[go: up one dir, main page]

CN103531230B - A kind ofly recall container based on the floating of memristor and recall sensor simulator - Google Patents

A kind ofly recall container based on the floating of memristor and recall sensor simulator Download PDF

Info

Publication number
CN103531230B
CN103531230B CN201310524634.2A CN201310524634A CN103531230B CN 103531230 B CN103531230 B CN 103531230B CN 201310524634 A CN201310524634 A CN 201310524634A CN 103531230 B CN103531230 B CN 103531230B
Authority
CN
China
Prior art keywords
differential
memristor
current transmitter
terminal
grounded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310524634.2A
Other languages
Chinese (zh)
Other versions
CN103531230A (en
Inventor
李志军
曾以成
洪庆辉
谭世平
余世成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiangtan University
Original Assignee
Xiangtan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiangtan University filed Critical Xiangtan University
Priority to CN201310524634.2A priority Critical patent/CN103531230B/en
Publication of CN103531230A publication Critical patent/CN103531230A/en
Application granted granted Critical
Publication of CN103531230B publication Critical patent/CN103531230B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Networks Using Active Elements (AREA)

Abstract

本发明公开了一种基于忆阻器的浮地忆容器和忆感器模拟器,包括第一差动差分电流传输器、第二差动差分电流传输器、忆阻器、电阻和电抗元件,第一差动差分电流传输器的X端与所述忆阻器相连后接地,第二差动差分电流传输器的一个输入端接地,另一个输入端与第一差动差分电流传输器的同相电流输出端、电抗元件的一端相连,电抗元件的另一端接地,第二差动差分电流传输器的X端与所述电阻相连后接地,第二差动差分电流传输器的同相电流输出端、反向电流输出端分别与第一差动差分电流传输器的两个输入端相连。本发明可以有效地替代实际的忆容器和忆感器进行电路的设计,并且对忆容器和忆感器两端的电压没有任何限制,可以与其它电子元件灵活连接。

The invention discloses a memristor-based floating memcapacitor and memristor simulator, comprising a first differential differential current transmitter, a second differential differential current transmitter, a memristor, resistance and reactance elements, The X terminal of the first differential differential current transmitter is connected to the memristor and grounded, one input terminal of the second differential differential current transmitter is grounded, and the other input terminal is in-phase with the first differential differential current transmitter. The current output terminal is connected to one end of the reactance element, the other end of the reactance element is grounded, the X terminal of the second differential differential current transmitter is connected to the resistor and then grounded, the in-phase current output terminal of the second differential differential current transmitter, The reverse current output terminals are respectively connected to the two input terminals of the first differential differential current transmitter. The invention can effectively replace the actual memcapacitor and memometer for circuit design, has no limitation on the voltage at both ends of the memcapacitor and memron, and can be flexibly connected with other electronic components.

Description

一种基于忆阻器的浮地忆容器和忆感器模拟器A memristor-based floating memcontainer and memristor simulator

技术领域 technical field

本发明涉及忆阻器技术领域,特别涉及一种基于忆阻器的浮地忆容器和忆感器模拟器。 The invention relates to the technical field of memristors, in particular to a floating memristor and a memristor simulator based on memristors.

背景技术 Background technique

自2008年5月美国惠普实验室成功实现忆阻器(memristor)以来,忆阻器在非易失性存储器,人工神经网络和电路设计领域得到了广泛的应用。在忆阻器的基础上,蔡少棠教授于2008年12月又提出了忆容器(memcapacitor)和忆感器(meminductor)的概念。这两种新的记忆元件与忆阻器一样都具有记忆功能,然而忆容器和忆感器器能存储能量,而忆阻器则不能。这些记忆元件的出现展示了一个全新的未知领域,有可能在电子领域内导致一系列新的变革。 Since the successful realization of memristor in Hewlett-Packard Laboratory in the United States in May 2008, memristor has been widely used in the fields of non-volatile memory, artificial neural network and circuit design. Based on the memristor, Professor Cai Shaotang proposed the concepts of memcapacitor and meminductor in December 2008. The two new memory elements have the same memory function as memristors, but memcapacitors and memristors can store energy, while memristors cannot. The emergence of these memory elements represents a whole new uncharted territory, which has the potential to lead to a series of new revolutions in the field of electronics.

