CN103545602A - Ku-band Circularly Polarized Dielectric Resonator Antenna - Google Patents
Ku-band Circularly Polarized Dielectric Resonator Antenna Download PDFInfo
- Publication number
- CN103545602A CN103545602A CN201310476314.4A CN201310476314A CN103545602A CN 103545602 A CN103545602 A CN 103545602A CN 201310476314 A CN201310476314 A CN 201310476314A CN 103545602 A CN103545602 A CN 103545602A
- Authority
- CN
- China
- Prior art keywords
- antenna
- circularly polarized
- dielectric resonator
- dielectric
- ground plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Waveguide Aerials (AREA)
Abstract
Description
技术领域 technical field
本发明涉及一种Ku波段圆极化介质谐振器天线。该天线工作于Ku波段,阻抗带宽为27.67%,圆极化轴比带宽为6.56%,增益为6.0dB-8.2 dB,方向性比较好。该天线覆盖IT3区卫星电视广播的常用工作频段,因此可应用于11GHz-14.5GHz频段的卫星电视广播系统。 The invention relates to a Ku-band circularly polarized dielectric resonator antenna. The antenna works in the Ku band, the impedance bandwidth is 27.67%, the circular polarization axis ratio bandwidth is 6.56%, the gain is 6.0dB-8.2 dB, and the directivity is relatively good. The antenna covers the common working frequency band of satellite TV broadcasting in IT3 area, so it can be applied to the satellite TV broadcasting system in the frequency band of 11GHz-14.5GHz.
背景技术 Background technique
随着现代无线通信技术的发展和无线应用产品的普及,人们对无线通信系统不可或缺的天线提出了更高的要求,比如圆极化特性好、增益高、体积小及质量轻,还要有很高的传输速率、抑制雨雾干扰和抗多径反射等。特别是在卫星通信系统中,对天线性能的要求就更高了。通常情况下,卫星通信系统使用的是增益较高的反射面天线。该天线有很高的应用价值,但这种天线成本较高,体积大,特别是在移动通信中,使用起来很不方便。而介质谐振器天线因为具有介质损耗小,天线尺寸小,表面波损耗不存在和可以设计成各种三维几何形状以及馈电方式简便及多样性等突出优点,引起了人们的普遍关注,是目前国际上的一个研究热点。 With the development of modern wireless communication technology and the popularization of wireless application products, people put forward higher requirements for antennas that are indispensable for wireless communication systems, such as good circular polarization characteristics, high gain, small size and light weight. It has a high transmission rate, suppresses rain and fog interference and anti-multipath reflection, etc. Especially in satellite communication systems, the requirements for antenna performance are even higher. Typically, satellite communication systems use reflector antennas with high gain. The antenna has high application value, but the cost of the antenna is high and the volume is large, especially in mobile communication, it is very inconvenient to use. The dielectric resonator antenna has attracted widespread attention because of its outstanding advantages such as small dielectric loss, small antenna size, no surface wave loss, and can be designed into various three-dimensional geometric shapes, and the feeding method is simple and diverse. A research hotspot in the world.
根据国际电联的规定,全世界划分为三个区域,我国属于IT3区,位于这个区域的还有亚洲其他国家和南太平洋地区。该区卫星广播常用工作频带为Ku波段(10GHz-18GHz),这是由于Ku波段具有频率高、频率范围宽,信号容量大等特点,但是Ku波段存在雨衰的现象,即容易受雨雪天气的干扰,因此可在Ku波段使用圆极化介质谐振器天线达到抑制雨雾干扰,改善系统性能的目的。 According to the regulations of ITU, the world is divided into three regions. my country belongs to IT3 region, and other Asian countries and the South Pacific region are located in this region. The common operating frequency band of satellite broadcasting in this area is the Ku-band (10GHz-18GHz). This is because the Ku-band has the characteristics of high frequency, wide frequency range, and large signal capacity. Therefore, circularly polarized dielectric resonator antennas can be used in Ku-band to suppress rain and fog interference and improve system performance.
发明内容 Contents of the invention
本发明的目的在于针对已有技术存在的缺陷,提供一种Ku波段圆极化介质谐振器天线,该天线工作频率为11GHz-14.5GHz,覆盖IT3区卫星广播的常用工作频段,可用于卫星电视广播系统。 The purpose of the present invention is to provide a kind of Ku band circularly polarized dielectric resonator antenna aiming at the defects existing in the prior art. The operating frequency of this antenna is 11GHz-14.5GHz, which covers the common working frequency band of satellite broadcasting in IT3 area, and can be used for satellite TV broadcasting system.
