[go: up one dir, main page]

CN103536917B - Use of interferon in treatment of tumor, and related product and method - Google Patents

Use of interferon in treatment of tumor, and related product and method Download PDF

Info

Publication number
CN103536917B
CN103536917B CN201310525752.5A CN201310525752A CN103536917B CN 103536917 B CN103536917 B CN 103536917B CN 201310525752 A CN201310525752 A CN 201310525752A CN 103536917 B CN103536917 B CN 103536917B
Authority
CN
China
Prior art keywords
tumor
interferon
antibody
egfr
cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310525752.5A
Other languages
Chinese (zh)
Other versions
CN103536917A (en
Inventor
杨选明
傅阳心
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shihuida Pharmaceuticals Group (JILIN) Ltd
Original Assignee
Suzhou Ding Fu Target Spot Bioisystech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Ding Fu Target Spot Bioisystech Co Ltd filed Critical Suzhou Ding Fu Target Spot Bioisystech Co Ltd
Priority to CN201310525752.5A priority Critical patent/CN103536917B/en
Publication of CN103536917A publication Critical patent/CN103536917A/en
Application granted granted Critical
Publication of CN103536917B publication Critical patent/CN103536917B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)

Abstract

The invention relates to use of interferon in treatment of a tumor, and related products and a method, particularly relates to the field of tumor treatment, and especially aims at overcoming the resistance of the tumor on an antibody therapy. Particularly, the invention relates to application, and related product and method for inhibiting growth and recurrence of the tumor and causing tumor regression by combined utilization of interferon, especially I-type interferon, and a compound for blocking up a programmed death 1 or programmed death ligand (PD-1/PDL) passage.

Description

干扰素在治疗肿瘤中的用途及相关的产品和方法Use of interferon in the treatment of tumors and related products and methods

技术领域technical field

本发明涉及肿瘤治疗领域,特别是克服肿瘤对抗体疗法的抗性。具体而言,本发明涉及通过干扰素、例如I型干扰素以及其与阻断PD-1(程序性死亡因子,Programmed death-1)/PDL(程序性死亡因子配体,PD-1Ligand)通路的化合物的联合使用而抑制肿瘤的生长与复发,并引起肿瘤消退。The invention relates to the field of tumor therapy, in particular to overcoming tumor resistance to antibody therapy. Specifically, the present invention relates to blocking PD-1 (programmed death-1)/PDL (programmed death ligand, PD-1Ligand) pathway by interferon, such as type I interferon and its The combination of the compounds inhibits tumor growth and recurrence and causes tumor regression.

背景技术Background technique

目前公认的观点是,靶向致癌性受体的抗体(例如西妥昔单抗和赫塞汀)具有抗肿瘤效果,因为它们能够阻断生长信号诱导、使细胞周期停止和/或通过凋亡或抗体依赖性细胞介导的细胞毒性作用(ADCC)来诱导细胞死亡。然而,关于抗体介导的抗肿瘤机制的大多数研究是基于来自体外培养或体内异种移植模型的人肿瘤实验,它们没有包括获得性免疫应答的贡献。最近,使用免疫活性宿主进行的研究表明,通过抗-CD20,抗-Neu和抗-EGFR抗体疗法带来的持久抗肿瘤保护的确依赖于细胞免疫应答(Abes等人,2010;Park等人,2010;Yang等人,2013)。然而,仍未确定抗体治疗是否以及如何活化T细胞应答。It is currently accepted that antibodies targeting oncogenic receptors, such as cetuximab and Herceptin, have antitumor effects because of their ability to block growth signaling induction, cell cycle arrest, and/or through apoptosis or antibody-dependent cell-mediated cytotoxicity (ADCC) to induce cell death. However, most studies on antibody-mediated antitumor mechanisms are based on human tumor experiments from in vitro culture or in vivo xenograft models, which do not include the contribution of adaptive immune responses. More recently, studies using immunocompetent hosts have shown that durable antitumor protection by anti-CD20, anti-Neu and anti-EGFR antibody therapy is indeed dependent on cellular immune responses (Abes et al., 2010; Park et al., 2010 ; Yang et al., 2013). However, it remains undetermined whether and how antibody therapy activates T cell responses.

目前,用于改进抗体的治疗效果的大多数策略着重于增加对肿瘤细胞的细胞毒性。一种策略是将抗体与细胞毒性药物(包括化学治疗剂)相缀合而形成抗体-药物复合体(ADC),与单独的抗体相比这实现了更好的抗肿瘤效果,并且与单独的细胞毒性化学治疗相比,这产生了更小的副作用(Fayad等人,2013;Hurvitz等人,2013;Krop等人,2012)。但是,ADC的长期保护效果仍然未知。也未能清楚地确定在这种治疗的过程中是否也会活化非特异性T细胞,从而增加产生有害的副作用的潜在可能。Currently, most strategies for improving the therapeutic efficacy of antibodies focus on increasing cytotoxicity towards tumor cells. One strategy is to conjugate antibodies to cytotoxic drugs, including chemotherapeutics, to form antibody-drug complexes (ADCs), which achieve better antitumor efficacy than antibodies alone, and compared with This produces fewer side effects compared to cytotoxic chemotherapy (Fayad et al., 2013; Hurvitz et al., 2013; Krop et al., 2012). However, the long-term protective effect of ADCs remains unknown. It is also not clear whether non-specific T cells are also activated during this treatment, increasing the potential for harmful side effects.

与第一代抗体相似,在长期使用ADC之后能够产生宿主抗性。的确,虽然ADC的潜在细胞毒性效果起初引起消退,许多患者经历了复发或产生了转移。对于这种抗性,一种可能的解释是抗体抗性克隆在起初的抗体处理之前或之后产生,从而分别引起原发或获得性的抗性。Similar to first-generation antibodies, host resistance can develop after long-term use of ADCs. Indeed, although the potential cytotoxic effects of ADCs initially caused regressions, many patients experienced relapse or developed metastases. One possible explanation for this resistance is that antibody-resistant clones arose before or after the initial antibody treatment, causing primary or acquired resistance, respectively.

因此,亟需一种新型的抗肿瘤疗法,其能够有效地引起肿瘤的消退并且可以克服肿瘤细胞对于所述疗法的抗性而最终实现对肿瘤的治愈和/或防止肿瘤的复发。Therefore, there is an urgent need for a new type of anti-tumor therapy that can effectively cause tumor regression and overcome the resistance of tumor cells to the therapy so as to finally cure the tumor and/or prevent the recurrence of the tumor.

发明内容Contents of the invention

抗体免疫治疗通过靶向与肿瘤相关的表面标记物而用于治疗癌症已有将近16年(Scott等人,2012)。靶向致癌性受体已被显示是有效的,因为针对这些受体的抗体治疗能够在体外明显地抑制肿瘤细胞生长并且在免疫缺陷型小鼠内的人肿瘤异种移植模型中在体内部分地抑制肿瘤生长(Hynes和Lane,2005;Li等人,2005)。抗体疗法的主要治疗效果起初被归因于通过信号传导直接杀死肿瘤细胞。然而,最近,人们认识到免疫细胞上的Fc受体(FcR)信号传导也是很重要的,因为在小鼠模型中、在体内,当缺乏FcR信号传导时抗体介导的抗肿瘤效果大大降低(Clynes等人,2000),并且FcR多态性与人乳腺癌患者中的临床结果相关(Musolino等人,2008)。这些数据提出了下述可能性:抗体疗法的抗肿瘤效果也取决于由先天性细胞产生的抗体依赖性细胞毒性,以及获得性免疫细胞依赖的免疫反应(ADCC)。Antibody immunotherapy has been used for nearly 16 years to treat cancer by targeting tumor-associated surface markers (Scott et al., 2012). Targeting oncogenic receptors has been shown to be effective, as antibody therapy against these receptors was able to significantly inhibit tumor cell growth in vitro and partially in vivo in human tumor xenograft models in immunodeficient mice Tumor growth (Hynes and Lane, 2005; Li et al., 2005). The primary therapeutic effect of antibody therapy was originally attributed to direct killing of tumor cells through signaling. Recently, however, it has been recognized that Fc receptor (FcR) signaling on immune cells is also important because antibody-mediated antitumor effects are greatly reduced in the absence of FcR signaling in mouse models, in vivo ( Clynes et al., 2000), and FcR polymorphisms are associated with clinical outcome in human breast cancer patients (Musolino et al., 2008). These data raise the possibility that the antitumor efficacy of antibody therapy also depends on antibody-dependent cellular cytotoxicity produced by innate cells, as well as acquired immune cell-dependent immune responses (ADCC).

虽然有上面所示的抗体介导的抗肿瘤效果,对于实现有效的针对癌症的抗体疗法仍存在若干障碍。首先,许多患者在经历了长期和昂贵的治疗后仍对主要的抗体疗法会产生抗性。例如,80–90%的结肠癌患者对西妥昔单抗(抗EGFR)有抗性(Bardelli和Siena,2010),66–88%的乳腺癌患者对赫塞汀(抗-HER2)有抗性(Cobleigh等人,1999)。第二,在长期的治疗之后,起初对抗体疗法有响应的患者中的肿瘤细胞很可能产生出天然的或获得性的抗体抗性克隆,这是癌症复发的主要原因。大多数的研究关注的是致癌性信号传导的内在抗性,例如被靶向的致癌基因中的突变或与促成抗体抗性的致癌通路相关的基因中的突变。在下列肿瘤细胞中能够发生对西妥昔单抗的原发性及获得性抗性:含有EGFR本身、或者下游的介导子KRAS和BRAF中的突变的肿瘤细胞,以及含有经扩增的Her2(EGFR的二聚化伴侣)的肿瘤细胞(Bardelli和Siena,2010;Misale等人,2012;Sharma等人,2007;Wheeler等人,2008;Yonesaka等人,2011)。为了增强通过抗体治疗杀伤肿瘤细胞的效力以及降低宿主的抗性,开发了第二代基于抗体的治疗,其是由与某些抗体缀合的细胞毒性药物或者放射性物质组成的,以增强直接的杀伤(Fayad等人,2013;Hurvitz等人,2013;Krop等人,2012)。另一种改进直接细胞毒性效应的策略涉及靶向不同的表位或甚至相关的受体(Bostrom等人,2009)。目前,克服宿主中对抗体的抗性的主要策略是开发靶向肿瘤细胞中经突变的致癌基因或经突变的与致癌通路相关的基因的药物。例如,BRAF抑制剂被用于靶向西妥昔单抗抗性肿瘤(Yoon等人,2011)。Despite the antibody-mediated anti-tumor effects shown above, several obstacles remain to achieve effective antibody therapy against cancer. First, many patients become resistant to primary antibody therapies after long and expensive treatments. For example, 80–90% of colon cancer patients are resistant to cetuximab (anti-EGFR) (Bardelli and Siena, 2010), and 66–88% of breast cancer patients are resistant to Herceptin (anti-HER2). Sex (Cobleigh et al., 1999). Second, after long-term treatment, tumor cells in patients who initially respond to antibody therapy are likely to develop natural or acquired antibody-resistant clones, which are a major cause of cancer recurrence. Most studies have focused on intrinsic resistance to oncogenic signaling, such as mutations in targeted oncogenes or genes associated with oncogenic pathways that contribute to antibody resistance. Primary and acquired resistance to cetuximab can occur in tumor cells containing mutations in EGFR itself, or in the downstream mediators KRAS and BRAF, and in tumor cells containing amplified Her2 (Dimerization partner of EGFR) in tumor cells (Bardelli and Siena, 2010; Misale et al., 2012; Sharma et al., 2007; Wheeler et al., 2008; Yonesaka et al., 2011). In order to enhance the efficacy of killing tumor cells by antibody therapy and reduce host resistance, second-generation antibody-based therapy has been developed, which consists of cytotoxic drugs or radioactive substances conjugated to certain antibodies to enhance direct killing (Fayad et al., 2013; Hurvitz et al., 2013; Krop et al., 2012). Another strategy to improve direct cytotoxic effects involves targeting different epitopes or even related receptors (Bostrom et al., 2009). Currently, the main strategy to overcome resistance to antibodies in the host is to develop drugs targeting mutated oncogenes or mutated genes associated with oncogenic pathways in tumor cells. For example, BRAF inhibitors have been used to target cetuximab-resistant tumors (Yoon et al., 2011).

综上所述,对抗体的抗性是对于基于抗体的癌症疗法的主要挑战。而目前克服所述对于抗体的抗性的策略着重于改进:1)通过抗体和细胞毒性药物缀合进行的对肿瘤细胞的直接杀伤,或者2)通过非特异性抗CD3活化进行的对肿瘤细胞的双特异性T细胞结合子增强靶向T细胞杀伤。由于肿瘤细胞的异质性以及它们所处的环境,这些直接杀伤的策略不能靶向所有的肿瘤细胞,并且最终仍会引起抗体抗性。Taken together, resistance to antibodies is a major challenge for antibody-based cancer therapies. Current strategies to overcome such resistance to antibodies focus on improving either: 1) direct tumor cell killing by antibody and cytotoxic drug conjugation, or 2) tumor cell killing by nonspecific anti-CD3 activation. Bispecific T cell binders enhance targeted T cell killing. Due to the heterogeneity of tumor cells and their environment, these direct killing strategies cannot target all tumor cells and still eventually cause antibody resistance.

为了探求更有效的策略来改进抗体免疫疗法,需要鉴别关键性的分子,它们使抗体介导的抗肿瘤应答与所引起的获得性免疫抗肿瘤应答相联系。In order to find more effective strategies to improve antibody immunotherapy, it is necessary to identify the key molecules that link the antibody-mediated anti-tumor response to the elicited adaptive immune anti-tumor response.

干扰素(IFN)是一种广谱抗病毒剂,其可抑制病毒复制,同时还可增强自然杀伤细胞(NK细胞)、巨噬细胞和T淋巴细胞的活力,从而起到免疫调节作用,并增强抗病毒能力。干扰素是一组具有多种功能的活性蛋白质(主要是糖蛋白),是一种由单核细胞和淋巴细胞产生的细胞因子。它们在同种细胞上具有广谱的抗病毒、影响细胞生长,以及分化、调节免疫功能等多种生物活性。目前通用的分类方法将干扰素分为三型:Ⅰ型有IFN-α和IFN-β,其中IFN-α有二十余个亚型,IFN-β仅有一个亚型。I型干扰素具有抑制病毒复制、抗寄生虫、抑制多种细胞增殖、刺激免疫细胞的杀伤活性、参与免疫调节、抗肿瘤等作用;Ⅱ型:只有IFN-γ,且只有一种亚型,除具有抗病毒、抗增殖活性外,其主要生物学活性为免疫调节作用;Ⅲ型:即IFN-λ1(IL-29)、IFN-λ2(IL-28a)和IFN-λ(IL-28b)。IFN-ω属于IFN-α家族,其结构和大小与其它IFN-α稍有差异,但抗原性有较大的不同。Interferon (IFN) is a broad-spectrum antiviral agent, which can inhibit virus replication, and at the same time enhance the activity of natural killer cells (NK cells), macrophages and T lymphocytes, thereby playing an immunomodulatory role, and Enhance antiviral ability. Interferon is a group of active proteins (mainly glycoproteins) with multiple functions, and is a cytokine produced by monocytes and lymphocytes. They have broad-spectrum anti-virus, affect cell growth, differentiation, regulation of immune function and other biological activities on the same kind of cells. The current general classification method divides interferon into three types: Type I includes IFN-α and IFN-β, of which IFN-α has more than 20 subtypes, and IFN-β has only one subtype. Type I interferon has the functions of inhibiting virus replication, anti-parasite, inhibiting the proliferation of various cells, stimulating the killing activity of immune cells, participating in immune regulation, and anti-tumor; type II: only IFN-γ, and only one subtype, In addition to antiviral and antiproliferative activities, its main biological activity is immune regulation; Type III: IFN-λ1 (IL-29), IFN-λ2 (IL-28a) and IFN-λ (IL-28b) . IFN-ω belongs to the IFN-α family, and its structure and size are slightly different from other IFN-α, but the antigenicity is quite different.

最近,发现干扰素(IFN)(例如I型干扰素)的增加与抗癌的临床免疫应答有利地相关(Fuertes等人,2011)。此外,干扰素信号传导对于在自发性肿瘤排斥和各种抗肿瘤疗法的过程中引发抗肿瘤T细胞应答是至关重要的(Burnette等人,2011;Diamond等人,2011;Fuertes等人,2011;Stagg等人,2011)。这些数据表明干扰素对于引发针对肿瘤细胞的抗肿瘤特异性T细胞应答是关键的。也报道了干扰素在病毒感染的过程中活化记忆T细胞(Kohlmeier等人,2010)。然而,至今为止,干扰素被谨慎地用于临床中且效果有限(Trinchieri,2010)。的确,人们对这类细胞因子的作用理解得非常有限,因为其在不同的疾病模型中可能作为免疫活化剂或者免疫抑制剂起作用(Gonzalez-Navajas等人,2012),并且潜在的严重副作用伴随短的半衰期限制了其在肿瘤治疗中的应用。Recently, an increase in interferons (IFNs), such as type I interferons, was found to correlate favorably with clinical immune responses against cancer (Fuertes et al., 2011). Furthermore, interferon signaling is critical for eliciting antitumor T cell responses during spontaneous tumor rejection and various antitumor therapies (Burnette et al., 2011; Diamond et al., 2011; Fuertes et al., 2011 ; Stagg et al., 2011). These data suggest that interferons are critical for eliciting antitumor-specific T cell responses against tumor cells. It has also been reported that interferon activates memory T cells during viral infection (Kohlmeier et al., 2010). However, to date, interferon has been used cautiously and with limited efficacy in the clinic (Tnchieri, 2010). Indeed, the role of this class of cytokines is very poorly understood, as they may act as immune activators or immunosuppressants in different disease models (Gonzalez-Navajas et al., 2012), and potentially serious side effects accompany The short half-life limits its application in tumor therapy.

另一方面,在抗体响应性肿瘤模型中,在ADCC过程中或由应激的抗体结合肿瘤细胞释放的免疫活化性分子能够有效地活化抗原呈递细胞(APC),增强其诱导细胞毒性T细胞应答的能力。然而,这种免疫应答是弱的和瞬时的,特别是当肿瘤已建立时。在抗体抗性肿瘤模型中,需要其它的策略来再活化被免疫抑制性肿瘤微环境抑制的APC或T细胞。当前的发明人最近观察到了将CpG与西妥昔单抗偶联极大地增强了其治疗效果,推测这是通过活化肿瘤微环境内的树突细胞和激发随后的获得性免疫应答(Yang等人,2013)。这些研究表明了设计用于推动获得性免疫的活化的方法对于基于抗体的癌症疗法的长期成功是重要的、甚至可以是关键的。On the other hand, in antibody-responsive tumor models, immune-activating molecules released during ADCC or by stressed antibody-bound tumor cells can effectively activate antigen-presenting cells (APCs) and enhance their induction of cytotoxic T-cell responses. Ability. However, this immune response is weak and transient, especially when tumors are established. In antibody-resistant tumor models, additional strategies are needed to reactivate APCs or T cells suppressed by the immunosuppressive tumor microenvironment. The present inventors have recently observed that conjugating CpG to cetuximab greatly enhances its therapeutic effect, presumably by activating dendritic cells within the tumor microenvironment and eliciting a subsequent adaptive immune response (Yang et al. , 2013). These studies suggest that approaches designed to drive activation of adaptive immunity are important, and may even be critical, for the long-term success of antibody-based cancer therapies.

作为对这一想法的支持,最近的临床实验使用了抗体来阻断T细胞上的共抑制性信号,这包括CTLA-4,PD-1和PD-L1。B7-CD28家族有许多能削弱T细胞应答并促进T细胞耐受的抑制性信号通路,其中近年发现的PD-1/PD-L通路由于独特的抑制功能而引人瞩目,被认为是影响自身免疫和感染性疾病慢性化的重要因素,该通路包括PD-1与它的两个配体:PD-L1和PD-L2。PD-1(programmed cell death1),也称CD279,属于免疫球蛋白超家族成员,含有两个酪氨酸信号基序的胞质区,其一组成免疫受体酪氨酸抑制基序(immunoreceptor tyrosine-basedinhibition motif,ITIM),另一为免疫受体酪氨酸交换基序(Immunoreceptor tyrosine-based switch motif,ITSM)。ITSM募集磷酸酶SHP-1和SHP-2,使TCR或BCR传递的效应信号发生去磷酸化,同时,PD-1信号降低CD28介导的信号,抑制Akt激酶磷酸化、糖代谢及Bcl-XL的表达。PD-1表达较为广泛,胸腺发育阶段PD-1主要表达于双阴性细胞上,活化后的外周CD4+、CD8+T细胞、B细胞和单核细胞可以诱导表达,NK-T细胞上表达水平较低。In support of this idea, recent clinical trials have used antibodies to block co-inhibitory signals on T cells, including CTLA-4, PD-1, and PD-L1. The B7-CD28 family has many inhibitory signaling pathways that can weaken T cell responses and promote T cell tolerance. Among them, the PD-1/PD-L pathway discovered in recent years has attracted attention due to its unique inhibitory function, and is considered to affect the immune system. An important factor in the chronicity of immune and infectious diseases, this pathway includes PD-1 and its two ligands: PD-L1 and PD-L2. PD-1 (programmed cell death1), also known as CD279, is a member of the immunoglobulin superfamily and contains two cytoplasmic regions of tyrosine signaling motifs, one of which forms the immunoreceptor tyrosine inhibitory motif (immunoreceptor tyrosine -basedinhibition motif, ITIM), and the other is Immunoreceptor tyrosine-based switch motif (ITSM). ITSM recruits phosphatases SHP-1 and SHP-2 to dephosphorylate the effector signals transmitted by TCR or BCR. At the same time, PD-1 signals reduce CD28-mediated signals, inhibiting Akt kinase phosphorylation, glucose metabolism and Bcl-XL expression. The expression of PD-1 is relatively extensive, and PD-1 is mainly expressed on double-negative cells in the developmental stage of the thymus, and can be induced to express in peripheral CD4+, CD8+ T cells, B cells and monocytes after activation, and the expression level in NK-T cells is relatively low. Low.