作为纳米电子元件,忆容器、忆感器和忆阻器一样现在还仅存在实验室环境中。由于纳米技术存在实现困难、成本高等缺点,这些记忆器件实现商品化还需要一个漫长的过程。因此,根据这些器件的实际电学特性构建它们的模拟等效电路对分析和研究由这些记忆元件构成的电路和系统具有重要的意义和价值。 As nanoelectronic components, memcapacitors, memristors, and memristors still exist only in laboratory environments. Due to the shortcomings of nanotechnology, such as difficulty in realization and high cost, it will take a long process for these memory devices to be commercialized. Therefore, constructing their analog equivalent circuits according to the actual electrical characteristics of these devices is of great significance and value for the analysis and research of circuits and systems composed of these memory elements.

到目前为止,已经有大量文献报导了忆阻器的仿真模型和模拟器,然而有关忆容器和忆感器的仿真模型和模拟器却相对较少。 So far, a large number of literatures have reported simulation models and simulators of memristors, but there are relatively few simulation models and simulators about memcapacitors and memristors.

Y.V.Pershin等人提出了一个简单的变类器,可以将忆阻器转化为忆容器和忆感器(PershinY.V,DiVentra,M.Memristivecircuitssimulatememcapzcitorandmeminductor[J].Electron.Lett.,2010,Vol.46,No.7),但在实现的忆容器和忆感器中包含了一个串联的寄生电阻,且提出的电路只能实现接地方式。 Y.V.Pershin et al. proposed a simple variant that can convert memristors into memcapacitors and meminductors (PershinY.V, DiVentra, M.Memristivecircuitssimulatememcapzcitorandmeminductor[J].Electron.Lett.,2010,Vol.46 , No.7), but a serial parasitic resistance is included in the implemented memcapacitor and memristor, and the proposed circuit can only be grounded.

一个采用电流反馈运算放大器(CurrentFeedbackOperationalAmplifier)实现的忆容器模拟等效电路能精确的模拟忆容器典型的、具有收缩迟滞特性的q-u(电荷—电压)曲线(D.Biolek,VBiolkova.Mutatorfortransformingmemristorintomemcapacitor[J].Electron.Lett.,2010,Vol.46,No.21),然而该电路只能实现将忆阻器转化为忆容器,而不能实现忆感器,而且该电路也只能以接地方式接入其它电路。 A memcapacitor analog equivalent circuit implemented by a current feedback operational amplifier (Current Feedback Operational Amplifier) can accurately simulate the typical q-u (charge-voltage) curve of a memcapacitor with contraction hysteresis characteristics (D.Biolek, VBiolkova.Mutatorfortransformingmemristorintomemcapacitor[J]. Electron.Lett., 2010, Vol.46, No.21), however, this circuit can only realize the conversion of memristors into memcapacitors, but not memristors, and this circuit can only be connected to other circuit.

发明内容 Contents of the invention

为了解决上述技术问题,本发明提供一种结构简单、能够实现浮地连接的基于忆阻器的浮地忆容器和忆感器模拟器。 In order to solve the above technical problems, the present invention provides a memristor-based floating memcapacitor and memristor simulator with simple structure and capable of realizing floating connection.

