[go: up one dir, main page]

CN103543294B - Micron grating accelerometer testing method based on added mass - Google Patents

Micron grating accelerometer testing method based on added mass Download PDF

Info

Publication number
CN103543294B
CN103543294B CN201310416339.5A CN201310416339A CN103543294B CN 103543294 B CN103543294 B CN 103543294B CN 201310416339 A CN201310416339 A CN 201310416339A CN 103543294 B CN103543294 B CN 103543294B
Authority
CN
China
Prior art keywords
accelerometer
grating accelerometer
micron grating
mass
micron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310416339.5A
Other languages
Chinese (zh)
Other versions
CN103543294A (en
Inventor
王峥
冯丽爽
王潇
马迎建
姚保寅
刘惟芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN201310416339.5A priority Critical patent/CN103543294B/en
Publication of CN103543294A publication Critical patent/CN103543294A/en
Application granted granted Critical
Publication of CN103543294B publication Critical patent/CN103543294B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

本发明公开一种基于附加质量的微米光栅加速度计测试方法,首先,通过理论计算与仿真分析得到敏感头参数;将加速度计敏感头安装在测试台面上,同时在加速度计中心质量块上表面设置稳定台;然后选取附加质量块质量、数量及总重量;将附加质量块逐次放置在稳定台上,使加速度计输入加速度值由0g逐次增加至加速度计测量范围上限;逆序逐次去掉附加质量块,至加速度计的输入加速度值降回0g;随后取同一加速度输入的两次输出的平均值为对应加速度输出;最终,利用最小二乘法对加速度计各静态数学模型的系数进行计算,最终描绘测试曲线。本发明的优点为:有利于光学加速度计精度的提高;改善了测试环境;能够提高微米光栅加速度计标度因数的测试效率。

The invention discloses a method for testing a micron grating accelerometer based on additional mass. Firstly, the parameters of the sensitive head are obtained through theoretical calculation and simulation analysis; Stable platform; then select the quality, quantity and total weight of the additional mass block; place the additional mass block on the stable platform successively, so that the input acceleration value of the accelerometer increases from 0g to the upper limit of the accelerometer measurement range; remove the additional mass block successively in reverse order, The input acceleration value to the accelerometer drops back to 0g; then the average value of the two outputs of the same acceleration input is taken as the corresponding acceleration output; finally, the coefficients of each static mathematical model of the accelerometer are calculated using the least square method, and the test curve is finally drawn . The invention has the advantages of: being beneficial to the improvement of the precision of the optical accelerometer; improving the test environment; and being able to improve the test efficiency of the scale factor of the micron grating accelerometer.

Description

一种基于附加质量的微米光栅加速度计测试方法A Test Method of Micron Grating Accelerometer Based on Additional Mass

技术领域technical field

本发明涉及微米光栅加速度计技术领域,主要是一种基于附加质量的微米光栅加速度计测试方法。The invention relates to the technical field of micron grating accelerometers, and mainly relates to a testing method for micron grating accelerometers based on additional mass.

背景技术Background technique

微米光栅加速度计是一类用于测量加速度及加速度变化的光学惯性器件,采用半导体硅通过微机械加工形成的一种力学结构以感受加速度的变化,微米光栅加速度计的敏感头结构如图1所示,包括:中心质量块1、悬臂梁2、反射镜3、微米光栅4等结构。光源(LD出射光)入射到微米光栅加速度计敏感头,在途经微米光栅4时,一部分光被微米光栅4反射,另一部分通过微米光栅4经过中心质量块1下表面的反射镜3反射后再次通过微米光栅4;这两部分光在空间干涉,形成多级次条纹;当有加速度输入时,中心质量块1受惯性力影响,引起悬臂梁2形变,如图2所示,从而使反射镜3和微米光栅4之间的间隙(空气腔)发生变化,进而从反射镜3反射回的光束相位将发生变化,这将导致最终空间干涉条纹强度大小的改变,由此通过测量干涉条纹强度的改变就可以得到输入加速度的大小。微米光栅加速度计有着性能稳定、灵敏度高、抗电磁干扰、易于集成等优点。在航空航天,汽车、地震监测和军事系统等方面,有着广阔的前景。但是对于微米光栅加速度的精度及量程测试存在无法加入可控稳定加速度输入,测量装置体积过大等问题,难以实现微米光栅加速度计的准确测试。The micron grating accelerometer is a kind of optical inertial device used to measure acceleration and acceleration change. It adopts a mechanical structure formed by semiconductor silicon through micromachining to sense the change of acceleration. The sensitive head structure of the micron grating accelerometer is shown in Figure 1. Shown, including: a central mass 1, a cantilever beam 2, a mirror 3, a micron grating 4 and other structures. The light source (LD outgoing light) is incident on the sensitive head of the micron grating accelerometer. When passing through the micron grating 4, part of the light is reflected by the micron grating 4, and the other part passes through the micron grating 4 and is reflected by the mirror 3 on the lower surface of the central mass 1. Through the micron grating 4; these two parts of light interfere in space to form multi-level fringes; when there is an acceleration input, the central mass 1 is affected by the inertial force, causing the cantilever beam 2 to deform, as shown in Figure 2, so that the reflector 3 and the gap (air cavity) between the micron grating 4 changes, and then the phase of the light beam reflected back from the mirror 3 will change, which will lead to a change in the intensity of the final spatial interference fringes, thus by measuring the intensity of the interference fringes Change to get the magnitude of the input acceleration. The micron grating accelerometer has the advantages of stable performance, high sensitivity, anti-electromagnetic interference, and easy integration. It has broad prospects in aerospace, automotive, seismic monitoring and military systems. However, for the accuracy and range test of the micron grating acceleration, there are problems such as the inability to add controllable and stable acceleration input, and the volume of the measuring device is too large, so it is difficult to realize the accurate test of the micron grating accelerometer.