PD-1有PD-L1和PD-L2两种配体,PD-L1较PD-L2的表达广泛,而PD-L2的亲和力是PD-L1的2~6倍。PD-L2(也称B7-DC或CD273)在树突状细胞(dendritic cells,DC)、巨噬细胞和培养的骨髓源肥大细胞上可诱导表达;而PD-L1(也称B7-H1或CD274)在鼠类T细胞、B细胞、树突细胞、巨噬细胞、间充质干细胞和培养的骨髓源肥大细胞组成性表达,活化后表达增强,人PD-L1的组成性表达水平较鼠类低。PD-L1还表达于许多的非造血类型的细胞上,在免疫豁免部位,如眼和胎盘也有表达,PD-L1在这些组织中可能调节自身反应性T细胞或B细胞和炎性应答。PD-1 has two ligands, PD-L1 and PD-L2. PD-L1 is more widely expressed than PD-L2, and the affinity of PD-L2 is 2-6 times that of PD-L1. PD-L2 (also known as B7-DC or CD273) can be induced to express on dendritic cells (dendritic cells, DC), macrophages and cultured bone marrow-derived mast cells; while PD-L1 (also known as B7-H1 or CD274) is constitutively expressed in murine T cells, B cells, dendritic cells, macrophages, mesenchymal stem cells and cultured bone marrow-derived mast cells, and the expression is enhanced after activation. The constitutive expression level of human PD-L1 is higher than that of mouse class low. PD-L1 is also expressed on many non-hematopoietic cell types, and is also expressed in immune privileged sites, such as the eye and placenta, where PD-L1 may regulate autoreactive T cells or B cells and inflammatory responses.

最近的研究显示出逆转T细胞抑制(例如,通过阻断PD-1/PDL)是改进治疗效果的有利方式,但是令人遗憾地,这也带来了严重的副作用(Brahmer等人,2012;Topalian等人,2012;Weber,2007)。并且,临床数据显示出,对于PD-1阻断的应答率在所选的患者库中仍然是相对低的(15-25%),并且这种应答在很大程度上取决于PD-L1在肿瘤组织中的表达以及起初的淋巴细胞浸润(Topalian等人,2012)。因此,癌症免疫疗法的关键性问题是如何进一步逆转所述微环境中的免疫抑制以重新活化特异性的抗肿瘤T细胞应答,从而实现对基于抗体的免疫疗法的更高的应答率和长期的有效性。Recent studies have shown that reversing T cell suppression (e.g., by blocking PD-1/PDL) is a favorable way to improve therapeutic efficacy, but unfortunately, this also comes with serious side effects (Brahmer et al., 2012; Topalian et al., 2012; Weber, 2007). Moreover, clinical data show that the response rate to PD-1 blockade is still relatively low (15-25%) in the selected patient pool, and this response is largely dependent on the presence of PD-L1 in Expression in tumor tissue and initial lymphocyte infiltration (Topalian et al., 2012). Therefore, the key issue of cancer immunotherapy is how to further reverse the immunosuppression in the microenvironment to reactivate the specific anti-tumor T cell response, so as to achieve a higher response rate and long-term efficacy of antibody-based immunotherapy. effectiveness.

所以,急需新一代的基于抗体的药物以更有效地靶向肿瘤组织和减少系统性的副作用。Therefore, a new generation of antibody-based drugs is urgently needed to more effectively target tumor tissues and reduce systemic side effects.

本发明中表明了联合干扰素(例如I型干扰素)的抗体疗法(例如抗体-干扰素β)不直接靶向肿瘤细胞,因为干扰素受体-缺陷性小鼠中的干扰素受体-充分性肿瘤对抗体-干扰素β没有响应。此外,骨髓移植(BMT)实验显示出,需要在源自骨髓的细胞上表达干扰素受体,这表明其中不涉及干扰素的抗血管生成效果。为了确定ADCC与获得性免疫应答的相对贡献,发明人用抗体-干扰素β处理了免疫缺陷性Rag-1KO小鼠,并且观察到了在缺乏获得性免疫细胞的情况下,抗体-干扰素β完全不能抑制肿瘤生长。虽然T细胞和树突细胞均能够响应于干扰素β,发明人进一步确定了树突细胞是必需的表达干扰素受体的细胞,因为具有I型干扰素受体-缺陷性树突细胞的小鼠对于抗体-干扰素β完全没有响应,而具有I型干扰素受体-缺陷性T细胞的小鼠仅显示出略微降低的肿瘤抑制。此外,来自经抗体干扰素β处理的小鼠的树突细胞能够直接活化肿瘤特异性T细胞,这表明联合了干扰素(如I型干扰素)的抗体疗法(例如抗体-干扰素β)处理增加了树突细胞抗原呈递和T细胞活化。因此,树突细胞很有可能直接响应于联合了干扰素的抗体疗法(例如抗体-干扰素β)以增加抗原呈递和T细胞活化,而所述抗原呈递和T细胞活化重新激活T细胞。It is shown in the present invention that antibody therapy (such as antibody-interferon beta) combined with interferon (such as type I interferon) does not directly target tumor cells because the interferon receptor-interferon receptor in deficient mice- Adequate tumors do not respond to antibody-interferon beta. Furthermore, bone marrow transplantation (BMT) experiments have shown that interferon receptors are required to be expressed on bone marrow-derived cells, suggesting that the anti-angiogenic effects of interferon are not involved. To determine the relative contribution of ADCC to the adaptive immune response, the inventors treated immunodeficient Rag-1 KO mice with antibody-interferon β and observed that in the absence of adaptive immune cells, antibody-interferon β completely Cannot inhibit tumor growth. Although both T cells and dendritic cells are capable of responding to interferon beta, the inventors further determined that dendritic cells are essential interferon receptor-expressing cells because small cells with type I interferon receptor-deficient dendritic cells Mice were completely unresponsive to the antibody-interferon beta, whereas mice with type I interferon receptor-deficient T cells showed only slightly reduced tumor suppression. Furthermore, dendritic cells from mice treated with antibody interferon beta were able to directly activate tumor-specific T cells, suggesting that treatment with antibody therapy (e.g. antibody-interferon beta) combined with interferon (e.g. type I interferon) Increased dendritic cell antigen presentation and T cell activation. Thus, it is likely that dendritic cells respond directly to antibody therapy combined with interferon (eg, antibody-interferon beta) to increase antigen presentation and T cell activation, which reactivates T cells.

在本发明中,发明人还显示了抗体处理本身能够诱导干扰素(例如I型干扰素)产生,其促成树突细胞活化以及随后产生抗肿瘤T细胞免疫性。这还表明了肿瘤微环境中的主要抑制性细胞类型是树突细胞而非T细胞,因为当I型干扰素受体在树突细胞中选择性缺失时,联合了I型干扰素的抗体疗法(例如抗体-干扰素β融合蛋白)的治疗效果就消失了。因此,除了靶向T细胞之外还靶向树突细胞能够进一步增加抗体疗法的效力。In the present invention, the inventors have also shown that antibody treatment itself is capable of inducing the production of interferon (eg, type I interferon), which contributes to dendritic cell activation and subsequent anti-tumor T cell immunity. This also suggests that the main suppressor cell type in the tumor microenvironment is dendritic cells rather than T cells, as antibody therapy combined with type I interferon when type I interferon receptors are selectively deleted in dendritic cells (such as antibody-interferon beta fusion protein) the therapeutic effect disappeared. Therefore, targeting dendritic cells in addition to T cells can further increase the efficacy of antibody therapy.

为了平衡免疫介导的损伤与正在进行的免疫应答,在免疫活化之后宿主免疫性通常诱导抑制性的信号传导。在这之中,肿瘤组织中的PD-L1上调作为癌症免疫治疗过程中的一种保护性机制是最值得注意的,而发明人在用联合干扰素(如I型干扰素)的抗体疗法进行处理之后观察到了这个现象。的确,阻断PD-L1/PD-1通路进一步增强了抗肿瘤效果并清除了肿瘤。这对于PD-L1/PD-1是特异性的,因为当将联合I型干扰素的抗体疗法与阻断来自T细胞上两种其它的重要抑制性分子(CTLA-4或BTLA)的信号传导的抗体相组合时,没有观察到协同效果。这清楚地表明了靶向由主动免疫疗法特异性地诱导的抑制性通路能够指导未来的临床治疗。To balance immune-mediated damage with an ongoing immune response, host immunity often induces inhibitory signaling following immune activation. Of these, upregulation of PD-L1 in tumor tissue is the most notable as a protective mechanism during cancer immunotherapy, and the inventors are working with antibody therapy combined with interferon (such as type I interferon) This phenomenon was observed after treatment. Indeed, blocking the PD-L1/PD-1 pathway further enhanced the antitumor effect and cleared the tumor. This is specific for PD-L1/PD-1 because when combining antibody therapy with type I interferon with blocking signaling from two other important inhibitory molecules on T cells (CTLA-4 or BTLA) No synergistic effect was observed when the antibodies were combined. This clearly demonstrates that targeting inhibitory pathways specifically induced by active immunotherapy could guide future clinical treatments.

从上文中的分析可以了解到,优先靶向致癌性受体的抗体(Ab)越来越多地被用于癌症治疗,但是在长期和昂贵的治疗之后,肿瘤常常发展出对这些抗体的抗性。当前的发明人用干扰素(例如I型干扰素,如干扰素β)来武装抗体,作为新一代的生物制剂,其远远优越于第一代的抗体疗法并独立于各种抵抗机制而被用于控制对抗体疗法有抗性的肿瘤。这种新的策略是通过重新活化和重新桥接被抑制的先天性和获得性免疫而控制对抗体的抗性。从机理上来讲,抗体与I型干扰素的联合应用主要靶向肿瘤内的树突细胞,其通过增加肿瘤相关微环境中的交叉诱导而重新活化细胞毒性T细胞。此外,在肿瘤内阻断由抗体与I型干扰素的联合应用而诱导的PD-1/PD-L1通路的信号传导进一步克服了阻碍治疗的抗性并且完全清除了更大的已建立的肿瘤。因此,本发明建立了新一代基于抗体的免疫疗法,其能够清除对抗体有抗性的肿瘤。From the above analysis, it can be understood that antibodies (Abs) that preferentially target oncogenic receptors are increasingly used in cancer therapy, but after long-term and expensive treatment, tumors often develop resistance to these antibodies. sex. The present inventors have armed antibodies with interferons (e.g. type I interferons, such as interferon beta) as a new generation of biologics that are far superior to first generation antibody therapies and independent of various resistance mechanisms. For the control of tumors resistant to antibody therapy. This novel strategy is to control antibody resistance by reactivating and rebridging suppressed innate and acquired immunity. Mechanistically, the combination of antibodies and type I interferons primarily targets intratumoral dendritic cells, which reactivate cytotoxic T cells by increasing cross-induction in the tumor-associated microenvironment. Furthermore, intratumoral blockade of PD-1/PD-L1 pathway signaling induced by the combination of antibodies with type I interferons further overcomes resistance that hinders therapy and completely clears larger established tumors . Thus, the present invention establishes a new generation of antibody-based immunotherapy capable of eradicating antibody-resistant tumors.

因此,本发明的新一代基于免疫的抗体治疗能够通过重新激活肿瘤内的先天性和获得性免疫细胞并产生靶向多个肿瘤突变抗原的特异性T细胞应答而克服上文提及的使用抗体疗法的问题。因此,这种新的策略可能能够清除抗体不能直接靶向的肿瘤细胞。Therefore, the new generation of immune-based antibody therapy of the present invention is able to overcome the above-mentioned use of antibodies by reactivating innate and adaptive immune cells in tumors and generating specific T cell responses targeting multiple tumor mutant antigens. The problem of therapy. Therefore, this new strategy may be able to eliminate tumor cells that antibodies cannot directly target.

在另外的方面,PD-1/PD-L通路不仅在调节自身耐受中发挥重要作用,在抗微生物感染免疫中也有关键作用。许多引起慢性感染的微生物可能大多利用PD-1/PD-L通路削弱抗感染免疫,并促进持续感染。与急性感染或疫苗接种后产生强力的效应和记忆性CD8+T细胞不同,在慢性病毒感染时,病毒特异性CD8+T细胞的功能通常都会减弱。在慢性感染模型中,如小鼠LCMV感染或灵长类SIV感染,或HIV、HBV、HCV等病毒感染,通常可以观察到无功能的病毒特异性CD8+T细胞持续存在,这一现象称作耗竭(exhaustion),T细胞耗竭代表一系列免疫缺陷。随病毒载量的升高,病毒特异性T细胞的功能受损更加严重,增殖和产生IL-2的能力在早期即消失,产生效应性细胞因子和溶细胞的功能在后期消失。On the other hand, the PD-1/PD-L pathway not only plays an important role in regulating self-tolerance, but also plays a key role in immunity against microbial infection. Many microorganisms that cause chronic infection may mostly use the PD-1/PD-L pathway to weaken anti-infection immunity and promote persistent infection. Unlike acute infection or vaccination, which produce potent effector and memory CD8+ T cells, the function of virus-specific CD8+ T cells is usually weakened during chronic viral infection. In chronic infection models, such as mouse LCMV infection or primate SIV infection, or HIV, HBV, HCV and other viral infections, the persistence of non-functional virus-specific CD8+ T cells can usually be observed, a phenomenon known as Exhaustion (exhaustion), T cell exhaustion represents a series of immune deficiencies. With the increase of viral load, the function of virus-specific T cells is more seriously impaired, the ability to proliferate and produce IL-2 disappears in the early stage, and the function to produce effector cytokines and cytolysis disappears in the later stage.

与此同时,干扰素(IFN)作为一种广谱抗病毒剂,也被显示能够抑制病毒的复制;同时还可增强自然杀伤细胞(NK细胞)、巨噬细胞和T淋巴细胞的活力,从而起到免疫调节作用,并增强抗病毒能力。因而,根据本发明还可以了解到,联合使用干扰素(例如I型干扰素,如干扰素β),特别是与抗体相结合(例如融合,特别是以融合蛋白的形式存在)的干扰素以及阻断PD-1/PD-L通路的信号传导的试剂(例如抗PDL1抗体)也可被用于治疗微生物感染、病毒感染和/或其它的传染性疾病。At the same time, interferon (IFN), as a broad-spectrum antiviral agent, has also been shown to be able to inhibit the replication of viruses; at the same time, it can also enhance the viability of natural killer cells (NK cells), macrophages and T lymphocytes, thereby It plays an immune regulatory role and enhances antiviral ability. Therefore, according to the present invention, it can also be understood that the combined use of interferon (such as type I interferon, such as interferon beta), especially interferon combined with antibodies (such as fusion, especially in the form of fusion protein) and Agents that block signaling of the PD-1/PD-L pathway (eg, anti-PDL1 antibodies) can also be used to treat microbial infections, viral infections, and/or other infectious diseases.

因此,本发明的一个方面涉及干扰素,如I型干扰素,例如IFNβ或IFNα5用于制备药物的用途,所述药物用于克服肿瘤对于抗体疗法的抗性。Accordingly, one aspect of the invention relates to the use of an interferon, such as a type I interferon, eg IFNβ or IFNα5, for the manufacture of a medicament for overcoming tumor resistance to antibody therapy.

在一个实施方案中,所述干扰素(如I型干扰素)与结合肿瘤相关抗原的靶向部分(例如抗体)相连(例如形成融合蛋白),其中所述靶向部分与所述干扰素直接相连或通过连接子相连。在一个具体的实施方案中,所述靶向部分位于所述干扰素的N端。在另一个具体的实施方案中,所述靶向部分位于所述干扰素的C端。在一个具体的实施方案中,所述干扰素可以与两个或两个以上的所述靶向部分相连,从而形成多特异性(例如双特异性)分子(如多特异性融合蛋白,如双特异性融合蛋白)。In one embodiment, the interferon (e.g., type I interferon) is linked (e.g., to form a fusion protein) to a targeting moiety (e.g., an antibody) that binds a tumor-associated antigen, wherein the targeting moiety is directly linked to the interferon. Linked or linked via a linker. In a specific embodiment, said targeting moiety is located at the N-terminus of said interferon. In another specific embodiment, said targeting moiety is located at the C-terminus of said interferon. In a specific embodiment, the interferon can be linked to two or more of the targeting moieties to form a multispecific (eg bispecific) molecule (eg multispecific fusion protein, eg bispecific specific fusion protein).

在所述干扰素与所述靶向部分通过连接子相连而形成融合蛋白的情形中,所述连接子可以包含任意适当长度的氨基酸序列,例如,所述连接子可以包含1-10、1-20、1-30或更多个氨基酸(或由其组成),例如所述连接子可以包含1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31或更多个氨基酸,或由所述氨基酸组成。In the case where the interferon and the targeting moiety are connected by a linker to form a fusion protein, the linker may comprise amino acid sequences of any suitable length, for example, the linker may comprise 1-10, 1- 20, 1-30 or more amino acids (or consist thereof), for example the linker may comprise 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 or more amino acids, or consist of said amino acids.

在具体的实施方案中,所述靶向部分为抗体,例如抗EGFR抗体或抗Neu抗体。In specific embodiments, the targeting moiety is an antibody, such as an anti-EGFR antibody or an anti-Neu antibody.

在其它的具体实施方案中,所述肿瘤为恶性肿瘤,例如恶性的固体肿瘤,其包括例如乳腺癌,肺癌,前列腺癌,结肠癌,皮肤癌,头颈癌,淋巴瘤或黑色素瘤。In other specific embodiments, the tumor is a malignant tumor, such as a malignant solid tumor including, for example, breast cancer, lung cancer, prostate cancer, colon cancer, skin cancer, head and neck cancer, lymphoma or melanoma.

在另一个方面,本发明涉及干扰素(例如I型干扰素,如IFN-β或IFNα5)与阻断PD-1/PDL信号传导通路的化合物(例如抗体,如抗PD1或PD-L1的拮抗性抗体)共同用于制备药物(例如药物试剂盒)的用途,其中所述药物用于治疗肿瘤(例如恶性的固体肿瘤,特别是乳腺癌,肺癌,前列腺癌,结肠癌,皮肤癌,头颈癌,淋巴瘤或黑色素瘤),例如用于克服肿瘤对于抗体疗法的抗性。其中,所述干扰素与所述阻断PD-1/PDL信号传导通路的化合物在所述药物中可以不相互混合的形式彼此独立存在,或以不影响彼此效力的方式混合存在。In another aspect, the invention relates to the antagonism of interferon (e.g. type I interferon, such as IFN-β or IFNα5) with a compound that blocks the PD-1/PDL signaling pathway (e.g. antibody, such as anti-PD1 or PD-L1 Antibodies) for the preparation of medicines (such as pharmaceutical kits), wherein the medicines are used for the treatment of tumors (such as malignant solid tumors, especially breast cancer, lung cancer, prostate cancer, colon cancer, skin cancer, head and neck cancer , lymphoma or melanoma), for example to overcome tumor resistance to antibody therapy. Wherein, the interferon and the compound blocking the PD-1/PDL signal transduction pathway may exist independently of each other in a form not mixed with each other in the drug, or may exist in admixture in a manner that does not affect each other's efficacy.

在一个具体的实施方案中,上述对于抗体疗法有抗性的肿瘤或携带所述肿瘤的宿主在下列一项或多项中有缺陷:1)干扰素(如I型干扰素),例如干扰素α5或干扰素β的表达和/或功能;2)干扰素受体(如I型干扰素受体)的表达和/或功能,特别是树突细胞上的干扰素受体的表达和/或功能;3)树突细胞的交叉呈递以及由此产生的抗肿瘤细胞毒性T细胞。In a specific embodiment, the above-mentioned tumor resistant to antibody therapy or the host carrying the tumor is deficient in one or more of the following: 1) interferon (such as type I interferon), such as interferon Expression and/or function of α5 or interferon β; 2) expression and/or function of interferon receptors (such as type I interferon receptors), especially the expression and/or function of interferon receptors on dendritic cells Function; 3) Cross-presentation of dendritic cells and the resulting anti-tumor cytotoxic T cells.

其中,在具体的实施方案中,所述干扰素(如I型干扰素)可以与结合肿瘤相关抗原的靶向部分(例如抗体)相连(例如形成融合蛋白),其中所述靶向部分与所述干扰素直接相连或通过连接子相连。在一个具体的实施方案中,所述靶向部分位于所述干扰素的N端。在另一个具体的实施方案中,所述靶向部分位于所述干扰素的C端。在一个具体的实施方案中,所述干扰素可以与两个或两个以上的所述靶向部分相连,从而形成多特异性(例如双特异性)分子(如多特异性融合蛋白,如双特异性融合蛋白)。Among them, in a specific embodiment, the interferon (such as type I interferon) can be linked to a targeting moiety (such as an antibody) that binds a tumor-associated antigen (such as forming a fusion protein), wherein the targeting moiety and the The above-mentioned interferon is connected directly or through a linker. In a specific embodiment, said targeting moiety is located at the N-terminus of said interferon. In another specific embodiment, said targeting moiety is located at the C-terminus of said interferon. In a specific embodiment, the interferon can be linked to two or more of the targeting moieties to form a multispecific (eg bispecific) molecule (eg multispecific fusion protein, eg bispecific specific fusion protein).

在所述干扰素与所述靶向部分通过连接子相连而形成融合蛋白的情形中,所述连接子可以包含任意适当长度的氨基酸序列,例如,所述连接子可以包含1-10、1-20、1-30或更多个氨基酸(或由其组成),例如所述连接子可以包含1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31或更多个氨基酸,或由所述氨基酸组成。In the case where the interferon and the targeting moiety are connected by a linker to form a fusion protein, the linker may comprise amino acid sequences of any suitable length, for example, the linker may comprise 1-10, 1- 20, 1-30 or more amino acids (or consist thereof), for example the linker may comprise 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 or more amino acids, or consist of said amino acids.

在另外的方面,本发明涉及一种试剂盒,其含有:In another aspect, the present invention relates to a kit comprising:

a)干扰素,例如I型干扰素,如IFNβ或IFNα5;和a) an interferon, such as a type I interferon, such as IFNβ or IFNα5; and

b)阻断PD-1/PDL信号传导通路的化合物,例如抗体,如抗PDL1抗体。b) A compound that blocks the PD-1/PDL signaling pathway, such as an antibody, such as an anti-PDL1 antibody.