本发明采用的技术方案如下: The technical scheme that the present invention adopts is as follows:
一种Ku波段圆极化介质谐振器天线,包括介质基板上表面有一层金属接地板和一条处在介质基板下表面的微带馈线,其特征在于:在金属接地板上面中心处有一个三层堆叠的介质谐振器;在金属接地板中心处有十字缝隙;所述微带馈线的内端处在所述十字缝隙的正下方,微带馈线与十字缝隙呈45°;金属接地板上有两个级联的哑铃型槽缝,以展宽天线阻抗带宽。所述三层堆叠的介质谐振器为下层介质圆柱、中层介质圆柱、上层介质圆柱堆叠而成,三层介质圆柱的半径相同,材料和高度不同,它们的高度和材料的介电常数对天线的主要影响是天线的谐振频率,而其尺寸对天线的轴比带宽影响较大。三层堆叠的圆极化介质谐振器由微带馈线通过金属接地板中心的十字缝隙对其进行耦合馈电;十字缝隙的两臂长度不相等,宽度相等。通过控制两个缝隙的长短实现左旋或右旋圆极化。所述哑铃型槽缝的哑铃握柄宽度越小,则天线的截止频率越高;两个哑铃型槽缝间距越大,则滤波器的选通性越强。 A kind of Ku-band circularly polarized dielectric resonator antenna, comprising a layer of metal ground plate on the upper surface of the dielectric substrate and a microstrip feeder on the lower surface of the dielectric substrate, is characterized in that: there is a three-layer Stacked dielectric resonators; there is a cross gap at the center of the metal grounding plate; the inner end of the microstrip feeder is directly below the cross gap, and the microstrip feeder and the cross gap are at 45°; there are two on the metal grounding plate cascaded dumbbell-shaped slots to widen the antenna impedance bandwidth. The three-layer stacked dielectric resonator is formed by stacking a lower layer dielectric cylinder, a middle layer dielectric cylinder, and an upper layer dielectric cylinder. The three layers of dielectric cylinders have the same radius, but different materials and heights. The main influence is the resonant frequency of the antenna, and its size has a great influence on the axial ratio bandwidth of the antenna. The three-layer stacked circularly polarized dielectric resonator is coupled and fed by the microstrip feeder through the cross gap in the center of the metal ground plate; the two arms of the cross gap have unequal lengths and equal widths. Left-handed or right-handed circular polarization is realized by controlling the length of the two slits. The smaller the width of the dumbbell handle of the dumbbell-shaped slot, the higher the cut-off frequency of the antenna; the larger the distance between the two dumbbell-shaped slots, the stronger the gating performance of the filter.
本发明与现有技术相比较,具有如下显而易见的突出实质性特点和显著优点: Compared with the prior art, the present invention has the following obvious outstanding substantive features and significant advantages:
1. 此设计采用了三层堆叠的介质谐振器结构。与传统介质谐振器相比,有效提高了介质谐振器天线的增益,最高达到8.2dB。 1. This design uses a three-layer stacked dielectric resonator structure. Compared with the traditional dielectric resonator, the gain of the dielectric resonator antenna is effectively improved, up to 8.2dB.
2. 接地板上堆叠结构的介质谐振器实现了较小的天线尺寸。 2. A stacked dielectric resonator on a ground plane enables a small antenna size.
3. 微带馈线与接地板上的十字缝隙的配合,微带馈线与十字缝隙呈45°。微带馈线的长度和宽度以及十字缝隙的宽度实现了天线的良好匹配。 3. The cooperation between the microstrip feeder and the cross slot on the ground plate, the microstrip feeder and the cross slot are at 45°. The length and width of the microstrip feeder and the width of the cross slot achieve good matching of the antenna.
4. 接地板上增加两个级联的槽缝结构展宽了天线阻抗带宽。 4. Adding two cascaded slot structures on the ground plane widens the impedance bandwidth of the antenna.
5. 采用十字缝隙耦合馈电的方式以实现圆极化。在12.2GHz处天线的轴比约为0.09dB,获得十分良好的圆极化特性。 5. Circular polarization is achieved by means of cross-slit coupling feeding. The axial ratio of the antenna at 12.2GHz is about 0.09dB, and very good circular polarization characteristics are obtained.