高g精密离心机试验主要用于检测大于1g加速度输入情况下加速度计的标度因数、加速度计零偏等加速度计参数,利用高g精密离心机或稳定转台,从外界输入加速度a引起加速度计中心质量块的位移x,质量块位移能够改变加速度计中某一物理量的特性,比如光栅加速度计的光强I,电容式加速度计的电容C。通过测量光强变化或者电容变化得到加速度a的大小,从而对加速度计进行检测。但这种测试方法,要求离心机转速稳定、结构变形小、震动小以及可以将加速度计安装在圆盘精确已知的各种半径上。其产生加速度的精度取决于离心机工作半径的测量精度以及离心机旋转角速度的精度。但离心机旋转轴线到加速度计质心的工作半径较难准确测量,且高g加速度下要求离心机尺寸大、有较高旋转稳定性,这将导致结构和测试方法的进一步复杂,不利于对加速度计进行实时批量在线检测,导致产品开发时间延长。同时进行测试试验的设备昂贵,并且对试验条件要求苛刻,一般情况下不易满足。The high-g precision centrifuge test is mainly used to detect accelerometer parameters such as the scale factor of the accelerometer and the zero bias of the accelerometer when the acceleration input is greater than 1g. Using a high-g precision centrifuge or a stable turntable, the acceleration a is input from the outside to cause the acceleration of the accelerometer. The displacement x of the central mass block, the mass block displacement can change the characteristics of a certain physical quantity in the accelerometer, such as the light intensity I of the grating accelerometer, and the capacitance C of the capacitive accelerometer. The accelerometer is detected by measuring the change in light intensity or the change in capacitance to obtain the magnitude of the acceleration a. However, this test method requires stable centrifuge speed, small structural deformation, small vibration, and accelerometers that can be installed on various radii of the disc that are accurately known. The accuracy of the acceleration it generates depends on the measurement accuracy of the working radius of the centrifuge and the accuracy of the rotational angular velocity of the centrifuge. However, it is difficult to accurately measure the working radius from the rotation axis of the centrifuge to the center of mass of the accelerometer, and the centrifuge is required to have a large size and high rotational stability under high g acceleration, which will lead to further complexity of the structure and test methods, which is not conducive to the acceleration Real-time batch on-line testing is required, resulting in prolonged product development time. The equipment for testing at the same time is expensive, and the test conditions are demanding, which are generally not easy to meet.