其中在使用所述试剂盒时,所述干扰素(例如I型干扰素,如IFNβ或IFNα5)与所述阻断PD-1/PDL信号传导通路的化合物可被同时、顺次(以任何顺序)或分别向有需要的受试者施用。并且在所述试剂盒中,所述干扰素(例如I型干扰素,如IFNβ或IFNα5)与所述阻断PD-1/PDL信号传导通路的化合物可以彼此不互相混合的形式存在(例如各自在单独的空间中存在);或者以不影响彼此的效力的形式混合存在。When using the kit, the interferon (such as type I interferon, such as IFNβ or IFNα5) and the compound that blocks the PD-1/PDL signaling pathway can be simultaneously and sequentially (in any order) ) or administered to subjects in need respectively. And in the kit, the interferon (such as type I interferon, such as IFNβ or IFNα5) and the compound that blocks the PD-1/PDL signaling pathway can exist in a form that does not mix with each other (such as each exist in a separate space); or exist in a mixture in a form that does not affect the effectiveness of each other.

其中,在具体的实施方案中,所述试剂盒中的所述干扰素(如I型干扰素)可以与结合肿瘤相关抗原的靶向部分(例如抗体)相连(例如形成融合蛋白),其中所述靶向部分与所述干扰素直接相连或通过连接子相连。在一个具体的实施方案中,所述靶向部分位于所述干扰素的N端。在另一个具体的实施方案中,所述靶向部分位于所述干扰素的C端。在一个具体的实施方案中,所述干扰素可以与两个或两个以上的所述靶向部分相连,从而形成多特异性(例如双特异性)分子(如多特异性融合蛋白,如双特异性融合蛋白)。Wherein, in a specific embodiment, the interferon (such as type I interferon) in the kit can be linked to a targeting moiety (such as an antibody) that binds to a tumor-associated antigen (such as to form a fusion protein), wherein the The targeting moiety is directly connected to the interferon or connected through a linker. In a specific embodiment, said targeting moiety is located at the N-terminus of said interferon. In another specific embodiment, said targeting moiety is located at the C-terminus of said interferon. In a specific embodiment, the interferon can be linked to two or more of the targeting moieties to form a multispecific (eg bispecific) molecule (eg multispecific fusion protein, eg bispecific specific fusion protein).

在所述干扰素与所述靶向部分通过连接子相连而形成融合蛋白的情形中,所述连接子可以包含任意适当长度的氨基酸序列,例如,所述连接子可以包含1-10、1-20、1-30或更多个氨基酸(或由其组成),例如所述连接子可以包含1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31或更多个氨基酸,或由所述氨基酸组成。In the case where the interferon and the targeting moiety are connected by a linker to form a fusion protein, the linker may comprise amino acid sequences of any suitable length, for example, the linker may comprise 1-10, 1- 20, 1-30 or more amino acids (or consist thereof), for example the linker may comprise 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 or more amino acids, or consist of said amino acids.

在另一个具体实施方案中,所述靶向部分为抗体,例如抗EGFR抗体或抗Neu抗体。In another specific embodiment, said targeting moiety is an antibody, such as an anti-EGFR antibody or an anti-Neu antibody.

在另外的具体实施方案中,所述肿瘤为恶性肿瘤,例如恶性的固体肿瘤,其包括例如乳腺癌,肺癌,前列腺癌,结肠癌,皮肤癌,头颈癌,淋巴瘤或黑色素瘤。特别地,所述肿瘤可以为乳腺肿瘤或黑色素瘤。In another specific embodiment, the tumor is a malignant tumor, such as a malignant solid tumor including, for example, breast cancer, lung cancer, prostate cancer, colon cancer, skin cancer, head and neck cancer, lymphoma or melanoma. In particular, the tumor may be a breast tumor or a melanoma.

在一个具体实施方案中,所述肿瘤或携带所述肿瘤的宿主在下列一项或多项中有缺陷:1)干扰素(如I型干扰素),例如干扰素α5或干扰素β的表达和/或功能;2)干扰素受体(如I型干扰素受体)的表达和/或功能,特别是树突细胞上的所述干扰素受体的表达和/或功能;3)树突细胞的交叉呈递以及由此产生的抗肿瘤细胞毒性T细胞。In a specific embodiment, the tumor or the host bearing the tumor is deficient in one or more of the following: 1) the expression of interferon (such as type I interferon), such as interferon alpha 5 or interferon beta and/or function; 2) expression and/or function of interferon receptors (such as type I interferon receptors), particularly on dendritic cells; 3) tree Cross-presentation of dendritic cells and the resulting antitumor cytotoxic T cells.

在另外的方面,本发明还涉及一种试剂盒,其含有:In another aspect, the present invention also relates to a kit comprising:

a)如上文中所限定的干扰素;和a) an interferon as defined above; and

b)使用说明书,其中记载了所述试剂盒用于克服肿瘤对于抗体疗法的抗性。b) Instructions for use, which describe the use of the kit for overcoming tumor resistance to antibody therapy.

在其它的方面,本发明涉及一种治疗肿瘤(例如,用于克服肿瘤对于抗体疗法的抗性)的方法,所述方法包括向患者施用治疗有效量的如上文中所限定的干扰素或者如上文中所限定的本发明试剂盒。In other aspects, the invention relates to a method of treating tumors (for example, for overcoming tumor resistance to antibody therapy), said method comprising administering to a patient a therapeutically effective amount of an interferon as defined hereinabove or an interferon as hereinbefore defined The defined kit of the present invention.

在具体的实施方案中,所述患者对于抗体疗法有抗性。在其它的实施方案中,所述患者在下列一项或多项中有缺陷:干扰素,例如I型干扰素,如干扰素α5或干扰素β的表达和/或功能;2)干扰素受体的表达和/或功能,特别是树突细胞上的干扰素受体的表达和/或功能;3)树突细胞的交叉呈递以及由此产生的抗肿瘤细胞毒性T细胞。In specific embodiments, said patient is resistant to antibody therapy. In other embodiments, the patient is deficient in one or more of the following: expression and/or function of interferon, e.g., type I interferon, such as interferon alpha 5 or interferon beta; 2) interferon-affected The expression and/or function of the body, especially the expression and/or function of interferon receptors on dendritic cells; 3) the cross-presentation of dendritic cells and the resulting anti-tumor cytotoxic T cells.

在另外的实施方案中,所述预防和/或治疗方法还包括同时、顺次(以任何顺序)或分别向所述患者施用:1)如上文中所限定的干扰素;和2)阻断PD-1/PDL信号传导通路的化合物,例如抗体,如抗PDL1抗体。In further embodiments, said method of prevention and/or treatment further comprises administering to said patient simultaneously, sequentially (in any order) or separately: 1) an interferon as defined above; and 2) blocking PD -1/PDL signaling pathway compounds, such as antibodies, such as anti-PDL1 antibodies.

在又一个方面,本发明涉及如上文所限定的干扰素、或者本发明的试剂盒,其用于克服肿瘤对于抗体疗法的抗性。In yet another aspect, the invention relates to an interferon as defined above, or a kit of the invention, for use in overcoming tumor resistance to antibody therapy.

在其它的方面,本发明的I型干扰素、试剂盒或方法可被用于与抗肿瘤的抗体疗法或其它抗肿瘤疗法(例如化学疗法、放射性疗法等)联合施用(例如同时或者以任何顺序顺次施用)。In other aspects, the type I interferons, kits or methods of the invention may be used in combination (e.g. simultaneously or in any order) with anti-tumor antibody therapy or other anti-tumor therapy (e.g. chemotherapy, radiotherapy, etc.) applied sequentially).

此外,任选地,本发明所述的试剂和/或试剂盒中可进一步包含药学上可接受的载体。In addition, optionally, the reagents and/or kits of the present invention may further comprise a pharmaceutically acceptable carrier.

总之,本发明给癌症免疫治疗领域带来了若干重要的影响。首先,其建立了一种途径来产生新一代基于抗体的治疗(例如联合I型干扰素的抗体疗法,例如抗体-干扰素β融合蛋白),其使得获得性免疫应答能够更有效地应对抗体抗性和复发。然后,增强细胞毒性T细胞应答转而能够杀死更多的肿瘤细胞以产生下列正反馈循环:细胞毒性T细胞介导的肿瘤细胞死亡引发内源性危险/先天信号传导,其进一步产生针对肿瘤的先天性和获得性免疫,并最终引起更完全的肿瘤消退。第二,本发明提供了证据表明,干扰素(如I型干扰素)(其将先天性和获得性抗肿瘤免疫相联系)对于抗体介导的肿瘤消退而言是关键的因素,并因此提供了用于癌症免疫疗法的重要靶标。第三,本发明揭示了树突细胞是肿瘤中主要的耐受细胞类型,表明它们在确定免疫抑制性肿瘤微环境中起主要作用。因此,靶向树突细胞将是用于改进癌症免疫治疗的效力的另一个重要的策略。第四,本发明提出了拮抗由免疫治疗诱导的获得性抗性将使得免疫治疗的治疗效果最大化并最终治愈宿主的肿瘤。总之,本发明中所采用的策略对于优化靶向免疫治疗而言指出了若干新的方向,其可极大地影响抗肿瘤药物的发现和临床癌症治疗。In summary, the present invention has several important implications for the field of cancer immunotherapy. First, it establishes a pathway to generate a new generation of antibody-based therapies (such as antibody therapy combined with type I interferon, such as antibody-interferon beta fusion protein), which enables the acquired immune response to more effectively deal with antibody resistance. sex and relapse. Enhanced cytotoxic T cell responses are then able to kill more tumor cells to create the following positive feedback loop: Cytotoxic T cell-mediated tumor cell death triggers endogenous danger/innate signaling, which further generates tumor-targeting innate and acquired immunity, and ultimately lead to more complete tumor regression. Second, the present invention provides evidence that interferons, such as type I interferons, which link innate and acquired antitumor immunity, are critical factors for antibody-mediated tumor regression, and thus provide important targets for cancer immunotherapy. Third, the present invention reveals that dendritic cells are the main resistant cell type in tumors, suggesting that they play a major role in defining the immunosuppressive tumor microenvironment. Therefore, targeting dendritic cells will be another important strategy for improving the efficacy of cancer immunotherapy. Fourth, the present invention proposes that antagonizing acquired resistance induced by immunotherapy will maximize the therapeutic effect of immunotherapy and ultimately cure the host's tumor. In summary, the strategies employed in the present invention point to several new directions for optimizing targeted immunotherapy, which can greatly impact antineoplastic drug discovery and clinical cancer treatment.

附图说明Description of drawings

图1.在抗体介导的肿瘤消退过程中诱导了干扰素产生并且其对于所述肿瘤消退过程是必须的。A)向WT BALB/c小鼠(n=4/组)皮下注射了5×105TUBO细胞,在第14天时施用100μg的抗Neu(左栏)或对照IgG。向WT B6小鼠(n=4/组)皮下注射了7×105B16-EGFR细胞,并在第14天时施用了100μg的抗EGFR(右栏)或对照IgG。四天之后,将肿瘤消化并分离出肿瘤组织中的CD45+和CD45-群。进行了实时PCR以检测I型干扰素的mRNA水平的表达。B)向WT BALB/c小鼠(n=5/组)皮下注射了5×105TUBO-EGFR细胞,在第14天和21天施用了100μg的抗Neu。在同一天肿瘤内施用了200μg的抗I型干扰素受体或对照Ig。每周两次测量肿瘤的生长并进行比较。C)向WT B6小鼠(n=5/组)皮下注射了5×105B16-EGFR细胞,在第14天和21天肿瘤内施用了2×109腺病毒-干扰素β或对照病毒。每周两次测量肿瘤生长并进行比较。*,与对照组相比P<0.05。显示了三组实验中的一组代表性实验结果。Figure 1. Interferon production is induced and essential for antibody-mediated tumor regression. A) WT BALB/c mice (n=4/group) were subcutaneously injected with 5×10 5 TUBO cells and administered 100 μg of anti-Neu (left column) or control IgG on day 14. WT B6 mice (n=4/group) were injected subcutaneously with 7×10 5 B16-EGFR cells and administered 100 μg of anti-EGFR (right column) or control IgG on day 14. Four days later, the tumors were digested and the CD45 + and CD45- populations in the tumor tissue were isolated. Real-time PCR was performed to detect the expression of type I interferons at the mRNA level. B) WT BALB/c mice (n=5/group) were subcutaneously injected with 5×10 5 TUBO-EGFR cells, and 100 μg of anti-Neu was administered on days 14 and 21. 200 μg of anti-type I interferon receptor or control Ig were administered intratumorally on the same day. Tumor growth was measured twice a week and compared. C) WT B6 mice (n=5/group) were subcutaneously injected with 5×10 5 B16-EGFR cells, and 2×10 9 adenovirus-IFNβ or control virus were administered intratumorally on days 14 and 21 . Tumor growth was measured twice a week and compared. *, P<0.05 compared with the control group. A representative set of experimental results from three sets of experiments is shown.

图2.Ab-IFNβ极大地提高了抗体的抗肿瘤效果。A)向WT BALB/c小鼠(n=5/组)皮下注射了5×105TUBO-EGFR并在第14,18和22天时用25μg的抗EGFR-干扰素β或对照抗体进行处理。每周两次测量肿瘤生长并进行比较。B)向WT B6小鼠(n=5/组)皮下注射了1×106B16-EGFR并在第14,18和22天时用25μg的抗-EGFR-干扰素β或对照抗体进行处理。每周两次测量了肿瘤生长并进行比较。C)向Rag1KO小鼠(n=5/组)皮下注射3×106H460细胞,并在第13天时过继转移2×106OTI LN细胞。在第14,18和22天时施用了25μg的抗-EGFR-干扰素β或对照抗体。每周两次测量了肿瘤生长并进行了比较。D)向NeuOTI/OTII-Tg雌性小鼠(n=5/组)皮下注射了1×106NOP23并在第14,18和22天时用25μg的抗-Neu-干扰素β或对照抗体进行处理。每周两次测量了肿瘤生长并进行了比较。*,与对照组相比P<0.05。显示了三组实验中有代表性的一组。Figure 2. Ab-IFNβ greatly improves the anti-tumor effect of the antibody. A) WT BALB/c mice (n=5/group) were subcutaneously injected with 5×10 5 TUBO-EGFR and treated with 25 μg of anti-EGFR-IFNβ or control antibody on day 14, 18 and 22. Tumor growth was measured twice a week and compared. B) WT B6 mice (n=5/group) were injected subcutaneously with 1×10 6 B16-EGFR and treated with 25 μg of anti-EGFR-IFNβ or control antibody on day 14, 18 and 22. Tumor growth was measured and compared twice a week. C) Rag1KO mice (n=5/group) were subcutaneously injected with 3×10 6 H460 cells, and 2×10 6 OTI LN cells were adoptively transferred on day 13. On days 14, 18 and 22, 25 μg of anti-EGFR-interferon beta or control antibody was administered. Tumor growth was measured twice weekly and compared. D) Neu OTI/OTII -Tg female mice (n=5/group) were subcutaneously injected with 1×10 6 NOP23 and treated with 25 μg of anti-Neu-IFNβ or control antibody on day 14, 18 and 22 deal with. Tumor growth was measured twice weekly and compared. *, P<0.05 compared with the control group. A representative set of three experiments is shown.

图3.抗-EGFR-干扰素β能够诱导抗肿瘤特异性细胞毒性T细胞应答,其促成肿瘤消退。A)向WT和Rag1KO B6小鼠(n=5/组)皮下注射了5×105B16-EGFR-SIY细胞,并且在第14,18和22天时用25μg的抗-EGFR-干扰素β或对照抗体进行处理。每周两次监控肿瘤生长。B)在最后一次处理之后的第7天,收集了dLN细胞并进行了干扰素γELISPOT测定。C)向WT B6小鼠(n=5/组)皮下注射了5×105B16-EGFR-SIY并在第14,18和22天时用25μg的抗-EGFR-干扰素β或对照抗体进行处理。与抗-EGFR-干扰素β同一天施用了CD8-耗竭抗体(200μg/小鼠)。每周两次测量了肿瘤生长并进行了比较。D)在最后一次处理后的第7天,收集了dLN细胞并进行了干扰素γELISPOT测定。*,相比于对照组P<0.05。显示了三组实验中代表性的一组。Figure 3. Anti-EGFR-Interferon beta is able to induce anti-tumor specific cytotoxic T cell responses that contribute to tumor regression. A) WT and Rag1KO B6 mice (n=5/group) were subcutaneously injected with 5×10 5 B16-EGFR-SIY cells and treated with 25 μg of anti-EGFR-IFNβ or Control antibody was used for treatment. Tumor growth was monitored twice weekly. B) On day 7 after the last treatment, dLN cells were harvested and subjected to an interferon gamma ELISPOT assay. C) WT B6 mice (n=5/group) were subcutaneously injected with 5×10 5 B16-EGFR-SIY and treated with 25 μg of anti-EGFR-IFNβ or control antibody on day 14, 18 and 22 . CD8-depleting antibody (200 μg/mouse) was administered on the same day as anti-EGFR-interferon beta. Tumor growth was measured twice weekly and compared. D) On day 7 after the last treatment, dLN cells were harvested and subjected to an interferon gamma ELISPOT assay. *, P<0.05 compared to the control group. A representative set of three experiments is shown.

图4.抗-EGFR-干扰素β的抗肿瘤效果要求在宿主造血细胞上表达I型干扰素受体。A)向WT和I型干扰素受体1KO B6小鼠(n=5/组)皮下注射5×105B16-EGFR-SIY细胞并且在第14,18和22天时用25μg的抗-EGFR-干扰素β或对照抗体进行处理。每周两次监控肿瘤生长。B)在最后一次处理之后的第7天时,收集dLN,脾和经肿瘤浸润的细胞并通过CBA测定检测了上清液中的干扰素产生。C)在所示的骨髓嵌合体重构之后30天,向小鼠皮下注射了5×105B16-EGFR-SIY并在第14,18和22天时用25μg的抗-EGFR-干扰素β或对照Ig进行处理。每周两次测量了肿瘤生长并进行了比较。*,相比于对照组P<0.05。显示了两组代表性实验之一。Figure 4. The antitumor effect of anti-EGFR-interferon beta requires the expression of type I interferon receptors on host hematopoietic cells. A) WT and type I interferon receptor 1KO B6 mice (n=5/group) were subcutaneously injected with 5×10 5 B16-EGFR-SIY cells and treated with 25 μg of anti-EGFR-SIY on days 14, 18 and 22. Interferon β or control antibody for treatment. Tumor growth was monitored twice weekly. B) On day 7 after the last treatment, dLN, spleen and tumor infiltrating cells were harvested and interferon production in the supernatant was detected by CBA assay. C) Thirty days after bone marrow chimeric reconstitution as indicated, mice were subcutaneously injected with 5×10 5 B16-EGFR-SIY and treated with 25 μg of anti-EGFR-IFNβ or Treatment was performed against Ig. Tumor growth was measured twice weekly and compared. *, P<0.05 compared to the control group. One of two representative experiments is shown.

图5.抗-EGFR-干扰素β恢复了树突细胞的交叉呈递能力。A)向WTB6小鼠(n=5/组)皮下注射了5×105B16-EGFR-SIY并且在第14和18天时用25μg的抗-EGFR-干扰素β或对照抗体进行了处理。在最后一次处理之后的第7天,收集了dLN细胞并进行了干扰素γELISPOT测定。B)向WT B6小鼠(n=5/组)皮下注射了5×105B16-EGFR-SIY并在第14和18天时用25μg的抗-EGFR-干扰素β或对照抗体进行了处理。在第一次处理之后的第8天,通过CD11c+阳性选择纯化了来自dLN的树突细胞并用经纯化的幼稚2C T细胞进行了孵育。2天后测量了干扰素产生。C)通过流式细胞计数测量了树突细胞活化标记物。D)在所示的骨髓嵌合物重构之后30天,向小鼠皮下注射了5×105B16-EGFR-SIY并在第14,18和22天时用25μg的抗-EGFR-干扰素β或对照Ig进行了处理。与所述处理同一天施用了DT或PBS。每周两次测量了肿瘤生长并进行了比较。*,相较于对照组P<0.05。显示了两组实验中有代表性的一组。Figure 5. Anti-EGFR-IFNβ restores the cross-presenting ability of dendritic cells. A) WTB6 mice (n=5/group) were injected subcutaneously with 5×10 5 B16-EGFR-SIY and treated on day 14 and 18 with 25 μg of anti-EGFR-IFNβ or control antibody. On day 7 after the last treatment, dLN cells were harvested and subjected to an interferon gamma ELISPOT assay. B) WT B6 mice (n=5/group) were injected subcutaneously with 5×10 5 B16-EGFR-SIY and treated with 25 μg of anti-EGFR-IFNβ or control antibody on day 14 and 18. On day 8 after the first treatment, dendritic cells from dLNs were purified by CD11c + positive selection and incubated with purified naive 2C T cells. Interferon production was measured 2 days later. C) Dendritic cell activation markers were measured by flow cytometry. D) Thirty days after bone marrow chimeric reconstitution as indicated, mice were subcutaneously injected with 5×10 5 B16-EGFR-SIY and treated with 25 μg of anti-EGFR-IFNβ on days 14, 18 and 22 Or control Ig was processed. DT or PBS was administered on the same day as the treatment. Tumor growth was measured twice weekly and compared. *, P<0.05 compared with the control group. A representative set of two sets of experiments is shown.

图6.树突细胞是直接响应于抗-EGFR-干扰素β处理的主要细胞类型。A)向WT和CD11c-Cre I型干扰素受体1flox/flox小鼠(n=5/组)皮下注射了5×105B16-EGFR-SIY并在第14,18和22天时用25μg的抗-EGFR-干扰素β或对照抗体进行了处理。每周两次测量肿瘤生长并进行了比较。B)向WT和CD4-Cre I型干扰素受体1flox/flox小鼠(n=5/组)皮下注射了5×105B16-EGFR-SIY并在第14,18和22天时用25μg的抗EGFR-干扰素β或对照抗体进行了处理。每周两次测量肿瘤生长并进行了比较。*,相较于对照组P<0.05。显示了两组实验中有代表性的一组。Figure 6. Dendritic cells are the major cell type that directly respond to anti-EGFR-interferon beta treatment. A) WT and CD11c-Cre type I interferon receptor 1 flox/flox mice (n=5/group) were subcutaneously injected with 5×10 5 B16-EGFR-SIY and treated with 25 μg Anti-EGFR-IFN-β or control antibody were treated. Tumor growth was measured twice weekly and compared. B) WT and CD4-Cre type I interferon receptor 1 flox/flox mice (n=5/group) were subcutaneously injected with 5×10 5 B16-EGFR-SIY and treated with 25 μg Anti-EGFR-IFN-β or control antibody were treated. Tumor growth was measured twice weekly and compared. *, P<0.05 compared with the control group. A representative set of two sets of experiments is shown.