6. 通过控制两个缝隙的长度可以方便地实现左旋或右旋圆极化波。图1所示结构为左旋圆极化天线。 6. Left-handed or right-handed circularly polarized waves can be easily realized by controlling the length of the two slits. The structure shown in Figure 1 is a left-handed circularly polarized antenna.
附图说明 Description of drawings
图1 圆极化介质谐振器天线俯视图。 Figure 1 Top view of circularly polarized dielectric resonator antenna.
图2 圆极化介质谐振器天线侧视图。 Figure 2 Side view of circularly polarized dielectric resonator antenna.
图3 接地板上的槽缝结构图。 Figure 3 Slot structure on the ground plate.
图4 天线仿真S参数。 Figure 4 Antenna simulation S parameters.
图5 天线轴比曲线图。 Figure 5 Antenna axial ratio curve.
图6 天线增益图。 Figure 6 Antenna gain diagram.
图7 天线辐射方向图(12.2GHz)。 Figure 7 Antenna radiation pattern (12.2GHz).
具体实施方式 Detailed ways
本发明的优选实施例结合附图详述如下: Preferred embodiments of the present invention are described in detail as follows in conjunction with accompanying drawings:
实施例一: Embodiment one:
参见图1~图3,本Ku波段圆极化介质谐振器天线,包括介质基板(1)上表面有一层金 Referring to Figures 1 to 3, the Ku-band circularly polarized dielectric resonator antenna includes a layer of gold on the upper surface of the dielectric substrate (1).
属接地板(6)和一条处在介质基板(1)下表面的微带馈线(5),其特征在于: It belongs to the ground plate (6) and a microstrip feeder (5) on the lower surface of the dielectric substrate (1), and is characterized in that:
1) 在金属接地板(6)上面中心处有一个三层堆叠的介质谐振器(2); 1) There is a three-layer stacked dielectric resonator (2) at the center above the metal ground plate (6);
2) 在金属接地板(6)中心处有十字缝隙(3); 2) There is a cross gap (3) at the center of the metal grounding plate (6);
3) 所述微带馈线(5)的内端处在所述十字缝隙(3)的正下方,微带馈线与十字缝隙(3)呈45°; 3) The inner end of the microstrip feeder (5) is directly below the cross slit (3), and the microstrip feeder and the cross slit (3) are at an angle of 45°;
4) 金属接地板(6)上有两个级联的哑铃型槽缝(4),以展宽天线阻抗带宽。 4) There are two cascaded dumbbell-shaped slots (4) on the metal ground plate (6) to widen the impedance bandwidth of the antenna.
实施例二: Embodiment two:
本实施例与实施例一基本相同,特别之处是:所述三层堆叠的介质谐振器(2)为下层介质圆柱(2-1)、中层介质圆柱(2-2)和上层介质圆柱(2-3)堆叠而成,三层介质圆柱的半径相同,材料和高度不同,它们的高度和材料的介电常数对天线的主要影响是天线的谐振频率,而其尺寸对天线的轴比带宽影响较大。三层堆叠的圆极化介质谐振器(2)由微带馈线(5)通过金属接地板(6)中心的十字缝隙(3)对其进行耦合馈电;十字缝隙(3)的两臂长度不相等,宽度相等。通过控制两个缝隙的长短实现左旋或右旋圆极化。所述哑铃型槽缝(4)的哑铃握柄宽度越小,则天线的截止频率越高;两个哑铃型槽缝(4)间距越大,则滤波器的选通性越强。 This embodiment is basically the same as Embodiment 1, and the special feature is: the three-layer stacked dielectric resonator (2) is a lower dielectric cylinder (2-1), a middle dielectric cylinder (2-2) and an upper dielectric cylinder ( 2-3) Stacked, three layers of dielectric cylinders have the same radius, different materials and heights, the main effect of their height and the dielectric constant of the material on the antenna is the resonant frequency of the antenna, and its size affects the axial ratio bandwidth of the antenna Greater impact. The three-layer stacked circularly polarized dielectric resonator (2) is coupled and fed by the microstrip feeder (5) through the cross gap (3) in the center of the metal ground plate (6); the length of the two arms of the cross gap (3) Not equal, equal width. Left-handed or right-handed circular polarization is realized by controlling the length of the two slits. The smaller the width of the dumbbell handle of the dumbbell-shaped slot (4), the higher the cut-off frequency of the antenna; the larger the distance between the two dumbbell-shaped slots (4), the stronger the gating performance of the filter.
