CN103546152B - Pipeline Architecture Analog-to-Digital Converter and Its Offset Voltage Effect Correction Method - Google Patents
Pipeline Architecture Analog-to-Digital Converter and Its Offset Voltage Effect Correction Method Download PDFInfo
- Publication number
- CN103546152B CN103546152B CN201210243604.XA CN201210243604A CN103546152B CN 103546152 B CN103546152 B CN 103546152B CN 201210243604 A CN201210243604 A CN 201210243604A CN 103546152 B CN103546152 B CN 103546152B
- Authority
- CN
- China
- Prior art keywords
- code
- class
- correction
- switch
- digital converter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Analogue/Digital Conversion (AREA)
Abstract
一种管线架构模拟数字转换器及其偏移电压影响校正方法,此方法依据第一输入电压,产生第一阶级代码以及第一输出电压;依据第一输出电压产生第二阶级代码;依据输出电压产生确认代码;参照第一阶级代码以及确认代码,决定第一校正代码;当第一阶级代码相异于第一校正代码时,以第一校正代码对第一阶级代码进行校正。
A pipeline architecture analog-to-digital converter and an offset voltage influence correction method thereof, the method generates a first-level code and a first output voltage according to a first input voltage; generates a second-level code according to the first output voltage; generates a confirmation code according to the output voltage; determines a first correction code by referring to the first-level code and the confirmation code; and corrects the first-level code with the first correction code when the first-level code is different from the first correction code.
Description
技术领域technical field
本发明涉及一种模拟数字转换电路,且特别涉及内含多重数字模拟转换器的模拟数字转换电路。The invention relates to an analog-to-digital conversion circuit, and in particular to an analog-to-digital conversion circuit including multiple digital-to-analog converters.
背景技术Background technique
模拟数字转换器(Analog digital converter;ADC),顾名思义,是将模拟数据信号转换为数字代码,这个转换的动作就是在对模拟信号进行数字化以及量化。模拟数字转换器是混合信号集成电路中的要角。一旦模拟信号被转换至数字领域,那些复杂的信号处理过程就可以较为简洁的方式来实现,且噪声的免疫力也会被提升。在一些状况当中,以深次微米工艺来实现模拟数字转换器,将可减少功率消耗。Analog digital converter (Analog digital converter; ADC), as the name suggests, converts analog data signals into digital codes, and the action of this conversion is to digitize and quantize analog signals. Analog-to-digital converters are an essential part of mixed-signal integrated circuits. Once the analog signal is converted to the digital domain, those complex signal processing processes can be implemented in a simpler way, and the immunity to noise will be improved. In some cases, implementing the ADC in a deep sub-micron process will reduce power consumption.
模拟数字转换器采用多种功能架构,例如整合、连续渐近(successiveapproximation)、快闪,以及delta-sigma架构。近来,管线架构的模拟数字转换器已成为模拟数字转换器的主流,可被使用于高速应用当中,例如电荷耦合元件影像处理(CCD imaging)、超音波医疗摄影、数字影像,以及通信技术,例如览线数据机(cable modem),以及高速以太网络。由于具有高准确度、高输出率,以及低功率损耗的特性,管线架构的模拟数字转换器已广泛应用于各种电路系统当中。此外,较之其它种类的模拟数字转换器架构,管线架构通常能够在既定的功率下提供较佳的性能与较小的面积。Analog-to-digital converters use a variety of functional architectures, such as integration, successive approximation, flash, and delta-sigma architectures. Recently, pipeline-based analog-to-digital converters have become the mainstream of analog-to-digital converters, which can be used in high-speed applications, such as charge-coupled device image processing (CCD imaging), ultrasonic medical photography, digital imaging, and communication technologies such as Cable modem, and high-speed Ethernet. Due to the characteristics of high accuracy, high output rate, and low power loss, the analog-to-digital converter with pipeline architecture has been widely used in various circuit systems. In addition, pipeline architectures typically provide better performance and smaller area for a given power compared to other types of ADC architectures.
借着数字错误校正功能,管线架构的模拟数字转换器可容忍较大的比较器电压偏移量(comparator voltage offset)。然而,由于先进工艺当中的供应电压VDD下降,参考电压难以达成足够的操作范围,导致比较器电压偏移量的容忍度降低。With the digital error correction function, the analog-to-digital converter of the pipeline architecture can tolerate a large comparator voltage offset. However, due to the decrease of the supply voltage VDD in the advanced process, it is difficult to achieve a sufficient operating range of the reference voltage, resulting in reduced tolerance of the voltage offset of the comparator.