图7.拮抗由抗-EGFR-干扰素β诱导的PD-L1表达实现了肿瘤完全消退的结果。A)向WT B6小鼠皮下注射了5×105B16-EGFR-SIY细胞并在第14天时用25μg的抗-EGFR-干扰素β或对照抗体进行处理。两天之后,收集肿瘤细胞并通过流式细胞计数来分析PD-L1表达。红线表示经对照Ig处理的组,而蓝线表示经抗-EGFR-干扰素β处理的组。B)B16-EGFR细胞,在体外细胞培养过程中用0.02μg/ml的抗-EGFR-干扰素β进行了处理。一天之后,收集了肿瘤细胞并通过流式细胞计数对PD-L1表达进行了分析。红线表示经对照Ig刺激的细胞,而蓝线表示经抗-EGFR-干扰素β刺激的细胞。C)向WT B6小鼠(n=5/组)皮下注射了5×105B16-EGFR-SIY细胞,并在第14,18和22天时用25μg的抗-EGFR-干扰素β或对照抗体进行了处理。与抗-EGFR-干扰素β同一天施用了PD-L1阻断性抗体(400μg/小鼠)。每周两次测量肿瘤生长并进行了比较。D)在最后一次处理后的第14天,收集脾细胞并进行了干扰素γELISPOT测定。*,相比于对照组P<0.05。显示了三组实验中代表性的一组。Figure 7. Results of antagonizing PD-L1 expression induced by anti-EGFR-IFNβ achieved complete tumor regression. A) WT B6 mice were injected subcutaneously with 5×10 5 B16-EGFR-SIY cells and treated with 25 μg of anti-EGFR-IFNβ or control antibody on day 14. Two days later, tumor cells were harvested and analyzed for PD-L1 expression by flow cytometry. The red line represents the control Ig-treated group, while the blue line represents the anti-EGFR-interferon beta-treated group. B) B16-EGFR cells treated with 0.02 μg/ml anti-EGFR-IFNβ during in vitro cell culture. One day later, tumor cells were collected and analyzed for PD-L1 expression by flow cytometry. The red line represents cells stimulated with control Ig, while the blue line represents cells stimulated with anti-EGFR-interferon beta. C) WT B6 mice (n=5/group) were subcutaneously injected with 5×10 5 B16-EGFR-SIY cells and treated with 25 μg of anti-EGFR-IFNβ or control antibody on day 14, 18 and 22 processed. PD-L1 blocking antibody (400 μg/mouse) was administered on the same day as anti-EGFR-interferon beta. Tumor growth was measured twice weekly and compared. D) On day 14 after the last treatment, splenocytes were harvested and subjected to an interferon gamma ELISPOT assay. *, P<0.05 compared to the control group. A representative set of three experiments is shown.

图8.提出的I型干扰素如何将先天性和获得性抗肿瘤免疫相联系的模型。在抗体疗法之后,从抗体响应性肿瘤而非抗体抗性肿瘤释放的DAMP将诱导I型干扰素产生。Ab-干扰素在抗体抗性肿瘤中原位模拟I型干扰素产生。I型干扰素同时增加树突细胞交叉呈递,以产生更好的细胞毒性T细胞应答,其直接激活T细胞并且还诱导PD-L1表达以削弱抗肿瘤免疫性。Ab-干扰素与PD-L1阻断相结合使得抗肿瘤免疫应答最大化。Figure 8. Proposed model of how type I interferons link innate and acquired antitumor immunity. Following antibody therapy, DAMPs released from antibody-responsive but not antibody-resistant tumors will induce type I interferon production. Ab-interferon mimics type I interferon production in situ in antibody-resistant tumors. Type I interferons simultaneously increase dendritic cell cross-presentation for better cytotoxic T cell responses, which directly activate T cells and also induce PD-L1 expression to impair antitumor immunity. The combination of Ab-interferon and PD-L1 blockade maximizes the antitumor immune response.

图9.抗-EGFR-IFNβ能够将IFNβ递送至EGFR+细胞。A)抗-EGFR-IFNβ融合蛋白的结构。B)用hIg,抗-EGFR或抗-EGFR-IFNβ及抗-人IgG Fcγ-PE对A431细胞进行染色。C)用5x105B16-EGFR细胞皮下注射WT B6小鼠(n=5/组)并在第14天用25μg的抗-EGFR-IFNβ进行处理。在不同的时间点,通过hIg ELISA测量不同组织中抗-EGFR-IFNβ的浓度。显示了三组代表性实验中的一组。Figure 9. Anti-EGFR-IFNβ is able to deliver IFNβ to EGFR+ cells. A) Structure of anti-EGFR-IFNβ fusion protein. B) A431 cells were stained with hIg, anti-EGFR or anti-EGFR-IFNβ and anti-human IgG Fcγ-PE. C) WT B6 mice (n=5/group) were injected subcutaneously with 5×10 5 B16-EGFR cells and treated on day 14 with 25 μg of anti-EGFR-IFNβ. At different time points, the concentration of anti-EGFR-IFNβ in different tissues was measured by hIg ELISA. One set of three representative experiments is shown.

图10.抗-EGFR-IFNβ的副作用。用不同剂量的抗-EGFR-IFNβ静脉内注射B6小鼠。在所示的时间点,通过BD CBA试剂盒测量血清中所示细胞因子的浓度。Figure 10. Side effects of anti-EGFR-IFNβ. B6 mice were injected intravenously with different doses of anti-EGFR-IFNβ. At the indicated time points, the concentrations of the indicated cytokines in serum were measured by BD CBA kit.

图11.对于抗-EGFR-IFNβ诱导的肿瘤消退,不需要CD20+,NK1.1+和Ly-6G+细胞。用5x105B16-EGFR皮下注射WT B6小鼠(n=5/组)并在第14,18和22天时用25μg的抗-EGFR-IFNβ或对照Ab进行处理。与抗-EGFR-IFNβ同一天施用了所示的删除特定细胞群的Ab(200μg/小鼠)。每周两次测量了肿瘤生长并进行了比较。Figure 11. CD20 + , NK1.1 + and Ly-6G + cells are not required for anti-EGFR-IFNβ-induced tumor regression. WT B6 mice (n=5/group) were injected subcutaneously with 5×10 5 B16-EGFR and treated on days 14, 18 and 22 with 25 μg of anti-EGFR-IFNβ or control Ab. The indicated Abs (200 μg/mouse) to delete specific cell populations were administered on the same day as anti-EGFR-IFNβ. Tumor growth was measured twice weekly and compared.

图12.通过抗-EGFR-IFNβ在体外直接活化DC和T细胞。在体外培养了来自WT B6小鼠的脾细胞并用所示浓度的抗-EGFR-IFNβ进行了处理。一天之后,收集了细胞用于通过流式细胞计数分析T细胞上CD69和树突细胞上CD86的表达。Figure 12. Direct activation of DC and T cells in vitro by anti-EGFR-IFNβ. Splenocytes from WT B6 mice were cultured in vitro and treated with the indicated concentrations of anti-EGFR-IFNβ. One day later, cells were harvested for analysis of the expression of CD69 on T cells and CD86 on dendritic cells by flow cytometry.

图13.抗-EGFR-IFNβ与抗-CTLA4和抗-BTLA之间没有协同性抗肿瘤效果。用5x105B16-EGFR细胞皮下注射WT B6小鼠(n=5/组)并在第14、18和22天用25μg的抗-EGFR-IFNβ或对照抗体进行处理。与抗-EGFR-IFNβ同一天施用CTLA4或BTLA阻断性抗体(400μg/小鼠)。每周两次测量了肿瘤生长并进行了比较。Figure 13. No synergistic antitumor effect between anti-EGFR-IFN[beta] and anti-CTLA4 and anti-BTLA. WT B6 mice (n=5/group) were injected subcutaneously with 5×10 5 B16-EGFR cells and treated on days 14, 18 and 22 with 25 μg of anti-EGFR-IFNβ or control antibody. CTLA4 or BTLA blocking antibody (400 μg/mouse) was administered on the same day as anti-EGFR-IFNβ. Tumor growth was measured twice weekly and compared.

图14.本发明实施例中对联合干扰素的抗体疗法有响应的肿瘤模型的总结。Figure 14. Summary of tumor models that responded to antibody therapy in combination with interferon in the examples of the present invention.

具体实施方案specific implementation plan

术语及定义Terms and Definitions

除非特别说明,本申请中所使用的术语和定义均是本领域中惯常使用的含义并且为本领域技术人员所知晓。Unless otherwise specified, the terms and definitions used in this application have meanings commonly used in this field and are known to those skilled in the art.

如本申请中所使用的,术语“肿瘤位点”是指含有或被怀疑含有肿瘤细胞的体内或离体位置。所述肿瘤位点包括固体肿瘤以及接近或邻近肿瘤生长处的位置。As used in this application, the term "tumor site" refers to an in vivo or ex vivo location that contains or is suspected of containing tumor cells. The tumor site includes solid tumors as well as locations close to or adjacent to tumor growth.

如本申请中所使用的,术语“施用”是指全身性和/或局部施用。术语“全身性施用”是指非局部地施用,从而所施用的物质可能影响整个身体中的若干器官或组织;或者从而所施用的物质可能穿越整个身体中的数个器官或组织而到达靶位点。例如,向受试者的循环系统施用可引起治疗性产物在多于一个组织或器官中从所施用的载体表达,或者可引起治疗性产物在特异性位点处由所施用的载体表达,例如,这是由于天然的趋向性或由于与组织特异性启动子元件的可操作连接。本领域技术人员将理解,所述全身性施用涵盖各种形式的施用,这包括但不限于:肠胃外施用、静脉内施用、肌内施用、皮下施用、经皮施用、口服等。As used in this application, the term "administration" refers to systemic and/or local administration. The term "systemic administration" means administration that is not localized, whereby the administered substance may affect several organs or tissues throughout the body; or whereby the administered substance may travel across several organs or tissues throughout the body to reach the target site point. For example, circulatory administration to a subject can result in expression of the therapeutic product from the administered vector in more than one tissue or organ, or can result in expression of the therapeutic product from the administered vector at specific sites, such as , either due to natural tropism or due to operably linked tissue-specific promoter elements. Those skilled in the art will appreciate that the systemic administration encompasses various forms of administration including, but not limited to, parenteral, intravenous, intramuscular, subcutaneous, transdermal, oral, and the like.

术语“局部施用”是指在特异性位点处或其周围施用。本领域技术人员将理解,局部施用涵盖各种形式的施用,例如直接注射到特定位点处或注射到其周围(例如肿瘤内施用)。The term "topical administration" means administration at or around a specific site. Those skilled in the art will appreciate that topical administration encompasses various forms of administration, such as injection directly at or around a specific site (eg, intratumoral administration).

如本文中所使用的,术语“治疗有效量”是指达到治疗目的疾病或病况(例如肿瘤/癌症,例如用于使肿瘤消退或减小肿瘤的大小)所需的本发明的干扰素,或者本发明试剂盒中组分的量。可以通过实践、按照常规的方式来关于特定的目的而确定所述有效量。特别地,所述治疗有效量可以是达到下述目的所需的量:减少癌细胞的数目;减少肿瘤大小;抑制(即减缓或停止)癌细胞浸润到外周器官中;抑制(即减缓或停止)肿瘤转移;抑制肿瘤生长;和/或缓解与癌症相关的一种或多种症状。As used herein, the term "therapeutically effective amount" refers to an interferon of the invention required to achieve the intended disease or condition (e.g. tumor/cancer, e.g. for tumor regression or reduction in tumor size), or Amounts of components in kits of the invention. The effective amount can be determined for a particular purpose by practice, in a routine manner. In particular, the therapeutically effective amount may be that amount required to: reduce the number of cancer cells; reduce tumor size; inhibit (i.e. slow or stop) infiltration of cancer cells into peripheral organs; inhibit (i.e. slow or stop) ) tumor metastasis; inhibiting tumor growth; and/or alleviating one or more symptoms associated with cancer.

术语“抗体”涵盖例如,单克隆抗体、多克隆抗体、单链抗体、抗体片段(其显示出所需的生物学或免疫学活性)。在本申请中,术语“免疫球蛋白”(Ig)与抗体可互换地使用。所述抗体可特异性地靶向肿瘤抗原,例如表面肿瘤抗原,例如EGFR,CD4,CD8、Neu等。The term "antibody" encompasses, for example, monoclonal antibodies, polyclonal antibodies, single chain antibodies, antibody fragments (which exhibit the desired biological or immunological activity). In this application, the term "immunoglobulin" (Ig) is used interchangeably with antibody. The antibodies can specifically target tumor antigens, such as surface tumor antigens, such as EGFR, CD4, CD8, Neu, and the like.

术语“干扰素”包括完整的干扰素分子(例如人干扰素、小鼠干扰素,例如人或小鼠I型干扰素,如干扰素α或β)、其功能性片段、衍生物、等同物或任何功能性变体,其能够实现所需的生物学功能,例如诱导肿瘤特异性T细胞的扩增、特别是树突细胞的交叉呈递以及由此产生抗肿瘤细胞毒性T细胞。在本发明的情境中,所述干扰素可选自Ⅰ型、II型和/或III型干扰素,例如IFN-α、IFN-β、IFN-γ、IFN-λ1(IL-29)、IFN-λ2(IL-28a)、IFN-λ(IL-28b)和IFN-ω等。The term "interferon" includes intact interferon molecules (e.g. human interferon, mouse interferon, e.g. human or mouse type I interferon, such as interferon alpha or beta), functional fragments, derivatives, equivalents thereof Or any functional variant, which is able to achieve the desired biological function, such as inducing the expansion of tumor-specific T cells, especially the cross-presentation of dendritic cells and thus the generation of anti-tumor cytotoxic T cells. In the context of the present invention, said interferon may be selected from type I, type II and/or type III interferons, such as IFN-α, IFN-β, IFN-γ, IFN-λ1 (IL-29), IFN -λ2 (IL-28a), IFN-λ (IL-28b) and IFN-ω etc.

术语“功能性变体”是指,经过修饰(例如突变、插入、删除。融合、缀合、交联等)而与亲本分子(例如干扰素)不同,但是保留了所需的其生物学活性的变体。The term "functional variant" refers to a molecule that has been modified (e.g. mutation, insertion, deletion, fusion, conjugation, cross-linking, etc.) to differ from the parent molecule (e.g. interferon), but retains the desired biological activity thereof variant of .

可通过本领域已知的各种常规的方法来使干扰素、其片段或其功能性变体与所述靶向部分向连接。所述连接可以是直接或间接的(例如通过连接子),例如,可以通过形成融合蛋白、缀合或化学连接而实现。当所述连接形成融合蛋白时,其可通过例如重组技术或肽合成技术而实现。在某些实施方案中,所述融合蛋白也可包含连接子,所述连接子不破坏所形成的产物的目的特性(例如诱导抗肿瘤细胞毒性T细胞的产生)。例如,所述靶向部分可位于所述干扰素的N端或C端。在一个具体的实施方案中,所述干扰素可以与两个或两个以上的所述靶向部分相连,从而形成多特异性(例如双特异性)分子(如多特异性融合蛋白,如双特异性融合蛋白)。在所述干扰素与所述靶向部分通过连接子相连而形成融合蛋白的情形中,所述连接子可以包含任意适当长度的氨基酸序列,例如,所述连接子可以包含1-10、1-20、1-30或更多个氨基酸(或由其组成),例如所述连接子可以包含1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31或更多个氨基酸,或由所述氨基酸组成Interferon, its fragments or functional variants thereof can be linked to the targeting moiety by various conventional methods known in the art. The linkage can be direct or indirect (eg via a linker), eg, can be achieved by formation of a fusion protein, conjugation or chemical linkage. When such linking forms a fusion protein, it can be achieved, for example, by recombinant techniques or peptide synthesis techniques. In certain embodiments, the fusion protein may also comprise a linker that does not destroy the desired properties of the resulting product (eg, induces the generation of anti-tumor cytotoxic T cells). For example, the targeting moiety can be located at the N- or C-terminus of the interferon. In a specific embodiment, the interferon can be linked to two or more of the targeting moieties to form a multispecific (eg bispecific) molecule (eg multispecific fusion protein, eg bispecific specific fusion protein). In the case where the interferon and the targeting moiety are connected by a linker to form a fusion protein, the linker may comprise amino acid sequences of any suitable length, for example, the linker may comprise 1-10, 1- 20, 1-30 or more amino acids (or consist thereof), for example the linker may comprise 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 or more amino acids, or consisting of said amino acids

本领域技术人员能够根据具体的病况、疾病类型(例如肿瘤类型、肿瘤的发展阶段等)、严重程度、患者体质、可能联合施用的其它疗法、之前曾施用过的疗法等而选择适当的剂型和施用方式。Those skilled in the art can select the appropriate dosage form and dosage form according to the specific condition, disease type (such as tumor type, tumor development stage, etc.), severity, patient constitution, other therapies that may be administered in combination, and therapies that have been administered before. Mode of application.

术语“癌症”是指通常被表征为不受调节的细胞生长的病况(例如在哺乳动物、例如人中)。所述癌症包括但不限于,例如乳腺癌,肺癌,前列腺癌,结肠癌,皮肤癌,头颈癌,淋巴瘤或黑色素瘤等。The term "cancer" refers to a condition typically characterized by unregulated cell growth (eg in mammals, eg humans). The cancer includes, but is not limited to, breast cancer, lung cancer, prostate cancer, colon cancer, skin cancer, head and neck cancer, lymphoma or melanoma, for example.

术语“抗体疗法”是指通过使用特异性靶向目的组织或位点的抗体来进行治疗的方法。在本发明的情境中,其特别是指用靶向肿瘤细胞的特异性抗体来治疗肿瘤(例如癌症)的方法。The term "antibody therapy" refers to methods of treatment through the use of antibodies that specifically target a tissue or site of interest. In the context of the present invention, it refers in particular to methods of treating tumors, such as cancer, with specific antibodies targeted to tumor cells.

在本发明的情境中,“对抗体疗法的抗性”是指,在使用特定的抗体制剂进行治疗后,肿瘤(例如癌症)或携带所述肿瘤的患者对于所述治疗没有响应(例如,肿瘤细胞没有被杀死、肿瘤没有消退),和/或所述疗法不能引起所述肿瘤的消退、减少或抑制肿瘤的转移或进一步生长。In the context of the present invention, "resistance to antibody therapy" means that, after treatment with a particular antibody preparation, a tumor (e.g. cancer) or a patient bearing said tumor does not respond to said treatment (e.g. tumor cells are not killed, the tumor does not regress), and/or the therapy fails to cause regression of the tumor, reduce or inhibit metastasis or further growth of the tumor.

在本申请中,术语“肿瘤相关抗原”包括例如肿瘤表面抗原,这包括但不限于例如表皮生长因子受体家族(EGFR)的成员,这包括EGFR,HER1,HER2,HER4和HER8等(Nam,N.H.,&Parang,K.(2003),Current targets for anti cancer drμg discovery.Current Drμg Targets,4(2),159-179),STEAP(six-transmembrane epithelialantigen of the prostate;Hubert等人,STEAP:a prostate-specificcell-surface antigen highly expressed in human prostatetumors.,Proc Natl Acad Sci U S A.1999;96(25):14523-8.),CD55(Hsu等人,Generation and characterization of monoclonalantibodies directed against the surface antigens of cervicalcancer cells.,Hybrid Hybridomics.2004;23(2):121-5)。In this application, the term "tumor-associated antigen" includes, for example, tumor surface antigens, including but not limited to, members of the epidermal growth factor receptor family (EGFR), including EGFR, HER1, HER2, HER4 and HER8, etc. (Nam, N.H., & Parang, K. (2003), Current targets for anti cancer drμg discovery. Current Drμg Targets, 4(2), 159-179), STEAP (six-transmembrane epithelial antigen of the prostate; Hubert et al., STEAP: a prostate -specificcell-surface antigen highly expressed in human prostatetumors., Proc Natl Acad Sci U S A.1999; 96(25):14523-8.), CD55 (Hsu et al., Generation and characterization of monoclonal antibodies directed against the surface antigens of Cervical cancer cells., Hybrid Hybridomics. 2004;23(2):121-5).

能用于本发明的其它合适的抗体包括利妥昔单抗(RituxanTM,嵌合的抗CD20抗体),Campath-1H(抗CD52抗体),和任何癌症特异性细胞表面抗原的抗体。下列示例性地列出了针对特定癌症类型的、适于与干扰素结合而用于本发明的目的的抗体:阿仑珠单抗(CampathTM)用于慢性白血病;贝伐珠单抗(AvastinTM)用于结肠癌和肺癌;西妥昔单抗(ErbituxTM)用于结肠癌和头颈癌;吉妥珠单抗(MylotargTM)用于急性髓性白血病;Ibritumomab(ZevalinTM)用于非霍奇金淋巴瘤;帕木单抗(VectibixTM)用于结肠癌;利妥昔单抗(RituxanTM)用于非霍奇金淋巴瘤;托西莫单抗(BexxarTM)用于非霍奇金淋巴瘤;和曲妥珠单抗(赫塞汀TM)用于乳腺癌。Other suitable antibodies that can be used in the present invention include Rituximab (Rituxan™, chimeric anti-CD20 antibody), Campath-1H (anti-CD52 antibody), and antibodies to any cancer-specific cell surface antigen. The following exemplarily lists antibodies against specific cancer types suitable for the purposes of the present invention in combination with interferon: Alemtuzumab (Campath ) for chronic leukemia; Bevacizumab (Avastin TM ) for colon and lung cancer; cetuximab (Erbitux TM ) for colon and head and neck cancer; gemtuzumab (Mylotarg TM ) for acute myeloid leukemia; Ibritumomab (Zevalin TM ) for non- Hodgkin lymphoma; panumumab (Vectibix TM ) for colon cancer; rituximab (Rituxan TM ) for non-Hodgkin lymphoma; tositumomab (Bexxar TM ) for non-Hodgkin lymphoma Chickkin's lymphoma; and trastuzumab (Herceptin ) for breast cancer.