实施例三: Embodiment three:
本实施例与实施例一基本相同,特别之处如下: This embodiment is basically the same as Embodiment 1, and the special features are as follows:
1. 天线的结构如图1-2所示,下层为微带馈线(5),中层为介质基板(1),特征阻抗为50欧姆的微带馈线蚀刻在该介质基板层;上层为接地板(6),十字缝隙(3)及哑铃型缺槽缝(4)均在此接地板(6)上进行开槽;下层介质圆柱(2-1);中层介质圆柱(2-2);上层介质圆柱(2-3)。 1. The structure of the antenna is shown in Figure 1-2. The lower layer is the microstrip feeder (5), the middle layer is the dielectric substrate (1), and the microstrip feeder with a characteristic impedance of 50 ohms is etched on the dielectric substrate layer; the upper layer is the ground plate (6), the cross gap (3) and the dumbbell-shaped gap (4) are all slotted on this grounding plate (6); the lower layer medium cylinder (2-1); the middle layer medium cylinder (2-2); the upper layer Medium cylinders (2-3).
2. 三层堆叠的介质谐振器(3)介质半径相同,而材料和高度不同。它们的高度和介电常数对天线主要影响天线的谐振频率,其尺寸对天线的轴比带宽影响较大。 2. The three-layer stacked dielectric resonator (3) has the same medium radius, but different materials and heights. Their height and dielectric constant mainly affect the resonant frequency of the antenna, and their size has a great influence on the axial ratio bandwidth of the antenna.
3. 接地板(6)和微带馈线(5)分别位于介质基板(1)的上下两面,圆柱形介质谐振器(2)由微带线(5)通过地板(6)中心的十字缝隙(3)对其进行耦合馈电。如图3所示,十字缝隙(3)的两臂长度不相等,宽度相等,十字型耦合槽的两臂和微带馈线(5)偏置45度角,以便形成圆极化,通过控制两个缝隙的长短实现左旋或右旋圆极化。调节缝隙宽度以及微带馈线(5)的长度可以使微带天线获得良好的匹配。 3. The ground plate (6) and the microstrip feeder (5) are respectively located on the upper and lower sides of the dielectric substrate (1), and the cylindrical dielectric resonator (2) passes the microstrip line (5) through the cross gap in the center of the floor (6) ( 3) Coupling and feeding it. As shown in Figure 3, the two arms of the cross slot (3) are unequal in length and equal in width, and the two arms of the cross-shaped coupling slot and the microstrip feeder (5) are offset at an angle of 45 degrees to form circular polarization. The length of each slot realizes left-handed or right-handed circular polarization. Adjusting the width of the slot and the length of the microstrip feeder (5) can make the microstrip antenna well matched.
4. 接地板(6)上两个级联的哑铃型槽缝(4)结构如图3所示,其位于接地板(6)上,即50欧微带线的另一侧。多槽缝级联的结构对展宽天线的阻抗带宽有明显的作用,可以很好地提高天线的性能。哑铃握柄的宽度和哑铃半径对缺陷地结构的截止频率改变有着最大的作用:握柄宽度越小,天线的截止频率就越高;当截止频率变高时,哑铃的面积也就越小。截止频率的改变也会由两个缺陷地的间距和握柄长度的改变引起,握柄长度越大,截止频率越小;两个缺陷地的间距越大,滤波器的选通性就越强。 4. The structure of two cascaded dumbbell-shaped slots (4) on the grounding plate (6) is shown in Figure 3, which is located on the grounding plate (6), which is the other side of the 50-ohm microstrip line. The multi-slot cascaded structure has a significant effect on widening the impedance bandwidth of the antenna, and can improve the performance of the antenna well. The width of the dumbbell handle and the radius of the dumbbell have the greatest effect on the change of the cutoff frequency of the defect ground structure: the smaller the handle width, the higher the cutoff frequency of the antenna; when the cutoff frequency becomes higher, the area of the dumbbell is also smaller. The change of the cutoff frequency will also be caused by the change of the distance between the two defective grounds and the length of the handle. The larger the length of the handle, the smaller the cutoff frequency; the larger the distance between the two defective grounds, the stronger the gating of the filter .