图1与图2是绘示带有以及省略取样保持放大器(Sample and holdamplifier)的传统管线架构模拟数字转换器。传统的管线架构模拟数字转换器一般会采用阶级电路101以及取样保持放大器(sample and hold amplifier;SHA)113,其中,阶级电路101通常内含模拟数字转换器111与阶级式数字模拟转换器(multiplying digital to analog converter;MDAC)103,此阶级式数字模拟转换器103具有取样保持(sample and hold circuit;S/H)电路105、数字模拟转换器107,以及放大器109。为了提供稳定的同步信号给阶级电路101内的阶级式数字模拟转换器103以及模拟数字转换器111来进行取样,因此需要采用取样保持放大器113。然而,取样保持放大器113会增加功率消耗以及噪声干扰,因此,在低功率的管线架构模拟数字转换器当中,通常不会采用取样保持放大器113,使得图2当中省略取样保持放大器的架构成为主流。FIG. 1 and FIG. 2 show traditional pipeline architecture ADCs with and without sample and hold amplifiers. A traditional pipeline architecture analog-to-digital converter generally adopts a stage circuit 101 and a sample and hold amplifier (sample and hold amplifier; SHA) 113, wherein the stage circuit 101 usually includes an analog-to-digital converter 111 and a stage-type digital-to-analog converter (multiplying digital to analog converter (MDAC) 103, the cascaded digital to analog converter 103 has a sample and hold (sample and hold circuit; S/H) circuit 105, a digital to analog converter 107, and an amplifier 109. In order to provide a stable synchronous signal to the cascaded digital-to-analog converter 103 and the analog-to-digital converter 111 in the cascade circuit 101 for sampling, a sample-and-hold amplifier 113 is required. However, the sample-and-hold amplifier 113 will increase power consumption and noise interference. Therefore, the sample-and-hold amplifier 113 is usually not used in low-power pipeline architecture analog-to-digital converters, making the architecture of omitting the sample-and-hold amplifier in FIG. 2 become the mainstream.
然而,由于取样的不匹配,取样保持电路105与数字模拟转换器107之间通常存在着无可避免的时序差异,导致随着扇入/扇出(fin)增加的与信号相关的偏移量增加。如此一来,可被容忍的比较器偏移量将被减少,模拟数字转换器的输入信号频宽也会被限制住。However, there is usually an unavoidable timing difference between the sample-and-hold circuit 105 and the DAC 107 due to sampling mismatches, resulting in signal-dependent offsets that increase with fan-in/fan-out (fin) Increase. In this way, the tolerable offset of the comparator will be reduced, and the bandwidth of the input signal of the analog-to-digital converter will also be limited.
图3以及图4是绘示管线架构模拟数字转换器当中阶级电路的输出电压波形示意图。在图3以及图4当中,点A与点B代表比较器的偏移量超过正常操作范围的状况。由于比较器的偏移量会被后续的电路放大,这将会导致错误代码的产生以及其它严重错误的发生。FIG. 3 and FIG. 4 are schematic diagrams illustrating output voltage waveforms of the stage circuits in the pipeline architecture ADC. In FIG. 3 and FIG. 4 , points A and B represent the situation where the offset of the comparator exceeds the normal operating range. Since the offset of the comparator will be amplified by subsequent circuits, this will lead to the generation of wrong codes and other serious errors.
发明内容Contents of the invention
因此,本发明的目的是提供一种偏移电压影响校正方法,可针对比较器偏移电压所造成的错误代码以及超出范围的输出电压进行校正,避免整体电路的运作发生错误。Therefore, the object of the present invention is to provide a method for correcting the influence of the offset voltage, which can correct the error code and the out-of-range output voltage caused by the offset voltage of the comparator, so as to avoid errors in the operation of the overall circuit.
依据本发明实施例,管线架构模拟数字转换器的偏移电压影响校正方法,依据第一输入电压,产生第一阶级代码以及第一输出电压;依据第一输出电压产生第二阶级代码;依据第一输出电压产生确认代码;参照第一阶级代码以及确认代码,决定第一校正代码;当第一阶级代码相异于第一校正代码时,以第一校正代码对第一阶级代码进行校正。According to the embodiment of the present invention, the method for correcting the influence of the offset voltage of the pipeline architecture analog-to-digital converter generates the first level code and the first output voltage according to the first input voltage; generates the second level code according to the first output voltage; and generates the second level code according to the first output voltage. An output voltage generates a confirmation code; referring to the first level code and the confirmation code, the first correction code is determined; when the first level code is different from the first correction code, the first level code is used to correct the first level code.
本发明的另一目的是提供一种管线架构模拟数字转换器,可自行校正比较器偏移电压所造成的错误代码以及超出范围的输出电压,避免整体电路的运作发生错误。Another object of the present invention is to provide a pipeline architecture analog-to-digital converter, which can self-correct error codes caused by comparator offset voltages and out-of-range output voltages, so as to avoid errors in the operation of the overall circuit.