在本发明中,“药学上可接受的载体”是指不会在所施用的细胞或受试者中引发过敏反应或其他不适影响,并且不会影响药物活性的载体。合适的可药用载体包括但不限于,例如,一种或多种水、生理盐水、磷酸缓冲液、左旋糖、甘油、乙醇和其他类似物,以及上述物质的组合。药学上可接受的载体还可进一步包括能提高核酸、多肽、病毒颗粒或细胞的保存期限或效用的微量辅助物质,例如湿润剂或乳化剂、防腐剂或缓冲液。In the present invention, "pharmaceutically acceptable carrier" refers to a carrier that does not cause allergic reactions or other uncomfortable effects in the administered cells or subjects, and does not affect the activity of the drug. Suitable pharmaceutically acceptable carriers include, but are not limited to, for example, one or more of water, physiological saline, phosphate buffer, dextrose, glycerol, ethanol, and the like, as well as combinations thereof. Pharmaceutically acceptable carriers may further include minor amounts of auxiliary substances, such as wetting or emulsifying agents, preservatives, or buffers, that increase the shelf life or utility of nucleic acids, polypeptides, viral particles, or cells.

在本申请中,在干扰素和/或其受体中“有缺陷”是指所述干扰素或干扰素受体的表达不能达到实现其生物学功能所需的水平,或者所表达的干扰素或干扰素受体不能发挥所需的生物学功能(例如以突变的形式存在),或者干扰素(或干扰素受体)不能够与其受体(配体)相互作用而引起下游的信号传导。In this application, "deficient" in interferon and/or its receptor means that the expression of said interferon or interferon receptor cannot reach the level required to realize its biological function, or the expressed interferon Either the interferon receptor cannot perform the desired biological function (for example, exists in a mutated form), or the interferon (or interferon receptor) cannot interact with its receptor (ligand) to cause downstream signal transduction.

下面的实施例仅仅是为了更好地阐释本发明,而不意在以任何方式限制本发明。The following examples are only for better explaining the present invention, and are not intended to limit the present invention in any way.

实施例Example

材料和方法Materials and methods

小鼠mouse

C57BL/6J和BALB/c小鼠购自Harlan。Rag1-/-,2C CD8+TCR转基因小鼠,CD11c-DTR转基因小鼠,CD11c-Cre和CD4-Cre转基因小鼠购自JAX。IFN AR1-/-小鼠是由芝加哥大学的Anita Chong博士提供的。IFNAR1fl/fl小鼠是由德国汉诺威实验感染研究所的Ulrich Kalinke博士提供的(Kamphuis,Junt等人2006)。NeuOT-I/OT-II转基因小鼠(B6背景)是由加拿大Trev & Joyce Deeley Research Centre,British Columbia的Brad H.Nelson博士提供的(Wall,Milne等人2007)。所有的小鼠都是在特定的无病原体条件下饲养的。动物护理和使用是根据研究所及NIH的方案和指导进行的,并且所有的研究都获得了芝加哥大学动物护理和使用委员会的批准。C57BL/6J and BALB/c mice were purchased from Harlan. Rag1 −/− , 2C CD8 + TCR transgenic mice, CD11c-DTR transgenic mice, CD11c-Cre and CD4-Cre transgenic mice were purchased from JAX. IFN AR1 -/- mice were provided by Dr. Anita Chong, University of Chicago. IFNAR1 fl/fl mice were provided by Dr. Ulrich Kalinke, Institute for Experimental Infection Research, Hannover, Germany (Kamphuis, Junt et al. 2006). Neu OT-I/OT-II transgenic mice (B6 background) were provided by Dr. Brad H. Nelson, Trev & Joyce Deeley Research Centre, British Columbia, Canada (Wall, Milne et al. 2007). All mice were housed under specific pathogen-free conditions. Animal care and use were performed in accordance with institutional and NIH protocols and guidelines, and all studies were approved by the University of Chicago Animal Care and Use Committee.

细胞系和试剂Cell Lines and Reagents

H460购自ATCC。TUBO是从BALB/c Neu-转基因小鼠中的自发乳腺肿瘤克隆的。TUBO-EGFR是在用pSEB-EGFR进行转染或用含有2μg/mL杀稻瘟菌素(InvivoGen)的质粒进行转染后选择的。用表达人EGFR或EGFR-SIY的慢病毒进行转导后,挑选B16-EGFR和B16-EGFR-SIY的单克隆。NOP23是从B6NeuOT-I/OT-II转基因小鼠中的自发乳腺肿瘤克隆的,并且是由加拿大Trev & Joyce Deeley Research Centre的Brad H.Nelson博士提供的。在5%CO2的条件下培养H460,TUBO,B16以及它们的衍生物,并将它们在体外维持在补充了10%热灭活的胎牛血清(Sigma),2mmol/L L-谷氨酰胺,0.1mmol/L MEM非必需氨基酸,100单位/mL青霉素和100μg/mL链霉素的DMEM中。抗EGFR mAb西妥昔单抗购自Imclone。抗-CD8(YTS169.4.2),抗-NK1.1(PK136),抗-Neu(7.16.4)抗体是实验室内部制造的。抗-PD-L1(10F.9G2)和抗-Ly-6G(1A8)抗体购自BioXcell。抗-CD20(5D2)抗体是由Ouyang Wenjun(Genentech,San Franscisco)提供的。抗-I型干扰素受体(MAR-5A3)抗体是由Robert Schreiber博士(华盛顿大学,圣路易斯)提供的。表达鼠干扰素β的腺病毒是如之前所描述的制备的(Burnette等人,2011)。H460 was purchased from ATCC. TUBO was cloned from a spontaneous mammary tumor in BALB/c Neu-transgenic mice. TUBO-EGFR was selected after transfection with pSEB-EGFR or with a plasmid containing 2 μg/mL blasticidin (InvivoGen). After transduction with lentiviruses expressing human EGFR or EGFR-SIY, single clones of B16-EGFR and B16-EGFR-SIY were picked. NOP23 was cloned from spontaneous mammary tumors in B6Neu OT-I/OT-II transgenic mice and was kindly provided by Dr. Brad H. Nelson, Trev & Joyce Deeley Research Centre, Canada. H460, TUBO, B16 and their derivatives were cultured under the condition of 5% CO 2 , and they were maintained in vitro supplemented with 10% heat-inactivated fetal bovine serum (Sigma), 2mmol/L L-glutamine , 0.1 mmol/L MEM non-essential amino acids, 100 units/mL penicillin and 100 μg/mL streptomycin in DMEM. Anti-EGFR mAb Cetuximab was purchased from Imclone. Anti-CD8 (YTS169.4.2), anti-NK1.1 (PK136), anti-Neu (7.16.4) antibodies were produced in-house. Anti-PD-L1 (10F.9G2) and anti-Ly-6G (1A8) antibodies were purchased from BioXcell. Anti-CD20 (5D2) antibody was provided by Ouyang Wenjun (Genentech, San Francisco). Anti-type I interferon receptor (MAR-5A3) antibody was provided by Dr. Robert Schreiber (Washington University, St. Louis). Adenovirus expressing murine interferon beta was prepared as previously described (Burnette et al., 2011).

Ab-IFNβ融合蛋白的产生Generation of Ab-IFNβ fusion protein

从抗-EGFR(LA22)杂交瘤(ATCC)中克隆了抗EGFR的V区域。将重链和轻链的V区域分别克隆到Abvec-IgG1和Abvec-kappa中(Smith等人,2009)。然后,将小鼠干扰素β插入重链的C末端作为含有SGGGGSGGGGSGGGGSGGGG(SEQ ID NO:1)连接子的融合蛋白。将含有干扰素β的整个重链和轻链分别克隆到pEE6.4和pEE12.4(Lonza)中。然后用NotI和BamHI消化这两个载体。将来自经消化的pEE6.4质粒的完整的hCMV-MIE-重链/SV40转录单元与来自经消化的pEE12.4质粒的大的NotI-BamHI片段(含有轻链表达盒)相连接。将含有重链和轻链二者的质粒转染到CHO细胞中并且根据指导手册(Lonza)建立稳定的克隆。根据指导手册(Repligen Corporation)通过蛋白A柱纯化含有抗-EGFR-干扰素β的上清液。以相同的方式产生了抗-Neu-干扰素β,不同之处在于V区域的cDNA来自抗-Neu(7.16.4)杂交瘤。The anti-EGFR V region was cloned from an anti-EGFR (LA22) hybridoma (ATCC). The V regions of the heavy and light chains were cloned into Abvec-IgG1 and Abvec-kappa, respectively (Smith et al., 2009). Then, mouse interferon beta was inserted into the C-terminus of the heavy chain as a fusion protein containing the SGGGGSGGGGSGGGGSGGGG (SEQ ID NO: 1 ) linker. The entire heavy and light chains containing interferon beta were cloned into pEE6.4 and pEE12.4 (Lonza), respectively. These two vectors were then digested with NotI and BamHI. The complete hCMV-MIE-heavy chain/SV40 transcription unit from the digested pEE6.4 plasmid was ligated with the large NotI-BamHI fragment (containing the light chain expression cassette) from the digested pEE12.4 plasmid. Plasmids containing both heavy and light chains were transfected into CHO cells and stable clones were established according to the instruction manual (Lonza). The supernatant containing anti-EGFR-interferon beta was purified by protein A column according to the instruction manual (Repligen Corporation). Anti-Neu-interferon beta was produced in the same manner except that the cDNA of the V region was from an anti-Neu (7.16.4) hybridoma.

肿瘤生长和处理Tumor Growth and Management

将大约6×105TUBO,TUBO-EGFR,B16-EGFR,B16-EGFR-SIY或NOP23细胞在右侧腹处皮下注射到6至8周大的小鼠中。沿着三个正交轴(a,b和c)测量了肿瘤体积并计算了肿瘤体积为abc/2。在肿瘤接种之后的第14,18和22天,通过三次肿瘤内注射25μg的抗-EGFR-干扰素β抗体或对照抗体来处理小鼠。对于CD8耗竭实验,与所述抗-EGFR-干扰素β处理同时,腹腔内地注射200μg的抗-CD8抗体。将大约6×106H460细胞在右侧腹处皮下注射到6至8周大的Rag1KO小鼠中。在肿瘤建立之后(约14天),通过静脉内注射将来自OTI TCR转基因小鼠的2×106LN细胞继受性地转移到小鼠中。一天后,通过三次肿瘤内注射25μg的抗-EGFR-干扰素β抗体或对照抗体来处理小鼠。Approximately 6×10 5 TUBO, TUBO-EGFR, B16-EGFR, B16-EGFR-SIY or NOP23 cells were injected subcutaneously in the right flank into 6- to 8-week-old mice. Tumor volume was measured along three orthogonal axes (a, b and c) and calculated as abc/2. Mice were treated by three intratumoral injections of 25 μg of anti-EGFR-interferon beta antibody or control antibody on days 14, 18 and 22 after tumor inoculation. For CD8 depletion experiments, 200 μg of anti-CD8 antibody was injected intraperitoneally concurrently with the anti-EGFR-interferon beta treatment. Approximately 6×10 6 H460 cells were injected subcutaneously in the right flank into 6- to 8-week-old Rag1 KO mice. After tumor establishment (approximately 14 days), 2 x 106 LN cells from OTI TCR transgenic mice were adoptively transferred into mice by intravenous injection. One day later, mice were treated by three intratumoral injections of 25 μg of anti-EGFR-interferon beta antibody or control antibody.

抗体处理后I型干扰素mRNA的表达Expression of type I interferon mRNA after antibody treatment

将大约6×105TUBO,TUBO-EGFR或B16-EGFR细胞在右侧腹皮下注射到6至8周大的小鼠中。在肿瘤接种后的第14和16天,通过两次肿瘤内注射100μg的抗-Neu,抗-EGFR或对照抗体来处理小鼠。用1mg/ml的胶原酶VIII(Sigma)和200μg/ml的DNA酶I(Sigma)在37℃下消化肿瘤30分钟。通过FACS AriaII(BD Bioscience)分选活的CD45+和CD45-细胞群。通过RNeasy迷你试剂盒(Qiagen)分离总的RNA并通过Sensiscript RT试剂盒(Qiagen)将其反转录为cDNA。通过定量实时PCR分析I型干扰素mRNA的表达水平。用于所述测定的引物如下:Approximately 6 × 10 5 TUBO, TUBO-EGFR or B16-EGFR cells were injected subcutaneously in the right flank into 6- to 8-week-old mice. On days 14 and 16 after tumor inoculation, mice were treated by two intratumoral injections of 100 μg of anti-Neu, anti-EGFR or control antibody. Tumors were digested with 1 mg/ml collagenase VIII (Sigma) and 200 μg/ml DNase I (Sigma) at 37°C for 30 minutes. Viable CD45 + and CD45- cell populations were sorted by FACS AriaII (BD Bioscience). Total RNA was isolated by RNeasy mini kit (Qiagen) and reverse transcribed into cDNA by Sensiscript RT kit (Qiagen). Expression levels of type I interferon mRNA were analyzed by quantitative real-time PCR. The primers used for the assay are as follows:

小鼠干扰素α5,5'-ATGAAGTCCATCAGCAGCTC(SEQ ID NO:2),5'-AGGGGCTGTGTTTCTTCTCT(SEQ ID NO:3);Mouse interferon alpha 5, 5'-ATGAAGTCCATCAGCAGCTC (SEQ ID NO:2), 5'-AGGGGCTGTGTTTCTTCTCT (SEQ ID NO:3);

β-肌动蛋白,5'-ACACCCGCCACCAGTTCGC(SEQ ID NO:4),5'-ATGGGGTACTTCAGGGTCAGGATA(SEQ ID NO:5)。β-actin, 5'-ACACCCGCCACCAGTTCGC (SEQ ID NO:4), 5'-ATGGGGTACTTCAGGGTCAGGATA (SEQ ID NO:5).

通过ELISPOT测定来测量分泌干扰素γ的T细胞Measurement of interferon gamma secreting T cells by ELISPOT assay

通过ELISPOT测定测量SIY肽反应性T细胞。将脾或淋巴结细胞重悬在补充了10%FCS,2mmol/L L-谷氨酰胺,100单位/mL青霉素,和100μg/mL链霉素的RPMI1640中。一共将1-4×105个脾或淋巴结细胞用于此测定。将SIY肽以5μg/mL的浓度加入。在48h的孵育后,根据指导手册通过干扰素γELISPOT试剂盒(BD Bioscience)或CBA测定(BD Bioscience)确定了干扰素γ的产生。用ImmunoSpot分析仪(细胞毒性T细胞)计数了所见到的细胞因子点。SIY peptide-reactive T cells were measured by ELISPOT assay. Resuspend spleen or lymph node cells in RPMI1640 supplemented with 10% FCS, 2 mmol/L L-glutamine, 100 units/mL penicillin, and 100 μg/mL streptomycin. A total of 1-4 x 105 spleen or lymph node cells were used for this assay. SIY peptide was added at a concentration of 5 μg/mL. After 48 h of incubation, interferon gamma production was determined by interferon gamma ELISPOT kit (BD Bioscience) or CBA assay (BD Bioscience) according to the instruction manual. Cytokine spots seen were counted with an ImmunoSpot analyzer (cytotoxic T cells).

离体树突细胞交叉呈递测定Ex vivo dendritic cell cross-presentation assay

在第14天和17天,用25μg的抗-EGFR、或抗-EGFR-干扰素β肿瘤内注射来处理携带B16-EGFR-SIY的小鼠。四天之后,用1mg/ml的胶原酶VIII(Sigma)和200μg/ml DNA酶I(Sigma)在37℃下将引流淋巴结消化15分钟。通过CD11c阳性选择试剂盒(Stemcell)纯化树突细胞。将大约1×105树突细胞与经纯化的2×1052C T细胞混合(含有或不含5μg/mL的SIY肽)以重新刺激T细胞。两天之后,收集了上清液,并且通过CBA测定(BD Bioscience)测量了干扰素γ。On days 14 and 17, B16-EGFR-SIY bearing mice were treated with intratumoral injections of 25 μg of anti-EGFR, or anti-EGFR-interferon beta. Four days later, draining lymph nodes were digested with 1 mg/ml collagenase VIII (Sigma) and 200 μg/ml DNase I (Sigma) for 15 minutes at 37°C. Dendritic cells were purified by CD11c positive selection kit (Stemcell). Approximately 1 x 105 dendritic cells were mixed with purified 2 x 105 2C T cells (with or without 5 μg/mL SIY peptide) to restimulate T cells. After two days, supernatants were collected and interferon gamma was measured by CBA assay (BD Bioscience).

离体T细胞活化测定Ex vivo T cell activation assay

在第14和17天时,通过用25μg的抗-EGFR或抗-EGFR-干扰素β进行肿瘤内注射而处理携带有B16-EGFR-SIY的小鼠。四天之后,通过T细胞阴性选择试剂盒(Stemcell)纯化了dLN T细胞。将来自幼稚小鼠的大约1×105经纯化的树突细胞与2×105T细胞混合在一起(含有或不含5μg/mL的SIY肽)以再刺激T细胞。两天之后,收集上清液并通过CBA测定(BD Bioscience)来测量干扰素γ。On days 14 and 17, B16-EGFR-SIY bearing mice were treated by intratumoral injection with 25 μg of anti-EGFR or anti-EGFR-interferon beta. Four days later, dLN T cells were purified by a T cell negative selection kit (Stemcell). Approximately 1 x 105 purified dendritic cells from naive mice were mixed with 2 x 105 T cells (with or without 5 μg/mL of SIY peptide) to restimulate T cells. After two days, supernatants were collected and interferon gamma was measured by CBA assay (BD Bioscience).

骨髓嵌合体的产生Generation of bone marrow chimeras

用1000rads的单一剂量致死辐射WT小鼠。次日,将2-3x106WT,IFN AR1-/-或CD11c-DTR Tg供体骨髓细胞通过静脉内过继转移至所述经辐射的小鼠。重构后,将小鼠保持在复方磺胺甲恶唑(Bactrim)抗生素中(在饮用水中稀释的)4周。在重构之后的5-6周,用肿瘤细胞注射小鼠。WT mice were lethally irradiated with a single dose of 1000 rads. The next day, 2-3x106 WT, IFN AR1 −/− or CD11c-DTR Tg donor bone marrow cells were adoptively transferred to the irradiated mice intravenously. After reconstitution, mice were maintained on cotrimoxazole (Bactrim) antibiotic (diluted in drinking water) for 4 weeks. 5-6 weeks after reconstitution, mice were injected with tumor cells.

检测mAb和融合蛋白制备物中的内毒素Detection of endotoxin in mAb and fusion protein preparations

通过鲎变形细胞溶解物测定(Cambrex inc.MD)测量了内毒素。对于所有的mAb制备物,测定了内毒素的量为<0.2E.U./mg mAb。Endotoxin was measured by Limulus amebocyte lysate assay (Cambrex inc. MD). For all mAb preparations, the amount of endotoxin was determined to be <0.2 E.U./mg mAb.

流式细胞计数分析Flow Cytometry Analysis

用抗CD16/32(抗-FcγIII/II受体,克隆2.4G2)孵育单细胞悬浮液10分钟,然后用缀合的抗体进行染色。所有经荧光标记的单克隆抗体均购自Biolegend或eBioscience。在FACSC自动流式细胞计数仪(BDBiosciences)上对样品进行分析,并且用FlowJo软件(TreeStar,Inc.)分析了数据。Single cell suspensions were incubated with anti-CD16/32 (anti-FcγIII/II receptor, clone 2.4G2) for 10 minutes and then stained with conjugated antibodies. All fluorescently labeled mAbs were purchased from Biolegend or eBioscience. Samples were analyzed on a FACSC automated flow cytometer (BD Biosciences) and data were analyzed with FlowJo software (TreeStar, Inc.).

统计学分析Statistical analysis

使用未配对Student双尾t测试比较了平均值。误差条表示SD。统计学上显著的差异p<0.05和p<0.01分别被标注以*和**。Means were compared using unpaired Student's two-tailed t-test. Error bars represent SD. Statistically significant differences p<0.05 and p<0.01 are marked with * and **, respectively.

实施例1Example 1

需要I型干扰素用于体内针对抗体疗法的有效肿瘤应答Type I interferons are required for effective tumor responses to antibody therapy in vivo

已显现出I型干扰素作为潜在的关键性危险信号在自发性肿瘤排斥和各种抗肿瘤疗法中引发抗肿瘤的T细胞应答当前的发明人假设了抗致癌性受体抗体在肿瘤组织中诱导I型干扰素的产生,而桥接先天性和获得性免疫。为了测试在本文所述的模型中,肿瘤对抗致癌性受体抗体的敏感性是否与处理后I型干扰素的水平相关,发明人首先制备了两个不同的肿瘤细胞系,即抗体响应性细胞系和抗体抗性细胞系。TUBO乳腺肿瘤细胞源自Her2/neu Tg小鼠,其中Neu是细胞生长的主要信号,而TUBO细胞被用作抗-neu抗体响应性肿瘤细胞系。经EGFR转染的B16黑色素瘤细胞系(其中EGFR不能够递送生长信号)被用作完全抵抗抗EGFR处理的肿瘤细胞系。发明人用相应的抗体处理了携带这些肿瘤的小鼠并且评估了处理后肿瘤内I型干扰素的产生。发明人发现了干扰素α5和干扰素β的产生在抗体响应性肿瘤模型中增加了,但是在抗体抗性肿瘤模型中没有增加(图1A以及未显示的数据),这表明增加的I型干扰素的产生是由抗体诱导的致癌性受体阻断和应激作用引起的。为了测试体内由抗体介导的抗肿瘤效果是否需要I型干扰素,发明人在抗体响应性TUBO肿瘤小鼠模型中、在抗Neu处理的过程中用抗-I型干扰素受体阻断抗体处理了小鼠。发明人发现了,阻断I型干扰素信号传导损害了抗Neu抗体的治疗效果(图1B),这表明I型干扰素对于抗体介导的肿瘤消退而言的确是关键性的细胞因子。因此,这提出了下述可能性:受损的I型干扰素可能限制带有抗体抗性肿瘤的宿主中的免疫应答。为了进一步测试将其它的I型干扰素直接递送到肿瘤中是否足以控制肿瘤生长(甚至在抗体抗性肿瘤中),用编码干扰素β的腺病毒(腺病毒-干扰素β)处理了两组携带肿瘤的小鼠。如图1C中所示,Ad-干扰素β处理本身就足以控制抗体抗性肿瘤和抗体响应性肿瘤的生长(数据未显示)。综上所述,这些数据表明,将I型干扰素靶向到肿瘤中可能足以克服肿瘤免疫回避。Type I interferons have been shown to serve as potentially critical danger signals in eliciting antitumor T cell responses in spontaneous tumor rejection and in various antitumor therapies. The current inventors hypothesized that anti-oncogenic receptor antibodies induce in tumor tissue Type I interferon production, which bridges innate and acquired immunity. To test whether tumor sensitivity to anti-oncogenic receptor antibodies correlates with post-treatment levels of type I interferon in the model described here, the inventors first generated two different tumor cell lines, antibody-responsive cells lines and antibody-resistant cell lines. TUBO mammary tumor cells were derived from Her2/neu Tg mice, where Neu is the main signal for cell growth, and TUBO cells were used as an anti-neu antibody-responsive tumor cell line. The EGFR-transfected B16 melanoma cell line, in which EGFR is unable to deliver growth signals, was used as a tumor cell line fully resistant to anti-EGFR treatment. The inventors treated mice bearing these tumors with the corresponding antibodies and assessed the production of type I interferons in the tumors following treatment. The inventors found that the production of interferon α5 and interferon β was increased in antibody-responsive tumor models, but not in antibody-resistant tumor models (Fig. 1A and data not shown), suggesting increased type I interference Production of the hormone is caused by antibody-induced blockade of oncogenic receptors and stress. To test whether type I interferon is required for antibody-mediated antitumor effects in vivo, the inventors used anti-type I interferon receptor blocking antibody during anti-Neu treatment in an antibody-responsive TUBO tumor mouse model Mice were treated. The inventors found that blocking type I interferon signaling impaired the therapeutic efficacy of anti-Neu antibodies (Fig. IB), suggesting that type I interferon is indeed a critical cytokine for antibody-mediated tumor regression. Thus, this raises the possibility that impaired type I interferons may limit the immune response in hosts with antibody-resistant tumors. To further test whether direct delivery of other type I interferons into tumors was sufficient to control tumor growth (even in antibody-resistant tumors), two groups were treated with an adenovirus encoding interferon beta (adenovirus-interferon beta). tumor-bearing mice. As shown in Figure 1C, Ad-interferon beta treatment alone was sufficient to control the growth of antibody-resistant and antibody-responsive tumors (data not shown). Taken together, these data suggest that targeting type I interferons to tumors may be sufficient to overcome tumor immune avoidance.

