CN103543414A - 3D planar magnetic sensor - Google Patents
3D planar magnetic sensor Download PDFInfo
- Publication number
- CN103543414A CN103543414A CN201210242300.1A CN201210242300A CN103543414A CN 103543414 A CN103543414 A CN 103543414A CN 201210242300 A CN201210242300 A CN 201210242300A CN 103543414 A CN103543414 A CN 103543414A
- Authority
- CN
- China
- Prior art keywords
- magnetic
- cobalt
- magnetic sensor
- fixed bed
- alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005291 magnetic effect Effects 0.000 title claims abstract description 172
- 230000005415 magnetization Effects 0.000 claims abstract description 39
- 238000009413 insulation Methods 0.000 claims abstract description 18
- 230000002269 spontaneous effect Effects 0.000 claims abstract description 12
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 55
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 51
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 40
- 229910045601 alloy Inorganic materials 0.000 claims description 25
- 239000000956 alloy Substances 0.000 claims description 25
- 229910052763 palladium Inorganic materials 0.000 claims description 22
- 229910052697 platinum Inorganic materials 0.000 claims description 20
- 229910001260 Pt alloy Inorganic materials 0.000 claims description 19
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 16
- 229910017052 cobalt Inorganic materials 0.000 claims description 16
- 239000010941 cobalt Substances 0.000 claims description 16
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 16
- 229910052759 nickel Inorganic materials 0.000 claims description 16
- 229910000521 B alloy Inorganic materials 0.000 claims description 12
- 230000005294 ferromagnetic effect Effects 0.000 claims description 10
- 239000000463 material Substances 0.000 claims description 10
- GUBSQCSIIDQXLB-UHFFFAOYSA-N cobalt platinum Chemical compound [Co].[Pt].[Pt].[Pt] GUBSQCSIIDQXLB-UHFFFAOYSA-N 0.000 claims description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 6
- 239000000395 magnesium oxide Substances 0.000 claims description 4
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 4
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 claims description 4
- 229910052751 metal Inorganic materials 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 4
- 239000011651 chromium Substances 0.000 claims description 3
- ZGDWHDKHJKZZIQ-UHFFFAOYSA-N cobalt nickel Chemical compound [Co].[Ni].[Ni].[Ni] ZGDWHDKHJKZZIQ-UHFFFAOYSA-N 0.000 claims description 3
- 239000010949 copper Substances 0.000 claims description 3
- 239000010955 niobium Substances 0.000 claims description 3
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 claims description 3
- 235000012239 silicon dioxide Nutrition 0.000 claims description 3
- 239000000377 silicon dioxide Substances 0.000 claims description 3
- 239000010936 titanium Substances 0.000 claims description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 2
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 2
- 229910052804 chromium Inorganic materials 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 229910052750 molybdenum Inorganic materials 0.000 claims description 2
- 239000011733 molybdenum Substances 0.000 claims description 2
- 229910052758 niobium Inorganic materials 0.000 claims description 2
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 2
- 229910052707 ruthenium Inorganic materials 0.000 claims description 2
- 229910052715 tantalum Inorganic materials 0.000 claims description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 2
- 229910052719 titanium Inorganic materials 0.000 claims description 2
- RIVZIMVWRDTIOQ-UHFFFAOYSA-N cobalt iron Chemical compound [Fe].[Co].[Co].[Co] RIVZIMVWRDTIOQ-UHFFFAOYSA-N 0.000 claims 14
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims 6
