使用非缺血小鼠,通过脑室注射VWF,然后静脉注射Evans blue,1小时后灌流取脑,定量检测脑中Evans blue的渗出量;结果显示,类似于注射tPA,VWF显著增加血脑屏障的通透性(如图1A所示);然而,tPA和VWF联合注射引起血脑屏障通透性增加的程度与两者单独使用没有明显差异,表明tPA和VWF通过同一条通路影响血脑屏障的通透性;进一步研究VWF裂解酶ADAMTS13能否抑制tPA所引起的血脑屏障破坏,结果显示,侧脑室给予50ng或100ng重组ADAMTS13都能显著减少注射tPA的小鼠脑内的Evans blue渗出量(如图1B所示);由于100ng的重组ADAMTS13更有效,在后续的实验中使用100ng的重组ADAMTS13;单独注射重组ADAMTS13对血脑屏障的通透性没有影响。Firstly, it was confirmed that the intracerebroventricular injection of tPA in normal mice could increase the permeability of the blood-brain barrier (as shown in Figure 1A) 28,31 ; in order to test whether VWF could also induce the increase of the permeability of the blood-brain In mice, VWF was injected into the ventricle, and then Evans blue was injected intravenously. After 1 hour, the brain was perfused, and the amount of Evans blue exudation in the brain was quantitatively detected; the results showed that, similar to the injection of tPA, VWF significantly increased the permeability of the blood-brain barrier (as shown in Figure 1A); however, the combined injection of tPA and VWF caused no significant difference in the degree of increased BBB permeability compared with the two alone, suggesting that tPA and VWF affect BBB permeability through the same pathway ; Further research on whether the VWF lyase ADAMTS13 can inhibit the damage of the blood-brain barrier caused by tPA, the results showed that administration of 50ng or 100ng recombinant ADAMTS13 in the lateral ventricle can significantly reduce the amount of Evans blue exudation in the brain of mice injected with tPA (as shown in the figure 1B); since 100 ng of recombinant ADAMTS13 was more effective, 100 ng of recombinant ADAMTS13 was used in subsequent experiments; injection of recombinant ADAMTS13 alone had no effect on the permeability of the blood-brain barrier.

(2)重组ADAMTS13抑制脑缺血后tPA对血脑屏障的破坏作用(2) Recombinant ADAMTS13 inhibits the damage effect of tPA on the blood-brain barrier after cerebral ischemia

采用小鼠45分钟局部脑缺血再灌注模型,检测了ZO-1(一种主要的紧密连接蛋白)和collagen IV(一种主要的血管基底膜蛋白)表达的变化,结果显示,脑缺血明显减少ZO-1的表达(如图2A和B所示),适当减少collagen IV的表达(如图2C和D所示);与PBS处理组相比,脑缺血两小时后静脉注射tPA导致ZO-1(如图2A和B所示)和collagen IV(如图2C和D所示)的明显减少;然而,脑缺血后3小时侧脑室给予重组ADAMTS13显著减轻tPA引起的ZO-1和collagene IV的降解;结果还显示,与对照组比较,tPA显著增加缺血脑半球Evans blue的渗出量(如图2E和F所示),注射重组ADAMTS13完全逆转tPA引起的小鼠血脑屏障通透性的改变(如图2E和F所示);而单用重组ADAMTS13对脑缺血后血脑屏障的通透性没有影响。The expression changes of ZO-1 (a major tight junction protein) and collagen IV (a major vascular basement membrane protein) were detected using a 45-minute regional cerebral ischemia-reperfusion model in mice. The results showed that cerebral ischemia The expression of ZO-1 was significantly reduced (as shown in Figure 2A and B), and the expression of collagen IV was moderately reduced (as shown in Figure 2C and D); compared with the PBS-treated group, intravenous injection of tPA two hours after cerebral ischemia resulted in Significant reductions in ZO-1 (shown in Figure 2A and B) and collagen IV (shown in Figure 2C and D); however, intracerebroventricular administration of recombinant ADAMTS13 3 hours after cerebral ischemia significantly attenuated tPA-induced ZO-1 and Degradation of collagen IV; the results also showed that compared with the control group, tPA significantly increased the exudation of Evans blue in the ischemic brain hemisphere (as shown in Figure 2E and F), and injection of recombinant ADAMTS13 completely reversed the blood-brain barrier of mice caused by tPA Permeability changes (as shown in Figure 2E and F); while recombinant ADAMTS13 alone had no effect on the permeability of the blood-brain barrier after cerebral ischemia.