依据本发明另一实施例,管线架构模拟数字转换器,含有确认代码产生器、代码校正电路,以及偏移电压校正电路。确认代码产生器依据管线架构模拟数字转换器的第一阶级电路所输出的第一输出电压,产生确认代码;代码校正电路接收分别由第一阶级电路、第二阶级电路,以及确认代码产生器所产生的第一阶级代码、第二阶级代码,以及确认代码,代码校正电路亦参照确认代码、第一阶级代码,以及第二阶级代码来校正错误的第一阶级代码以及第二阶级代码;偏移电压校正电路依据第二阶级代码与确认代码,调整第二阶级电路的输出电压的大小。According to another embodiment of the present invention, a pipeline architecture ADC includes an acknowledgment code generator, a code correction circuit, and an offset voltage correction circuit. The confirmation code generator generates the confirmation code according to the first output voltage output by the first-stage circuit of the analog-to-digital converter of the pipeline structure; Generated first-level codes, second-level codes, and confirmation codes, the code correction circuit also refers to the confirmation codes, first-level codes, and second-level codes to correct the wrong first-level codes and second-level codes; offset The voltage correction circuit adjusts the output voltage of the second stage circuit according to the second stage code and the confirmation code.
以上实施例的偏移电压影响校正方法以及管线架构模拟数字转换器,可针对比较器偏移电压所造成的错误代码以及超出范围的输出电压进行校正,避免整体电路的运作发生错误。The method for correcting the influence of the offset voltage and the analog-to-digital converter of the pipeline structure in the above embodiments can correct the error code and the out-of-range output voltage caused by the offset voltage of the comparator, and avoid errors in the operation of the overall circuit.
附图说明Description of drawings
为让本发明的上述和其它目的、特征、优点与实施例能更明显易懂,附图的说明如下:In order to make the above and other objects, features, advantages and embodiments of the present invention more comprehensible, the accompanying drawings are described as follows:
图1与图2是绘示带有以及省略取样保持放大器的传统管线架构模拟数字转换器。Figures 1 and 2 illustrate conventional pipeline architecture ADCs with and without sample-and-hold amplifiers.
图3以及图4是绘示管线架构模拟数字转换器当中阶级电路的输出电压波形示意图。FIG. 3 and FIG. 4 are schematic diagrams illustrating output voltage waveforms of the stage circuits in the pipeline architecture ADC.
图5是绘示本发明实施方式的管线架构模拟数字转换器的方块图。FIG. 5 is a block diagram illustrating a pipeline architecture ADC according to an embodiment of the present invention.
图6是绘示本发明实施方式的确认代码产生器的电路示意图。FIG. 6 is a schematic circuit diagram illustrating a confirmation code generator according to an embodiment of the present invention.
图7是绘示本发明实施方式第一阶级电路的电路图。FIG. 7 is a circuit diagram illustrating a first stage circuit according to an embodiment of the present invention.
图8是绘示本发明实施方式第二阶级电路的电路图。FIG. 8 is a circuit diagram illustrating a second stage circuit according to an embodiment of the present invention.
图9是绘示本发明实施方式管线架构模拟数字转换器偏移电压影响校正方法的流程图。FIG. 9 is a flow chart illustrating a method for calibrating the influence of an offset voltage of an analog-to-digital converter with a pipeline architecture according to an embodiment of the present invention.
图10是绘示本发明实施方式管线架构模拟数字转换器的代码真值表。FIG. 10 is a truth table illustrating codes of an analog-to-digital converter with a pipeline architecture according to an embodiment of the present invention.
图11是绘示本发明实施方式管线架构模拟数字转换器输入信号与输出信号的转换特性曲线。FIG. 11 is a diagram illustrating the conversion characteristic curves of the input signal and the output signal of the analog-to-digital converter of the pipeline architecture according to the embodiment of the present invention.
图12是绘示本发明实施方式中代表管线架构模拟数字转换器代码的真值表。FIG. 12 is a diagram illustrating a truth table representing pipeline architecture ADC code according to an embodiment of the present invention.
图13则绘示本发明实施方式中阶级电路输出电压的波形示意图。FIG. 13 is a schematic diagram of the waveform of the output voltage of the stage circuit in the embodiment of the present invention.
具体实施方式detailed description
以下实施例的偏移电压影响校正方法以及管线架构模拟数字转换器,可针对比较器偏移电压所造成的错误代码以及超出范围的输出电压进行校正,避免整体电路的运作发生错误。The offset voltage influence correction method and the pipeline structure analog-to-digital converter of the following embodiments can correct the error code and the out-of-range output voltage caused by the offset voltage of the comparator, so as to avoid errors in the operation of the whole circuit.