5. 图4为天线仿真S参数,从图中可看出S11≤-10dB阻抗带宽达到27.67%,图5为天线轴比曲线图,从图中可看出AR≤3dB的轴比带宽为6.56%,而且在12.2GHz处天线的轴比大约为0.09dB。 5. Figure 4 is the antenna simulation S parameter. It can be seen from the figure that the impedance bandwidth of S 11 ≤ -10dB reaches 27.67%. 6.56%, and the axial ratio of the antenna at 12.2GHz is about 0.09dB.
6. 图6为天线增益图,在工作频率11GHz-14.5GHz范围内,天线的最大增益为8.2dB,最小增益为6.0dB。 6. Figure 6 is the antenna gain diagram. In the operating frequency range of 11GHz-14.5GHz, the maximum gain of the antenna is 8.2dB, and the minimum gain is 6.0dB.
7. 图7为天线在12.2GHz处的方向图。从图中可看出,天线旁瓣较低,具有较好的辐射特性。 7. Figure 7 is the antenna pattern at 12.2GHz. It can be seen from the figure that the side lobe of the antenna is low and has better radiation characteristics. the
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310476314.4A CN103545602A (en) | 2013-10-14 | 2013-10-14 | Ku-band Circularly Polarized Dielectric Resonator Antenna |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310476314.4A CN103545602A (en) | 2013-10-14 | 2013-10-14 | Ku-band Circularly Polarized Dielectric Resonator Antenna |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103545602A true CN103545602A (en) | 2014-01-29 |
Family
ID=49968820
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310476314.4A Pending CN103545602A (en) | 2013-10-14 | 2013-10-14 | Ku-band Circularly Polarized Dielectric Resonator Antenna |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103545602A (en) |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104269608A (en) * | 2014-09-17 | 2015-01-07 | 电子科技大学 | Double-frequency circular polarization rectangular dielectric resonator antenna |
CN106099360A (en) * | 2016-05-20 | 2016-11-09 | 华南理工大学 | Dielectric resonator filter antenna |
CN106252879A (en) * | 2016-08-31 | 2016-12-21 | 安徽四创电子股份有限公司 | A kind of band wire feed cross seam double-circle polarization linear array |
CN106876964A (en) * | 2016-12-30 | 2017-06-20 | 广东精点数据科技股份有限公司 | A kind of circular polarisation spiral lamination microstrip antenna |
CN106876965A (en) * | 2016-12-30 | 2017-06-20 | 广东精点数据科技股份有限公司 | The feed method of circular polarisation spiral lamination microstrip antenna |
WO2017107137A1 (en) * | 2015-12-24 | 2017-06-29 | 华为技术有限公司 | Slot antenna and terminal |
CN107768825A (en) * | 2017-10-24 | 2018-03-06 | 华南理工大学 | A kind of cross circular polarisation slot antenna |
CN107834186A (en) * | 2017-11-08 | 2018-03-23 | 中山大学 | A kind of broadband and wide wave beam circularly polarized dielectric resonator antenna and its design method |
CN107871926A (en) * | 2016-09-23 | 2018-04-03 | 徐平芳 | A kind of cutler feed medium resonator antenna |
CN107871933A (en) * | 2016-09-23 | 2018-04-03 | 徐平芳 | A kind of medium resonator antenna |
CN107871927A (en) * | 2016-09-23 | 2018-04-03 | 徐平芳 | A kind of small-sized medium resonator antenna of circular polarisation |
CN108598696A (en) * | 2018-04-20 | 2018-09-28 | 西安电子科技大学 | A kind of high-gain millimeter wave circular polarization medium resonator array antenna |
CN110718770A (en) * | 2019-09-29 | 2020-01-21 | 山西大学 | A fully polarized reconfigurable MIMO antenna |
CN111541025A (en) * | 2020-04-10 | 2020-08-14 | 华南理工大学 | Circularly polarized multi-input multi-output dielectric resonator antenna |
CN111900542A (en) * | 2020-08-21 | 2020-11-06 | 南京信息工程大学 | High-frequency high-gain broadband dielectric resonator antenna |
CN111916899A (en) * | 2020-08-21 | 2020-11-10 | 南京信息工程大学 | A stacked high-gain frustum dielectric resonator antenna |
CN112054301A (en) * | 2020-09-16 | 2020-12-08 | 南京尤圣美电子科技有限公司 | Miniaturized linear polarization, dual polarization, circular polarization and triple polarization 5G antenna |
CN112259958A (en) * | 2020-10-14 | 2021-01-22 | 西安交通大学 | Single-feed double-frequency double-circular-polarization millimeter wave dielectric resonator antenna |
CN112271438A (en) * | 2020-10-23 | 2021-01-26 | 汕头大学 | Slot-fed circularly polarized omnidirectional dielectric resonator antenna |
CN112803166A (en) * | 2021-03-09 | 2021-05-14 | 民航机场规划设计研究总院有限公司东北分公司 | X-waveband broadband circularly-polarized metal loading dielectric resonator antenna |
CN112835130A (en) * | 2020-12-29 | 2021-05-25 | 北京邮电大学 | A weather state detection method, device and electronic device |
CN112928448A (en) * | 2021-01-20 | 2021-06-08 | 维沃移动通信有限公司 | Antenna structure and electronic equipment |
WO2024229985A1 (en) * | 2023-05-05 | 2024-11-14 | 华南理工大学 | Millimeter-wave wide beam dra and design method therefor, and wide-angle beam scanning phased array and design method therefor |
-
2013
- 2013-10-14 CN CN201310476314.4A patent/CN103545602A/en active Pending
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104269608A (en) * | 2014-09-17 | 2015-01-07 | 电子科技大学 | Double-frequency circular polarization rectangular dielectric resonator antenna |
CN104269608B (en) * | 2014-09-17 | 2017-10-17 | 电子科技大学 | A kind of double frequency round polarized Rectangular Enclosure with Participating Media resonant aerial |
US10910726B2 (en) | 2015-12-24 | 2021-02-02 | Huawei Technologies Co., Ltd. | Slot antenna and terminal |
WO2017107137A1 (en) * | 2015-12-24 | 2017-06-29 | 华为技术有限公司 | Slot antenna and terminal |
CN106099360A (en) * | 2016-05-20 | 2016-11-09 | 华南理工大学 | Dielectric resonator filter antenna |
CN106252879A (en) * | 2016-08-31 | 2016-12-21 | 安徽四创电子股份有限公司 | A kind of band wire feed cross seam double-circle polarization linear array |
CN106252879B (en) * | 2016-08-31 | 2021-07-20 | 安徽四创电子股份有限公司 | Double-circular-polarization linear array with line-fed cross-shaped seam |
CN107871926A (en) * | 2016-09-23 | 2018-04-03 | 徐平芳 | A kind of cutler feed medium resonator antenna |
CN107871933A (en) * | 2016-09-23 | 2018-04-03 | 徐平芳 | A kind of medium resonator antenna |
CN107871927A (en) * | 2016-09-23 | 2018-04-03 | 徐平芳 | A kind of small-sized medium resonator antenna of circular polarisation |
CN106876965A (en) * | 2016-12-30 | 2017-06-20 | 广东精点数据科技股份有限公司 | The feed method of circular polarisation spiral lamination microstrip antenna |
CN106876964A (en) * | 2016-12-30 | 2017-06-20 | 广东精点数据科技股份有限公司 | A kind of circular polarisation spiral lamination microstrip antenna |
CN107768825A (en) * | 2017-10-24 | 2018-03-06 | 华南理工大学 | A kind of cross circular polarisation slot antenna |
CN107768825B (en) * | 2017-10-24 | 2024-05-07 | 华南理工大学 | Cross circular polarization groove antenna |
CN107834186A (en) * | 2017-11-08 | 2018-03-23 | 中山大学 | A kind of broadband and wide wave beam circularly polarized dielectric resonator antenna and its design method |
CN108598696A (en) * | 2018-04-20 | 2018-09-28 | 西安电子科技大学 | A kind of high-gain millimeter wave circular polarization medium resonator array antenna |
CN110718770A (en) * | 2019-09-29 | 2020-01-21 | 山西大学 | A fully polarized reconfigurable MIMO antenna |
CN111541025A (en) * | 2020-04-10 | 2020-08-14 | 华南理工大学 | Circularly polarized multi-input multi-output dielectric resonator antenna |
CN111900542A (en) * | 2020-08-21 | 2020-11-06 | 南京信息工程大学 | High-frequency high-gain broadband dielectric resonator antenna |
CN111916899A (en) * | 2020-08-21 | 2020-11-10 | 南京信息工程大学 | A stacked high-gain frustum dielectric resonator antenna |
CN112054301A (en) * | 2020-09-16 | 2020-12-08 | 南京尤圣美电子科技有限公司 | Miniaturized linear polarization, dual polarization, circular polarization and triple polarization 5G antenna |
CN112054301B (en) * | 2020-09-16 | 2024-01-30 | 南京尤圣美电子科技有限公司 | Miniaturized linear polarization, dual polarization, circular polarization and three-polarization 5G antenna |
CN112259958A (en) * | 2020-10-14 | 2021-01-22 | 西安交通大学 | Single-feed double-frequency double-circular-polarization millimeter wave dielectric resonator antenna |