发明内容Contents of the invention

根据现有微米光栅加速度计测试方法,可知加速度计中心质量块的位移为检测加速度的关键,因此本发明基于控制外界环境改变加速度计中敏感质量块的位移这一原理,提出一种在微米光栅加速度计的中心质量块上附加质量块,改变质量块位置,用以提供外界模拟加速度输入的微米光栅加速度计测试方法;同时也适用于所有具有悬臂梁式加速度计的测试方法,具体通过下属步骤实现:According to the existing micron grating accelerometer test method, it can be seen that the displacement of the accelerometer center mass is the key to detecting the acceleration, so the present invention is based on the principle of controlling the external environment to change the displacement of the sensitive mass in the accelerometer, and proposes a micron grating A mass block is attached to the central mass block of the accelerometer, and the position of the mass block is changed to provide a micron grating accelerometer test method for external analog acceleration input; it is also applicable to all test methods with cantilever beam accelerometers, specifically through the following steps accomplish:

步骤1:获得微米光栅加速度计敏感头的检测输入加速度范围、悬臂梁弹性系数、阻尼以及中心质量块质量。Step 1: Obtain the detection input acceleration range of the sensitive head of the micron grating accelerometer, the elastic coefficient of the cantilever beam, damping and the mass of the central mass.

步骤2:将微米光栅加速度计敏感头安装在测试台面上,同时在微米光栅加速度计的中心质量块上表面设置稳定台。Step 2: Install the sensitive head of the micron grating accelerometer on the test table, and set a stable platform on the upper surface of the central mass block of the micron grating accelerometer.

步骤3:选取n个附加质量块,n为自然数,且n>1;Step 3: Select n additional mass blocks, n is a natural number, and n>1;

单块附加质量块的最小质量Mmin需满足:The minimum mass M min of a single additional mass block needs to meet:

Mm minmin == mm sthe s 22 -- -- -- (( 11 ))

式(1)中,ms为微米光栅加速度计的灵敏度经换算后得到的对应质量;In formula (1), m s is the corresponding mass obtained after conversion of the sensitivity of the micron grating accelerometer;

单块附加质量块的最大质量Mmax需满足:The maximum mass M max of a single additional mass block needs to meet:

Mm maxmax == 22 kk ·· Mm minmin ≤≤ Mm totaltotal 1010 -- -- -- (( 22 ))

式(2)中,k为正整数,k=1、2、3……;Mtotal为n个附加质量块的总质量,Mtotal的选取范围:In formula (2), k is a positive integer, k=1, 2, 3...; M total is the total mass of n additional mass blocks, and the selection range of M total is:

Mm totaltotal == aa maxmax ·&Center Dot; mm midmiddle gg -- mm midmiddle -- -- -- (( 33 ))

式(3)中,mmid为微米光栅加速度计中心质量块质量,g为重力加速度;amax为微米光栅加速度计的最大量程。In formula (3), m mid is the mass of the central mass of the micron grating accelerometer, g is the acceleration of gravity; a max is the maximum range of the micron grating accelerometer.

步骤4:将附加质量块放置在微米光栅加速度计稳定台上,每次测试由输入加速度值G为0g开始,在稳定台上逐次增加附加质量块,使微米光栅加速度计的输入加速度值G递增变化,直至微米光栅加速度计到达测量范围上限;且记录每次微米光栅加速度计的输入加速度值G递增变化时,微米光栅加速度计输出的加速度值。Step 4: Place the additional mass on the stable platform of the micron grating accelerometer, each test starts with the input acceleration value G being 0g, and gradually increase the additional mass on the stable platform to increase the input acceleration value G of the micron grating accelerometer Change until the micron grating accelerometer reaches the upper limit of the measurement range; and record the output acceleration value of the micron grating accelerometer each time the input acceleration value G of the micron grating accelerometer changes incrementally.

步骤5:按步骤4中增加附加质量块的顺序逆序逐次去掉稳定台上的附加质量块,使微米光栅加速度计的输入加速度值G递减变化,直至输入加速度值G降回0g;同样记录每次微米光栅加速度计的输入加速度值G递减变化时,微米光栅加速度计输出的加速度值。Step 5: Remove the additional mass blocks on the stable platform in reverse order of the order of adding additional mass blocks in step 4, so that the input acceleration value G of the micron grating accelerometer changes gradually until the input acceleration value G drops back to 0g; record each time When the input acceleration value G of the micron grating accelerometer changes gradually, the acceleration value output by the micron grating accelerometer.

步骤6:在输入加速度值G递增变化与递减变化过程中,取输入加速度值G相同时,微米光栅加速度计的输出加速度值进行求平均运算,得到所选取的输入加速度值对应的微米光栅加速度计输出加速度值的标定值。Step 6: In the process of increasing and decreasing the input acceleration value G, when the input acceleration value G is the same, the output acceleration value of the micron grating accelerometer is averaged to obtain the micron grating accelerometer corresponding to the selected input acceleration value Scaled value for the output acceleration value.