实施例2Example 2

干扰素β的靶向递送增强抗体介导的治疗效果Targeted delivery of interferon beta enhances antibody-mediated therapeutic efficacy

实施例1中的数据表明将I型干扰素靶向到肿瘤中具有潜在的免疫治疗效果,特别是可用于克服肿瘤对于抗体疗法的抗性。为了进一步验证此结论并进一步提高治疗效果,当前的发明人制备了抗-EGFR-干扰素β(Ab-IFNβ)融合蛋白以靶向地将干扰素β直接递送到表达EGFR的肿瘤组织中(图9A)。当前的发明人首先检查了此融合蛋白中抗-EGFR和干扰素β的抗肿瘤功能是否仍保持完好。发明人发现,所述融合蛋白能够结合EGFR+细胞(图9B)并且能够激活I型干扰素受体信号通路(数据未显示),因此可知,融合蛋白中抗-EGFR和干扰素β的抗肿瘤功能都得到了很好的保持。发明人然后检测了抗-EGFR-干扰素β是否能够在体内特异性地将干扰素β递送到EGFR+肿瘤位点。结果证实了,在起初注射之后,抗-EGFR-干扰素β的浓度在几乎整整一周中在肿瘤组织中都保持较高水平(图9C),而其在起初注射后不到一周的时间中就在其它组织中显著地降低。此外,发明人通过测量血清细胞因子、ALT和AST水平而检测了抗-EGFR-干扰素β的副作用。在发明人所检测的细胞因子中包括TNF,IL-12,干扰素γ,MCP-1,IL-6和IL-10,在注射后6小时和一天时干扰素γ和MCP-1的表达水平略有增加(图10)。发明人还观察到了在经过上面所述的处理之后,ALT和AST的水平没有增加(数据未显示)。The data in Example 1 suggest that targeting type I interferons to tumors has potential immunotherapeutic effects, particularly for overcoming tumor resistance to antibody therapy. In order to further verify this conclusion and further improve the therapeutic effect, the current inventors prepared an anti-EGFR-interferon β (Ab-IFNβ) fusion protein to deliver interferon β directly to tumor tissues expressing EGFR in a targeted manner (Fig. 9A). The present inventors first checked whether the anti-tumor function of anti-EGFR and interferon beta in this fusion protein remained intact. The inventors found that the fusion protein can bind EGFR + cells (Fig. 9B) and activate the type I interferon receptor signaling pathway (data not shown), so it can be seen that the anti-tumor effect of anti-EGFR and interferon β in the fusion protein Functionality is well maintained. The inventors then tested whether anti-EGFR-interferon beta could specifically deliver interferon beta to EGFR + tumor sites in vivo. The results confirmed that after the initial injection, the concentration of anti-EGFR-interferon beta remained high in the tumor tissue for almost a full week (Fig. 9C), whereas it decreased in less than a week after the initial injection. Significantly lower in other tissues. Furthermore, the inventors examined the side effects of anti-EGFR-interferon beta by measuring serum cytokines, ALT and AST levels. Among the cytokines detected by the inventors were TNF, IL-12, interferon gamma, MCP-1, IL-6 and IL-10, the expression levels of interferon gamma and MCP-1 at 6 hours and one day after injection slightly increased (Figure 10). The inventors also observed no increase in the levels of ALT and AST following the treatments described above (data not shown).

为了比较新一代抗-EGFR-干扰素β融合蛋白与第一代抗-EGFR抗体(西妥昔单抗)之间的抗肿瘤治疗效果,发明人用每一种试剂治疗了携带已建立的EFGR+肿瘤的宿主。令人惊讶地,发明人观察到在有部分抗性的肿瘤模型中,与单独使用抗-EGFR抗体相比,抗-EGFR-干扰素β在更低的剂量和更短的持续时间中有有效得多的治疗效果(图2A)。在乳腺内脂肪部分肿瘤注射模型中类似地观察到了提高的抗肿瘤效果(数据未显示)。为了进一步测试Ab-IFNβ是否能够在具有完全抗性的肿瘤模型中控制肿瘤生长,发明人测试了抗-EGFR-干扰素β在B16-EGFR模型中的效力。如所预测的,单独的抗-EGFR处理不能够在体内抑制B16-EGFR肿瘤生长,而抗-EGFR-干扰素β处理再次能够有力地控制肿瘤生长(图2B)。已报道了KRAS突变是促成临床中抗-EGFR抗性的关键因子为了测试抗-EGFR-干扰素β在KRAS突变诱导的抗体抗性肿瘤模型中是否是有效的,发明人在之前构建的获得性免疫重构Rag-1KO小鼠中用抗-EGFR-干扰素β处理了KRAS突变的H460人肿瘤。即使在这个模型中,相比于单独使用抗-EGFR,抗-EGFR-干扰素β也显示出了优越的治疗效果(图2C)。为了测试抗-EGFR-干扰素β是否能够控制肿瘤转移,当前的发明人向WT小鼠静脉内注射了B16-EGFR以模拟肿瘤转移。发明人发现了与单独使用抗-EGFR相比,抗-EGFR-干扰素β能够更好地控制转移性的肿瘤并且还能够延长小鼠的存活(数据未显示)。In order to compare the anti-tumor therapeutic effect between the new generation anti-EGFR-IFNβ fusion protein and the first generation anti-EGFR antibody (cetuximab), the inventors treated the patients with established EFGR with each agent. + the host of the tumor. Surprisingly, the inventors observed that in a partially resistant tumor model, anti-EGFR-interferon beta was effective at a lower dose and for a shorter duration than anti-EGFR antibody alone Much more therapeutic effect (Fig. 2A). An enhanced antitumor effect was similarly observed in the intramammary fat fraction tumor injection model (data not shown). To further test whether Ab-IFNβ is able to control tumor growth in a fully resistant tumor model, the inventors tested the efficacy of anti-EGFR-IFNβ in the B16-EGFR model. As predicted, anti-EGFR treatment alone was unable to inhibit B16-EGFR tumor growth in vivo, whereas anti-EGFR-IFNβ treatment was again able to potently control tumor growth (Fig. 2B). KRAS mutation has been reported to be a key factor contributing to anti-EGFR resistance in the clinic KRAS-mutated H460 human tumors were treated with anti-EGFR-interferon-β in immune-reconstituted Rag-1 KO mice. Even in this model, anti-EGFR-IFNβ showed a superior therapeutic effect compared to anti-EGFR alone (Fig. 2C). To test whether anti-EGFR-IFNβ could control tumor metastasis, the current inventors injected B16-EGFR intravenously into WT mice to mimic tumor metastasis. The inventors found that anti-EGFR-interferon beta was able to better control metastatic tumors and also prolong the survival of mice compared to anti-EGFR alone (data not shown).

由抗-Neu抗体导的抗肿瘤免疫性在neu Tg小鼠中大大降低,这是因为由于转基因表达的性质而使得在早期生命阶段,所有的乳腺中的高neu表达(作为自我以及肿瘤相关抗原)耐受宿主免疫细胞。为了测试Ab-IFNβ是否能够打破这种耐受性并在neu Tg小鼠中诱导neu+肿瘤的消退,在neu Tg宿主中建立了neu+肿瘤系NOP23(最初是从neu Tg小鼠产生的)令人惊讶地,与单独使用抗-Neu抗体相比,抗-Neu-干扰素β更显著地抑制了肿瘤生长(图2D)。总之,这些数据表明,对于控制肿瘤(甚至是在抗体抗性肿瘤模型和耐受的宿主中)而言,与第一代抗体疗法相比,Ab-IFNβ融合蛋白疗法能够以低剂量、在短时间内达到优越得多的效果(图14)。Anti-tumor immunity elicited by anti-Neu antibodies was greatly reduced in neu Tg mice due to high expression of neu in all mammary glands during early life stages due to the nature of transgene expression (as self and tumor-associated antigens ) Tolerant host immune cells. To test whether Ab-IFNβ could break this tolerance and induce regression of neu + tumors in neu Tg mice, the neu + tumor line NOP23 (originally generated from neu Tg mice) was established in neu Tg hosts Surprisingly, anti-Neu-interferon β inhibited tumor growth more significantly than anti-Neu antibody alone (Fig. 2D). Taken together, these data demonstrate that Ab-IFNβ fusion protein therapy is effective in controlling tumors at lower doses and in shorter Much superior results were achieved in less time (Figure 14).

实施例3Example 3

抗-EGFR-干扰素β融合蛋白的治疗效果取决于获得性免疫Therapeutic efficacy of an anti-EGFR-interferon beta fusion protein depends on acquired immunity

I型干扰素对于肿瘤的生长具有多种潜在的效果,这包括抑制增殖、抑制血管生成、激活天然免疫细胞、桥接先天和获得性免疫以及直接激活获得性免疫应答。为了评估在众多其他的抗-EGFR-干扰素β抗肿瘤效果中,获得性免疫的相对贡献,用抗-EGFR-干扰素β处理了携带B16-EGFR的B6 Rag1 KO小鼠。与在WT小鼠中观察到的治疗效果相反,相似剂量的抗-EGFR-干扰素β不能抑制这些免疫受损的Rag1 KO小鼠中的肿瘤(图3A)。因此,这些数据支持了下述结论:抗-EGFR-干扰素β介导的治疗效果在很大程度上需要获得性免疫。Type I interferons have multiple potential effects on tumor growth, including inhibition of proliferation, inhibition of angiogenesis, activation of innate immune cells, bridging innate and adaptive immunity, and direct activation of adaptive immune responses. To assess the relative contribution of acquired immunity among the many other anti-tumor effects of anti-EGFR-IFN-β, B16-EGFR-bearing B6 Rag1 KO mice were treated with anti-EGFR-IFN-β. In contrast to the therapeutic effect observed in WT mice, similar doses of anti-EGFR-IFNβ failed to suppress tumors in these immunocompromised Rag1 KO mice (Fig. 3A). Thus, these data support the conclusion that anti-EGFR-interferon beta mediated therapeutic effects largely require acquired immunity.

CD8+T淋巴细胞是参与控制许多肿瘤的生长的主要细胞群。为了确定它们是否也参与抗-EGFR-干扰素β介导的抗肿瘤效果,发明人在引发阶段中追踪了抗肿瘤T细胞应答。发明人首先建立了B16-EGFR-SIY肿瘤细胞系,其中SIY肽(SIYRYYGL)被异位表达在人EGFR分子中;这一SIY肽是作为替代标志,其可被内源性或2C Tg CD8+T细胞特异性地识别。在用抗-EGFR-干扰素β处理之后,从携带肿瘤的小鼠中分离了引流淋巴结(dLN)淋巴细胞,并用SIY肽进行了刺激,且测量了干扰素γ的产生,作为被激活的T细胞的效应子-功能指标。如图3B中所示,与单独的抗-EGFR处理相比,抗-EGFR-干扰素β处理增加了来自肿瘤抗原特异性T细胞的干扰素γ产生。为了了解CD8+细胞对于抗EGFR-干扰素β的治疗效果是否是关键的,发明人在携带B16-EGFR的WT B6小鼠中、在抗-EGFR-干扰素β处理的过程中施用了CD8耗竭抗体,并测量了肿瘤生长。CD8+细胞耗竭大大地降低了抗-EGFR-干扰素β的治疗效果(图3C),这表明需要获得性的免疫应答来控制肿瘤生长。与这一发现相一致,发明人发现了在用抗-CD8进行耗竭后体外的T细胞应答大大降低(图3D)。其它细胞的耗竭(包括NK和B细胞)没有影响抗-EGFR-干扰素β的抗肿瘤效果(图11)。发明人因此推测,抗-EGFR-干扰素β诱导了对肿瘤特异性细胞毒性T细胞的更有效的引发,引起对肿瘤生长的抑制。总之,这些数据表明抗-EGFR-干扰素β处理能够增加T细胞引发,而这促成了抗-EGFR-干扰素β的抗肿瘤效果。CD8 + T lymphocytes are the major cell population involved in controlling the growth of many tumors. To determine whether they are also involved in anti-EGFR-interferon beta mediated anti-tumor effects, the inventors followed the anti-tumor T cell responses during the priming phase. The inventors first established the B16-EGFR-SIY tumor cell line in which the SIY peptide (SIYRYYGL) was ectopically expressed in the human EGFR molecule; this SIY peptide was used as a surrogate marker that could be detected by endogenous or 2C Tg CD8 + T cells specifically recognize. Following treatment with anti-EGFR-IFNβ, draining lymph node (dLN) lymphocytes were isolated from tumor-bearing mice, stimulated with SIY peptide, and interferonγ production was measured as activated T Effector-function indicators of cells. As shown in Figure 3B, anti-EGFR-interferon beta treatment increased interferon gamma production from tumor antigen-specific T cells compared to anti-EGFR treatment alone. To understand whether CD8 + cells are critical for the therapeutic effect of anti-EGFR-IFNβ, the inventors administered CD8-depleted B16-EGFR-bearing WT B6 mice during anti-EGFR-IFNβ treatment. antibodies, and tumor growth was measured. CD8 + cell depletion greatly reduced the efficacy of anti-EGFR-IFNβ therapy (Fig. 3C), suggesting that an adaptive immune response is required to control tumor growth. Consistent with this finding, the inventors found that T cell responses in vitro were greatly reduced following depletion with anti-CD8 (Fig. 3D). Depletion of other cells, including NK and B cells, did not affect the anti-tumor effect of anti-EGFR-IFNβ (Fig. 11). The inventors therefore speculate that anti-EGFR-interferon beta induces a more efficient priming of tumor-specific cytotoxic T cells, leading to inhibition of tumor growth. Taken together, these data suggest that anti-EGFR-IFNβ treatment can increase T cell priming, which contributes to the anti-tumor effect of anti-EGFR-IFNβ.

实施例4Example 4

抗-EGFR-干扰素β的治疗效果需要在宿主造血细胞上表达I型干扰素受体Therapeutic efficacy of anti-EGFR-interferon beta requires expression of type I interferon receptors on host hematopoietic cells

I型干扰素受体在几乎所有的细胞类型中都广泛表达,因此正常的细胞和肿瘤细胞都是潜在的抗-EGFR-干扰素β靶标。已报道了抗-CD20-干扰素α融合蛋白的效力需要在肿瘤细胞上表达I型干扰素受体因此,发明人推断对于抗-EGFR-干扰素β的治疗效果而言,可能也需要由肿瘤细胞表达的I型干扰素受体。为此,发明人比较了携带肿瘤的I型干扰素受体敲除(KO)小鼠中的抗肿瘤效果,所述小鼠在宿主细胞上缺乏I型干扰素受体的表达,但是在肿瘤细胞上表达I型干扰素受体。令人惊讶地,在I型干扰素受体KO小鼠中,抗-EGFR-干扰素β的治疗效果被完全破坏了(图4A),并且没有观察到增加的细胞毒性T细胞应答(图4B)。这些结果表明,抗-EGFR-干扰素β的治疗效果在宿主细胞中需要由I型干扰素受体介导的活化,但在肿瘤细胞中不需要。由于所有的宿主组织都表达I型干扰素受体,发明人构建了I型干扰素受体骨髓嵌合(BMC)小鼠,以进一步分析是否需要表达I型干扰素受体的造血细胞或宿主基质细胞来实现抗肿瘤效果。发明人发现了,需要在造血细胞上表达I型干扰素受体,因为在I型干扰素受体KO BM重构的小鼠中抗-EGFR-干扰素β的抗肿瘤效果严重受损(图4C)。这些数据表明抗-EGFR-干扰素β不是通过直接抑制肿瘤细胞生长、而是通过激活宿主造血细胞(其然后改变肿瘤微环境)而介导其抗肿瘤效应。Type I interferon receptors are ubiquitously expressed in almost all cell types, thus both normal cells and tumor cells are potential anti-EGFR-IFNβ targets. It has been reported that the efficacy of anti-CD20-interferon alpha fusion protein requires the expression of type I interferon receptors on tumor cells. Therefore, the inventors reasoned that for the therapeutic effect of anti-EGFR-interferon beta, it may also be required by tumor cells. Type I interferon receptors expressed by cells. To this end, the inventors compared the antitumor effects in tumor-bearing type I interferon receptor knockout (KO) mice that lack expression of type I interferon receptors on Cells express type I interferon receptors. Surprisingly, in type I IFN receptor KO mice, the therapeutic effect of anti-EGFR-IFNβ was completely abolished (Fig. 4A), and no increased cytotoxic T cell responses were observed (Fig. 4B ). These results suggest that type I interferon receptor-mediated activation is required for the therapeutic effect of anti-EGFR-IFNβ in host cells but not in tumor cells. Since all host tissues express type I interferon receptors, the inventors constructed type I interferon receptor bone marrow chimeric (BMC) mice to further analyze whether hematopoietic cells or hosts expressing type I interferon receptors are required stromal cells to achieve antitumor effects. The inventors discovered that expression of type I interferon receptors on hematopoietic cells is required because the anti-tumor effect of anti-EGFR-interferon beta was severely impaired in type I interferon receptor KO BM reconstituted mice (Fig. 4C). These data suggest that anti-EGFR-IFNβ mediates its antitumor effects not by directly inhibiting tumor cell growth, but by activating host hematopoietic cells, which then alter the tumor microenvironment.

实施例5Example 5

提高的树突细胞交叉呈递促成抗-EGFR-干扰素β的抗肿瘤效果Enhanced dendritic cell cross-presentation contributes to the antitumor effect of anti-EGFR-interferon-β

鉴于CD8+细胞对于抗-EGFR-干扰素β治疗的抗肿瘤效果是关键性的,发明人进一步探索了抗-EGFR-干扰素β如何增强细胞毒性T细胞应答的根本机制。发明人观察到,即使没有外源性SIY肽的刺激,在抗-EGFR-干扰素β处理之后也有干扰素γ产生性CD8+细胞的显著增加,这表明APC的交叉呈递增加了(图5A)。因为交叉呈递是激活细胞毒性T细胞用于抗肿瘤免疫的主要引发性机制发明人推测所述交叉呈递的增加对于恢复树突细胞功能以重新活化肿瘤内和引流淋巴结内的细胞毒性T细胞可能是关键性的。为了开始研究抗-EGFR-干扰素β能够增加APC的交叉呈递的可能性,发明人使用了体内的抗原特异性系统以追踪肿瘤-抗原特异性T细胞的引发和活化。因此,评估了来自经抗-EGFR-干扰素β处理的携带B16-EGFR-SIY的小鼠的dLN的树突细胞,通过在离体测定中用SIY-反应性2C T细胞孵育它们而检测其增强特异性抗肿瘤细胞毒性T细胞应答的能力。的确,与抗-EGFR处理相比,来自经抗-EGFR-干扰素β处理的小鼠的树突细胞诱导了更多由2C T细胞产生的干扰素γ(约33倍),甚至在没有外源性SIY肽的再刺激时也是如此(图5B)。综合而言,这些数据表明,经抗-EGFR-干扰素β活化的树突细胞通过增加交叉引发功能而增强了CD8+T细胞活化。此外,这些结果表明,是所述融合蛋白的干扰素β组分引起了树突细胞交叉呈递通路的活化,因为单独的抗-EGFR没有诱导强的树突细胞活化。为了测试抗-EGFR-干扰素β是否也增加了直接引发功能,将外源的抗原产生性肽(SIY)添加到培养基中,其进一步增加了SIY-特异性2C T细胞应答。在外源SIY-肽再刺激之后,与抗-EGFR处理相比,来自经抗-EGFR-干扰素β处理的小鼠的树突细胞诱导2C T细胞产生约2倍更多的干扰素γ(图5B)。这些结果表明,与来自单独经抗-EGFR处理的小鼠的树突细胞相比,来自经抗-EGFR-干扰素β处理的宿主的dLN的树突细胞很有可能在更大程度上被活化。的确,这些树突细胞具有活化标志物(包括CD86)的高表达,如通过流式细胞计数所评估的(图5C)。为了进一步解析由抗-EGFR-干扰素β诱导的树突细胞活化是否促成了增强的T细胞活化,在抗-EGFR-干扰素β处理的过程中,用DT处理携带肿瘤的CD11c-DTR BMC小鼠以耗竭树突细胞。发明人发现,当不存在树突细胞时,所述由抗-EGFR-干扰素β介导的治疗效果显著受损(图5D)。总之,这些数据表明增加的树突细胞交叉呈递引起改善的CD8+细胞毒性T细胞引发和功能,而这可能是抗EGFR-干扰素β的治疗效果的主要根本性机制。Given that CD8 + cells are critical for the anti-tumor effect of anti-EGFR-IFNβ therapy, the inventors further explored the underlying mechanism of how anti-EGFR-IFNβ enhances cytotoxic T cell responses. The inventors observed a significant increase in IFN-γ-producing CD8 + cells following anti-EGFR-IFN-β treatment even without stimulation with exogenous SIY peptide, suggesting increased cross-presentation of APCs (Fig. 5A) . Because cross-presentation is the main priming mechanism for activating cytotoxic T cells for anti-tumor immunity, the inventors speculate that the increase in cross-presentation may be important for restoring dendritic cell function to reactivate cytotoxic T cells in tumors and in draining lymph nodes. critical. To begin investigating the possibility that anti-EGFR-IFNβ could increase cross-presentation of APCs, the inventors used an in vivo antigen-specific system to follow the priming and activation of tumor-antigen-specific T cells. Therefore, dendritic cells from the dLN of anti-EGFR-IFNβ-treated B16-EGFR-SIY-bearing mice were assessed by incubating them with SIY-reactive 2C T cells in an ex vivo assay. Ability to enhance specific anti-tumor cytotoxic T cell responses. Indeed, dendritic cells from anti-EGFR-IFNβ-treated mice induced more IFNγ production by 2C T cells (about 33-fold) compared with anti-EGFR treatment, even in the absence of external The same was true upon restimulation with the derived SIY peptide (Fig. 5B). Taken together, these data suggest that dendritic cells activated by anti-EGFR-IFNβ enhance CD8 + T cell activation through increased cross-priming function. Furthermore, these results suggest that it is the interferon beta component of the fusion protein that is responsible for the activation of the dendritic cell cross-presentation pathway, as anti-EGFR alone did not induce strong dendritic cell activation. To test whether anti-EGFR-interferon beta also increased the direct priming function, an exogenous antigen-producing peptide (SIY) was added to the culture medium, which further increased SIY-specific 2C T cell responses. Following restimulation with exogenous SIY-peptide, dendritic cells from anti-EGFR-IFNβ-treated mice induced approximately 2-fold more IFNγ production by 2C T cells compared to anti-EGFR treatment (Fig. 5B). These results suggest that dendritic cells from the dLN of anti-EGFR-IFNβ-treated hosts are likely to be activated to a greater extent than dendritic cells from anti-EGFR-treated mice alone . Indeed, these dendritic cells had high expression of activation markers, including CD86, as assessed by flow cytometry (Fig. 5C). To further dissect whether dendritic cell activation induced by anti-EGFR-IFNβ contributed to enhanced T cell activation, tumor-bearing CD11c-DTR BMC cells were treated with DT during anti-EGFR-IFNβ treatment. mice to deplete dendritic cells. The inventors found that the therapeutic effect mediated by anti-EGFR-interferon beta was significantly impaired when dendritic cells were absent (Fig. 5D). Taken together, these data suggest that increased dendritic cell cross-presentation leads to improved CD8 + cytotoxic T cell priming and function, and this may be the main underlying mechanism for the therapeutic effect of anti-EGFR-interferon β.