请参照图5,其绘示本发明实施方式的管线架构模拟数字转换器的方块图。管线架构模拟数字转换器500含有数个阶级电路,也就是第一阶级电路503、第二阶级电路505、第三阶级电路507,一直到第N阶级电路。管线架构模拟数字转换器500进一步含有确认代码产生器511、偏移电压校正电路513,以及代码校正电路501,其中,代码校正电路501具有校正码产生器521以及内建的解码逻辑电路519。Please refer to FIG. 5 , which shows a block diagram of a pipeline architecture analog-to-digital converter according to an embodiment of the present invention. The pipeline architecture analog-to-digital converter 500 includes several stages of circuits, that is, a first stage circuit 503 , a second stage circuit 505 , a third stage circuit 507 , and up to an Nth stage circuit. The pipeline architecture ADC 500 further includes an acknowledgment code generator 511 , an offset voltage correction circuit 513 , and a code correction circuit 501 , wherein the code correction circuit 501 has a correction code generator 521 and a built-in decoding logic circuit 519 .
第一阶级电路503接收输入电压Vin,并依据输入电压Vin产生第一阶级代码C11、C12以及第一输出电压Vout1;第二阶级电路505依据第一输出电压Vout1产生第二阶级代码C22、C23。确认代码产生器511则依据第一输出电压Vout1产生确认代码C21、C24。The first stage circuit 503 receives the input voltage Vin, and generates the first stage codes C11, C12 and the first output voltage Vout1 according to the input voltage Vin; the second stage circuit 505 generates the second stage codes C22, C23 according to the first output voltage Vout1. The confirmation code generator 511 generates confirmation codes C21 and C24 according to the first output voltage Vout1 .
代码校正电路501接收分别由管线架构模拟数字转换器的第一阶级电路503、第二阶级电路505,以及确认代码产生器511所产生的第一阶级代码C11、C12、第二阶级代码C22、C23,以及确认代码C21、C24。代码校正电路501参照确认代码C21、C24以及第一阶级代码C11、C12,来校正错误的第一阶级代码C11、C12以及第二阶级代码C22、C23。进一步来说,代码校正电路501的校正代码产生电路521会参考第一阶级代码C11、C12、第二阶级代码C22、C23,以及确认代码C21、C24,来产生校正代码,然后将校正代码传递给代码校正电路501的解码逻辑电路519。最后,代码校正电路501会据以输出数字代码。The code correction circuit 501 receives the first-stage codes C11, C12, and the second-stage codes C22, C23 generated by the first-stage circuit 503, the second-stage circuit 505, and the confirmation code generator 511 of the pipeline architecture analog-to-digital converter, respectively. , and confirmation codes C21, C24. The code correction circuit 501 corrects the erroneous first level codes C11, C12 and second level codes C22, C23 with reference to the confirmation codes C21, C24 and first level codes C11, C12. Further, the correction code generation circuit 521 of the code correction circuit 501 will refer to the first-level codes C11, C12, second-level codes C22, C23, and confirmation codes C21, C24 to generate correction codes, and then deliver the correction codes to The decoding logic circuit 519 of the code correction circuit 501 . Finally, the code correction circuit 501 outputs the digital code accordingly.
此外,偏移电压校正电路513依据第二阶级代码C22、C23与确认代码C21、C24,调整第二阶级电路505的输出电压Vout2的大小。In addition, the offset voltage correction circuit 513 adjusts the output voltage Vout2 of the second stage circuit 505 according to the second stage codes C22, C23 and confirmation codes C21, C24.
请参照图6,其绘示本发明实施方式的确认代码产生器的电路示意图。如同图6所绘示的,第一比较器601以及第二比较器607设置于确认码产生器当中,第三比较器603以及第四比较器605则设置于第二阶级电路当中。此外,第五比较器609以及第六比较器611则设置于第一阶级电路内。Please refer to FIG. 6 , which shows a schematic circuit diagram of a verification code generator according to an embodiment of the present invention. As shown in FIG. 6 , the first comparator 601 and the second comparator 607 are set in the confirmation code generator, and the third comparator 603 and the fourth comparator 605 are set in the second stage circuit. In addition, the fifth comparator 609 and the sixth comparator 611 are disposed in the first stage circuit.
第一比较器601具有第一输入端以及第二输入端,第一输入端连接输入端口来接收输入电压Vin,第二输入端则连接至正参考电压输入端来接收正参考电压Vref。第二比较器607具有第三输入端以及第四输入端,第三输入端连接至输入端口来接收输入电压Vin,第四输入端则连接至负参考电压端来接收负参考电压-Vref。The first comparator 601 has a first input terminal and a second input terminal, the first input terminal is connected to the input port to receive the input voltage Vin, and the second input terminal is connected to the positive reference voltage input terminal to receive the positive reference voltage Vref. The second comparator 607 has a third input terminal and a fourth input terminal, the third input terminal is connected to the input port to receive the input voltage Vin, and the fourth input terminal is connected to the negative reference voltage terminal to receive the negative reference voltage -Vref.