步骤7:根据步骤6中得到的微米光栅加速度计输出加速度值的标定值,通过最小二乘法,计算得到微米光栅加速度计静态数学模型的系数。Step 7: According to the calibration value of the output acceleration value of the micron grating accelerometer obtained in step 6, the coefficients of the static mathematical model of the micron grating accelerometer are calculated by least square method.

步骤8:根据微米光栅加速度计静态数学模型的系数描绘微米光栅加速度计的测试曲线。Step 8: Draw the test curve of the micron grating accelerometer according to the coefficients of the static mathematical model of the micron grating accelerometer.

本发明的优点在于:The advantages of the present invention are:

1、本发明基于附加质量的微米光栅加速度计测试方法,采用模块化部件替代传统的检测方法,缩短了开发时间,并且输入噪声小,抗干扰能力强,有利于光学加速度计精度的提高;1. The present invention is based on the micron grating accelerometer test method of additional mass, adopts modular components to replace the traditional detection method, shortens the development time, and has small input noise and strong anti-interference ability, which is conducive to the improvement of the accuracy of the optical accelerometer;

2、本发明基于附加质量的微米光栅加速度计测试方法,不需要转台和离心机即可实现对微米光栅加速度计标度因数的测试,摆脱了微米光栅加速度计标度因数测试对转台和离心机的依赖,改善了测试环境;2. The present invention is based on the micron grating accelerometer test method of additional mass, which can realize the test of the micron grating accelerometer scale factor without turntable and centrifuge, and gets rid of the micron grating accelerometer scale factor test to the turntable and centrifuge Dependency improves the test environment;

3、本发明基于附加质量的微米光栅加速度计测试方法,与传统标度因数测试方法相比简单易行、操作方便,能够提高微米光栅加速度计标度因数的测试效率。3. Compared with the traditional scale factor test method, the micron grating accelerometer test method based on the additional mass of the present invention is simple and easy to operate, and can improve the test efficiency of the micron grating accelerometer scale factor.

附图说明Description of drawings

图1为微米光栅加速度计结构示意图;Fig. 1 is the structure diagram of micron grating accelerometer;

图2为微米光栅加速度计中悬臂梁形变状态示意图;Fig. 2 is a schematic diagram of the deformation state of the cantilever beam in the micron grating accelerometer;

图3为本发明基于附加质量的微米光栅加速度计测试方法流程图;Fig. 3 is the flow chart of the micron grating accelerometer testing method based on additional quality of the present invention;

图4为本发明基于附加质量的微米光栅加速度计测试方法中微米光栅加速度计敏感头安装方式以及附加质量块放置位置示意图。4 is a schematic diagram of the installation method of the sensitive head of the micron grating accelerometer and the placement position of the additional mass in the method of testing the micron grating accelerometer based on the additional mass of the present invention.

图中:In the picture:

1-中心质量块    2-悬臂梁       3-反射镜     4-微米光栅1-central mass 2-cantilever beam 3-mirror 4-micron grating

具体实施方式Detailed ways

本发明一种基于附加质量的微米光栅加速度计测试方法,如图3所示,具体通过下述步骤实现:A kind of micron grating accelerometer testing method based on additional mass of the present invention, as shown in Figure 3, specifically realizes by following steps:

步骤1:通过理论计算与仿真分析得到微米光栅加速度计敏感头的可检测输入加速度范围,悬臂梁弹性系数,阻尼以及中心质量块质量等敏感头参数。Step 1: Through theoretical calculation and simulation analysis, obtain the detectable input acceleration range of the micron grating accelerometer sensitive head, the elastic coefficient of the cantilever beam, the damping and the mass of the central mass and other sensitive head parameters.

步骤2:将微米光栅加速度计敏感头安装在测试台面上,同时在微米光栅加速度计的中心质量块上安装稳定台,如图4所示。本发明中在稳定台的周向上均匀开有导向孔,通过在导向孔中插入导向柱,作为稳定台上下运动的导轨,使稳定台仅具有上下方向的位移。Step 2: Install the sensitive head of the micron grating accelerometer on the test table, and install the stable platform on the central mass of the micron grating accelerometer, as shown in Figure 4. In the present invention, guide holes are evenly opened in the circumferential direction of the stabilizing platform, and guide posts are inserted into the guiding holes as guide rails for the stabilizing platform to move up and down, so that the stabilizing platform only has displacement in the up and down direction.

步骤3:选取n个附加质量块,n为自然数,且n>1。Step 3: Select n additional mass blocks, where n is a natural number and n>1.