实施例6Example 6

抗-EGFR-干扰素β直接靶向树突细胞以逆转耐受的肿瘤微环境用于改进的抗肿瘤效果Anti-EGFR-IFN-β directly targets dendritic cells to reverse a resistant tumor microenvironment for improved antitumor efficacy

本申请的数据表明,增加的交叉诱导对于通过抗-EGFR-干扰素β处理带来改进的抗肿瘤效果是重要的。然而,如何通过抗-EGFR-干扰素β处理而活化树突细胞的机制仍不清楚。特别地,需要鉴别出直接促成抗-EGFR-干扰素β的治疗效果的表达I型干扰素受体的细胞。为了解决这个问题,将I型干扰素受体fl/fl小鼠与各种Cre-Tg小鼠一同哺育。当I型干扰素受体在CD11c-Cre-I型干扰素受体fl/fl小鼠中的CD11c+细胞中选择性缺失时,抗-EGFR-干扰素β的抗肿瘤效果显著减少(图6A),这表明,通过抗-EGFR-干扰素β直接活化树突细胞可能是对其治疗效果做出主要贡献的因素。当I型干扰素受体在CD4-Cre-I型干扰素受体fl/fl小鼠的T细胞中选择性缺失时,抗-EGFR-干扰素β的抗肿瘤效果略微受损但没有显著受损(图6B),这表明使I型干扰素受体直接靶向T细胞可使已经被树突细胞激活的T细胞被进一步活化,从而产生改进的抗肿瘤效果。为了进一步测试这一想法,发明人在体外测定中评估了抗-EGFR-干扰素β刺激在树突细胞和T细胞活化中的效果;的确,抗-EGFR-干扰素β增加了经纯化的树突细胞和T细胞的活化(图12)。这些数据结合在一起表明了,I型干扰素受体表达性树突细胞的直接活化在抗-EGFR-干扰素β介导的治疗效果中起主要作用,而通过在T细胞上表达I型干扰素受体进一步增强了这种作用。The data of the present application indicate that increased cross-induction is important for the improved anti-tumor effect brought about by anti-EGFR-interferon beta treatment. However, the mechanism of how dendritic cells are activated by anti-EGFR-IFNβ treatment remains unclear. In particular, there is a need to identify cells expressing type I interferon receptors that directly contribute to the therapeutic effect of anti-EGFR-interferon beta. To address this issue, type I interferon receptor fl/fl mice were reared with various Cre-Tg mice. The anti-tumor effect of anti-EGFR-IFNβ was significantly reduced when the type I IFN receptor was selectively deleted in CD11c + cells in CD11c-Cre-IFNR type I fl/fl mice (Figure 6A ), which suggests that direct activation of dendritic cells by anti-EGFR-IFN-β may be a major contributor to its therapeutic effect. When the type I interferon receptor is selectively deleted in T cells of CD4-Cre-type I interferon receptor fl/fl mice, the antitumor effect of anti-EGFR-IFNβ is slightly but not significantly impaired 6B), suggesting that direct targeting of type I interferon receptors to T cells can further activate T cells that have been activated by dendritic cells, leading to improved antitumor effects. To further test this idea, the inventors assessed the effect of anti-EGFR-IFNβ stimulation on dendritic cell and T cell activation in an in vitro assay; indeed, anti-EGFR-IFNβ increased purified dendritic Activation of dendritic cells and T cells (Figure 12). Taken together, these data suggest that direct activation of type I interferon receptor-expressing dendritic cells plays a major role in anti-EGFR-IFNβ-mediated therapeutic effects, whereas expression of type I interferon on T cells The hormone receptors further enhanced this effect.

实施例7Example 7

拮抗抗-EGFR-干扰素β诱导的PD-L1表达实现了无肿瘤的效果Antagonizing anti-EGFR-IFN-β-induced PD-L1 expression achieves tumor-free outcomes

虽然与单独的抗-EGFR抗体相比,抗-EGFR-干扰素β融合实现了更有效的抗肿瘤效果,残留的肿瘤最终会复发。发明人因此想了解,抗-EGFR-干扰素β处理是否可能诱导抑制性分子的表达以防止组织损伤,而这将随着时间弱化抗肿瘤效果。发明人在抗-EGFR-干扰素β处理后评估了PD-L1的表达,并且在体内和体外都清楚地观察到了肿瘤细胞上增加的PD-L1表达(图7A和7B)。发明人然后测试了组合的抗-PD-L1和抗-EGFR-干扰素β处理是否能够进一步增强抗-EGFR-干扰素β的长期效果。令人惊讶地,当联合使用抗-PD-L1与抗-EGFR-干扰素β处理时,长期治疗效果得到了显著提高;在所述处理之后,小鼠保持无肿瘤至少60天并且对肿瘤刺激有抗性(图7C,以及未显示的数据)。此外,通过抗-PD-L1处理阻断PD-1与PD-L1的相互作用进一步提高了特异性的抗肿瘤T细胞应答(图7D)。相反,当将抗-EGFR-干扰素β与另外两个在T细胞上表达的主要抑制分子的抗体抗-CTLA-4、抗-BTLA组合施用时,没有观察到任何类似的协同效果(图13)。总之,发明人的数据表明拮抗肿瘤细胞上由抗-EGFR-干扰素β诱导的PD-L1表达能够使抗-EGFR-干扰素β的抗肿瘤效果最大化并获得令人印象深刻的无肿瘤结果,甚至对于抗体抗性肿瘤也是如此。这种基于组合的策略很可能增加抗体抗性宿主的整体应答和治愈率,甚至在不能响应抗-PD-1抗体(其直接阻断T细胞表达的PD-1)的宿主中也能实现。Although the anti-EGFR-interferon beta fusion achieves a more potent antitumor effect compared with anti-EGFR antibody alone, residual tumors eventually recur. The inventors therefore wondered whether anti-EGFR-interferon beta treatment might induce the expression of inhibitory molecules to prevent tissue damage, which would attenuate the antitumor effect over time. The inventors assessed PD-L1 expression after anti-EGFR-IFNβ treatment and clearly observed increased PD-L1 expression on tumor cells both in vivo and in vitro (Figures 7A and 7B). The inventors then tested whether combined anti-PD-L1 and anti-EGFR-IFNβ treatment could further enhance the long-term effect of anti-EGFR-IFNβ. Surprisingly, the long-term therapeutic effect was significantly enhanced when combined anti-PD-L1 and anti-EGFR-interferon beta treatment; mice remained tumor-free for at least 60 days after said treatment and responded to tumor stimulation Resistant (Fig. 7C, and data not shown). Furthermore, blocking the PD-1-PD-L1 interaction by anti-PD-L1 treatment further enhanced specific antitumor T cell responses (Fig. 7D). In contrast, no similar synergistic effect was observed when anti-EGFR-IFNβ was administered in combination with the antibodies anti-CTLA-4 and anti-BTLA, two other major inhibitory molecules expressed on T cells (Figure 13 ). In summary, the inventors' data demonstrate that antagonizing anti-EGFR-IFNβ-induced PD-L1 expression on tumor cells maximizes the anti-tumor effect of anti-EGFR-IFNβ with impressive tumor-free outcomes , even for antibody-resistant tumors. This combination-based strategy is likely to increase overall response and cure rates in antibody-resistant hosts, even in hosts that do not respond to anti-PD-1 antibodies that directly block T cell-expressed PD-1.

参考文献:references:

Abes,R.,Gelize,E.,Fridman,W.H.,and Teillaud,J.L.(2010).Long-lasting antitumor protection by anti-CD20 antibody throμgh cellular immune response. Blood 116,926-934。Abes, R., Gelize, E., Fridman, W.H., and Teillaud, J.L. (2010). Long-lasting antitumor protection by anti-CD20 antibody thr μgh cellular immune response. Blood 116, 926-934.

Bardelli,A.,and Siena,S. (2010). Molecular mechanismsof resistance to cetuximab and panitumumab in colorectal cancer.J Clin Oncol 28,1254-1261。Bardelli, A., and Siena, S. (2010). Molecular mechanisms of resistance to cetuximab and panitumumab in colorectal cancer. J Clin Oncol 28, 1254-1261.

Blank,C.,Brown,I.,Peterson,A.C.,Spiotto,M.,Iwai,Y.,Honjo,T.,and Gajewski,T.F. (2004). PD-L1/B7H-1 inhibitsthe effector phase of tumor rejection by T cell receptor (TCR)transgenic CD8+ T cells. Cancer Res 64,1140-1145。Blank, C., Brown, I., Peterson, A.C., Spiotto, M., Iwai, Y., Honjo, T., and Gajewski, T.F. (2004). PD-L1/B7H-1 inhibits the effector phase of tumor rejection by T cell receptor (TCR) transgenic CD8+ T cells. Cancer Res 64, 1140-1145.

Bostrom,J.,Yu,S.F.,Kan,D.,Appleton,B.A.,Lee,C.V.,Billeci,K.,Man,W.,Peale,F.,Ross,S.,Wiesmann,C.,andFuh,G.(2009).Variants of the antibody herceptin that interactwith HER2 and VEGF at the antigen binding site. Science 323,1610-1614。Bostrom, J., Yu, S.F., Kan, D., Appleton, B.A., Lee, C.V., Billeci, K., Man, W., Peale, F., Ross, S., Wiesmann, C., and Fuh, G. .(2009). Variants of the antibody herceptin that interact with HER2 and VEGF at the antigen binding site. Science 323, 1610-1614.

Brahmer,J.R.,Tykodi,S.S.,Chow,L.Q.,Hwu,W.J.,Topalian,S.L.,Hwu,P.,Drake,C.G.,Camacho,L.H.,Kauh,J.,Odunsi,K.,et al. (2012). Safety and activity of anti-PD-L1 antibodyin patients with advanced cancer. N Engl J Med 366,2455-2465。Brahmer, J.R., Tykodi, S.S., Chow, L.Q., Hwu, W.J., Topalian, S.L., Hwu, P., Drake, C.G., Camacho, L.H., Kauh, J., Odunsi, K., et al. (2012). Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 366, 2455-2465.

Burnette,B.C.,Liang,H.,Lee,Y.,Chlewicki,L.,Khodarev,N.N.,Weichselbaum,R.R.,Fu,Y.X.,and Auh,S.L. (2011). Theefficacy of radiotherapy relies upon induction of type iinterferon-dependent innate and adaptive immunity. Cancer Res71,2488-2496。Burnette, B.C., Liang, H., Lee, Y., Chlewicki, L., Khodarev, N.N., Weichselbaum, R.R., Fu, Y.X., and Auh, S.L. (2011). The efficacy of radiotherapy relies upon induction of type iinterferon-dependent innate and adaptive immunity. Cancer Res 71, 2488-2496.

Clynes,R.A.,Towers,T.L.,Presta,L.G.,and Ravetch,J.V. (2000). Inhibitory Fc receptors modulate in vivocytotoxicity against tumor targets. Nat Med 6,443-446。Clynes, R.A., Towers, T.L., Presta, L.G., and Ravetch, J.V. (2000). Inhibitory Fc receptors modulate in vivocytotoxicity against tumor targets. Nat Med 6, 443-446.

Cobleigh,M.A.,Vogel,C.L.,Tripathy,D.,Robert,N.J.,Scholl,S.,Fehrenbacher,L.,Wolter,J.M.,Paton,V.,Shak,S.,Lieberman,G.,and Slamon,D.J. (1999). Multinational studyof the efficacy and safety of humanized anti-HER2 monoclonalantibody in women who have HER2-overexpressing metastaticbreast cancer that has progressed after chemotherapy formetastatic disease. J Clin Oncol 17,2639-2648。Cobleigh, M.A., Vogel, C.L., Tripathy, D., Robert, N.J., Scholl, S., Fehrenbacher, L., Wolter, J.M., Paton, V., Shak, S., Lieberman, G., and Slamon, D.J. (1999). Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy formetastatic disease. J 9 Clin7-26 Oncol.

Diamond,M.S.,Kinder,M.,Matsushita,H.,Mashayekhi,M.,Dunn,G.P.,Archambault,J.M.,Lee,H.,Arthur,C.D.,White,J.M.,Kalinke,U.,et al. (2011). Type I interferon is selectivelyrequired by dendritic cells for immune rejection of tumors. JExp Med 208,1989-2003。Diamond, M.S., Kinder, M., Matsushita, H., Mashayekhi, M., Dunn, G.P., Archambault, J.M., Lee, H., Arthur, C.D., White, J.M., Kalinke, U., et al. (2011 ). Type I interferon is selectively required by dendritic cells for immune rejection of tumors. JExp Med 208, 1989-2003.

Fayad,L.,Offner,F.,Smith,M.R.,Verhoef,G.,Johnson,P.,Kaufman,J.L.,Rohatiner,A.,Advani,A.,Foran,J.,Hess,G.,et al. (2013). Safety and Clinical Activity of a CombinationTherapy Comprising Two Antibody-Based Targeting Agents for theTreatment of Non-Hodgkin Lymphoma: Results of a Phase I/II StudyEvaluating the Immunoconjμgate Inotuzumab Ozogamicin WithRituximab. J Clin Oncol。Fayad, L., Offner, F., Smith, M.R., Verhoef, G., Johnson, P., Kaufman, J.L., Rohatiner, A., Advani, A., Foran, J., Hess, G., et al . (2013). Safety and Clinical Activity of a CombinationTherapy Comprising Two Antibody-Based Targeting Agents for theTreatment of Non-Hodgkin Lymphoma: Results of a Phase I/II StudyEvaluating the Immunoconjμgate Inotuzumab Ozogamicin WithRituximab. J Clin Oncol。

Fuertes,M.B.,Kacha,A.K.,Kline,J.,Woo,S.R.,Kranz,D.M.,Murphy,K.M.,and Gajewski,T.F. (2011). Host type I IFNsignals are required for antitumor CD8+ T cell responses throμgh CD8{alpha}+ dendritic cells. J Exp Med 208,2005-2016。Fuertes, M.B., Kacha, A.K., Kline, J., Woo, S.R., Kranz, D.M., Murphy, K.M., and Gajewski, T.F. (2011). Host type I IFN signals are required for antitumor CD8+ T cell responses thrμgh CD8{alpha} + dendritic cells. J Exp Med 208, 2005-2016.

Gonzalez-Navajas,J.M.,Lee,J.,David,M.,and Raz,E. (2012).Immunomodulatory functions of type I interferons. Nat RevImmunol 12,125-135。Gonzalez-Navajas, J.M., Lee, J., David, M., and Raz, E. (2012). Immunomodulatory functions of type I interferons. Nat Rev Immunol 12, 125-135.

Huang,A.Y.,Golumbek,P.,Ahmadzadeh,M.,Jaffee,E.,Pardoll,D.,and Levitsky,H. (1994). Role of bone marrow-derivedcells in presenting MHC class I-restricted tumor antigens.Science 264,961-965。Huang, A.Y., Golumbek, P., Ahmadzadeh, M., Jaffee, E., Pardoll, D., and Levitsky, H. (1994). Role of bone marrow-derived cells in presenting MHC class I-restricted tumor antigens. Science 264, 961-965.

Hurvitz,S.A.,Dirix,L.,Kocsis,J.,Bianchi,G.V.,Lu,J.,Vinholes,J.,Guardino,E.,Song,C.,Tong,B.,Ng,V.,et al. (2013). Phase II Randomized Study of TrastuzumabEmtansine Versus Trastuzumab Plus Docetaxel in Patients WithHuman Epidermal Growth Factor Receptor 2-Postive MetastaticBreast Cancer. J Clin Oncol。Hurvitz, S.A., Dirix, L., Kocsis, J., Bianchi, G.V., Lu, J., Vinholes, J., Guardino, E., Song, C., Tong, B., Ng, V., et al (2013). Phase II Randomized Study of Trastuzumab Emtansine Versus Trastuzumab Plus Docetaxel in Patients With Human Epidermal Growth Factor Receptor 2-Postive Metastatic Breast Cancer. J Clin Oncol.

Hynes,N.E.,and Lane,H.A. (2005). ERBB receptors and cancer:the complexity of targeted inhibitors. Nat Rev Cancer 5,341-354。Hynes, N.E., and Lane, H.A. (2005). ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer 5, 341-354.

Kohlmeier,J.E.,Cookenham,T.,Roberts,A.D.,Miller,S.C.,and Woodland,D.L. (2010). Type I interferons regulatecytolytic activity of memory CD8(+) T cells in the lung airwaysduring respiratory virus challenge. Immunity 33,96-105。Kohlmeier, J.E., Cookenham, T., Roberts, A.D., Miller, S.C., and Woodland, D.L. (2010). Type I interferes regulate cytolytic activity of memory CD8(+) T cells in the lung airways during respiratory virus challenge. 3 Immunity 6 -105.

Krop,I.E.,LoRusso,P.,Miller,K.D.,Modi,S.,Yardley,D.,Rodriguez,G.,Guardino,E.,Lu,M.,Zheng,M.,Girish,S.,et al. (2012). A phase II study of trastuzumab emtansinein patients with human epidermal growth factor receptor2-positive metastatic breast cancer who were previously treatedwith trastuzumab,lapatinib,an anthracycline,a taxane,andcapecitabine. J Clin Oncol 30,3234-3241。Krop, I.E., LoRusso, P., Miller, K.D., Modi, S., Yardley, D., Rodriguez, G., Guardino, E., Lu, M., Zheng, M., Girish, S., et al . (2012). A phase II study of trastuzumab emtansinein patients with human epidermal growth factor receptor2-positive metastatic breast cancer who were previously treatedwith trastuzumab,lapatinib,an anthracycline,a taxane,andcapecitabine. J Clin Oncol 30,3234-3241。

Kurts,C.,Robinson,B.W.,and Knolle,P.A. (2010).Cross-priming in health and disease. Nat Rev Immunol 10,403-414。Kurts, C., Robinson, B.W., and Knolle, P.A. (2010). Cross-priming in health and disease. Nat Rev Immunol 10, 403-414.

Li,S.,Schmitz,K.R.,Jeffrey,P.D.,Wiltzius,J.J.,Kussie,P.,and Ferguson,K.M. (2005). Structural basis for inhibitionof the epidermal growth factor receptor by cetuximab. CancerCell 7,301-311。Li, S., Schmitz, K.R., Jeffrey, P.D., Wiltzius, J.J., Kussie, P., and Ferguson, K.M. (2005). Structural basis for inhibition of the epidermal growth factor receptor by cetuximab. Cancer Cell 7, 301-311.

Loffler,A.,Kufer,P.,Lutterbuse,R.,Zettl,F.,Daniel,P.T.,Schwenkenbecher,J.M.,Riethmuller,G.,Dorken,B.,andBargou,R.C. (2000). A recombinant bispecific single-chainantibody,CD19 x CD3,induces rapid and high lymphoma-directedcytotoxicity by unstimulated T lymphocytes. Blood 95,2098-2103。Loffler, A., Kufer, P., Lutterbuse, R., Zettl, F., Daniel, P.T., Schwenkenbecher, J.M., Riethmuller, G., Dorken, B., and Bargou, R.C. (2000). A recombinant bispecific single- chainantibody, CD19 x CD3, induces rapid and high lymphoma-directed cytotoxicity by unstimulated T lymphocytes. Blood 95, 2098-2103.

Misale,S.,Yaeger,R.,Hobor,S.,Scala,E.,Janakiraman,M.,Liska,D.,Valtorta,E.,Schiavo,R.,Buscarino,M.,Siravegna,G.,et al. (2012). Emergence of KRAS mutations and acquiredresistance to anti-EGFR therapy in colorectal cancer. Nature486,532-536。Misale, S., Yaeger, R., Hobor, S., Scala, E., Janakiraman, M., Liska, D., Valtorta, E., Schiavo, R., Buscarino, M., Siravegna, G., et al. (2012). Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature 486, 532-536.