第一比较器601与第二比较器607比较输入电压Vin、正参考电压Vref以及负参考电压-Vref,然后据以输出确认码C21、C24。The first comparator 601 and the second comparator 607 compare the input voltage Vin, the positive reference voltage Vref and the negative reference voltage −Vref, and then output confirmation codes C21 and C24 accordingly.
请参照图7,其绘示本发明实施方式第一阶级电路的电路图。第一阶级电路为阶级式数字模拟转换器(MDAC)的一部分,此第一阶级电路主要内含运算放大器701、第一开关sw1、第二开关sw2、第三开关sw3、第四开关sw4、第五开关sw5、第一电容cs1与第二电容cs2。运算放大器701具有正输入端+、负输入端-,以及输出端,其中正输入端+连接至接地端。Please refer to FIG. 7 , which shows a circuit diagram of the first stage circuit according to the embodiment of the present invention. The first-stage circuit is a part of a cascaded digital-to-analog converter (MDAC). The first-stage circuit mainly includes an operational amplifier 701, a first switch sw1, a second switch sw2, a third switch sw3, a fourth switch sw4, a Five switches sw5, a first capacitor cs1 and a second capacitor cs2. The operational amplifier 701 has a positive input terminal +, a negative input terminal −, and an output terminal, wherein the positive input terminal + is connected to ground.
第一开关sw1连接于负输入端-与接地端之间;第二开关sw2以及第三开关sw3具有数个第一端点,这些第一端点连接至电压输入端来接收输入电压Vin。第一电容cs1以及第二电容cs2的端点连接至运算放大器701的负输入端-,第一电容cs1以及第二电容cs2的另一端点则连接至第二开关sw2与第三开关sw3的第二端点;第四开关sw4连接至第二开关sw2的第二端以及运算放大器701的输出端。第五开关sw5的一端连接至第三开关sw3的第二端,第五开关sw5的另一端则连接至参考电压输入端Vdac。The first switch sw1 is connected between the negative input terminal − and the ground terminal; the second switch sw2 and the third switch sw3 have a plurality of first terminals connected to the voltage input terminal to receive the input voltage Vin. The terminals of the first capacitor cs1 and the second capacitor cs2 are connected to the negative input terminal − of the operational amplifier 701, and the other terminals of the first capacitor cs1 and the second capacitor cs2 are connected to the second terminal of the second switch sw2 and the third switch sw3. terminal; the fourth switch sw4 is connected to the second terminal of the second switch sw2 and the output terminal of the operational amplifier 701 . One terminal of the fifth switch sw5 is connected to the second terminal of the third switch sw3, and the other terminal of the fifth switch sw5 is connected to the reference voltage input terminal Vdac.
第二开关sw2与第三开关sw3由第一时钟信号ck1所控制,第四开关sw4与第五开关sw5由第三时钟信号ck3所控制,第一开关sw1则由第二时钟信号ck2所控制。第一时钟信号ck1与第二时钟信号ck2的上升缘对齐一致,第三时钟信号ck3的下降缘则对齐第一时钟信号ck1以及第二时钟信号ck2的上升缘。进一步来说,第一时钟信号ck1的高准位周期较第二时钟信号ck2的高准位周期为长。The second switch sw2 and the third switch sw3 are controlled by the first clock signal ck1 , the fourth switch sw4 and the fifth switch sw5 are controlled by the third clock signal ck3 , and the first switch sw1 is controlled by the second clock signal ck2 . The rising edges of the first clock signal ck1 and the second clock signal ck2 are aligned, and the falling edges of the third clock signal ck3 are aligned with the rising edges of the first clock signal ck1 and the second clock signal ck2 . Further, the high level period of the first clock signal ck1 is longer than the high level period of the second clock signal ck2 .
通过这样的架构以及时钟信号时序,当第一阶级代码等于2’b00或2’b11时,自第一阶级电路而来的输出电压Vout1会直接加减参考电压。Through such a structure and clock signal timing, when the first-level code is equal to 2’b00 or 2’b11, the output voltage Vout1 from the first-level circuit will directly add or subtract the reference voltage.
请参照图8,其绘示本发明实施方式第二阶级电路的电路图。第二阶级电路主要内含运算放大器801、第一开关sw1、第二开关sw2、第三开关sw3、第四开关sw4、第五开关sw5、第六开关sw6、第七开关sw7、第一电容cs1、第二电容cs2以及第三电容cs3。运算放大器801具有正输入端+、负输入端-,以及输出端,其中正输入端+连接至接地端,第三电容cs3则连接于负输入端--与运算放大器801的输出端之间。Please refer to FIG. 8 , which shows a circuit diagram of the second stage circuit according to the embodiment of the present invention. The second-stage circuit mainly includes an operational amplifier 801, a first switch sw1, a second switch sw2, a third switch sw3, a fourth switch sw4, a fifth switch sw5, a sixth switch sw6, a seventh switch sw7, and a first capacitor cs1 , the second capacitor cs2 and the third capacitor cs3. The operational amplifier 801 has a positive input terminal +, a negative input terminal −, and an output terminal, wherein the positive input terminal + is connected to the ground terminal, and the third capacitor cs3 is connected between the negative input terminal − and the output terminal of the operational amplifier 801 .