其中,单块附加质量块的最小质量Mmin(单位为:克)需满足:Among them, the minimum mass M min of a single additional mass block (unit: gram) needs to meet:

Mm minmin == mm sthe s 22 -- -- -- (( 11 ))

式(1)中,ms为微米光栅加速度计的灵敏度经换算后得到的对应质量;In formula (1), m s is the corresponding mass obtained after conversion of the sensitivity of the micron grating accelerometer;

单块附加质量块的最大质量Mmax(单位为:克)需满足:The maximum mass M max (unit: gram) of a single additional mass must meet:

Mm maxmax == 22 kk ·&Center Dot; Mm minmin ≤≤ Mm totaltotal 1010 -- -- -- (( 22 ))

式(2)中,k为正整数,k=1、2、3……;Mtotal为n个附加质量块的总质量,Mtotal的选取范围可根据微米光栅加速度计量程得到:In formula (2), k is a positive integer, k=1, 2, 3...; M total is the total mass of n additional mass blocks, and the selection range of M total can be obtained according to the range of the micron grating accelerometer:

(( Mm totaltotal ++ mm midmiddle )) ·&Center Dot; gg == qq ·&Center Dot; xx mm midmiddle ·&Center Dot; aa == qq ·· xx -- -- -- (( 33 ))

式(3)中,mmid为微米光栅加速度计中心质量块质量,g为重力加速度,q为微米光栅加速度计悬臂梁弹性系数;a为加速度,a选取微米光栅加速度计的最大量程,即amax;由此根据式(3)可得到:In formula (3), m mid is the mass of the central mass of the micron grating accelerometer, g is the gravitational acceleration, q is the elastic coefficient of the cantilever beam of the micron grating accelerometer; a is the acceleration, a selects the maximum range of the micron grating accelerometer, that is, a max ; thus according to formula (3), it can be obtained:

Mm totaltotal == aa maxmax ·· mm midmiddle gg -- mm midmiddle -- -- -- (( 44 ))

所述质量块数量n的选取应满足加速度计性能测试要求,即在能够准确测试微米光栅加速度计灵敏度及量程范围的条件下,尽量选取较少数量;The selection of the number n of the mass blocks should meet the requirements of the accelerometer performance test, that is, under the condition that the sensitivity and range range of the micron grating accelerometer can be accurately tested, a smaller number should be selected as much as possible;

步骤4:将附加质量块在微米光栅加速度计稳定台上,每次测试由输入加速度值G为0g(即无附加质量)开始,在稳定台上逐次增加附加质量块;由此使微米光栅加速度计的输入加速度值G递增变化,直至微米光栅加速度计到达测量范围上限(对于微米光栅加速度计而言,其测量范围上限指的是设计指标中,质量块与光栅面之间间隙变化的极限);且记录每次微米光栅加速度计的输入加速度值递增变化时,微米光栅加速度计输出的加速度值。Step 4: Place the additional mass on the stable platform of the micron grating accelerometer. Each test starts with the input acceleration value G being 0g (that is, no additional mass), and gradually increases the additional mass on the stable platform; thus the acceleration of the micron grating The input acceleration value G of the meter changes incrementally until the micron grating accelerometer reaches the upper limit of the measurement range (for the micron grating accelerometer, the upper limit of the measurement range refers to the limit of the gap change between the mass block and the grating surface in the design index) ; and record the acceleration value output by the micron grating accelerometer each time the input acceleration value of the micron grating accelerometer changes incrementally.

上述微米光栅加速度计测试中,微米光栅加速度计输入加速度值G递增变化按照:G0=0、G1=Mmin、G2=2Mmin、G3=4Mmin、……、Gp=Mmax;且2G1+G2+G3+…+Gp≈Mtotal;其中,加速度值G的下角标1、2、3、……、p为递增变化次数;In the above-mentioned micron grating accelerometer test, the input acceleration value G of the micron grating accelerometer changes incrementally according to: G 0 =0, G 1 =M min , G 2 =2M min , G 3 =4M min ,...,G p =M max ; and 2G 1 +G 2 +G 3 +...+G p ≈M total ; wherein, the subscripts 1, 2, 3,..., p of the acceleration value G are the number of incremental changes;

步骤5:按照步骤4中增加附加质量块的顺序逆序逐次去掉稳定台上的附加质量块,使微米光栅加速度计的输入加速度值G递减变化,直至输入加速度值G降回0g;同样记录每次微米光栅加速度计的输入加速度G值递减变化时,微米光栅加速度计输出的加速度值。Step 5: Remove the additional mass blocks on the stable platform in reverse order of the order of adding additional mass blocks in step 4, so that the input acceleration value G of the micron grating accelerometer changes gradually until the input acceleration value G drops back to 0g; record each time When the input acceleration G value of the micron grating accelerometer changes gradually, the acceleration value output by the micron grating accelerometer.