Mortenson,E.,Park,S.,Zhujun,J.,Wang,S.,and Fu,Y.X. (2013). Effective anti-neu initiated anti-tumor responsesrequire the complex role of CD4+ T cells. Clin Cancer Res。Mortenson, E., Park, S., Zhujun, J., Wang, S., and Fu, Y.X. (2013). Effective anti-neu initiated anti-tumor responses require the complex role of CD4+ T cells. Clin Cancer Res.

Musolino,A.,Naldi,N.,Bortesi,B.,Pezzuolo,D.,Capelletti,M.,Missale,G.,Laccabue,D.,Zerbini,A.,Camisa,R.,Bisagni,G.,et al. (2008). Immunoglobulin G fragment C receptorpolymorphisms and clinical efficacy of trastuzumab-basedtherapy in patients with HER-2/neu-positive metastatic breastcancer. J Clin Oncol 26,1789-1796。Musolino, A., Naldi, N., Bortesi, B., Pezzuolo, D., Capelletti, M., Misale, G., Laccabue, D., Zerbini, A., Camisa, R., Bisagni, G., et al. (2008). Immunoglobulin G fragment C receptor polymorphisms and clinical efficacy of trastuzumab-based therapy in patients with HER-2/neu-positive metastatic breast cancer. J Clin Oncol 26, 1789-1796.

Park,S.,Jiang,Z.,Mortenson,E.D.,Deng,L.,Radkevich-Brown,O.,Yang,X.,Sattar,H.,Wang,Y.,Brown,N.K.,Greene,M.,et al. (2010). The therapeutic effect ofanti-HER2/neu antibody depends on both innate and adaptiveimmunity. Cancer Cell 18,160-170。Park, S., Jiang, Z., Mortenson, E.D., Deng, L., Radkevich-Brown, O., Yang, X., Sattar, H., Wang, Y., Brown, N.K., Greene, M., et al. (2010). The therapeutic effect of anti-HER2/neu antibody depends on both innate and adaptive immunity. Cancer Cell 18, 160-170.

Scott,A.M.,Wolchok,J.D.,and Old,L.J. (2012). Antibodytherapy of cancer. Nat Rev Cancer 12,278-287。Scott, A.M., Wolchok, J.D., and Old, L.J. (2012). Antibody therapy of cancer. Nat Rev Cancer 12, 278-287.

Sharma,S.V.,Bell,D.W.,Settleman,J.,and Haber,D.A.(2007). Epidermal growth factor receptor mutations in lungcancer. Nat Rev Cancer 7,169-181。Sharma, S.V., Bell, D.W., Settleman, J., and Haber, D.A. (2007). Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer 7, 169-181.

Smith,K.,Garman,L.,Wrammert,J.,Zheng,N.Y.,Capra,J.D.,Ahmed,R.,and Wilson,P.C. (2009). Rapid generation offully human monoclonal antibodies specific to a vaccinatingantigen. Nat Protoc 4,372-384。Smith, K., Garman, L., Wrammert, J., Zheng, N.Y., Capra, J.D., Ahmed, R., and Wilson, P.C. (2009). Rapid generation offully human monoclonal antibodies specific to a vaccinating antigen. Nat Protoc 4 , 372-384.

Stagg,J.,Loi,S.,Divisekera,U.,Ngiow,S.F.,Duret,H.,Yagita,H.,Teng,M.W.,and Smyth,M.J. (2011). Anti-ErbB-2mAb therapy requires type I and II interferons and synergizeswith anti-PD-1 or anti-CD137 mAb therapy. Proc Natl Acad SciU S A 108,7142-7147。Stagg, J., Loi, S., Divisekera, U., Ngiow, S.F., Duret, H., Yagita, H., Teng, M.W., and Smyth, M.J. (2011). Anti-ErbB-2mAb therapy requires type I and II interferons and synergizes with anti-PD-1 or anti-CD137 mAb therapy. Proc Natl Acad SciU S A 108, 7142-7147.

Steinman,R.M. (2012). Decisions about dendritic cells:past,present,and future. Annu Rev Immunol 30,1-22。Steinman, R.M. (2012). Decisions about dendritic cells: past, present, and future. Annu Rev Immunol 30, 1-22.

Topalian,S.L.,Hodi,F.S.,Brahmer,J.R.,Gettinger,S.N.,Smith,D.C.,McDermott,D.F.,Powderly,J.D.,Carvajal,R.D.,Sosman,J.A.,Atkins,M.B.,et al. (2012). Safety,activity,and immune correlates of anti-PD-1 antibody in cancer. N EnglJ Med 366,2443-2454。Topalian, S.L., Hodi, F.S., Brahmer, J.R., Gettinger, S.N., Smith, D.C., McDermott, D.F., Powderly, J.D., Carvajal, R.D., Sosman, J.A., Atkins, M.B., et al. (2012). Safety, activity , and immune correlates of anti-PD-1 antibody in cancer. N EnglJ Med 366, 2443-2454.

Trinchieri,G. (2010). Type I interferon: friend or foe?J Exp Med 207,2053-2063。Trinchieri, G. (2010). Type I interferon: friend or foe? J Exp Med 207, 2053-2063.

Wall,E.M.,Milne,K.,Martin,M.L.,Watson,P.H.,Theiss,P.,and Nelson,B.H. (2007). Spontaneous mammary tumors differwidely in their inherent sensitivity to adoptively transferredT cells. Cancer Res 67,6442-6450。Wall, E.M., Milne, K., Martin, M.L., Watson, P.H., Theiss, P., and Nelson, B.H. (2007). Spontaneous maternal tumors differ widely in their inherent sensitivity to adoptively transferred T cells. Cancer Res 67, 6442-645 .

Weber, J. (2007). Review: anti-CTLA-4 antibody ipilimumab:case studies of clinical response and immune-related adverseevents. Oncologist 12, 864-872。Weber, J. (2007). Review: anti-CTLA-4 antibody ipilimumab: case studies of clinical response and immune-related adverse events. Oncologist 12, 864-872.

Wheeler,D.L.,Huang,S.,Kruser,T.J.,Nechrebecki,M.M.,Armstrong,E.A.,Benavente,S.,Gondi,V.,Hsu,K.T.,and Harari,P.M. (2008). Mechanisms of acquired resistance to cetuximab:role of HER (ErbB) family members. Oncogene 27,3944-3956。Wheeler, D.L., Huang, S., Kruser, T.J., Nechrebecki, M.M., Armstrong, E.A., Benavente, S., Gondi, V., Hsu, K.T., and Harari, P.M. (2008). Mechanisms of acquired resistance to cetuximab: role of HER (ErbB) family members. Oncogene 27, 3944-3956.

Xuan,C.,Steward,K.K.,Timmerman,J.M.,and Morrison,S.L. (2010). Targeted delivery of interferon-alpha via fusionto anti-CD20 results in potent antitumor activity againstB-cell lymphoma. Blood 115,2864-2871。Xuan, C., Steward, K.K., Timmerman, J.M., and Morrison, S.L. (2010). Targeted delivery of interferon-alpha via fusion to anti-CD20 results in potent antitumor activity against B-cell lymphoma. Blood 115, 2864-28.

Yang,X.,Zhang,X.,Mortenson,E.D.,Radkevich-Brown,O.,Wang,Y.,and Fu,Y.X. (2013). cetuximab -mediated TumorRegression Depends on Innate and Adaptive Immune Responses. MolTher 21,91-100。Yang, X., Zhang, X., Mortenson, E.D., Radkevich-Brown, O., Wang, Y., and Fu, Y.X. (2013). cetuximab -mediated TumorRegression Depends on Innate and Adaptive Immune Responses. MolTher 21, 91 -100.

Yonesaka,K.,Zejnullahu,K.,Okamoto,I.,Satoh,T.,Cappuzzo,F.,Soμglakos,J.,Ercan,D.,Rogers,A.,Roncalli,M.,Takeda,M.,et al. (2011). Activation of ERBB2 signaling causesresistance to the EGFR-directed therapeutic antibody cetuximab.Sci Transl Med 3,99ra86。Yonesaka, K., Zejnullahu, K., Okamoto, I., Satoh, T., Cappuzzo, F., Soμglakos, J., Ercan, D., Rogers, A., Roncalli, M., Takeda, M., et al. (2011). Activation of ERBB2 signaling causes resistance to the EGFR-directed therapeutic antibody cetuximab. Sci Transl Med 3, 99ra86.

Yoon,J.,Koo,K.H.,and Choi,K.Y. (2011). MEK1/2 inhibitorsAS703026 and AZD6244 may be potential therapies for KRAS mutatedcolorectal cancer that is resistant to EGFR monoclonal antibodytherapy. Cancer Res 71,445-453。Yoon, J., Koo, K.H., and Choi, K.Y. (2011). MEK1/2 inhibitorsAS703026 and AZD6244 may be potential therapies for KRAS mutated colorectal cancer that is resistant to EGFR monoclonal antibody therapy.

Zhu,Z.,Singh,V.,Watkins,S.K.,Bronte,V.,Shoe,J.L.,Feigenbaum,L.,and Hurwitz,A.A. (2013). High-avidity T cellsare preferentially tolerized in the tumor microenvironment.Cancer Res 73,595-604。Zhu, Z., Singh, V., Watkins, S.K., Bronte, V., Shoe, J.L., Feigenbaum, L., and Hurwitz, A.A. (2013). High-avidity T cells are preferentially tolerated in the tumor microenvironment. Cancer Res 73, 595-604.

Claims (23)

1.干扰素β与阻断PD-1/PDL信号传导通路的抗体共同用于制备药物或药物试剂盒的用途,其中所述药物或药物试剂盒用于治疗肿瘤,所述肿瘤选自:乳腺癌,肺癌和黑色素瘤。1. The use of interferon beta and an antibody blocking the PD-1/PDL signaling pathway for the preparation of a drug or a drug kit, wherein the drug or the drug kit is used to treat tumors, and the tumor is selected from: breast carcinoma, lung cancer and melanoma. 2.根据权利要求1的用途,其中所述阻断PD-1/PDL信号传导通路的抗体为抗PDL1抗体。2. The use according to claim 1, wherein the antibody blocking the PD-1/PDL signaling pathway is an anti-PDL1 antibody. 3.干扰素β与阻断PD-1/PDL信号传导通路的抗体共同用于制备药物或药物试剂盒的用途,其中所述药物或药物试剂盒用于克服肿瘤对于抗体疗法的抗性,所述肿瘤选自:乳腺癌,肺癌和黑色素瘤。3. The use of interferon beta and an antibody blocking the PD-1/PDL signal transduction pathway for the preparation of a drug or a drug kit, wherein the drug or drug kit is used to overcome the resistance of tumors to antibody therapy, so Said tumor is selected from: breast cancer, lung cancer and melanoma. 4.根据权利要求3的用途,其中所述阻断PD-1/PDL信号传导通路的抗体为抗PDL1抗体。4. The use according to claim 3, wherein the antibody blocking the PD-1/PDL signaling pathway is an anti-PDL1 antibody. 5.根据权利要求1-4中任一项的用途,其中所述干扰素β与结合肿瘤相关抗原的靶向部分相连,其中所述靶向部分与所述干扰素β直接相连或通过连接子相连。5. The use according to any one of claims 1-4, wherein the interferon beta is linked to a targeting moiety that binds a tumor-associated antigen, wherein the targeting moiety is directly linked to the interferon beta or via a linker connected. 6.根据权利要求5的用途,其中所述结合肿瘤相关抗原的靶向部分为结合肿瘤相关抗原的抗体。6. The use according to claim 5, wherein the targeting moiety that binds a tumor-associated antigen is an antibody that binds a tumor-associated antigen. 7.根据权利要求6的用途,其中所述结合肿瘤相关抗原的抗体为抗EGFR抗体或抗Neu抗体。7. The use according to claim 6, wherein the antibody binding to a tumor-associated antigen is an anti-EGFR antibody or an anti-Neu antibody. 8.根据权利要求5的用途,其中所述干扰素β与结合肿瘤相关抗原的靶向部分形成融合蛋白。8. The use according to claim 5, wherein said interferon beta forms a fusion protein with a targeting moiety that binds a tumor-associated antigen. 9.根据权利要求6-7中任一项的用途,其中所述干扰素β与所述结合肿瘤相关抗原的靶向部分形成融合蛋白。9. The use according to any one of claims 6-7, wherein said interferon beta forms a fusion protein with said tumor-associated antigen-binding targeting moiety. 10.根据权利要求1-4中任一项的用途,其中所述肿瘤或携带所述肿瘤的宿主在下列一项或多项中有缺陷:10. The use according to any one of claims 1-4, wherein the tumor or the host bearing the tumor is deficient in one or more of the following: 1)I型干扰素的表达和/或功能;1) Expression and/or function of type I interferon; 2)I型干扰素受体的表达和/或功能;和2) expression and/or function of type I interferon receptors; and 3)树突细胞的交叉呈递以及由此产生的抗肿瘤细胞毒性T细胞。3) Cross-presentation of dendritic cells and the resulting anti-tumor cytotoxic T cells. 11.根据权利要求10的用途,其中1)中所述I型干扰素为干扰素α5和/或干扰素β。11. The use according to claim 10, wherein said type I interferon in 1) is interferon alpha 5 and/or interferon beta. 12.根据权利要求10的用途,其中2)中所述I型干扰素受体是树突细胞上的I型干扰素受体。12. The use according to claim 10, wherein said type I interferon receptor in 2) is a type I interferon receptor on dendritic cells. 13.试剂盒,其含有:13. A kit comprising: a)IFNβ;和a) IFNβ; and b)阻断PD-1/PDL信号传导通路的抗体。b) Antibodies that block the PD-1/PDL signaling pathway. 14.权利要求13的试剂盒,其中所述阻断PD-1/PDL信号传导通路的抗体为抗PDL1抗体。14. The kit of claim 13, wherein the antibody blocking the PD-1/PDL signaling pathway is an anti-PDL1 antibody. 15.权利要求13或14的试剂盒,其中所述干扰素β与结合肿瘤相关抗原的靶向部分相连,其中所述靶向部分与所述干扰素β直接相连或通过连接子相连。15. The kit of claim 13 or 14, wherein said interferon beta is linked to a targeting moiety that binds a tumor-associated antigen, wherein said targeting moiety is directly linked to said interferon beta or via a linker. 16.根据权利要求15的试剂盒,其中所述靶向部分为抗体。16. The kit according to claim 15, wherein said targeting moiety is an antibody. 17.根据权利要求15的试剂盒,其中所述靶向部分为抗EGFR抗体或抗Neu抗体。17. The kit according to claim 15, wherein the targeting moiety is an anti-EGFR antibody or an anti-Neu antibody. 18.根据权利要求15的试剂盒,其中所述干扰素β与所述靶向部分形成融合蛋白。18. The kit according to claim 15, wherein said interferon beta forms a fusion protein with said targeting moiety. 19.根据权利要求16或17的试剂盒,其中所述干扰素β与所述靶向部分形成融合蛋白。19. The kit according to claim 16 or 17, wherein said interferon beta forms a fusion protein with said targeting moiety. 20.根据权利要求13或14的试剂盒,其中所述试剂盒用于治疗肿瘤,所述肿瘤为乳腺癌,肺癌或黑色素瘤。20. The kit according to claim 13 or 14, wherein said kit is for the treatment of a tumor which is breast cancer, lung cancer or melanoma. 21.根据权利要求20的试剂盒,其中所述肿瘤或携带所述肿瘤的宿主在下列一项或多项中有缺陷:21. The kit according to claim 20, wherein the tumor or the host bearing the tumor is deficient in one or more of the following: 1)I型干扰素的表达和/或功能;1) Expression and/or function of type I interferon; 2)I型干扰素受体的表达和/或功能;和2) expression and/or function of type I interferon receptors; and 3)树突细胞的交叉呈递以及由此产生抗肿瘤细胞毒性T细胞。3) Cross-presentation of dendritic cells and the resulting generation of anti-tumor cytotoxic T cells. 22.根据权利要求21的试剂盒,其中1)中所述I型干扰素为干扰素α5和/或干扰素β。22. The kit according to claim 21, wherein said type I interferon in 1) is interferon alpha 5 and/or interferon beta. 23.根据权利要求21的试剂盒,其中2)中所述I型干扰素受体是树突细胞上的I型干扰素受体。23. The kit according to claim 21, wherein said type I interferon receptor in 2) is a type I interferon receptor on dendritic cells.
CN201310525752.5A 2013-10-30 2013-10-30 Use of interferon in treatment of tumor, and related product and method Active CN103536917B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310525752.5A CN103536917B (en) 2013-10-30 2013-10-30 Use of interferon in treatment of tumor, and related product and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310525752.5A CN103536917B (en) 2013-10-30 2013-10-30 Use of interferon in treatment of tumor, and related product and method

Publications (2)

Publication Number Publication Date
CN103536917A CN103536917A (en) 2014-01-29
CN103536917B true CN103536917B (en) 2015-03-11

Family

ID=49961026

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310525752.5A Active CN103536917B (en) 2013-10-30 2013-10-30 Use of interferon in treatment of tumor, and related product and method

Country Status (1)

Country Link
CN (1) CN103536917B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114432440A (en) * 2014-03-05 2022-05-06 百时美施贵宝公司 Treatment of renal cancer using anti-PD-1 antibodies in combination with another anti-cancer agent
CN105396123A (en) * 2015-11-20 2016-03-16 深圳市南山区人民医院 Application of ovR2E in curative effect of HBV infection treatment
DK3411398T3 (en) * 2016-02-05 2024-06-24 Orionis Biosciences BV TARGETED THERAPEUTICS AND THEIR USE
US11661455B2 (en) 2016-02-05 2023-05-30 Orionis Biosciences BV Chimeric protein comprising an interferon alpha 2mutant and a PD-L1 binding moiety
CA3014759C (en) * 2016-02-15 2020-09-22 FKD Therapies Limited Improved interferon therapy
WO2018067825A1 (en) * 2016-10-05 2018-04-12 University Of Central Florida Research Foundation, Inc. Methods and compositions related to nk cell and anti-pdl1 cancer therapies
WO2019096137A1 (en) * 2017-11-14 2019-05-23 拜西欧斯(北京)生物技术有限公司 Hybridoma comprising immune checkpoint inhibitor, preparation method for same, and applications thereof
CN114917335A (en) * 2022-03-25 2022-08-19 复旦大学附属中山医院 Use of anti-PD-1 antibody combined with IFN-α in the preparation of anti-tumor drugs

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101678099A (en) * 2006-09-29 2010-03-24 分子免疫中心 Be used to strengthen to use therapeutic combination at the effect of the therapy of the antibody of EGF-R ELISA
CN101868246A (en) * 2007-09-21 2010-10-20 加利福尼亚大学董事会 Targeted Interferon Shows Strong Apoptotic and Antitumor Activity
CN103242448A (en) * 2013-05-27 2013-08-14 郑州大学 Full-humanized anti-PD-1 monoclonal antibody and preparation method and application thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101678099A (en) * 2006-09-29 2010-03-24 分子免疫中心 Be used to strengthen to use therapeutic combination at the effect of the therapy of the antibody of EGF-R ELISA
CN101868246A (en) * 2007-09-21 2010-10-20 加利福尼亚大学董事会 Targeted Interferon Shows Strong Apoptotic and Antitumor Activity
CN103242448A (en) * 2013-05-27 2013-08-14 郑州大学 Full-humanized anti-PD-1 monoclonal antibody and preparation method and application thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
表皮生长因子受体家族与靶向性抗癌治疗;刘彤华;《中华病理学杂志》;20061031;第35卷(第10期);577-579 *

Also Published As

Publication number Publication date
CN103536917A (en) 2014-01-29

Similar Documents

Publication Publication Date Title
CN103536917B (en) Use of interferon in treatment of tumor, and related product and method
JP7325959B2 (en) Anti-CD25 FCγ Receptor Bispecific Antibodies for Depletion of Tumor-Specific Cells
KR102505681B1 (en) CD3 binding antibody
EP3313883B1 (en) Novel pd-1 immune modulating agents
CN110337449B (en) Anti-PD-L1 antibody and its application
JP2021522801A (en) Antibodies specific for humannectin 4
JP2018197247A (en) Pharmaceutical composition comprising il-12 and agent for blockade of t-cell inhibitory molecules for tumor therapy
JP2021178835A (en) Combination of t-cell redirecting multifunctional antibodies with immune checkpoint modulators and uses thereof
JP7193628B2 (en) Low ADCC/CDC Functional Monoclonal Antibodies, and Methods for Their Preparation and Use
WO2016081455A1 (en) Human tnfrsf25 antibody
CN112512573A (en) Bispecific T cell adaptor proteins and uses thereof
JP2022553129A (en) Antibodies against poliovirus receptor (PVR) and uses thereof
CA2555694A1 (en) Anti-epcam immunoglobulins
US20220213203A1 (en) Dosing Regimens of Bispecific CD123 x CD3 Diabodies in the Treatment of Hematologic Malignancies
KR20220097470A (en) Dosage regimen of anti-DLL3 agents
US20240052050A1 (en) Multispecific antibodies for the treatment of cancer
EP4469476A1 (en) Combination therapy for the treatment of cancer
TWI790193B (en) Methods and antibodies for modulation of immunoresponse
TW202410916A (en) Dosing of cd38-binding fusion protein
Ryan Improving Combination Cancer Immunotherapy with a Novel, Dual-Specific Immunotherapeutic Platform that Links T Cell Costimulatory Pathways
CN118924893A (en) Application of BCMAP329G antibody and CAR-T cells in the treatment of multiple myeloma
EA045980B1 (en) ANTIBODIES AGAINST THE POLIO VIRUS RECEPTOR (PVR) AND THEIR APPLICATION
EP3684401A1 (en) Therapeutic combination and method for treating cancer

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20241023

Address after: No. 999, High tech Industrial Park, Baishan City, Jilin Province, China

Patentee after: SHIHUIDA PHARMACEUTICALS GROUP (JILIN) Ltd.

Country or region after: China

Address before: 215125 Suzhou Industrial Park Biological Nano Park A6-402, Suzhou City, Jiangsu Province

Patentee before: DINGFU BIOTARGET Co.,Ltd.

Country or region before: China