- 229910052742 iron Inorganic materials 0.000 claims 6
- CLBRCZAHAHECKY-UHFFFAOYSA-N [Co].[Pt] Chemical compound [Co].[Pt] CLBRCZAHAHECKY-UHFFFAOYSA-N 0.000 claims 4
- 238000002955 isolation Methods 0.000 claims 4
- 229910001936 tantalum oxide Inorganic materials 0.000 claims 2
- 229910000990 Ni alloy Inorganic materials 0.000 claims 1
- 229910019236 CoFeB Inorganic materials 0.000 description 8
- ZDZZPLGHBXACDA-UHFFFAOYSA-N [B].[Fe].[Co] Chemical compound [B].[Fe].[Co] ZDZZPLGHBXACDA-UHFFFAOYSA-N 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- 229910018979 CoPt Inorganic materials 0.000 description 7
- 229910003321 CoFe Inorganic materials 0.000 description 6
- 229910001313 Cobalt-iron alloy Inorganic materials 0.000 description 4
- 229910005335 FePt Inorganic materials 0.000 description 4
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 4
- 239000012212 insulator Substances 0.000 description 3
- OBACEDMBGYVZMP-UHFFFAOYSA-N iron platinum Chemical compound [Fe].[Fe].[Pt] OBACEDMBGYVZMP-UHFFFAOYSA-N 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 229910015187 FePd Inorganic materials 0.000 description 2
- 229910001252 Pd alloy Inorganic materials 0.000 description 2
- FQMNUIZEFUVPNU-UHFFFAOYSA-N cobalt iron Chemical compound [Fe].[Co].[Co] FQMNUIZEFUVPNU-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- UGKDIUIOSMUOAW-UHFFFAOYSA-N iron nickel Chemical compound [Fe].[Ni] UGKDIUIOSMUOAW-UHFFFAOYSA-N 0.000 description 2
- SORXVYYPMXPIFD-UHFFFAOYSA-N iron palladium Chemical compound [Fe].[Pd] SORXVYYPMXPIFD-UHFFFAOYSA-N 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000005641 tunneling Effects 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Images
Landscapes
- Measuring Magnetic Variables (AREA)
Abstract
Description
技术领域 technical field
本发明涉及一种三维平面磁传感器,主要是能将量测X、Y、Z方向的传感器以半导体制程设置在同一平面上。The invention relates to a three-dimensional planar magnetic sensor, mainly capable of arranging sensors for measuring X, Y, and Z directions on the same plane with a semiconductor manufacturing process.
背景技术 Background technique
随着科技的发展,对于电子地图、导航的需求明显增加,因此,磁感应器的需求也随之增加,藉由磁感应的特性,能够迅速地应用在导航及全球定位系统,当随着电子产品的轻薄短小设计,降低整体产品体积的同时,磁感应器的设计也受到考验。With the development of science and technology, the demand for electronic maps and navigation has increased significantly. Therefore, the demand for magnetic sensors has also increased. With the characteristics of magnetic induction, it can be quickly applied to navigation and global positioning systems. With the development of electronic products The thin and short design reduces the overall product volume, and the design of the magnetic sensor is also tested.
目前的磁感应器的设置,通常是具有设置利用三个相同结构的磁感应器,将两者设置于同一平面的垂直方向,用以量测磁场的X轴分量及Y轴分量,而用以量测磁场Z轴分量的另一个磁传感器,需要与其它两者垂直设置,由于目前集成电路的尺寸设计越来越小,由于垂直连接,制程需要两段式进行,且垂直连接的过程,在制程上难以标准化,良率难以提高,容易产生失败,而使得整体的成本提高。The current magnetic sensor setup usually has three magnetic sensors with the same structure, and the two are arranged in the vertical direction of the same plane to measure the X-axis component and the Y-axis component of the magnetic field, and to measure The other magnetic sensor of the Z-axis component of the magnetic field needs to be installed perpendicular to the other two. As the size of the current integrated circuit is getting smaller and smaller, due to the vertical connection, the manufacturing process needs to be carried out in two stages, and the process of vertical connection, in the manufacturing process It is difficult to standardize, it is difficult to improve the yield rate, and it is prone to failure, which increases the overall cost.
因此,需要一种能够降低整体体积,将三方向的磁感应器设置于同一平面来减少制程上的问题的传感器结构。Therefore, there is a need for a sensor structure that can reduce the overall volume and arrange the magnetic sensors in three directions on the same plane to reduce the problems in the manufacturing process.