步骤6:由于加速度计悬臂梁恢复问题,将导致的按照递增与递减顺序改变输入加速度值G大小时,在输入加速度值G大小相等的条件下,会得到不同的实际测试输出加速度值;由此在输入加速度值G递增变化与递减变化过程中,选取输入加速度值G相同时,微米光栅加速度计的输出加速度值进行求平均运算,得到所选取的输入加速度值G对应的微米光栅加速度计输出加速度值的标定值。Step 6: Due to the recovery problem of the cantilever beam of the accelerometer, when the input acceleration value G is changed in increasing and decreasing order, different actual test output acceleration values will be obtained under the condition that the input acceleration values G are equal; thus In the process of increasing and decreasing the input acceleration value G, when the same input acceleration value G is selected, the output acceleration value of the micron grating accelerometer is averaged to obtain the output acceleration of the micron grating accelerometer corresponding to the selected input acceleration value G The scaled value of the value.

步骤7:根据步骤6中得到的微米光栅加速度计输出加速度值的标定值,通过最小二乘法,计算得到微米光栅加速度计静态数学模型的系数,包括微米光栅加速度计的阈值、分辨率、标度因数与非线性度等参数。Step 7: According to the calibration value of the output acceleration value of the micron grating accelerometer obtained in step 6, calculate the coefficients of the static mathematical model of the micron grating accelerometer through the least square method, including the threshold value, resolution, and scale of the micron grating accelerometer Factors and non-linearity and other parameters.

步骤8:根据微米光栅加速度计静态数学模型的系数描绘微米光栅加速度计的测试曲线。Step 8: Draw the test curve of the micron grating accelerometer according to the coefficients of the static mathematical model of the micron grating accelerometer.

本发明中微米光栅加速度计稳定台的质量,根据理论仿真结果及微米光栅加速度计的敏感头灵敏度要求选定,在保证加速度计工作点的条件下,稳定台质量精度选取为±Mmin。在本发明测试方法中稳定台的质量可忽略不计。The quality of the stable platform of the micron grating accelerometer in the present invention is selected according to the theoretical simulation results and the sensitivity requirements of the sensitive head of the micron grating accelerometer. Under the condition of ensuring the working point of the accelerometer, the mass accuracy of the stable platform is selected as ±M min . The mass of the stable table is negligible in the test method of the present invention.

Claims (3)