(3)重组ADAMTS13对脑出血和神经功能的影响(3) Effects of recombinant ADAMTS13 on cerebral hemorrhage and neurological function

通过分光光度计的定量测量,结果显示,脑缺血后2小时注入tPA导致24小时后的脑出血明显增加(如图3A和B所示),脑缺血后3小时脑室内给予重组ADAMTS13抑制tPA诱导的脑出血(如图3A和B所示);单独给予重组ADAMTS13对脑出血没有明显影响。Quantitative measurement by spectrophotometer showed that infusion of tPA 2 hours after cerebral ischemia resulted in a significant increase in cerebral hemorrhage after 24 hours (as shown in Figure 3A and B), and intraventricular administration of recombinant ADAMTS13 inhibited 3 hours after cerebral ischemia. tPA-induced cerebral hemorrhage (as shown in Figure 3A and B); administration of recombinant ADAMTS13 alone had no significant effect on cerebral hemorrhage.

此外,神经功能评分表明,与PBS处理组的小鼠相比,tPA处理组小鼠表现出严重的神经功能缺失和运动功能的下降;重组ADAMTS13+tPA组小鼠的神经功能评分和运动功能明显好于单独给予tPA的小鼠。In addition, the neurological function scores showed that compared with the mice in the PBS-treated group, the mice in the tPA-treated group showed severe neurological function loss and decreased motor function; the neurological function scores and motor function of mice in the recombinant ADAMTS13+tPA group were significantly Better than mice given tPA alone.

(4)重组ADAMTS13降低tPA引起的血管内皮细胞中VEGF的表达(4) Recombinant ADAMTS13 reduces the expression of VEGF in vascular endothelial cells induced by tPA

Western印迹实验的结果显示,与假手术组相比,脑缺血显著增加VEGF的表达,该结果与以前的报道一致34;与给予PBS的脑缺血小鼠相比,给予tPA引起VEGF的表达进一步增加(如图4A和B所示);The results of Western blot experiments showed that compared with the sham group, cerebral ischemia significantly increased the expression of VEGF, which was consistent with previous reports34; compared with the cerebral ischemic mice given PBS, administration of tPA caused the expression of VEGF further increase (as shown in Figure 4A and B);

免疫组化染色结果显示,给予tPA引起VEGF在梗死周边区的血管内皮细胞中的表达显著增加(如图4C所示);虽然在星形胶质细胞和神经元中也可观察到VEGF的表达,但不受tPA处理的影响(数据未显示)。Immunohistochemical staining results showed that administration of tPA caused a significant increase in the expression of VEGF in vascular endothelial cells in the peri-infarct zone (as shown in Figure 4C); although VEGF expression was also observed in astrocytes and neurons , but was not affected by tPA treatment (data not shown).

由于上述结果表明重组ADAMTS13抑制tPA诱导的脑出血,本实验还检测了重组ADAMTS13是否能够减少tPA诱导的VEGF表达的升高,Western印迹实验的结果表明,重组ADAMTS13显著抑制tPA引起的VEGF表达的增加(如图4A和B所示),与上述结果相一致,梗死周边区血管内皮细胞中tPA诱导的VEGF的免疫活性也显著降低(如图4C所示)。Since the above results show that recombinant ADAMTS13 inhibits tPA-induced cerebral hemorrhage, this experiment also tested whether recombinant ADAMTS13 can reduce the increase in VEGF expression induced by tPA. The results of Western blot experiments showed that recombinant ADAMTS13 significantly inhibited the increase in VEGF expression induced by tPA (As shown in Figure 4A and B), consistent with the above results, the immune activity of tPA-induced VEGF in vascular endothelial cells in the peri-infarct area was also significantly reduced (as shown in Figure 4C).

现有文献报道angiopoietin(Ang)-1和Ang-2调节缺血后脑血管的通透性35,因此本实验测定了脑组织中Ang-1和Ang-2的表达量,结果显示,Ang-1和Ang-2的表达在各处理组之间基本一致,表明Ang-1和Ang-2没有参与调节tPA诱导的脑出血。Existing literature reports that angiopoietin (Ang)-1 and Ang-2 regulate the permeability of cerebral vessels after ischemia35, so this experiment measured the expression levels of Ang-1 and Ang-2 in brain tissue, and the results showed that Ang-1 The expressions of Ang-1 and Ang-2 were basically consistent among the treatment groups, indicating that Ang-1 and Ang-2 were not involved in the regulation of tPA-induced intracerebral hemorrhage.