发明内容 Contents of the invention
一种三维平面磁传感器,包含第一磁传感器、第二磁传感器、第三磁传感器以及电路,第一磁传感器,用以量测外部磁场在一第一方向的分量;第二磁传感器,用以量测外部磁场在第二方向的分量,该第二方向与该第一方向在一平面上垂直;第三磁传感器,用以量测外部磁场在一第三方向的分量,该第三方向与该第一方向及该第二方向均垂直;以及电路,与该第一磁传感器、该第二磁传感器以及该第三磁传感器连接,对该第一磁传感器、该第二磁传感器以及该第三磁传感器提供电流或电压,其中该第一磁传感器、该第二磁传感器以及该第三磁传感器设置于同一平面。A three-dimensional planar magnetic sensor, comprising a first magnetic sensor, a second magnetic sensor, a third magnetic sensor and a circuit, the first magnetic sensor is used to measure a component of an external magnetic field in a first direction; the second magnetic sensor uses To measure the component of the external magnetic field in the second direction, the second direction is perpendicular to the first direction on a plane; the third magnetic sensor is used to measure the component of the external magnetic field in a third direction, the third direction perpendicular to both the first direction and the second direction; and a circuit, connected to the first magnetic sensor, the second magnetic sensor, and the third magnetic sensor, for the first magnetic sensor, the second magnetic sensor, and the The third magnetic sensor provides current or voltage, wherein the first magnetic sensor, the second magnetic sensor and the third magnetic sensor are arranged on the same plane.
第三磁传感器,包含至少一第三固定层、至少一第三磁绝缘层以及一第三自由层,该第三自由层设置在最上层,该至少一第三磁绝缘层设置于该至少一第三固定层之间,以及该至少一第三固定层的最上层及该第三自由层之间,其中该至少第三固定层的磁化方向为一第三方向或与该第三方向呈180度反向,该第三自由层的自发磁化方向为该第一方向、该第二方向或与该第三方向呈0~180度倾斜,该第三自由层的磁阻值在该第三自由层的自发方向为一中间值,当受到该外部磁场时,磁阻值会变大或变小,从而测量该磁场在该第三方向的分量。各该第三固定层的磁化方向为全部是第三方向或是与第三方向呈180度反向,也可以为藉由第三磁绝缘层间隔成反向排列的堆栈结构,也就是在第三磁绝缘层上的第三固定层的磁化方向为第三方向,而在第三磁绝缘层下的第三固定层的磁化方向与第三方向呈180度反向。The third magnetic sensor includes at least one third fixed layer, at least one third magnetic insulating layer and a third free layer, the third free layer is arranged on the uppermost layer, and the at least one third magnetic insulating layer is arranged on the at least one Between the third pinned layers, and between the uppermost layer of the at least one third pinned layer and the third free layer, wherein the magnetization direction of the at least third pinned layer is a third direction or is 180 to the third direction degrees opposite, the spontaneous magnetization direction of the third free layer is the first direction, the second direction or is inclined from 0 to 180 degrees with the third direction, and the magnetoresistance value of the third free layer is within the range of the third free layer The spontaneous direction of the layer is an intermediate value, and when subjected to the external magnetic field, the magnetoresistance value will become larger or smaller, so as to measure the component of the magnetic field in the third direction. The magnetization direction of each of the third fixed layers is all the third direction or is 180 degrees opposite to the third direction, and it can also be a stack structure arranged in reverse order by the third magnetic insulating layer, that is, at the The magnetization direction of the third pinned layer on the third magnetic insulating layer is the third direction, and the magnetization direction of the third pinned layer under the third magnetic insulating layer is 180 degrees opposite to the third direction.
本发明的特点在于,利用穿隧磁阻的特性,形成一混合式的自旋阀,从而能将测量X、Y、Z三方向的磁场传感器设置于同一平面,而能运用目前常用的半导体制程来制作,而不需要传统垂直黏接的步骤,能够提高产能、良率及耐用性,同时减少成本及制作时间。The feature of the present invention is that a hybrid spin valve is formed by using the characteristics of tunneling magnetoresistance, so that the magnetic field sensors for measuring X, Y, and Z directions can be arranged on the same plane, and the semiconductor manufacturing process commonly used at present can be used It can be produced without the traditional vertical bonding steps, which can improve productivity, yield and durability, while reducing costs and production time.