第一开关sw1连接于负输入端-与接地端之间;第二开关sw2以及第三开关sw3具有数个第一端点,这些第一端点连接至电压输入端来接收输入电压Vout1。第一电容cs1以及第二电容cs2的一端点连接至运算放大器801的负输入端-,第一电容cs1以及第二电容cs2的另一端点则连接至第二开关sw2与第三开关sw3的第二端点;第四开关sw4连接至第二开关sw2的第二端以及第一参考电压端Vdac1。第五开关sw5的一端连接至第三开关sw3的第二端,第五开关sw5的另一端则连接至第二参考电压输入端Vdac2。The first switch sw1 is connected between the negative input terminal − and the ground terminal; the second switch sw2 and the third switch sw3 have a plurality of first terminals connected to the voltage input terminal to receive the input voltage Vout1 . One terminal of the first capacitor cs1 and the second capacitor cs2 is connected to the negative input terminal − of the operational amplifier 801, and the other terminal of the first capacitor cs1 and the second capacitor cs2 is connected to the second switch sw2 and the third switch sw3. Two terminals; the fourth switch sw4 is connected to the second terminal of the second switch sw2 and the first reference voltage terminal Vdac1. One terminal of the fifth switch sw5 is connected to the second terminal of the third switch sw3, and the other terminal of the fifth switch sw5 is connected to the second reference voltage input terminal Vdac2.
第二开关sw2与第三开关sw3由第一时钟信号ck1所控制,第四开关sw4、第五开关sw5,以及第七开关sw7则由第三时钟信号ck3所控制,第一开关sw1与第六开关则由第二时钟信号ck2所控制。第一时钟信号ck1与第二时钟信号ck2的上升缘对齐一致,第三时钟信号ck3的下降缘则对齐第一时钟信号ck1以及第二时钟信号ck2的上升缘。进一步来说,第一时钟信号ck1的高准位周期较第二时钟信号ck2的高准位周期为长。The second switch sw2 and the third switch sw3 are controlled by the first clock signal ck1, the fourth switch sw4, the fifth switch sw5, and the seventh switch sw7 are controlled by the third clock signal ck3, the first switch sw1 and the sixth The switch is controlled by the second clock signal ck2. The rising edges of the first clock signal ck1 and the second clock signal ck2 are aligned, and the falling edges of the third clock signal ck3 are aligned with the rising edges of the first clock signal ck1 and the second clock signal ck2 . Further, the high level period of the first clock signal ck1 is longer than the high level period of the second clock signal ck2 .
通过这样的架构以及时钟信号时序,当第二阶级代码与确认代码的组合(C21、C22、C23、C24)等于4’b0000、4’b1000、4’b1110,或4’b1111时,自第二阶级电路而来的输出电压Vout2会直接加减参考电压。With such a structure and clock signal timing, when the combination of the second level code and the confirmation code (C21, C22, C23, C24) is equal to 4'b0000, 4'b1000, 4'b1110, or 4'b1111, from the second The output voltage Vout2 from the stage circuit will directly add or subtract the reference voltage.
请参照图9,其绘示本发明实施方式管线架构模拟数字转换器偏移电压影响校正方法的流程图。该方法首先依据第一输入电压,产生第一阶级代码以及第一输出电压(步骤901),并依据第一输出电压产生第二阶级代码(步骤903)。接着,依据第一输出电压产生确认代码(步骤905),并参照第一阶级代码以及确认代码,决定第一校正代码(步骤907)。Please refer to FIG. 9 , which shows a flow chart of a method for correcting the offset voltage of an analog-to-digital converter with pipeline architecture according to an embodiment of the present invention. The method first generates a first-level code and a first output voltage according to a first input voltage (step 901 ), and generates a second-level code according to the first output voltage (step 903 ). Next, a confirmation code is generated according to the first output voltage (step 905 ), and a first calibration code is determined by referring to the first level code and the confirmation code (step 907 ).
接着,会确认第一阶级代码是否相异于第一校正代码(步骤909),当第一阶级代码相异于第一校正代码时,以第一校正代码对第一阶级代码进行校正(步骤911),并以正参考电压(+Vref)或是负参考电压(-Vref)来调整第二阶级电路的第二输出电压。举例来说,如果第二输出电压太高,第二输出电压就会减去参考电压,来降低第二输出电压。Then, it will be confirmed whether the first level code is different from the first correction code (step 909), and when the first level code is different from the first correction code, the first level code is corrected with the first correction code (step 911 ), and use the positive reference voltage (+Vref) or the negative reference voltage (-Vref) to adjust the second output voltage of the second stage circuit. For example, if the second output voltage is too high, the reference voltage is subtracted from the second output voltage to reduce the second output voltage.