本发明解决上述问题的技术方案是:一种基于忆阻器的浮地忆容器和忆感器模拟器,包括第一差动差分电流传输器、第二差动差分电流传输器、忆阻器、电阻和电抗元件,所述第一差动差分电流传输器具有两个输入端、一个同相电流输出端和一个X端,所述第二差动差分电流传输器具有两个输入端、一个同相电流输出端、一个反向电流输出端和一个X端,所述第一差动差分电流传输器的X端与所述忆阻器相连后接地,所述第二差动差分电流传输器的一个输入端接地,另一个输入端与第一差动差分电流传输器的同相电流输出端、电抗元件的一端相连,电抗元件的另一端接地,第二差动差分电流传输器的X端与所述电阻相连后接地,所述第二差动差分电流传输器的同相电流输出端、反向电流输出端分别与第一差动差分电流传输器的两个输入端相连。 The technical solution of the present invention to solve the above problems is: a memristor-based floating memcapacitor and memristor simulator, including a first differential differential current transmitter, a second differential differential current transmitter, a memristor , resistance and reactance elements, the first differential differential current conveyor has two input terminals, an in-phase current output terminal and an X terminal, and the second differential differential current transmitter has two input terminals, an in-phase A current output terminal, a reverse current output terminal and an X terminal, the X terminal of the first differential differential current transmitter is connected to the memristor and grounded, and one of the second differential differential current transmitter The input end is grounded, the other input end is connected to the in-phase current output end of the first differential differential current transmitter, and one end of the reactance element, the other end of the reactance element is grounded, and the X end of the second differential differential current transmitter is connected to the said The resistors are connected and grounded, and the non-inverting current output terminal and the reverse current output terminal of the second differential current transmitter are respectively connected to the two input terminals of the first differential differential current transmitter.

所述电抗元件为电感或电容。 The reactance element is inductance or capacitance.

本发明的有益效果在于:本发明能正确模拟忆容器的q-u特性曲线和忆感器的(磁通—电流)特性曲线,可以有效地替代实际的忆容器和忆感器进行电路的设计及相关研究,并且本发明设计的忆容器和忆感器模拟器是浮地的,对忆容器和忆感器两端的电压没有任何限制,可以与其它电子元件或器件实现灵活的连接。 The beneficial effect of the present invention is that: the present invention can correctly simulate the qu characteristic curve of the memory container and the The (magnetic flux-current) characteristic curve can effectively replace the actual memcapacitor and memcapacitor to carry out circuit design and related research, and the memcapacitor and memcapacitor simulator designed by the present invention are floating, and the memcapacitor There is no limit to the voltage at both ends of the sensor and the memristor, and it can be flexibly connected with other electronic components or devices.

附图说明 Description of drawings

图1为本发明的结构示意图。 Fig. 1 is a structural schematic diagram of the present invention.

具体实施方式 detailed description

下面结合附图和实施例对本 发明作进一步的说明。 Below in conjunction with accompanying drawing and embodiment the present invention will be further described.

如图1所示,本发明包括第一差动差分电流传输器U1、第二差动差分电流传输器U2、忆阻器M、线性电阻R和线性电抗元件Z,所述第一差动差分电流传输器U1的X端与所述忆阻器M相连后接地,所述第二差动差分电流传输器U2的一个输入端Y2接地,另一个输入端Y1与第一差动差分电流传输器U1的同相电流输出端Z+、电抗元件Z的一端相连,电抗元件Z的另一端接地,第二差动差分电流传输器U2的X端与所述电阻R相连后接地,所述第二差动差分电流传输器U2的反向电流输出端Z-、同相电流输出端Z+分别与第一差动差分电流传输器U1的两个输入端Y1、Y2相连。 As shown in Figure 1, the present invention includes a first differential differential current transmitter U1, a second differential differential current transmitter U2, a memristor M, a linear resistance R and a linear reactance element Z, the first differential differential The X terminal of the current transmitter U1 is connected to the memristor M and grounded, one input terminal Y2 of the second differential differential current transmitter U2 is grounded, and the other input terminal Y1 is connected to the first differential differential current transmitter U2. The in-phase current output terminal Z+ of U1 is connected to one end of the reactance element Z, the other end of the reactance element Z is grounded, the X end of the second differential differential current transmitter U2 is connected to the resistor R and then grounded, and the second differential The reverse current output terminal Z− and the non-inverting current output terminal Z+ of the differential current transmitter U2 are respectively connected to the two input terminals Y1 and Y2 of the first differential current transmitter U1 .