附图说明 Description of drawings
图1及图2为本发明三维平面磁传感器的组件示意图。1 and 2 are schematic diagrams of components of the three-dimensional planar magnetic sensor of the present invention.
其中,附图标记说明如下:Wherein, the reference signs are explained as follows:
1三维平面磁传感器1 Three-dimensional planar magnetic sensor
10第一磁传感器10 first magnetic sensor
11第一固定层11 first fixed layer
13第一磁绝缘层13 The first magnetic insulating layer
15第一自由层15 first free floor
20第二磁传感器20 second magnetic sensor
21第二固定层21 second fixed layer
23第二磁绝缘层23 second magnetic insulation layer
25第二自由层25 second free floor
30第三磁传感器30 third magnetic sensor
31第三固定层31 third fixed layer
33第三磁绝缘层33 third magnetic insulation layer
35第三自由层35 third free floor
40电路40 circuits
具体实施方式 Detailed ways
以下配合图式及组件符号对本发明的实施方式做更详细的说明,并使熟悉该领域技术人员在研读本说明书后能据以实施。The following describes the implementation of the present invention in more detail with reference to the drawings and component symbols, and enables those skilled in the art to implement it after studying this specification.
参阅图1及图2,本发明三维平面磁传感器的组件示意图。如图1及图2所示,本发明三维平面磁传感器1包含一第一磁传感器10、一第二磁传感器20、一第三磁传感器30以及电路40,且第一磁传感器10、第二磁传感器20以及第三磁传感器30设置于同一平面,第一磁传感器10、第二磁传感器20以及第三磁传感器30与电路40连接。Referring to FIG. 1 and FIG. 2 , there are schematic diagrams of components of the three-dimensional planar magnetic sensor of the present invention. As shown in Fig. 1 and Fig. 2, the three-dimensional planar magnetic sensor 1 of the present invention comprises a first
第一磁传感器10包含至少一第一固定层11、至少一第一磁绝缘层13以及一第一自由层15,第一自由层15设置在最上层,该至少一第一磁绝缘层13设置于最上层的第一固定层11之间,以及第一固定层11以及第一自由层15之间,其中该第一自由层15的自发磁化方向为第一方向,该第一自由层15的磁阻值在第一方向时为最小值,当受到外部磁力时,第一自由层15的磁化方向从会产生偏移,而磁阻值变大,进而可以藉由磁阻值的变化计算出外部磁力在第一方向的分量。各该第一固定层11的磁化方向为全部是第一方向或是与第一方向呈180度反向,也可以为藉由第一磁绝缘层13间隔成反向排列的堆栈结构,也就是在第一磁绝缘层13上的第一固定层11的磁化方向为第一方向,而在第一磁绝缘层13下的第一固定层11的磁化方向与第一方向呈180度反向。The first
第二磁传感器20包含至少一第二固定层21、至少一第二磁绝缘层23以及一第二自由层25,第二自由层25设置在最上层,该至少一第二磁绝缘层23设置于第二固定层21之间,以及最上层的第二固定层21及第二自由层25之间。该第二自由层25的自发磁化方向为第二方向,第二方向与第一方向在同一平面上垂直。该第二自由层25的磁阻值在第二方向时为最小值,当受到外部磁力时,第二自由层25的磁化方向从会产生偏移,而磁阻值变大,进而可以藉由磁阻值的变化计算出外部磁力在第二方向的分量。各该第二固定层21的磁化方向为全部是第二方向或是与第二方向呈180度反向,也可以为藉由第二磁绝缘层23间隔成反向排列的堆栈结构,也就是在第二磁绝缘层23上的第二固定层21的磁化方向为第二方向,而在第二磁绝缘层23下的第二固定层21的磁化方向与第二方向呈180度反向。The second
第三磁传感器30包含至少一第三固定层31、至少一第三磁绝缘层33以及一第三自由层35,第三自由层35设置在最上层,该至少一第三磁绝缘层33设置于第三固定层31之间,以及第三固定层31以及最上层的第三自由层35之间,其中第三固定层31的磁化方向可以全为第三方向或与第三方向呈180度反向,第三方向与第一方向及第二方向均垂直。而该第三自由层35的自发磁化方向为第一方向、第二方向或与第三方向呈0~180度倾斜,该第三自由层35的磁阻值在其自发方向为一中间值,当受到外部磁力时,第三自由层25的磁化方向从会产生偏移,而产生对应的磁阻值的变大或变小,进而可以藉由磁阻值的变化计算出外部磁力在第三方向的分量。各该第三固定层31的磁化方向为全部是第三方向或是与第三方向呈180度反向,也可以为藉由第三磁绝缘层33间隔成反向排列的堆栈结构,也就是在第三磁绝缘层33上的第三固定层31的磁化方向为第三方向,而在第三磁绝缘层33下的第三固定层31的磁化方向与第三方向呈180度反向。The third
电路40与第一磁传感器10、第二磁传感器20以及第三磁传感器30连接,提供电流通过第一磁传感器10、第二磁传感器20以及第三磁传感器30,从而能透过电流或电压至将第一自由层15、第二自由层25、第三自由层35产生磁性,从而能量测第一自由层15、第二自由层25、第三自由层35的磁阻值的变化,并将磁阻值的变化转换为一电流或电压讯号,透过该传送至一外部计算装置(未显示),能够应用至各种磁力定位的装置。The