具体来说,确认代码的产生,是对第一输出电压与正参考电压(+Vref)以及负参考电压(-Vref)进行比较,如同图10的表格以及图11的波形所表示的,当第一输出电压低于-Vref而超出操作范围时(也就是图11当中的点A),如果阶级代码与输出电压没有被即时地校正,将会导致错误代码(missingcode)的发生。为了避免错误代码的发生,会产生等于2’b00的确认代码(c21,c24)以及等于2’b00或是2’b01的第一校正代码(MSB1LSB1),来取代错误的第一阶级代码。Specifically, the generation of the confirmation code is to compare the first output voltage with the positive reference voltage (+Vref) and the negative reference voltage (-Vref), as shown in the table of FIG. 10 and the waveform of FIG. 11 , when the first When the output voltage is lower than -Vref and exceeds the operating range (that is, point A in FIG. 11 ), if the class code and the output voltage are not corrected immediately, a missing code will occur. In order to avoid the occurrence of wrong codes, a confirmation code (c21, c24) equal to 2’b00 and a first correction code (MSB1LSB1) equal to 2’b00 or 2’b01 will be generated to replace the wrong first-level code.
在其它实施例当中,当第一输出电压超过+Vref而超出范围时(图11当中的点B),会产生等于2’b11的确认码(c21c24)与等于2’b01或是2’b10的第一校正码(MSB1LSB1)。In other embodiments, when the first output voltage exceeds +Vref and is out of range (point B in Figure 11), a confirmation code (c21c24) equal to 2'b11 and a confirmation code (c21c24) equal to 2'b01 or 2'b10 will be generated. First correction code (MSB1LSB1).
图12绘示本发明实施方式中代表管线架构模拟数字转换器正常与错误状态的真值表,图13则绘示本发明实施方式中阶级电路输出电压的波形示意图。在图12与图13所绘示的实施例当中,进一步考虑输入电压在本质上就高于正参考电压或是低于负参考电压的状况,在这些状况当中,电压会超出范围并非起因于比较器的偏移电压。在13图当中,点A、D、E、H之所以会超出范围,是因为原始的输入电压本身就很高,这些点的电压并不需要特别修正。FIG. 12 shows a truth table representing normal and error states of a pipeline architecture ADC according to an embodiment of the present invention, and FIG. 13 shows a schematic waveform diagram of output voltages of stage circuits according to an embodiment of the present invention. In the embodiment shown in Figures 12 and 13, it is further considered that the input voltage is inherently higher than the positive reference voltage or lower than the negative reference voltage. offset voltage of the device. In Figure 13, points A, D, E, and H are out of range because the original input voltage itself is very high, and the voltage of these points does not need special correction.
因此,当第一阶级码、确认码,以及第二阶级码的组合等于6’b001111、6’b100000、6’b101111,以及6’b110000时,等于2’b01的第一校正代码(MSB2LSB2)会被用来修正第一阶级代码(c11c12)。Therefore, when the combination of the first stage code, confirmation code, and second stage code equals 6'b001111, 6'b100000, 6'b101111, and 6'b110000, the first correction code (MSB2LSB2) equal to 2'b01 will Used to fix first class codes (c11c12).
另一方面,倘若在步骤909当中发现第一阶级代码与第一校正代码并无二致,那么第一阶级代码就会维持原状(步骤913)。进一步来说,还可以参考第一阶级代码、第二阶级代码以及校正代码来决定第二校正代码,当第二阶级代码相异于第二校正代码时,以第二校正代码来校正第二校正代码。On the other hand, if it is found in step 909 that the first-level code is identical to the first corrected code, then the first-level code will remain the same (step 913). Further, the second correction code can also be determined by referring to the first level code, the second level code and the correction code, and when the second level code is different from the second correction code, the second correction code is used to correct the second correction code code.
根据以上实施例,由于比较器偏移电压所导致的错误阶级代码与超出范围的输出电压可被预先修正,因此可防止错误代码的发生,同时避免输出电压超出范围,降低管线架构的模拟数字转换器操作发生错误的机率。According to the above embodiments, the error class code and the out-of-range output voltage caused by the offset voltage of the comparator can be pre-corrected, so that the occurrence of error codes can be prevented, and the output voltage out of range can be avoided, reducing the analog-to-digital conversion of the pipeline architecture The probability of error in the operation of the device.
虽然本发明已以实施方式揭露如上,然其并非用以限定本发明,任何本领域技术人员,在不脱离本发明的精神和范围内,当可作各种修改与变型,因此本发明的保护范围当以所附权利要求为准。Although the present invention has been disclosed above in terms of implementation, it is not intended to limit the present invention. Any person skilled in the art may make various modifications and variations without departing from the spirit and scope of the present invention. Therefore, the protection of the present invention The scope is to be determined by the appended claims.