(5)重组ADAMTS13抑制tPA诱导的VEGF表达与RhoA和Akt通路有关(5) The inhibition of tPA-induced VEGF expression by recombinant ADAMTS13 is related to the RhoA and Akt pathways

VEGF受RhoA和Akt通路调节36,37,且RhoA和Akt都参与调节脑缺血后血脑屏障的功能13,38;为检测上述因子是否对tPA诱导的VEGF上调有影响,本实施例将小鼠分成脑缺血组和tPA处理组,静脉注射RhoA的抑制剂法舒地尔和Akt的抑制剂渥曼青霉素,结果显示,法舒地尔和渥曼青霉素均能抑制tPA诱导的VEGF表达的上调;VEGF is regulated by the RhoA and Akt pathways 36,37 , and both RhoA and Akt are involved in regulating the function of the blood-brain barrier after cerebral ischemia; Rats were divided into cerebral ischemia group and tPA treatment group, and RhoA inhibitor fasudil and Akt inhibitor wortmannin were injected intravenously. The results showed that both fasudil and wortmannin could inhibit the expression of VEGF induced by tPA. raised;

本实施例还测定了重组ADAMTS13是否能够抑制tPA诱导的RhoA激活和Akt的磷酸化,Western印迹实验的结果表明,脑缺血明显增加RhoA的活性(如图5E和F所示),并诱导Akt的磷酸化(如图5G和H所示);当给予tPA后,上述作用被进一步扩大,相反,重组ADAMTS13显著抑制tPA诱导的RhoA激活(如图5E和F所示)和Akt的磷酸化(图5G和H所示);总Akt的表达在各组之间没有检测到差异;This embodiment also determined whether recombinant ADAMTS13 could inhibit tPA-induced activation of RhoA and phosphorylation of Akt. The results of Western blot experiments showed that cerebral ischemia significantly increased the activity of RhoA (as shown in Figure 5E and F), and induced Akt (as shown in Figure 5G and H); when tPA was administered, the above effects were further amplified, on the contrary, recombinant ADAMTS13 significantly inhibited tPA-induced activation of RhoA (as shown in Figure 5E and F) and Akt phosphorylation ( Shown in Figure 5G and H); the expression of total Akt was not detected to be different among the groups;

上述结果表明,重组ADAMTS13通过抑制RhoA的激活和Akt的磷酸化而起到干扰tPA-VEGF通路的作用。The above results indicated that recombinant ADAMTS13 interfered with the tPA-VEGF pathway by inhibiting the activation of RhoA and the phosphorylation of Akt.

Claims (5)

1.重组ADAMTS13在制备治疗脑出血药物中的用途。1. The use of recombinant ADAMTS13 in the preparation of drugs for the treatment of cerebral hemorrhage. 2.重组ADAMTS13在制备减少脑缺血后tPA溶栓治疗引起的脑出血药物中的用途。2. The use of recombinant ADAMTS13 in the preparation of a drug for reducing cerebral hemorrhage caused by tPA thrombolytic therapy after cerebral ischemia. 3.按权利要求1或2所述的用途,其特征在于,所述重组ADAMTS13通过RhoA和Akt通路实现对tPA诱导的VEGF表达的抑制。3. The use according to claim 1 or 2, characterized in that the recombinant ADAMTS13 suppresses tPA-induced VEGF expression through RhoA and Akt pathways. 4.按权利要求1或2所述的用途,其特征在于,所述重组ADAMTS13显著降低RhoA的激活和Akt的磷酸化。4. The use according to claim 1 or 2, characterized in that said recombinant ADAMTS13 significantly reduces the activation of RhoA and the phosphorylation of Akt. 5.按权利要求1或2所述的用途,其特征在于,所述重组ADAMTS13通过抑制RhoA和Akt介导的脑血管通透性增加,减轻tPA对血脑屏障的损害从而减少其引起的脑出血。5. The use according to claim 1 or 2, characterized in that said recombinant ADAMTS13 reduces the damage of tPA to the blood-brain barrier by inhibiting the increase of cerebrovascular permeability mediated by RhoA and Akt, thereby reducing the brain damage caused by it. bleeding.
CN201210256097.3A 2012-07-21 2012-07-21 Restructuring ADAMTS13 is preparing the purposes in cerebral hemorrhage medicine Expired - Fee Related CN103566362B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210256097.3A CN103566362B (en) 2012-07-21 2012-07-21 Restructuring ADAMTS13 is preparing the purposes in cerebral hemorrhage medicine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210256097.3A CN103566362B (en) 2012-07-21 2012-07-21 Restructuring ADAMTS13 is preparing the purposes in cerebral hemorrhage medicine

Publications (2)

Publication Number Publication Date
CN103566362A CN103566362A (en) 2014-02-12
CN103566362B true CN103566362B (en) 2015-07-29

Family

ID=50039642

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210256097.3A Expired - Fee Related CN103566362B (en) 2012-07-21 2012-07-21 Restructuring ADAMTS13 is preparing the purposes in cerebral hemorrhage medicine

Country Status (1)