其中该第一固定层11及该第二固定层21的材料为铁(Fe)、钴(Co)、镍(Ni)、钴铁硼(CoFeB)合金、镍铁(NiFe)合金、钴铁(CoFe)合金,面心结构-钴铂(FCC-CoPt)合金、L10钴铂合金(L10-CoPt)、面心结构-铁铂(FCC-FePt)合金、L10铁铂合金(L10-FePt)、等铁磁性合金的至少其中之一。该第三固定层31的材料为铁(Fe)、钴(Co)、镍(Ni)、钴铁硼(CoFeB)合金、mD019钴铂合金mD019-CoPt)、L10铁钯合金(L11-FePd)、L10钴铂合金(L10-CoPt)、L11-钴铂合金(L11-CoPt)、L10铁铂合金(L10-FePt)、钴/铂多层堆栈结构([Co/Pt]nmultilayer)、钴/钯多层堆栈结构([Co/Pd]n multilayer)、镍/钯多层堆栈结构([Ni/Pd]n multilayer)、镍/铂多层堆栈结构([Ni/Pt]n multilayer)、钴铁硼合金/铂多层堆栈结构([CoFeB/Pt]n multilayer)、钴铁硼合金/钯多层堆栈结构([CoFeB/Pd]n multilayer)、镍铁合金/铂多层堆栈结构([NiFe/Pt]n multilayer)、镍铁合金/钯多层堆栈结构([NiFe/Pd]n multilayer)、钴铁合金/铂多层堆栈结构([CoFe/Pt]n multilayer)、钴铁合金/钯多层堆栈结构([CoFe/Pd]n multilayer)、等铁磁性合金、或等铁磁性合金多层膜的至少其中之一。Wherein the material of the first
该第一自由层15及该第二自由层25的材料为铁(Fe)、钴(Co)、镍(Ni)、钴铁硼(CoFeB)合金、镍铁(NiFe)合金、钴铁(CoFe)合金、钴镍(CoNi)合金、以及等铁磁性合金的至少其中之一,该第三自由层35的材料为铁(Fe)、钴(Co)、镍(Ni)、钴铁硼(CoFeB)合金、mD019钴铂合金(mD019-CoPt)、L10钴铂合金(L10-CoPt)、L11-钴铂合金(L11-CoPt)、L10铁铂合金(L10-FePt)、L10铁钯合金(L10-FePd)、钴/铂多层堆栈结构([Co/Pt]n multilayer)、钴/钯多层堆栈结构([Co/Pd]n multilayer)、镍/钯多层堆栈结构([Ni/Pd]n multilayer)、镍/铂多层堆栈结构([Ni/Pt]n multilayer)、钴铁硼合金/铂多层堆栈结构([CoFeB/Pt]nmultilayer)、钴铁硼合金/钯多层堆栈结构([CoFeB/Pd]n multilayer)、镍铁合金/铂多层堆栈结构([NiFe/Pt]n multilayer)、镍铁合金/钯多层堆栈结构([NiFe/Pd]nmultilayer)、钴铁合金/铂多层堆栈结构([CoFe/Pt]n multilayer)、钴铁合金/钯多层堆栈结构([CoFe/Pd]n multilayer)、等铁磁性合金、或等铁磁性合金多层膜的至少其中之一。The material of the first
第一磁绝缘层13及第二磁绝缘层23可以由无磁性金属或电磁绝缘体所制成,第三磁绝缘层33由电磁绝缘体所制成,其中该无磁性金属包含钌(Ru)、钽(Ta)、铬(Cr)、钛(Ti)、铜(Cu)、钯(Pd)、钼(Mo)以及铌(Nb)的至少其中之一;该电磁绝缘体包含氧化镁(MgO)、氧化铝(Al2O3)、氧化钽(Ta2O5)、二氧化硅(SiO2)的至少其中之一。The first
本发明的特点在于,利用穿隧磁阻的特性,形成一混合式的自旋阀,从而能将测量X、Y、Z三方向的磁场传感器设置于同一平面,而能运用目前常用的半导体制程来制作,而不需要传统垂直黏接的步骤,能够提高产能、良率及耐用性,同时减少成本及制作时间。The feature of the present invention is that a hybrid spin valve is formed by using the characteristics of tunneling magnetoresistance, so that the magnetic field sensors for measuring X, Y, and Z directions can be arranged on the same plane, and the semiconductor manufacturing process commonly used at present can be used It can be produced without the traditional vertical bonding steps, which can improve productivity, yield and durability, while reducing costs and production time.
以上所述仅为用以解释本发明的较佳实施例,并非企图据以对本发明做任何形式上的限制,因此,凡有在相同的发明精神下所作有关本发明的任何修饰或变更,皆仍应包括在本发明意图保护的范畴。The above descriptions are only preferred embodiments for explaining the present invention, and are not intended to limit the present invention in any form. Therefore, any modification or change of the present invention made under the same spirit of the invention is valid. Still should be included in the category that the present invention intends to protect.
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210242300.1A CN103543414A (en) | 2012-07-13 | 2012-07-13 | 3D planar magnetic sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210242300.1A CN103543414A (en) | 2012-07-13 | 2012-07-13 | 3D planar magnetic sensor |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103543414A true CN103543414A (en) | 2014-01-29 |