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210243604.XA CN103546152B (en) | 2012-07-13 | 2012-07-13 | Pipeline Architecture Analog-to-Digital Converter and Its Offset Voltage Effect Correction Method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210243604.XA CN103546152B (en) | 2012-07-13 | 2012-07-13 | Pipeline Architecture Analog-to-Digital Converter and Its Offset Voltage Effect Correction Method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103546152A CN103546152A (en) | 2014-01-29 |
CN103546152B true CN103546152B (en) | 2016-12-21 |
Family
ID=49969272
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210243604.XA Expired - Fee Related CN103546152B (en) | 2012-07-13 | 2012-07-13 | Pipeline Architecture Analog-to-Digital Converter and Its Offset Voltage Effect Correction Method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103546152B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6861969B1 (en) * | 2004-03-03 | 2005-03-01 | Analog Devices, Inc. | Methods and structures that reduce memory effects in analog-to-digital converters |
CN1647388A (en) * | 2002-04-02 | 2005-07-27 | 艾利森电话股份有限公司 | Comparator offset calibration for A/D converters |
CN101355362A (en) * | 2007-07-23 | 2009-01-28 | 联发科技股份有限公司 | Analog-to-digital converter and method for gain error correction thereof |
CN101854174A (en) * | 2010-05-18 | 2010-10-06 | 上海萌芯电子科技有限公司 | Streamline analog-digital converter and sub conversion stage circuit thereof |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6606042B2 (en) * | 2001-05-23 | 2003-08-12 | Texas Instruments Incorporated | True background calibration of pipelined analog digital converters |
-
2012
- 2012-07-13 CN CN201210243604.XA patent/CN103546152B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1647388A (en) * | 2002-04-02 | 2005-07-27 | 艾利森电话股份有限公司 | Comparator offset calibration for A/D converters |
US6861969B1 (en) * | 2004-03-03 | 2005-03-01 | Analog Devices, Inc. | Methods and structures that reduce memory effects in analog-to-digital converters |
CN101355362A (en) * | 2007-07-23 | 2009-01-28 | 联发科技股份有限公司 | Analog-to-digital converter and method for gain error correction thereof |
CN101854174A (en) * | 2010-05-18 | 2010-10-06 | 上海萌芯电子科技有限公司 | Streamline analog-digital converter and sub conversion stage circuit thereof |
Also Published As
Publication number | Publication date |
---|---|
CN103546152A (en) | 2014-01-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6337651B1 (en) | Pipeline analog to digital (A/D) converter with relaxed accuracy requirement for sample and hold stage | |
US9071265B1 (en) | Successive approximation analog-to-digital converter with linearity error correction | |
US9450596B2 (en) | Ramp and successive approximation register analog to digital conversion methods, systems and apparatus | |
CN103916127B (en) | Analog/digital converter | |
US8362938B2 (en) | Analog digital converting device | |
JP2009200931A (en) | Solid-state imaging apparatus, semiconductor integrated circuit device, and signal processing method | |
CN111435836A (en) | Analog to digital conversion device | |
JP5657490B2 (en) | Successive approximation AD converter and radio receiver | |
US8952836B2 (en) | Pipeline analog-to-digital converter | |
TWI556585B (en) | Analog-to-Digital Converting Device and Related Calibration Method and Calibration Module | |
CN104092466B (en) | Assembly line successive approximation analog-to-digital converter | |
CN104363020A (en) | Pipeline analog-to-digital converter and error calibration method thereof | |
CN108134606A (en) | A kind of pipeline ADC based on digital calibration | |
CN102299715A (en) | Production line A/D (analog to digital) converter and digital correcting method with overflow marker position | |
US6388602B1 (en) | Bubble and meta-stability error immune gray-code encoder for high-speed A/D converters | |
US6295016B1 (en) | Pipeline analog to digital (A/D) converter with relaxed accuracy requirement for sample and hold stage | |
KR20150107569A (en) | Ad conversion circuit | |
US9106240B1 (en) | Multiplying digital-to-analog converter and pipeline analog-to-digital converter using the same | |
US8502713B1 (en) | Pipelined analog to digital converter and method for correcting a voltage offset influence thereof | |
CN104363019A (en) | Pipeline analog-to-digital converter and capacitance mismatch error calibration method thereof | |
CN103281084A (en) | Digital/analog converter | |
CN103546152B (en) | Pipeline Architecture Analog-to-Digital Converter and Its Offset Voltage Effect Correction Method | |
TWI481200B (en) | Pipeline architecture analog digital converter and its offset voltage influence correction method | |
US12301242B2 (en) | Analog-to-digital converter circuit | |
CN112398472B (en) | Error quantization 10-bit monoclinic ADC for image sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20161221 |