CN112259958B (en) * | 2020-10-14 | 2022-03-08 | 西安交通大学 | Single-feed double-frequency double-circular-polarization millimeter wave dielectric resonator antenna |
CN112271438A (en) * | 2020-10-23 | 2021-01-26 | 汕头大学 | Slot-fed circularly polarized omnidirectional dielectric resonator antenna |
CN112271438B (en) * | 2020-10-23 | 2022-12-06 | 汕头大学 | Slot-fed circularly polarized omnidirectional dielectric resonator antenna |
CN112835130A (en) * | 2020-12-29 | 2021-05-25 | 北京邮电大学 | A weather state detection method, device and electronic device |
CN112928448B (en) * | 2021-01-20 | 2023-05-26 | 维沃移动通信有限公司 | Antenna structure and electronic equipment |
CN112928448A (en) * | 2021-01-20 | 2021-06-08 | 维沃移动通信有限公司 | Antenna structure and electronic equipment |
CN112803166A (en) * | 2021-03-09 | 2021-05-14 | 民航机场规划设计研究总院有限公司东北分公司 | X-waveband broadband circularly-polarized metal loading dielectric resonator antenna |
WO2024229985A1 (en) * | 2023-05-05 | 2024-11-14 | 华南理工大学 | Millimeter-wave wide beam dra and design method therefor, and wide-angle beam scanning phased array and design method therefor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103545602A (en) | Ku-band Circularly Polarized Dielectric Resonator Antenna | |
CN102842757B (en) | Double-frequency dual-polarization cavity backed slot antenna | |
CN104157968B (en) | New concept broadband circularly polarized antenna | |
CN110265780A (en) | A Stealth Radome with Mid-Frequency Broadband Wave-Permeability and High-Frequency and Low-Frequency Polarization Conversion | |
CN103427160B (en) | Double-frequency microstrip antenna of lug tuning ring lamination coupling BeiDou | |
CN110265778B (en) | Dual-frequency filter antenna based on SIW resonant cavity | |
CN105896091A (en) | Miniaturized broadband high-gain circular polarized microstrip antenna | |
CN102610909A (en) | Single-fed dual-bandwidth wave beam circular polarization antenna | |
CN104617380B (en) | A kind of plane bore symmetrical ring combined antenna of circular polarisation end-fire characteristic | |
CN103872448B (en) | Broadband circle polarized array antenna | |
CN207572523U (en) | A cup-shaped ultra-wideband planar monopole antenna with a stepped open circuit structure floor | |
CN107785661A (en) | A kind of uncoupling array antenna based on double frequency Meta Materials | |
CN103943953B (en) | Small-sized L-T minor matters biobelt resistance plane ultra-wideband antenna | |
CN113839216B (en) | A low-profile broadband circularly polarized antenna based on metasurfaces | |
CN111541018B (en) | High-gain steep filtering fusion duplex integrated antenna | |
CN103199336B (en) | Double-frame and notched four-bridge bridging microstrip antenna applied to compass system | |
CN102394328B (en) | Microstrip bimodule band-pass filter based on DGS (defected ground structure) square-ring resonator | |
KR101829816B1 (en) | Tri-band Double-dipole quasi-Yagi antenna using Dual Co-directional SRRs | |
CN106549233A (en) | The Antonio Vivaldi circular array antenna of the horizontally polarized omnidirectional connecting-type of ultra broadband | |
CN105098344B (en) | More trap UWB antennas on the super clever surface of machinery adjustment | |
CN113540810A (en) | Microstrip slot coupling super-surface antenna with open rectangular ring loaded | |
CN111029766B (en) | Horizontally polarized omnidirectional antenna based on artificial localized surface plasmon | |
CN206602180U (en) | Wideband dual polarized aperture-coupled feed antennas | |
CN203983490U (en) | A kind of new ideas Broadband circularly polarized antenna | |
CN114709609A (en) | Circularly polarized microstrip antenna with low profile high gain and wide axial ratio beam |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C12 | Rejection of a patent application after its publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20140129 |