Family
ID=49967042
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210242300.1A Pending CN103543414A (en) | 2012-07-13 | 2012-07-13 | 3D planar magnetic sensor |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103543414A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105428522A (en) * | 2015-12-01 | 2016-03-23 | 中电海康集团有限公司 | Magnetic tunnel junction for STT-MRAM |
CN107110919A (en) * | 2014-10-02 | 2017-08-29 | 科罗克斯技术股份有限公司 | Apparatus and method for the surface configuration analysis space positioning based on Magnetic Sensor in uniform magnetic field |
CN109478593A (en) * | 2016-07-04 | 2019-03-15 | 株式会社电装 | Magnetic sensor |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1955753A (en) * | 2005-10-28 | 2007-05-02 | 中国科学院物理研究所 | A layered integrated three-dimensional magnetic field sensor and its preparation method and application |
CN1979210A (en) * | 2005-12-09 | 2007-06-13 | 中国科学院物理研究所 | 3-D magnetic-field sensor integrated by planes, preparing method and use |
CN101023324A (en) * | 2004-07-29 | 2007-08-22 | 雅马哈株式会社 | Azimuth data calculation method, azimuth sensor unit, and portable electronic apparatus |
CN102353917A (en) * | 2010-06-02 | 2012-02-15 | 罗伯特·博世有限公司 | Calibration of a triaxial magnetic field sensor |
JP2012049309A (en) * | 2010-08-26 | 2012-03-08 | Kyocera Corp | Magnetic structure, and magnetic component, magnetic sensor device and current sensor device using the magnetic structure |
JP2012107914A (en) * | 2010-11-16 | 2012-06-07 | Alps Electric Co Ltd | Magnetic field detection device |
JP2012127788A (en) * | 2010-12-15 | 2012-07-05 | Alps Electric Co Ltd | Magnetic sensor |
-
2012
- 2012-07-13 CN CN201210242300.1A patent/CN103543414A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101023324A (en) * | 2004-07-29 | 2007-08-22 | 雅马哈株式会社 | Azimuth data calculation method, azimuth sensor unit, and portable electronic apparatus |
CN1955753A (en) * | 2005-10-28 | 2007-05-02 | 中国科学院物理研究所 | A layered integrated three-dimensional magnetic field sensor and its preparation method and application |
CN1979210A (en) * | 2005-12-09 | 2007-06-13 | 中国科学院物理研究所 | 3-D magnetic-field sensor integrated by planes, preparing method and use |
CN102353917A (en) * | 2010-06-02 | 2012-02-15 | 罗伯特·博世有限公司 | Calibration of a triaxial magnetic field sensor |
JP2012049309A (en) * | 2010-08-26 | 2012-03-08 | Kyocera Corp | Magnetic structure, and magnetic component, magnetic sensor device and current sensor device using the magnetic structure |
JP2012107914A (en) * | 2010-11-16 | 2012-06-07 | Alps Electric Co Ltd | Magnetic field detection device |