Country Link
CN (1) CN103566362B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022175666A1 (en) * 2021-02-17 2022-08-25 The University Of Manchester Adamts13 variant

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201510870D0 (en) * 2015-05-26 2015-08-05 Baxalta Inc And Katholieke Universiteit Leuven And Baxalta Gmbh Treatment of infarction
CN108619496A (en) * 2017-03-19 2018-10-09 复旦大学 ADAMTS13 is preparing the purposes in promoting post-stroke vascular remodeling drug
CN110639009A (en) * 2019-10-24 2020-01-03 上海市第六人民医院 Application of recombinant ADAMTS13 in the preparation of drugs for the treatment of autoimmune encephalomyelitis

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102573792A (en) * 2009-09-21 2012-07-11 巴克斯特国际公司 Stabilized liquid and lyophilized ADAMTS13 formulations

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HU0900534D0 (en) * 2009-08-29 2009-10-28 Semmelweis Egyetem Method and kit for improvement of prognosing of heart failure
JP5648905B2 (en) * 2010-11-12 2015-01-07 株式会社Lsiメディエンス Method for detecting or predicting risk of developing liver cancer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102573792A (en) * 2009-09-21 2012-07-11 巴克斯特国际公司 Stabilized liquid and lyophilized ADAMTS13 formulations

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
von Willebrand factor–cleaving protease ADAMTS13 reduces ischemic brain injury in experimental stroke;Bing-QiaoZhao;《BLOOD》;20091031;第114卷(第15期);第3329页摘要,第3333页左栏倒数第2段至右栏第3段 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022175666A1 (en) * 2021-02-17 2022-08-25 The University Of Manchester Adamts13 variant

Also Published As

Publication number Publication date
CN103566362A (en) 2014-02-12

Similar Documents

Publication Publication Date Title
Su et al. Microglial-mediated PDGF-CC activation increases cerebrovascular permeability during ischemic stroke
Franke et al. The NLRP3 inflammasome drives inflammation in ischemia/reperfusion injury after transient middle cerebral artery occlusion in mice
Göb et al. Blocking of plasma kallikrein ameliorates stroke by reducing thromboinflammation
Fanne et al. Blood–brain barrier permeability and tPA-mediated neurotoxicity
Craword et al. The many facets of PEDF in drug discovery and disease: a diamond in the rough or split personality disorder?
Zhang et al. Tissue-type plasminogen activator and the low-density lipoprotein receptor-related protein mediate cerebral ischemia-induced nuclear factor-κB pathway activation
Hebert et al. The story of an exceptional serine protease, tissue-type plasminogen activator (tPA)
Xu et al. Protective effects of thrombomodulin on microvascular permeability after subarachnoid hemorrhage in mouse model
US20220298261A1 (en) Serpinf2-Binding Molecules and Method of Use Thereof
JP2004508280A (en) Use of activated protein C (APC) as a neuroprotective, antithrombotic and anti-inflammatory agent
CN103566362B (en) Restructuring ADAMTS13 is preparing the purposes in cerebral hemorrhage medicine
Godinez et al. Neuroserpin, a crucial regulator for axogenesis, synaptic modelling and cell–cell interactions in the pathophysiology of neurological disease
Deguchi et al. Modifying neurorepair and neuroregenerative factors with tPA and edaravone after transient middle cerebral artery occlusion in rat brain
Ahn et al. Substance P reduces infarct size and mortality after ischemic stroke, possibly through the M2 polarization of microglia/macrophages and neuroprotection in the ischemic rat brain
Orbe et al. Lack of TAFI increases brain damage and microparticle generation after thrombolytic therapy in ischemic stroke
Luo et al. P2Y1R silencing in Astrocytes Protected Neuroinflammation and Cognitive Decline in a Mouse Model of Alzheimer's Disease
Zhou et al. VEGI improves outcomes in the early phase of experimental traumatic brain injury
WO2014043334A1 (en) Modulation of podoplanin mediated platelet activation
US20240425863A1 (en) Use of pi3kc2b inhibitors for the preservation of vascular endothelial cell barrier integrity
Singh et al. Pathogenic Angiogenic Mechanisms in Alzheimer's
Wu et al. The expression and the role of protease nexin-1 on brain edema after intracerebral hemorrhage
Yuan et al. Ic100, a humanized therapeutic monoclonal anti-asc antibody alleviates oxygen-induced retinopathy in mice
Wang et al. Protective and detrimental effects of neuroectodermal cell–derived tissue factor in mouse models of stroke
US20080057050A1 (en) Intravenous injection of plasminogen non-neurotoxic activators for treating cerebral stroke
Shu et al. Small interfering RNA targeting DMP1 protects mice against blood-brain barrier disruption and brain injury after intracerebral hemorrhage

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150729