第一差动差分电流传输器U1主要实现电压—电流转换,第二差动差分电流传输器U2主要实现电流积分(或微分)功能。 The first differential current transmitter U1 mainly implements voltage-current conversion, and the second differential differential current transmitter U2 mainly implements a current integration (or differentiation) function.

第一差动差分电流传输器U1的两个输入端Y1、Y2分别与输入端口A、B相连,X端经忆阻器M接地。根据差动差分电流传输器的端口特性: The two input terminals Y1 and Y2 of the first differential current transmitter U1 are respectively connected to the input ports A and B, and the X terminal is grounded through the memristor M. According to the port characteristics of the differential differential current conveyor:

vX=vY1-vY2,iX=iZ+=-iZ-,iY=0(1) v X =v Y1 -v Y2 ,i X =i Z+ =-i Z- ,i Y =0 (1)

可以计算出第一差动差分电流传输器U1电流输出端Z+的输出电流为 It can be calculated that the output current of the current output terminal Z+ of the first differential current transmitter U1 is

ii 33 (( tt )) == ii Mm (( tt )) == vv AA (( tt )) -- vv BB (( tt )) RR Mm (( tt )) -- -- -- (( 22 ))

其中RM(t)为t时刻忆阻器M对应的忆阻值。 Where R M (t) is the memristor value corresponding to the memristor M at time t.

第二差动差分电流传输U2的输入端Y1与第一差动差分电流传输器U1的电流输出端Z+相连,并接线性电抗元件Z到地,输入端Y2直接接地,X端经线性电阻R接地。反相电流输出端Z-和同相电流输出端Z+分别与输入端口A、B相连,形成一个完整的电流通路。同样根据差动差分电流传输器的端口特性可以得到 The input terminal Y1 of the second differential differential current transmission U2 is connected to the current output terminal Z+ of the first differential differential current transmitter U1, and the reactive element Z is connected to the ground, the input terminal Y2 is directly grounded, and the X terminal is connected to the linear resistor R grounded. The inverting current output terminal Z- and the non-inverting current output terminal Z+ are respectively connected to the input ports A and B to form a complete current path. Also according to the port characteristics of the differential differential current transmitter, it can be obtained

ii 11 (( tt )) == ii 22 (( tt )) == ii RR (( tt )) == ZZ RR ii 33 (( tt )) == ZZ RR vv AA (( tt )) -- vv BB (( tt )) RR Mm (( tt )) -- -- -- (( 33 ))

从而可以计算出输入端口A、B之间的等效输入阻抗为 Thus, the equivalent input impedance between the input ports A and B can be calculated as

ZZ ABAB (( tt )) == vv AA (( tt )) -- vv BB (( tt )) ii 11 (( tt )) == RR ·&Center Dot; RR Mm (( tt )) ZZ -- -- -- (( 44 ))

由式(4)可知,当图1中的线性电抗元件Z为电感时,该电路可以等效为一个忆容器,其忆容值可以表示为 It can be seen from formula (4) that when the linear reactance element Z in Figure 1 is an inductor, the circuit can be equivalent to a memcapacitor, and its memcapacitor value can be expressed as

CC Mm (( tt )) == LL RR ·&Center Dot; RR Mm (( tt )) -- -- -- (( 55 ))

当图1中的线性电抗元件Z为电容时,该电路可以等效为一个忆感器,其忆感值可以表示为 When the linear reactance element Z in Figure 1 is a capacitor, the circuit can be equivalent to a memory sensor, and its memory value can be expressed as

LM=R·RM(t)·C(6) L M = R R M (t) C (6)

本具体实施方式在电路拓扑结构不变的情况下,通过接入不同性质的电抗元件Z可以分别模拟忆容器和忆感器的电学特性,并且本发明设计的模拟器是浮地的,对忆容器和忆感器两端的电压没有任何限制,因而可以与其它电子元件或器件实现不同形式的连接方式。 In this specific embodiment, under the condition that the circuit topology remains unchanged, the electrical characteristics of the memcapacitor and the memometer can be respectively simulated by connecting reactance elements Z of different properties, and the simulator designed in the present invention is floating, and the memory There is no limit to the voltage across the container and the memristor, so it can be connected with other electronic components or devices in different forms.

Claims (2)

1.一种基于忆阻器的浮地忆容器和忆感器模拟器,其特征在于:包括第一差动差分电流传输器、第二差动差分电流传输器、忆阻器、电阻和电抗元件,所述第一差动差分电流传输器具有两个输入端、一个同相电流输出端和一个X端,所述第二差动差分电流传输器具有两个输入端、一个同相电流输出端、一个反向电流输出端和一个X端,所述第一差动差分电流传输器的X端与所述忆阻器相连后接地,所述第二差动差分电流传输器的一个输入端接地,另一个输入端与第一差动差分电流传输器的同相电流输出端、电抗元件的一端相连,电抗元件的另一端接地,第二差动差分电流传输器的X端与所述电阻相连后接地,所述第二差动差分电流传输器的同相电流输出端、反向电流输出端分别与第一差动差分电流传输器的两个输入端相连。 1. A floating memristor based on memristor and a memristor simulator, characterized in that: comprising a first differential differential current transmitter, a second differential differential current transmitter, a memristor, a resistance and a reactance element, the first differential differential current transmitter has two input terminals, an in-phase current output terminal and an X terminal, and the second differential differential current transmitter has two input terminals, a non-inverting current output terminal, A reverse current output terminal and an X terminal, the X terminal of the first differential differential current transmitter is connected to the memristor and grounded, and one input terminal of the second differential differential current transmitter is grounded, The other input terminal is connected to the same-phase current output terminal of the first differential differential current transmitter and one end of the reactance element, the other end of the reactance element is grounded, and the X terminal of the second differential differential current transmitter is connected to the resistor and then grounded , the non-inverting current output terminal and the reverse current output terminal of the second differential differential current transmitter are respectively connected to the two input terminals of the first differential differential current transmitter. 2.如权利要求1所述的基于忆阻器的浮地忆容器和忆感器模拟器,其特征在于:所述电抗元件为电感或电容。 2. The memristor-based floating memcapacitor and memristor simulator according to claim 1, wherein the reactance element is an inductor or a capacitor.
CN201310524634.2A 2013-10-30 2013-10-30 A kind ofly recall container based on the floating of memristor and recall sensor simulator Expired - Fee Related CN103531230B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310524634.2A CN103531230B (en) 2013-10-30 2013-10-30 A kind ofly recall container based on the floating of memristor and recall sensor simulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310524634.2A CN103531230B (en) 2013-10-30 2013-10-30 A kind ofly recall container based on the floating of memristor and recall sensor simulator

Publications (2)

Publication Number Publication Date
CN103531230A CN103531230A (en) 2014-01-22
CN103531230B true CN103531230B (en) 2016-03-30

Family

ID=49933176

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310524634.2A Expired - Fee Related CN103531230B (en) 2013-10-30 2013-10-30 A kind ofly recall container based on the floating of memristor and recall sensor simulator

Country Status (1)

Country Link
CN (1) CN103531230B (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105161303B (en) * 2015-08-04 2017-10-03 武汉科技大学 A kind of adjustable condenser realizes circuit
CN105119586A (en) * 2015-08-27 2015-12-02 华南理工大学 Series resonance circuit based on memcapacitor
CN106202796B (en) * 2016-07-22 2019-03-15 湘潭大学 A general memory device simulator
CN107526897A (en) * 2017-09-08 2017-12-29 杭州电子科技大学 An equivalent analog circuit of a fluidic memristor
CN107526896A (en) * 2017-09-08 2017-12-29 杭州电子科技大学 A kind of magnetic control recalls the equivalent simulation circuit of sensor model
CN108763789B (en) * 2018-06-01 2022-05-31 杭州电子科技大学 Rotary memory sensor circuit based on memory container
CN110111655A (en) * 2019-05-06 2019-08-09 成都师范学院 A kind of extremely simple floating ground magnetic control recalls sensor circuit simulation model
CN111564970A (en) * 2020-06-12 2020-08-21 成都师范学院 General conversion circuit for converting grounding into floating grounding
CN113095017B (en) * 2021-02-25 2022-09-23 广东技术师范大学 A Universal Simulator for Memory Elements
CN113054954A (en) * 2021-03-09 2021-06-29 湖南大学 Nonvolatile CMOS memristor and reconfigurable array architecture formed by same
CN113705134B (en) * 2021-08-26 2025-02-18 武汉科技大学 A universal equivalent circuit of a floating fractional-order memory element
CN118862988B (en) * 2024-07-01 2025-04-04 常州大学 Memristor-memristor-capacitor-driven neuron circuit generating unidirectional action potential

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103297025A (en) * 2013-05-02 2013-09-11 杭州电子科技大学 Memristor emulator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103297025A (en) * 2013-05-02 2013-09-11 杭州电子科技大学 Memristor emulator

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Emulation of floating memcapacitors and meminductors using current conveyors;Yu.V.Pershin,M.Di Ventra;《ELECTRONICS LETTERS》;20110217;第47卷(第4期);第243页至第244页 *
General configuration for realizing current-mode first-order all-pass filter usig DVCC;SHARAM MINAEI,MUHAMMED A.IBRAHIM;《International Journal Electronics》;20050630;第92卷(第6期);第347页至第356页 *

Also Published As

Publication number Publication date
CN103531230A (en) 2014-01-22

Similar Documents

Publication Publication Date Title
CN103531230B (en) A kind ofly recall container based on the floating of memristor and recall sensor simulator
CN103219983B (en) A kind of memristor equivalent simulation circuit
CN102623062B (en) A kind of circuit of simulating memristor
CN103095191B (en) Switch reluctance motor memory sensor model modeling method
CN106202796A (en) A kind of general memory device simulator
CN104573183B (en) That recalls container realizes that circuit and Any Order recall the implementation method of condenser circuit
CN103744288B (en) A kind of Adaptive PD control device circuit based on memristor
CN103297025B (en) A kind of memristor emulator
CN105375914B (en) It is a kind of to realize the analog circuit for recalling sensor characteristic
CN105553459A (en) Floating voltage-controlled memristor simulator circuit
CN205265656U (en) Superficially voltage -controlled recall hinder ware emulation ware circuit
CN113054947B (en) A ReLU type memristor simulator
CN105051555A (en) Dummy load circuit and charge detection circuit
CN110598351B (en) A Threshold Memristor Circuit Simulator
CN107451380A (en) Realize that the circuit of container emulator is recalled in exponential type lotus control
CN107122541A (en) One kind floating ground lotus control HP memristor equivalent circuits
CN105447270A (en) Exponential type memory inductor circuit
CN110765718A (en) A binary memristor circuit simulator
CN108846215A (en) A kind of extremely simple floating ground lotus control memristor circuit simulation model
CN204331729U (en) Recall the realizing circuit of container
CN205232190U (en) Analog circuit of sensilla characteristic is recalled in realization
CN107621842B (en) A voltage follower circuit that can improve the tracking accuracy of voltage signal
Aatre Network theory and filter design
CN110046472B (en) Quadratic nonlinear magnetron memristor simulator based on current transmitter
CN110032830B (en) Cubic nonlinear magnetron memristor simulator based on current transmitter

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160330