JP2012127788A (en) * | 2010-12-15 | 2012-07-05 | Alps Electric Co Ltd | Magnetic sensor |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107110919A (en) * | 2014-10-02 | 2017-08-29 | 科罗克斯技术股份有限公司 | Apparatus and method for the surface configuration analysis space positioning based on Magnetic Sensor in uniform magnetic field |
CN107110919B (en) * | 2014-10-02 | 2019-12-24 | 科罗克斯技术股份有限公司 | Apparatus and method for surface shape analysis spatial localization based on magnetic sensors |
CN105428522A (en) * | 2015-12-01 | 2016-03-23 | 中电海康集团有限公司 | Magnetic tunnel junction for STT-MRAM |
CN105428522B (en) * | 2015-12-01 | 2018-07-20 | 中电海康集团有限公司 | A kind of magnetic tunnel junction for STT-MRAM |
CN109478593A (en) * | 2016-07-04 | 2019-03-15 | 株式会社电装 | Magnetic sensor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10254315B2 (en) | Current sensor, current measuring module, and smart meter | |
US10295578B2 (en) | Current sensor and smart meter | |
US10448845B2 (en) | Strain sensing element, having a first and second magnetic layer and a third layer that is antiferrimagnetic | |
US20180038899A1 (en) | Current sensor, current measuring module, and smart meter | |
US9207290B2 (en) | Magnetic field sensor for sensing external magnetic field | |
US9342179B2 (en) | Strain sensing element, pressure sensor, microphone, blood pressure sensor, and touch panel | |
TW201527726A (en) | Strain sensing element, pressure sensor, microphone, blood pressure sensor and touch panel | |
US20130168787A1 (en) | Magnetic sensor | |
JP2015125012A (en) | Current sensor and current sensor module | |
JP6686147B2 (en) | Exchange coupling film, magnetoresistive effect element and magnetic detection device using the same | |
CN111033779B (en) | Exchange coupling film, and magneto-resistance effect element and magnetic detection device using the exchange coupling film | |
US11476413B2 (en) | Tunnel magnetoresistance effect device and magnetic device using same | |
CN103543414A (en) | 3D planar magnetic sensor | |
JP6421101B2 (en) | Sensor, information terminal, microphone, blood pressure sensor, and touch panel | |
US10535456B2 (en) | Permanent magnet comprising a stack of ferromagnetic and antiferromagnetic layers | |
JP2017053723A (en) | Sensor, information terminal, microphone, blood pressure sensor and touch panel | |
CN111033778B (en) | Exchange coupling film, and magneto-resistance effect element and magnetic detection device using the exchange coupling film | |
TW201403108A (en) | Three diemension in-plane magnetic sensor | |
US20140062470A1 (en) | Three-dimensional in-plane magnetic sensor | |
JP6629413B2 (en) | Current sensor, current measurement module and smart meter | |
JP2020136306A (en) | Exchange coupling film, magnetoresistance effect element and magnetic detector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20140129 |