1.一种基于附加质量的微米光栅加速度计测试方法,其特征在于:具体通过下述步骤实现:1. a kind of micron grating accelerometer test method based on additional quality, it is characterized in that: specifically realize by following steps: 步骤1:获得微米光栅加速度计敏感头的检测输入加速度范围、悬臂梁弹性系数、阻尼以及中心质量块质量;Step 1: Obtain the detection input acceleration range of the sensitive head of the micron grating accelerometer, the elastic coefficient of the cantilever beam, damping and the mass of the central mass; 步骤2:将微米光栅加速度计敏感头安装在测试台面上,同时在微米光栅加速度计的中心质量块上表面设置稳定台;Step 2: Install the sensitive head of the micron grating accelerometer on the test table, and set a stable platform on the upper surface of the central mass of the micron grating accelerometer; 步骤3:选取n个附加质量块,n为自然数,且n>1;Step 3: Select n additional mass blocks, n is a natural number, and n>1; 单块附加质量块的最小质量Mmin需满足:The minimum mass M min of a single additional mass block needs to meet: Mm minmin == mm sthe s 22 -- -- -- (( 11 )) 式(1)中,ms为微米光栅加速度计的灵敏度经换算后得到的对应质量;In formula (1), m s is the corresponding mass obtained after conversion of the sensitivity of the micron grating accelerometer; 单块附加质量块的最大质量Mmax需满足:The maximum mass M max of a single additional mass block needs to meet: Mm maxmax == 22 kk ·· Mm minmin ≤≤ Mm totaltotal 1010 -- -- -- (( 22 )) 式(2)中,k为正整数,k=1、2、3……;Mtotal为n个附加质量块的总质量,Mtotal的选取范围:In formula (2), k is a positive integer, k=1, 2, 3...; M total is the total mass of n additional mass blocks, and the selection range of M total is: Mm totaltotal == aa maxmax ·· mm midmiddle gg -- mm midmiddle -- -- -- (( 33 )) 式(3)中,mmid为微米光栅加速度计中心质量块质量,g为重力加速度;amax为微米光栅加速度计的最大量程;In formula (3), m mid is the mass of the central mass of the micron grating accelerometer, g is the acceleration of gravity; a max is the maximum range of the micron grating accelerometer; 步骤4:将附加质量块放置在稳定台上,每次测试由输入加速度值G为0g开始,在稳定台上逐次增加附加质量块,使微米光栅加速度计的输入加速度值G递增变化,直至微米光栅加速度计到达测量范围上限;且记录每次微米光栅加速度计的输入加速度值G递增变化时,微米光栅加速度计输出的加速度值;Step 4: Place the additional mass on the stable platform, and each test starts with the input acceleration value G being 0g, and gradually increase the additional mass on the stable platform, so that the input acceleration value G of the micron grating accelerometer changes incrementally until micron The grating accelerometer reaches the upper limit of the measurement range; and records the acceleration value output by the micron grating accelerometer each time the input acceleration value G of the micron grating accelerometer changes incrementally; 步骤5:按步骤4中增加附加质量块的顺序逆序逐次去掉稳定台上的附加质量块,使微米光栅加速度计的输入加速度值G递减变化,直至输入加速度值G降回0g;同样记录每次微米光栅加速度计的输入加速度值G递减变化时,微米光栅加速度计输出的加速度值;Step 5: Remove the additional mass blocks on the stable platform in reverse order of the order of adding additional mass blocks in step 4, so that the input acceleration value G of the micron grating accelerometer changes gradually until the input acceleration value G drops back to 0g; record each time When the input acceleration value G of the micron grating accelerometer changes gradually, the acceleration value output by the micron grating accelerometer; 步骤6:在输入加速度值G递增变化与递减变化过程中,取输入加速度值G相同时,微米光栅加速度计的输出加速度值进行求平均运算,得到所选取的输入加速度值对应的微米光栅加速度计输出加速度值的标定值;Step 6: In the process of increasing and decreasing the input acceleration value G, when the input acceleration value G is the same, the output acceleration value of the micron grating accelerometer is averaged to obtain the micron grating accelerometer corresponding to the selected input acceleration value Output the calibration value of the acceleration value; 步骤7:根据步骤6中得到的微米光栅加速度计输出加速度值的标定值,通过最小二乘法,计算得到微米光栅加速度计静态数学模型的系数;Step 7: Calculate the coefficient of the static mathematical model of the micron grating accelerometer according to the calibration value of the micron grating accelerometer output acceleration value obtained in step 6, by the least square method; 步骤8:根据微米光栅加速度计静态数学模型的系数描绘微米光栅加速度计的测试曲线。Step 8: Draw the test curve of the micron grating accelerometer according to the coefficients of the static mathematical model of the micron grating accelerometer. 2.如权利要求1所述一种基于附加质量的微米光栅加速度计测试方法,其特征在于:微米光栅加速度计输入加速度值G递增按照:G0对应质量为0、G1对应质量为Mmin、G2对应质量为2Mmin、G3对应质量为4Mmin、……、Gp对应质量为Mmax;且2倍G1对应质量与G2、G3、…、Gp所对应质量之和,约等于全部附加质量块的质量总和;其中,加速度值G的下角标1、2、3、……、p为递增变化次数。2. a kind of micron grating accelerometer test method based on additional mass as claimed in claim 1, is characterized in that: micron grating accelerometer input acceleration value G increments according to: G 0 corresponding quality is 0, G 1 corresponding quality is M min , G 2 corresponds to a mass of 2M min , G 3 corresponds to a mass of 4M min , ..., G p corresponds to a mass of M max ; and are approximately equal to the sum of the masses of all additional mass blocks; wherein, the subscripts 1, 2, 3, ..., p of the acceleration value G are the number of incremental changes. 3.如权利要求1所述一种基于附加质量的微米光栅加速度计测试方法,其特征在于:所述稳定台的周向上均匀开有导向孔,通过在导向孔中插入导向柱,作为稳定台上下运动的导轨,使稳定台仅具有上下方向的位移。3. a kind of micron grating accelerometer test method based on additional mass as claimed in claim 1, is characterized in that: the circumferential direction of described stable platform evenly has guide hole, by inserting guide post in guide hole, as stable platform The guide rail that moves up and down makes the stable table only have displacement in the up and down direction.
CN201310416339.5A 2013-09-13 2013-09-13 Micron grating accelerometer testing method based on added mass Active CN103543294B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310416339.5A CN103543294B (en) 2013-09-13 2013-09-13 Micron grating accelerometer testing method based on added mass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310416339.5A CN103543294B (en) 2013-09-13 2013-09-13 Micron grating accelerometer testing method based on added mass

Publications (2)

Publication Number Publication Date
CN103543294A CN103543294A (en) 2014-01-29
CN103543294B true CN103543294B (en) 2015-06-10

Family

ID=49966945

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310416339.5A Active CN103543294B (en) 2013-09-13 2013-09-13 Micron grating accelerometer testing method based on added mass

Country Status (1)

Country Link
CN (1) CN103543294B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114324978B (en) * 2021-12-17 2024-10-15 兰州空间技术物理研究所 Ground static calibration method for accelerometer capture range

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5203199A (en) * 1990-10-12 1993-04-20 Teledyne Industries, Inc. Controlled acceleration platform
CN102636665A (en) * 2012-04-26 2012-08-15 中国科学院微电子研究所 High-precision calibration method for accelerometer in attitude and heading reference system without turntable
CN102788887A (en) * 2012-08-23 2012-11-21 北京航空航天大学 Resolution test method for high-precision accelerometers

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110077891A1 (en) * 2009-09-25 2011-03-31 Sirf Technology Holdings, Inc. Accelerometer-only calibration method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5203199A (en) * 1990-10-12 1993-04-20 Teledyne Industries, Inc. Controlled acceleration platform
CN102636665A (en) * 2012-04-26 2012-08-15 中国科学院微电子研究所 High-precision calibration method for accelerometer in attitude and heading reference system without turntable
CN102788887A (en) * 2012-08-23 2012-11-21 北京航空航天大学 Resolution test method for high-precision accelerometers

Also Published As

Publication number Publication date
CN103543294A (en) 2014-01-29

Similar Documents

Publication Publication Date Title
CN100483136C (en) Dual-axis capacitance type micromechanical accelerometer
CN104166015B (en) Based on single chip integrated high accuracy, wide range optics NEMS micro-acceleration gauge
CN103954304B (en) A kind of MEMS of being applied to is used to zero inclined shot and long term changing value method of testing of group
CN103256941A (en) Practical method of high order temperature compensation for MEMS (Micro Electro Mechanical Systems) gyroscope
CN104155054B (en) A kind of frequency domain detection method of the rotary inertia rocking platform based on air supporting
CN102759635A (en) Micro-optical acceleration sensor integrated with grating piezoelectric modulation and detection method thereof
CN103439530B (en) Optical accelerometer
Qiu et al. A miniaturized low-frequency FBG accelerometer based on symmetrical cantilever beam
CN103234729A (en) Video measuring method of pneumatic rigidity and pneumatic damping in conventional wind tunnel force test
CN103543294B (en) Micron grating accelerometer testing method based on added mass
CN103149597A (en) Optical fiber Fabry-Perot interferometer-based gravity gradient measurement method
CN114152380B (en) A fast-response two-stage pendulum device for micronew level thrust test
CN112835294B (en) A control method for active vibration isolation system of cold atom gravimeter
CN115061213A (en) A MEMS relative gravimeter probe and gravimeter based on variable area comb capacitance
WO2020001231A1 (en) Acceleration measuring apparatus and acceleration measuring method therefor
CN104062689A (en) Long cycle perpendicular vibration isolation ocean gravity sensor
CN105444777B (en) A kind of fibre optic gyroscope error testing method under swinging condition
Schetz Direct measurement of skin friction in complex flows
CN109239403B (en) Single-device virtual accelerometer based on time measurement and implementation method thereof
CN108827573A (en) The calibration method of micro-vibration interference source test verifying system
CN205691137U (en) Vibration centrifugal composite test device for inertia type instrument calibration
CN106054615A (en) Vibration isolation method for ultralow-frequency earth-pulse vibration atomic interferometer
Hong et al. A study on double-cantilever miniaturized FBG acceleration sensors for low-frequency vibration monitoring
CN116164823B (en) A liquid level flow rate transmitter with attitude compensation and use method thereof
KR102495893B1 (en) Shock wave test apparatus and method for stress wave force balance

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant