[go: up one dir, main page]

CN103526141B - 一种镁基储氢材料及其制备方法 - Google Patents

一种镁基储氢材料及其制备方法 Download PDF

Info

Publication number
CN103526141B
CN103526141B CN201310400671.2A CN201310400671A CN103526141B CN 103526141 B CN103526141 B CN 103526141B CN 201310400671 A CN201310400671 A CN 201310400671A CN 103526141 B CN103526141 B CN 103526141B
Authority
CN
China
Prior art keywords
preparation
magnesium
nih
alloy
amorphous alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310400671.2A
Other languages
English (en)
Other versions
CN103526141A (zh
Inventor
朱敏
林怀俊
欧阳柳章
王辉
刘江文
汪卫华
赵德乾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201310400671.2A priority Critical patent/CN103526141B/zh
Priority to US14/917,142 priority patent/US9764951B2/en
Priority to JP2016539394A priority patent/JP6301475B2/ja
Priority to PCT/CN2013/090060 priority patent/WO2015032158A1/zh
Publication of CN103526141A publication Critical patent/CN103526141A/zh
Application granted granted Critical
Publication of CN103526141B publication Critical patent/CN103526141B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0031Intermetallic compounds; Metal alloys; Treatment thereof
    • C01B3/0047Intermetallic compounds; Metal alloys; Treatment thereof containing a rare earth metal; Treatment thereof
    • C01B3/0057Intermetallic compounds; Metal alloys; Treatment thereof containing a rare earth metal; Treatment thereof also containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/002Making metallic powder or suspensions thereof amorphous or microcrystalline
    • B22F9/008Rapid solidification processing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0031Intermetallic compounds; Metal alloys; Treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0078Composite solid storage mediums, i.e. coherent or loose mixtures of different solid constituents, chemically or structurally heterogeneous solid masses, coated solids or solids having a chemically modified surface region
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/11Making amorphous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/06Alloys based on magnesium with a rare earth metal as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/005Amorphous alloys with Mg as the major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/06Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/05Light metals
    • B22F2301/058Magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/45Rare earth metals, i.e. Sc, Y, Lanthanides (57-71)
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/03Amorphous or microcrystalline structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Powder Metallurgy (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Continuous Casting (AREA)

Abstract

本发明公开了一种镁基储氢材料及其制备方法,其制备方法为:(1)通过快速冷却法制备Mg-Ce-Ni系非晶合金;(2)将得到的非晶合金进行粉碎,得到非晶粉末;(3)对非晶合金进行活化;(4)将得到的上述复合物进行吸放氢循环,然后进行钝化处理;(5)最后对复合物进行氧化处理,得到MgH2-Mg2NiH4-CeH2.73-CeO2系纳米晶复合物。本发明公开的材料中的Mg2NiH4、CeH2.73和CeO2都是原位生成的纳米晶,不需要通过其他机械方法添加。本发明制备工艺简单,时间短,能耗和成本低。脱氢温度比MgH2大幅度降低,脱氢动力学性能显著提高,多次循环之后脱氢性能还可以稳定保持。

Description

一种镁基储氢材料及其制备方法
技术领域
本发明涉及储氢合金材料及其制备工艺领域,特别涉及镁-稀土基储氢合金材料及其制备。
背景技术
氢能的存储是氢能大规模商业化应用的一大关键科学问题,MgH2由于具有较高的储氢容量、资源丰富、廉价、环境友好等而有着良好的应用前景,但MgH2的高热力学稳定性和迟缓的吸放氢动力学性能使得其实际应用受到很大限制。近年来研究人员采用了多种办法来弥补这些不足,如机械合金化、掺杂催化剂、氢燃烧法、快速冷却等,镁基材料的吸氢性能有了大幅度的改善,但是其脱氢性能改善不大,脱氢温度在250-300℃以上,且脱氢动力学性能较缓慢。
通过在镁基材料中添加稀土和过渡金属可以降低其放氢温度,传统的熔炼方法制备的合金晶粒粗大,且其中的过渡族金属容易团聚,因而导致合金的可逆储氢量低、放氢温度过高、吸放氢循环寿命较低。同时,通过引进氧化物如V2O5,Nb2O5,TiO2和CeO2等也可以显著提高镁基合金的吸放氢性能,这主要归因于氧化物对镁基材料的催化效应。传统的氧化物添加大多采用机械添加工艺,这些工艺需要的装置比较复杂,需要消耗大量的能量和时间,并且由于是机械添加,因此这些添加物在镁基合金中分布不是非常均匀,尺寸也比较大,这就制约了其对镁基材料的催化效应。
发明内容
本发明的目的在于提供是为了一种镁基储氢材料及其制备方法,通过该方法制得的镁基储氢合金改善了传统镁基储氢合金脱氢温度过高,脱氢动力学过慢的缺点,在储氢领域具有良好的应用前景。
本发明目的通过下述技术方案实现:
一种镁基储氢材料的制备方法,包括以下步骤:
(1)通过快速冷却法制备Mg-Ce-Ni系非晶合金;
(2)将得到的非晶合金进行粉碎,得到非晶粉末;
(3)对非晶合金活化而得到MgH2-Mg2NiH4-CeH2.73系纳米晶复合物;
(4)将得到的上述复合物进行吸放氢循环,然后将复合物置于纯Ar气氛中进行钝化处理;
(5)最后对钝化处理后的复合物进行氧化处理,得到MgH2-Mg2NiH4-CeH2.73-CeO2系纳米晶复合物。
步骤(1)制得的非晶合金为(x+2y)Mg-2zCe-yNi非晶合金,其中,x+3y+2z=100,20≤x≤80,5≤y≤20,2.5≤z≤10;步骤(3)制得的复合物为xMgH2-yMg2NiH4-2zCeH2.73纳米晶复合物;步骤(5)制得的复合物为xMgH2-yMg2NiH4-zCeH2.73-zCeO2纳米晶复合物。
步骤(1)中非晶合金的制备方法为,将铈和镍锭按照摩尔比1:1混合,采用电弧熔炼的方法在2000-3000℃进行熔炼得到稀土-镍中间合金;再将镁锭和稀土-镍中间合金进行感应熔炼,其中镁的摩尔百分比为60-90%,熔炼温度1000-1500℃;最后将熔炼所得的合金采用单辊旋淬的方法进行快速冷却。
所采用的单辊旋淬的方法中铜辊轮的转速为30-40m/s,真空室里的真空度为5×10-5Pa。
步骤(2)粉碎采用球磨粉碎,球磨时间为1-2小时,球粉比40:1,转速为250rpm。
步骤(3)活化条件为:在250℃和10MPa的氢气氛中吸氢3小时。
步骤(4)钝化处理的Ar气氛的水、氧含量均不超过10ppm。
步骤(4)中吸放氢循环所采用的工艺为300℃下,3MPa的氢压下吸氢0.5小时,然后0.002MPa真空下脱氢0.5小时,依次循环15次。
步骤(5)复合物的氧化处理为将复合物放在密封容器里,然后将容器在空气中打开,使其充满空气,放置5-15小时。
一种镁基储氢材料,该材料表达式为:xMgH2-yMg2NiH4-zCeH2.73-zCeO2(x+3y+2z=100,20≤x≤80,5≤y≤20,2.5≤z≤10)。其中,Mg2NiH4、CeH2.73和CeO2都是原位生成的纳米晶,不是通过机械方法添加,它们皆均匀地分布在MgH2中。
步骤(1)得到的Mg-Ce-Ni系非晶合金条带,其宽度2mm,厚度0.04mm;步骤(2)得到的非晶粉末的尺寸为200目;步骤(3)得到的MgH2-Mg2NiH4-CeH2.73系复合物的晶粒尺寸为10-15nm。
通过第一性原理计算可知,MgH2中的H原子通过CeH/CeO界面分解需要的能量远远低于单独从MgH2基体脱附需要的能量,这个主要是因为在共生的CeH/CeO界面,H空位和O空位非常容易形成,这些空位为H的扩散和解离提供了大量的“过度空间”,因此共生结构的CeH/CeO结构对MgH2的分解非常有利。
本发明与传统的镁基储氢合金熔炼方法相比,其制备的储氢合金具有以下优点:
(1)对非晶合金特定的活化工艺之后,合金的晶粒显著地得到了细化,尺寸为10-15nm。
(2)本发明制得的xMgH2-yMg2NiH4-zCeH2.73-zCeO2(x+3y+2z=100,20≤x≤80,5≤y≤20,2.5≤z≤10)复合物中的Mg2NiH4、CeH2.73和CeO2都是原位生成的纳米晶,并且均匀地分布在MgH2中,不需要通过其他机械方法添加;CeH2.73和CeO2是共生关系,还可能形成壳-核结构。
(3)本发明制得材料的脱氢动力学有大幅度的提高,脱氢温度比纯MgH2大幅降低,储氢量为3.0-4.0wt%。
(4)本发明制备工艺简单、廉价,适合大规模工业化生产。
附图说明
图1是快冷制备的Mg-Ce-Ni非晶合金的XRD图;
图2是Mg-Ce-Ni非晶合金在不同气氛下的首次吸氢后产物的XRD图,可见Mg-Ce-Ni非晶合金吸氢之后都变成MgH2-Mg2NiH4-CeH2.73系纳米复合物;
图3是Mg-Ce-Ni非晶合金吸放氢循环动力学曲线;
图4是氧化处理前(a)和后(b)材料的XRD图;
图5是氧化处理前(a)和后(b)材料的DSC曲线,将商业用纯MgH2(c)做为对比;
图6是原位生长的CeO2/CeH2.73的TEM图,可见它们(a)共生在一起,有时候还会形成(b)壳-核结构;
图7是xMgH2-yMg2NiH4-zCeH2.73-zCeO2(x+3y+2z=100,20≤x≤80,5≤y≤20,2.5≤z≤10)复合物在氧化前、后和5、20个循环之后的脱氢动力学曲线图。
具体实施方式
下面结合具体实施例对本发明作进一步具体详细描述,但本发明的实施方式不限于此,对于未特别注明的工艺参数,可参照常规技术进行。
实施例1
把铈锭(99.9%)和镍锭(99.99%)按照摩尔比1:1混合,采用电弧熔炼在2500℃进行熔炼,反复熔炼8次。将铈-镍中间合金和镁锭(99.99%)进行混合,镁的含量为摩尔比80%,采用感应熔炼进行制备,熔炼温度为1300℃;对制备后的Mg80Ce10Ni10合金进行快速冷却,铜辊转速为30m/s,真空室里的真空度为5×10-5Pa,得到非晶条带,其宽度2mm,厚度0.04mm。将非晶条带进行球磨粉碎,球磨时间1.5h,球粉比40:1,转速为250rpm,然后过200目筛子得到非晶粉末。
将非晶粉末进行活化,活化气氛为10MPa+250℃,活化3小时后合金吸氢都接近饱和。活化后得到60MgH2-10Mg2NiH4-10CeH2.73复合物,晶粒非常细小,通过计算其晶粒尺寸为10-15nm。接着将活化之后的样品进行吸放氢循环,在300℃下,3MPa的氢压下吸氢0.5小时,然后0.002MPa真空下脱氢0.5小时,依次循环15次,再置于纯Ar的气氛的手套箱中,放置一周时间使其表面钝化;最后将循环后的样品放在密封管里,然后将管子在空气中打开,使其充满空气,放置8小时进行氧化处理,由于CeH2.73被氧化成CeO2而得到60MgH2-10Mg2NiH4-5CeH2.73-5CeO2复合物。图5是氧化后的样品XRD图。氧化处理之后(此情况下CeO2和CeH2.73的摩尔比约1:1),样品的脱氢起始温度比起纯MgH2降低了约210℃。如图6所示,CeO2/CeH2.73为共生关系,还可能形成壳-核结构。氧化处理之后脱氢动力学有了很大改善,并且如图7所示,经过20个吸放氢循环之后脱氢性能还能很好地保持。
实施例2
把铈锭(99.9%)和镍锭(99.99%)按照摩尔比1:1混合,采用电弧熔炼在2500℃进行熔炼,反复熔炼8次。将铈-镍中间合金和镁锭(99.99%)进行混合,镁的含量为摩尔比60%,采用感应熔炼进行制备,熔炼温度为1300℃;对制备后的Mg60Ce20Ni20合金进行快速冷却,铜辊转速为30m/s,真空室里的真空度为5×10-5Pa,得到非晶条带,其宽度2mm,厚度0.04mm。将非晶条带进行球磨粉碎,球磨时间2h,球粉比40:1,转速为250rpm,然后过200目筛子得到非晶粉末。
将非晶粉末进行活化,活化气氛为10MPa+250℃,活化3小时后合金吸氢都接近饱和。活化后得到20MgH2-20Mg2NiH4-20CeH2.73复合物,晶粒非常细小,通过计算其晶粒尺寸为10-15nm。接着将活化之后的样品进行吸放氢循环,在300℃下,3MPa的氢压下吸氢0.5小时,然后0.002MPa真空下脱氢0.5小时,依次循环15次,再置于纯Ar的气氛的手套箱中,放置一周时间使其表面钝化;最后将循环后的样品放在密封管里,然后将管子在空气中打开,使其充满空气,放置5小时进行氧化处理,由于CeH2.73被氧化成CeO2而得到20MgH2-20Mg2NiH4-10CeH2.73-10CeO2复合物。
实施例3
把铈锭(99.9%)和镍锭(99.99%)按照摩尔比1:1混合,采用电弧熔炼在2500℃进行熔炼,反复熔炼8次。将铈-镍中间合金和镁锭(99.99%)进行混合,镁的含量为摩尔比90%,采用感应熔炼进行制备,熔炼温度为1300℃;对制备后的Mg90Ce5Ni5合金进行快速冷却,铜辊转速为30m/s,真空室里的真空度为5×10-5Pa,得到非晶条带,其宽度2mm,厚度0.04mm。将非晶条带进行球磨粉碎,球磨时间2h,球粉比40:1,转速为250rpm,然后过200目筛子得到非晶粉末。
将非晶粉末进行活化,活化气氛为10MPa+250℃,活化3小时后合金吸氢都接近饱和。活化后得到80MgH2-5Mg2NiH4-5CeH2.73复合物,晶粒非常细小,通过计算其晶粒尺寸为10-15nm。接着将活化之后的样品进行吸放氢循环,在300℃下,3MPa的氢压下吸氢0.5小时,然后0.002MPa真空下脱氢0.5小时,依次循环15次,再置于纯Ar的气氛的手套箱中,放置一周时间使其表面钝化;最后将循环后的样品放在密封管里,然后将管子在空气中打开,使其充满空气,放置15小时进行氧化处理,由于CeH2.73被氧化成CeO2而得到80MgH2-5Mg2NiH4-2.5CeH2.73-2.5CeO2复合物。
上述具体实施方式为本发明的优选实施例,并不能对本发明的权利要求进行限定,其他的任何未背离本发明的技术方案而所做的改变或其它等效的置换方式,都包含在本发明的保护范围之内。

Claims (9)

1.一种镁基储氢材料的制备方法,其特征在于,包括以下步骤:
(1)通过快速冷却法制备Mg-Ce-Ni系非晶合金;
(2)将得到的非晶合金进行粉碎,得到非晶粉末;
(3)对非晶合金活化而得到MgH2-Mg2NiH4-CeH2.73系纳米晶复合物;
(4)将得到的上述复合物进行吸放氢循环,然后将复合物置于纯Ar气氛中进行钝化处理;
(5)最后对钝化处理后的复合物进行氧化处理,得到MgH2-Mg2NiH4-CeH2.73-CeO2系纳米晶复合物;
步骤(1)制得的非晶合金为(x+2y)Mg-2zCe-yNi非晶合金,其中,x+3y+2z=100,20≤x≤80,5≤y≤20,2.5≤z≤10;步骤(3)制得的复合物为xMgH2-yMg2NiH4-2zCeH2.73纳米晶复合物;步骤(5)制得的复合物为xMgH2-yMg2NiH4-zCeH2.73-zCeO2纳米晶复合物。
2.根据权利要求1所述的制备方法,其特征在于,步骤(1)中非晶合金的制备方法为,将铈和镍锭按照摩尔比1:1混合,采用电弧熔炼的方法在2000-3000℃进行熔炼得到稀土-镍中间合金;再将镁锭和稀土-镍中间合金进行感应熔炼,其中镁的摩尔百分比为60-90%,熔炼温度1000-1500℃;最后将熔炼所得的合金采用单辊旋淬的方法进行快速冷却。
3.根据权利要求2所述的制备方法,其特征在于,所采用的单辊旋淬的方法中铜辊轮的转速为30-40m/s,真空室里的真空度为5×10-5Pa。
4.根据权利要求1或2或3所述的制备方法,其特征在于,步骤(2)粉碎采用球磨粉碎,球磨时间为1-2小时,球粉比40:1,转速为250rpm。
5.根据权利要求1或2或3所述的制备方法,其特征在于,步骤(3)活化条件为:在250℃和10MPa的氢气氛中吸氢3小时。
6.根据权利要求1或2或3所述的制备方法,其特征在于,步骤(4)钝化处理的Ar气氛的水、氧含量均不超过10ppm。
7.根据权利要求1或2或3所述的制备方法,其特征在于,步骤(4)中吸放氢循环所采用的工艺为300℃下,3MPa的氢压下吸氢0.5小时,然后0.002MPa真空下脱氢0.5小时,依次循环15次。
8.根据权利要求1或2或3所述的制备方法,其特征在于,步骤(5)复合物的氧化处理为将复合物放在密封容器里,然后将容器在空气中打开,使其充满空气,放置5-15小时。
9.权利要求1~8任意一项方法制备的镁基储氢材料,其特征在于,该材料表达式为:xMgH2-yMg2NiH4-zCeH2.73-zCeO2,其中,x+3y+2z=100,20≤x≤80,5≤y≤20,2.5≤z≤10,该材料的晶粒尺寸为10-15nm。
CN201310400671.2A 2013-09-05 2013-09-05 一种镁基储氢材料及其制备方法 Active CN103526141B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201310400671.2A CN103526141B (zh) 2013-09-05 2013-09-05 一种镁基储氢材料及其制备方法
US14/917,142 US9764951B2 (en) 2013-09-05 2013-12-20 Magnesium-based hydrogen storage material and method for preparing the same
JP2016539394A JP6301475B2 (ja) 2013-09-05 2013-12-20 Mg基水素貯蔵材料およびその調製方法
PCT/CN2013/090060 WO2015032158A1 (zh) 2013-09-05 2013-12-20 一种镁基储氢材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310400671.2A CN103526141B (zh) 2013-09-05 2013-09-05 一种镁基储氢材料及其制备方法

Publications (2)

Publication Number Publication Date
CN103526141A CN103526141A (zh) 2014-01-22
CN103526141B true CN103526141B (zh) 2015-03-11

Family

ID=49928484

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310400671.2A Active CN103526141B (zh) 2013-09-05 2013-09-05 一种镁基储氢材料及其制备方法

Country Status (4)

Country Link
US (1) US9764951B2 (zh)
JP (1) JP6301475B2 (zh)
CN (1) CN103526141B (zh)
WO (1) WO2015032158A1 (zh)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104357723B (zh) * 2014-11-21 2016-10-26 东南大学 一种可低温脱氢的镁基复合材料及其制备方法
CN105060248A (zh) * 2015-07-17 2015-11-18 北京浩运金能科技有限公司 一种氢气净化装置
CN105316501B (zh) * 2015-11-12 2018-05-29 国网智能电网研究院 一种稀土—镁基储氢合金及其制备方法
CN107190193A (zh) * 2017-06-11 2017-09-22 烟台大学 一种纳米晶非晶Mg‑M‑Y储氢合金及其制备方法和用途
CN108996472A (zh) * 2018-08-13 2018-12-14 江苏科技大学 过渡金属纳米片/MgH2复合材料及其制备方法和应用
CN109467048A (zh) * 2018-12-27 2019-03-15 江苏科技大学 复合储氢材料及其制备方法和应用
CN112225174B (zh) * 2020-10-16 2022-06-14 南京工程学院 一种抗氧化的镁基复合储氢材料及其制备方法
CN112609102B (zh) * 2020-12-09 2021-09-10 浙江大学 由稀土氧化物和纳米硼镍包裹的镁基储氢材料的制备方法
DE102021005181B3 (de) 2021-10-16 2022-10-06 Dan Dragulin Verfahren zur Speicherung von Wasserstoff in einem metallischen Basismaterial durch direkte Wasserstoffanreicherung, sowie dadurch erhältliches wasserstoffhaltiges Material und dessen Verwendung
CN116062683A (zh) * 2021-10-29 2023-05-05 中国石油化工股份有限公司 一种镁基储氢材料及其制备方法
CN113896167B (zh) * 2021-11-12 2023-10-20 江苏科技大学 一种复合储氢材料、其制备方法及其应用
CN114160784B (zh) * 2021-11-22 2024-08-20 上海大学 一种含有Nd4Mg80Ni8合金与纯Mg的水解制氢复合材料、其制备方法及其应用
CN115140706B (zh) * 2022-05-16 2024-01-09 广东省国研科技研究中心有限公司 一种Mg-Ni-Si系储氢材料及其制备方法
CN114955989A (zh) * 2022-06-08 2022-08-30 江苏科技大学 一种复合储氢材料及其制备方法
CN115367700B (zh) * 2022-08-31 2024-04-05 理工清科(重庆)先进材料研究院有限公司 锌铜双金属MOF催化的MgH2储氢材料、其制备方法和应用
CN116103552B (zh) * 2022-09-07 2024-10-29 中南大学 一种挤压型Mg-Ni-Gd系镁基储氢功能材料及其制备方法
CN116100033B (zh) * 2022-12-15 2024-12-17 暨南大学 一种非晶态镁基纳米颗粒的制备方法及其应用
CN116288081B (zh) * 2022-12-30 2024-08-16 浙江大学 一种增强ZrCo合金抗二氧化碳毒化性能的方法
CN116239077B (zh) * 2023-03-09 2024-07-02 中国电力科学研究院有限公司 一种负载杂多酸催化剂的镁基储氢材料及其制备方法
CN116835525A (zh) * 2023-07-10 2023-10-03 上海交通大学 一种镁基固态储氢合金原位吸氢及水解产氢装置及其应用
CN118073551B (zh) * 2024-04-17 2024-06-21 内蒙古科技大学 一种电池用抗腐蚀纳米级Ce-Mg-Ni负极复合材料的制备方法
CN119591051A (zh) * 2024-12-17 2025-03-11 山东科技大学 一种5a沸石分子筛限域的镁基储氢材料及其制备方法
CN119372535B (zh) * 2024-12-27 2025-03-25 广东省科学院新材料研究所 一种多相耦合镁基复合储氢材料及其制备方法与应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1397658A (zh) * 2002-04-10 2003-02-19 浙江大学 非晶态稀土-镁基储氢合金及其制造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2407170A1 (fr) * 1977-10-27 1979-05-25 Raffinage Cie Francaise Procede combine de stockage et de production d'hydrogene et applications de ce procede
JPS58181701A (ja) * 1982-04-15 1983-10-24 Matsushita Electric Ind Co Ltd 水素貯蔵用金属材料の取り扱い方法
JPS63223106A (ja) * 1987-03-11 1988-09-16 Nippon Steel Corp 非晶質合金粉末の製造方法
JP2511526B2 (ja) * 1989-07-13 1996-06-26 ワイケイケイ株式会社 高力マグネシウム基合金
US6103024A (en) * 1994-12-22 2000-08-15 Energy Conversion Devices, Inc. Magnesium mechanical alloys for thermal hydrogen storage
EP0799324B1 (en) * 1994-12-22 2001-08-29 Energy Conversion Devices, Inc. Magnesium mechanical alloys for thermal hydrogen storage
CA2219231C (en) * 1995-05-08 2008-10-28 Ovonic Battery Company, Inc. Electrochemical hydrogen storage alloys and batteries fabricated from mg containing base alloys
JP3520461B2 (ja) * 1997-08-25 2004-04-19 財団法人 ひろしま産業振興機構 マグネシウム系水素吸蔵複合材料
JP4080055B2 (ja) * 1998-03-24 2008-04-23 日本重化学工業株式会社 非晶質マグネシウムニッケル系水素吸蔵合金の製造方法
JP2003147472A (ja) * 2001-11-02 2003-05-21 Toyota Central Res & Dev Lab Inc マグネシウム系水素吸蔵合金
JP4147462B2 (ja) * 2002-08-07 2008-09-10 トヨタ自動車株式会社 多層構造水素吸蔵体
US20050126663A1 (en) * 2003-12-11 2005-06-16 Fetcenko Michael A. Catalyzed hydrogen desorption in Mg-based hydrogen storage material and methods for production thereof
CN102286684B (zh) 2011-08-09 2013-02-27 安泰科技股份有限公司 镁基储氢合金

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1397658A (zh) * 2002-04-10 2003-02-19 浙江大学 非晶态稀土-镁基储氢合金及其制造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Hydrogen storage properties of Mg-Ce-Ni nanocomposite induced from amorphous precursor with the highest Mg content;H. J. Lin et al.;《International Journal of Hydrogen Energy》;20120831;第37卷(第19期);第14329-14335页 *
Room temperature gaseous hydrogen storage properties of Mg-based metallic glasses with ultrahigh Mg contents;H. J. lin et al;《Journal of Non-Crystalline Solids》;20120831;第360卷;第1387-1390页 *

Also Published As

Publication number Publication date
CN103526141A (zh) 2014-01-22
JP6301475B2 (ja) 2018-03-28
WO2015032158A1 (zh) 2015-03-12
US20160194201A1 (en) 2016-07-07
JP2016537511A (ja) 2016-12-01
US9764951B2 (en) 2017-09-19

Similar Documents

Publication Publication Date Title
CN103526141B (zh) 一种镁基储氢材料及其制备方法
CN107338385B (zh) 一种体心立方结构为主的储氢高熵合金及其制备方法
CN103317128B (zh) 一种Mg-Ni-La基复合储氢合金粉及其制备方法
Chai et al. Sustainability applications of rare earths from metallurgy, magnetism, catalysis, luminescence to future electrochemical pseudocapacitance energy storage
CN104593651B (zh) 一种Mg-Ti-RE-Ni基贮氢合金及其制备方法
CN109175349B (zh) 一种高性能双稀土固溶体基贮氢材料及其制备方法
CN104953023A (zh) 一种高密度Fe(Se,Te)超导材料的制备方法
CN105063457A (zh) 一种纳米石墨复合的高容量RE-Mg-Ni基贮氢材料及其制备方法
CN115377433A (zh) 一种高性能ab2型储氢合金的制备方法
CN108517470A (zh) 一种钇-锆-铁储氢合金材料及其制备方法
CN101153362A (zh) 一种由FeV80中间合金制备的高容量钒基储氢合金
CN105316501B (zh) 一种稀土—镁基储氢合金及其制备方法
CN110656272A (zh) 一种基于高熵效应的镁基贮氢材料及其制备方法
CN108330323A (zh) 一种氢同位素贮存合金及其制备方法
CN112225174B (zh) 一种抗氧化的镁基复合储氢材料及其制备方法
CN108842293B (zh) 一种环保柔性储氢材料的制备方法
CN103173656A (zh) 一种改善Mg2Ni基储氢合金储氢性能的复合添加剂
CN102674356A (zh) 一种纳米富10b碳化硼粉体的制备方法
CN104445070A (zh) 一种含镍和稀土金属氢化物纳米粒子的镁基双金属氢化物的制备方法
CN101642703A (zh) 铝氢化钠配位氢化物的催化剂及其制备方法
CN108097947A (zh) 一种高容量Mg-Zn-Ni三元贮氢合金及其制备方法
Aydınlı et al. Size reduction in Mg rich intermetallics via hydrogen decrepitation
CN103682288B (zh) Ni-MH电池用贮氢电极合金及其制备方法
CN103556022B (zh) 一种Mg-In-Ag三元储氢材料及其制备方法
CN105014089B (zh) 一种真空碳还原制备金属铪粉的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant