CN103516642A - Method and device for jointly estimating interference signal physical parameters - Google Patents
Method and device for jointly estimating interference signal physical parameters Download PDFInfo
- Publication number
- CN103516642A CN103516642A CN201310405521.0A CN201310405521A CN103516642A CN 103516642 A CN103516642 A CN 103516642A CN 201310405521 A CN201310405521 A CN 201310405521A CN 103516642 A CN103516642 A CN 103516642A
- Authority
- CN
- China
- Prior art keywords
- signal
- compensation
- frequency
- interference
- interference signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Noise Elimination (AREA)
- Radio Relay Systems (AREA)
Abstract
一种联合估计干扰信号物理参数的方法,该方法包括如下步骤:接收一混合信号;对所述混合信号采样得到离散观测信号样本,其中,所述离散观测信号样本包括一干扰信号及一有用信号;对一与所述干扰信号携带信息相同的本地信号进行时延补偿;估计所述干扰信号的频偏;根据估计出的频偏对时延补偿后的所述本地信号进行频率补偿;根据做好时延补偿以及频率补偿后的本地信号以及所述离散观测样本估计干扰信号的相移;根据估计出的相移对做好时延补偿以及频率补偿后的本地信号进行相位补偿;以及根据做好时延补偿、频率补偿以及相移补偿后的本地信号以及离散观测样本估计所述干扰信号的幅度。本发明还涉及一种联合估计干扰信号物理参数的装置。
A method for jointly estimating physical parameters of an interference signal, the method comprising the steps of: receiving a mixed signal; sampling the mixed signal to obtain a discrete observation signal sample, wherein the discrete observation signal sample includes an interference signal and a useful signal ; performing time delay compensation on a local signal carrying the same information as the interference signal; estimating the frequency offset of the interference signal; performing frequency compensation on the time delay compensated local signal according to the estimated frequency offset; The local signal after time delay compensation and frequency compensation and the phase shift of the discrete observation sample estimate the interference signal; perform phase compensation on the local signal after time delay compensation and frequency compensation according to the estimated phase shift; and according to the done The amplitude of the interfering signal is estimated using the time delay compensated, frequency compensated and phase shift compensated local signals and discrete observation samples. The invention also relates to a device for jointly estimating physical parameters of interference signals.
Description
技术领域 technical field
本发明涉及通信系统中两路信号混叠后的干扰消除技术,尤其涉及一种联合估计干扰信号物理参数的方法和装置。 The invention relates to an interference elimination technology after two-way signals are aliased in a communication system, in particular to a method and a device for jointly estimating physical parameters of an interference signal.
背景技术 Background technique
在无线通信的某些应用场景中,两个站点之间由于距离或地理环境的限制无法直接进行通信,必须利用中继站来进行信号的转发和放大。为了提高频谱利用率及信息的抗截获水平,通常还需要相互通信的两个站点所发射的信号在时域、频域甚至码空间上完全重叠。 In some application scenarios of wireless communication, due to the limitation of distance or geographical environment, two sites cannot communicate directly, and relay stations must be used to forward and amplify signals. In order to improve the spectrum utilization rate and the anti-interception level of information, it is usually required that the signals transmitted by two stations communicating with each other completely overlap in time domain, frequency domain and even code space.
通信时,双方站点分别在相同时间向中继站发送相同频率的上行信号,在中继上叠加,经过中继的下变频和功率放大以后,两个站点均可接收到由本地信号成分(即干扰信号)与对方信号成分(即有用信号)组成的下行混合信号。由于每个站点都确切知道自己所发送的信息以及本地收发的信号处理过程,因此能够对混合信号中的本地信号成分(干扰信号)作出较为有效的估计。将这部分信号作为干扰信号从混合下行信号中消除以后,即可实现对对方信号成分(有用信号)的可靠解调。这样,即使双方信号在时域、频域、码空间上完全重叠,链路对称时的信道资源利用率也可以提高一倍。 During communication, the two sites send uplink signals of the same frequency to the relay station at the same time, superimposed on the relay, and after the down-conversion and power amplification of the relay, both stations can receive the local signal component (that is, the interference signal ) and the other signal component (that is, the useful signal) is composed of a downlink mixed signal. Since each station knows exactly the information it sends and the signal processing process of local transmission and reception, it can make a more effective estimation of the local signal component (interference signal) in the mixed signal. After eliminating this part of the signal as an interference signal from the mixed downlink signal, reliable demodulation of the other party's signal component (useful signal) can be achieved. In this way, even if the signals of both parties completely overlap in the time domain, frequency domain, and code space, the channel resource utilization rate can be doubled when the link is symmetrical.
为了能够将干扰信号尽可能地消除,站点采用的接收机就需要在信号解调器的前端增加一系列的物理参数估计模块。待估计的物理参数包括干扰信号的频偏、时延、相移、幅度等等。这些物理参数的估计精准与否将直接影响到有用信号能否被正确解调,因此成为这一类通信应用场景下的最关键技术。为了实现混合信号的分离,一般先使用广义相关法估计出干扰信号的物理参数,然后在此基础上重构出干扰信号,最后再将干扰信号从混合信号中减去得到接收端所需要的有用信号。 In order to eliminate the interference signal as much as possible, the receiver used by the site needs to add a series of physical parameter estimation modules at the front end of the signal demodulator. The physical parameters to be estimated include frequency offset, time delay, phase shift, amplitude, etc. of the interference signal. Whether the estimation of these physical parameters is accurate or not will directly affect whether the useful signal can be correctly demodulated, so it becomes the most critical technology in this type of communication application scenario. In order to realize the separation of mixed signals, the generalized correlation method is generally used to estimate the physical parameters of the interference signal, and then the interference signal is reconstructed on this basis, and finally the interference signal is subtracted from the mixed signal to obtain the useful parameters required by the receiving end. Signal.
然而,传统的广义相关法在估计前或是假设其余参数均是已知参数,或是不考虑其中的某一个或某几个参数,并且每次只能估计出一个参数值。这样的假设不仅不符合实际,也没有考虑到待估计的物理参数之间的相互影响。采用这种方法估计出的物理参数不但不准确,也不便用于实时处理。 However, the traditional generalized correlation method either assumes that the rest of the parameters are known before estimating, or does not consider one or several of them, and can only estimate one parameter value each time. Such an assumption is not only unrealistic, but also does not take into account the interaction between the physical parameters to be estimated. The physical parameters estimated by this method are not only inaccurate, but also inconvenient for real-time processing.
发明内容 Contents of the invention
针对上述问题,有必要提供一种联合估计干扰信号物理参数的方法,其能准确估计出干扰信号的各项物理参数。 In view of the above problems, it is necessary to provide a method for jointly estimating the physical parameters of the interference signal, which can accurately estimate various physical parameters of the interference signal.
另外,还有必要提供一种联合估计干扰信号物理参数的装置,其能准确估计出干扰信号的各项物理参数。 In addition, it is also necessary to provide a device for jointly estimating the physical parameters of the interference signal, which can accurately estimate various physical parameters of the interference signal.
一种联合估计干扰信号物理参数的方法,该方法包括如下步骤: A method for jointly estimating physical parameters of an interference signal, the method comprising the steps of:
接收一混合信号; receiving a mixed signal;
对所述混合信号采样得到离散观测信号样本,其中,所述离散观测信号样本包括一干扰信号及一有用信号; Sampling the mixed signal to obtain a discrete observation signal sample, wherein the discrete observation signal sample includes an interference signal and a useful signal;
对一与所述干扰信号携带信息相同的本地信号进行时延补偿; performing delay compensation on a local signal carrying the same information as the interference signal;
估计所述干扰信号的频偏; estimating a frequency offset of the interfering signal;
根据估计出的频偏对时延补偿后的所述本地信号进行频率补偿; performing frequency compensation on the local signal after delay compensation according to the estimated frequency offset;
根据做好时延补偿以及频率补偿后的本地信号以及所述离散观测样本估计干扰信号的相移; Estimate the phase shift of the interference signal according to the local signal after time delay compensation and frequency compensation and the discrete observation samples;
根据估计出的相移对做好时延补偿以及频率补偿后的本地信号进行相位补偿;以及 performing phase compensation on the local signal after delay compensation and frequency compensation according to the estimated phase shift; and
根据做好时延补偿、频率补偿以及相移补偿后的本地信号以及离散观测样本估计所述干扰信号的幅度。 Estimate the amplitude of the interference signal according to the local signal after time delay compensation, frequency compensation and phase shift compensation and discrete observation samples.
一种联合估计干扰信号物理参数的装置,该装置包括: A device for jointly estimating physical parameters of an interference signal, the device comprising:
信号接收模块,用于接收一混合信号; A signal receiving module, configured to receive a mixed signal;
采样模块,用于对所述混合信号采样得到离散观测信号样本,其中,所述离散观测信号样本包括一干扰信号及一有用信号; A sampling module, configured to sample the mixed signal to obtain a discrete observation signal sample, wherein the discrete observation signal sample includes an interference signal and a useful signal;
时延补偿模块,用于对一与所述干扰信号携带信息相同的本地信号进行时延补偿; A delay compensation module, configured to perform delay compensation on a local signal carrying the same information as the interference signal;
频偏估计模块,用于估计所述干扰信号的频偏; a frequency offset estimation module, configured to estimate the frequency offset of the interference signal;
频率补偿模块,用于根据估计出的频偏对时延补偿后的所述本地信号进行频率补偿; A frequency compensation module, configured to perform frequency compensation on the delay-compensated local signal according to the estimated frequency offset;
相移估计模块,用于根据做好时延补偿以及频率补偿后的本地信号以及所述离散观测样本估计干扰信号的相移; A phase shift estimation module, configured to estimate the phase shift of the interference signal according to the local signal after delay compensation and frequency compensation and the discrete observation samples;
相位补偿模块,用于根据估计出的相移对做好时延补偿以及频率补偿后的本地信号进行相位补偿;以及 A phase compensation module, configured to perform phase compensation on the local signal after delay compensation and frequency compensation according to the estimated phase shift; and
幅度估计模块,用于根据做好时延补偿、频率补偿以及相移补偿后的本地信号以及离散观测样本估计所述干扰信号的幅度。 The amplitude estimation module is used for estimating the amplitude of the interference signal according to the local signal after time delay compensation, frequency compensation and phase shift compensation and discrete observation samples.
所述的联合估计干扰信号物理参数的方法及装置通过顺序估计出干扰信号的时延、频偏以及相移等物理参数。在估计下一个待估参数之前,预先补偿(对齐)上一个已估参数,优化了整个装置的整体性能。相对于传统的基于频率细分,并在一定的范围内进行搜索的频偏估计方法,采用本发明所提供的联合估计干扰信号物理参数的方法及装置可以更加快速准确地估计出干扰信号的频偏,更加适用于实时处理。 The method and device for jointly estimating the physical parameters of the interference signal sequentially estimate the physical parameters of the interference signal such as time delay, frequency offset and phase shift. Before estimating the next parameter to be estimated, pre-compensating (aligning) the last estimated parameter optimizes the overall performance of the entire device. Compared with the traditional frequency offset estimation method based on frequency subdivision and searching within a certain range, the method and device for jointly estimating the physical parameters of the interference signal provided by the present invention can estimate the frequency of the interference signal more quickly and accurately. Bias, more suitable for real-time processing.
附图说明 Description of drawings
图1为使用本发明较佳实施方式的联合估计干扰信号物理参数的方法及装置的通信系统的示意图。 FIG. 1 is a schematic diagram of a communication system using the method and device for jointly estimating physical parameters of interference signals according to a preferred embodiment of the present invention.
图2为本发明较佳实施方式的联合估计干扰信号物理参数的装置的功能模块图。 Fig. 2 is a functional block diagram of an apparatus for jointly estimating physical parameters of interference signals according to a preferred embodiment of the present invention.
图3为本发明较佳实施方式的联合估计干扰信号物理参数的方法的流程图。 Fig. 3 is a flowchart of a method for jointly estimating physical parameters of interference signals according to a preferred embodiment of the present invention.
主要元件符号说明 Description of main component symbols
如下具体实施方式将结合上述附图进一步说明本发明。 The following specific embodiments will further illustrate the present invention in conjunction with the above-mentioned drawings.
具体实施方式 Detailed ways
本发明较佳实施方式的联合估计干扰信号物理参数的方法及装置应用于一无线通信系统,用于对干扰信号的各项物理参数进行联合估计。 The method and device for jointly estimating physical parameters of an interference signal in a preferred embodiment of the present invention are applied to a wireless communication system, and are used for jointly estimating various physical parameters of the interference signal.
首先,对本发明使用的各种符号、函数及公式等进行定义及说明。 First, various symbols, functions, formulas, etc. used in the present invention are defined and described.
对于任意一个复数 ,代表的实部,代表的虚部,为复数的虚数单位。代表取的共轭,即。代表对进行求模运算,即。 for any plural , represent the real part of represent the imaginary part of is the imaginary unit of complex numbers. representative take the conjugate of . representative pair Carry out the modulo operation, that is, .
任意一个复数都与一个在复平面内以原点为始点,为终点的向量一一对应。复数的辐角是以x轴的正半轴为起始边,向量所在的射线(起点是,终点是)为终边的角。因此,复数还可以表示为,其中。 any plural are related to a point in the complex plane with the origin as a starting point, One-to-one correspondence for the vectors of the end points. The argument of a complex number starts from the positive semi-axis of the x-axis, and the vector The ray at which the origin is , the end point is ) is the angle of the terminal edge . Therefore, the plural can also be expressed as ,in .
任意一个复数的辐角有无限多个值,且这些值之间相差的整数倍。把适合于的辐角的值,叫做的辐角的主值,记作。 any plural The argument of has infinitely many values, and the difference between these values is Integer multiples of . put suitable for Argument of value, called The principal value of the argument angle, denoted as .
请参阅图1,本发明较佳实施方式的联合估计干扰信号物理参数的方法及装置应用于一无线通信系统100,其包括站点A、站点B以及中继站C。中继站C用于转发及放大站点A及站点B发送的信号。具体地,当站点A与站点B之间需要通信时,站点A与站点B分别在相同的时间向中继站C发送相同频率的信号。例如,设站点A输出的信号为;站点B输出的信号为。中继站C将站点A与站点B发送的信号进行叠加,形成一混合信号,并对所述混合信号进行频率转换及功率放大,再分别输出至站点A及站点B。也就是说,中继站C仅对混合信号进行频率转换及功率放大,即,完成透明转发功能,而不对混合信号做其他信号处理。如此,站点A不仅会接收到来自站点B经过中继站C转发的信号,此时相对于站点A为有用信号,还会接收到来自站点A自身的经过中继站C转发的信号,此时相对于站点A为干扰信号。同样地,站点B不仅会接收到来自站点A经过中继站C转发的信号,此时相对于站点B为有用信号,还会接收到来自站点B自身的经过中继站C转发的信号,此时相对于站点B为干扰信号。
Please refer to FIG. 1 , the method and apparatus for jointly estimating physical parameters of interference signals according to a preferred embodiment of the present invention are applied to a
无论站点A或者站点B哪一方作为观测站,若需在本地正确解调出有用信号的信息,则需首先估计出本地自身所发射出去的经过中继站C转发的干扰信号的物理参数,包括时延、频偏、相移、幅度等等。 No matter which side of site A or site B is used as the observation station, if you want to correctly demodulate the information of the useful signal locally, you need to first estimate the physical parameters of the interference signal transmitted by the local itself and forwarded by the relay station C, including the time delay , frequency offset, phase shift, amplitude, etc.
请结合参阅图2,本发明较佳实施方式的联合估计干扰信号物理参数的装置10包括信号接收模块11、采样模块12、时延补偿模块13、相关运算模块14、自相关参量计算模块15、频偏估计模块16、频率补偿模块17、相移估计模块18、相位补偿模块19以及幅度估计模块20。联合估计干扰信号物理参数的装置10的各模块的功能将在图3中进行详细描述。
Please refer to FIG. 2 , the
请参阅图3,下面以站点A为例对本发明的联合估计干扰信号物理参数的方法及装置进行说明。 Referring to FIG. 3 , the method and device for jointly estimating physical parameters of interference signals of the present invention will be described below by taking station A as an example.
步骤S1:信号接收模块11接收中继站C发送的混合信号。的复基带模型表示为:
Step S1: The
其中,和分别为相对于站点A的干扰信号和有用信号的波形,均值为0,方差为1,且统计独立;和分别为干扰信号和有用信号的幅度;为复高斯白噪声。为干扰信号的传输时延,为载波频偏,为载波相移。 in, and are the waveforms of the interference signal and the useful signal relative to station A, respectively, with a mean of 0 and a variance of 1, and are statistically independent; and are the amplitudes of the interfering signal and the useful signal, respectively; is complex Gaussian white noise. is the transmission delay of the interfering signal, is the carrier frequency offset, is the carrier phase shift.
步骤S2:采样模块12对接收到的混合信号进行采样,以得到离散观测样本。在本实施方式中,按照符号速率进行采样,即采样速率,为单位码元的持续时间。采样模块12首先对接收到的混合信号进行匹配滤波,然后对混合信号进行抽取。假设干扰信号的传输时延的精确值可以获得,对应于无符号间串扰点,抽取时刻,则可以得到离散观测样本,其表示为:
Step S2: The sampling
其中,、以及分别表示对干扰信号、有用信号以及噪声按照符号速率进行采样所得样本。为干扰信号的传输时延在采样后所对应的离散值。的取值从1到,为观测长度。 in, , as well as Respectively represent the interference signal , useful signal and noise Samples obtained by sampling at the symbol rate. is the transmission delay of the interfering signal The corresponding discrete value after sampling. The value ranges from 1 to , is the observation length.
步骤S3:时延补偿模块13对一与干扰信号样本携带信息相同的本地信号进行时延补偿,即:
Step S3: The time
所述本地信号保存于站点A,即为根据符号同步方法做好时延补偿后的本地信号。 The local signal is stored at site A, That is, the local signal after delay compensation is performed according to the symbol synchronization method.
步骤S4:相关运算模块14对得到的每一个离散观测样本与完成时延补偿后的本地信号做相关运算,得到一个相关信号:
Step S4: The
其中,对于两个复数符号和,相关运算是指乘以的共轭,即。因此,表示与的相关运算,即。 where, for two complex symbols and , the correlation operation refers to multiply by the conjugate of . therefore, express and The related operations of .
步骤S5:自相关参量计算模块15计算相关信号的个自相关参量:
Step S5: The autocorrelation
其中,的取值从1到,为符号间隔数,满足。代表向上(正无穷方向)取整数。 in, The value ranges from 1 to , is the number of symbol intervals, satisfying . Represents rounding up (in the direction of positive infinity) to an integer.
步骤S6:频偏估计模块16根据个自相关参量估计干扰信号的频偏:
Step S6: Frequency offset
的值越大,则频偏估计的值越准确。在本实施方式中,考虑到计算复杂度的限制,的值最大取。 The larger the value of , the frequency deviation The estimated value is more accurate. In this embodiment, considering the limitation of computational complexity, The value of the maximum .
步骤S7:频率补偿模块17根据估计出的频偏对时延补偿后的本地信号进行频率补偿,以对齐频率,更新本地信号。更新后的本地信号为:
Step S7: The
也就是说,信号是做好时延补偿以及频率补偿后的本地信号。 That is, the signal It is a local signal after delay compensation and frequency compensation.
步骤S8:相移估计模块18根据做好时延补偿以及频率补偿后的本地信号以及离散观测样本估计干扰信号的相移:
Step S8: The phase
步骤S9:相位补偿模块19根据估计出的相移对做好时延补偿以及频率补偿后的本地信号进行相位补偿,以对齐相位,再次更新本地信号。再次更新后的本地信号为:
Step S9:
也就是说,信号是做好时延补偿、频率补偿以及相移补偿后的本地信号。 That is, the signal It is the local signal after delay compensation, frequency compensation and phase shift compensation.
步骤S10:幅度估计模块20根据做好时延补偿、频率补偿以及相移补偿后的本地信号以及离散观测样本估计干扰信号的幅度:
Step S10: The
所述的联合估计干扰信号物理参数的方法及装置通过顺序估计出干扰信号的时延、频偏以及相移等物理参数。在估计下一个待估参数之前,预先补偿(对齐)上一个已估参数,优化了整个装置的整体性能。相对于传统的基于频率细分,并在一定的范围内进行搜索的频偏估计方法,采用本发明所提供的联合估计干扰信号物理参数的方法及装置可以更加快速准确地估计出干扰信号的频偏,更加适用于实时处理。 The method and device for jointly estimating the physical parameters of the interference signal sequentially estimate the physical parameters of the interference signal such as time delay, frequency offset and phase shift. Before estimating the next parameter to be estimated, pre-compensating (aligning) the last estimated parameter optimizes the overall performance of the entire device. Compared with the traditional frequency offset estimation method based on frequency subdivision and searching within a certain range, the method and device for jointly estimating the physical parameters of the interference signal provided by the present invention can estimate the frequency of the interference signal more quickly and accurately. Bias, more suitable for real-time processing.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310405521.0A CN103516642B (en) | 2013-09-09 | 2013-09-09 | The method and apparatus of Combined estimator interference signal physical parameter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310405521.0A CN103516642B (en) | 2013-09-09 | 2013-09-09 | The method and apparatus of Combined estimator interference signal physical parameter |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103516642A true CN103516642A (en) | 2014-01-15 |
CN103516642B CN103516642B (en) | 2017-01-04 |
Family
ID=49898696
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310405521.0A Expired - Fee Related CN103516642B (en) | 2013-09-09 | 2013-09-09 | The method and apparatus of Combined estimator interference signal physical parameter |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103516642B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112039613A (en) * | 2020-08-07 | 2020-12-04 | 中国卫通集团股份有限公司 | A kind of processing method and device of asymmetric PCMA mixed signal |
CN113258984A (en) * | 2021-04-29 | 2021-08-13 | 东方红卫星移动通信有限公司 | Multi-user self-adaptive frequency offset elimination method and device and low-orbit satellite communication system |
WO2021217895A1 (en) * | 2020-04-28 | 2021-11-04 | 北京升哲科技有限公司 | Multi-antenna diversity receiver |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6791964B1 (en) * | 1998-12-31 | 2004-09-14 | Samsung Electronics Co., Ltd. | Multicarrier CDMA rake receiver apparatus |
CN101741776A (en) * | 2009-11-10 | 2010-06-16 | 华为技术有限公司 | Method and device for eliminating interference signals |
CN102932041A (en) * | 2012-11-21 | 2013-02-13 | 西安电子科技大学 | Method for encoding and decoding asynchronous space-time code for collaborative multi-point transmission |
-
2013
- 2013-09-09 CN CN201310405521.0A patent/CN103516642B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6791964B1 (en) * | 1998-12-31 | 2004-09-14 | Samsung Electronics Co., Ltd. | Multicarrier CDMA rake receiver apparatus |
CN101741776A (en) * | 2009-11-10 | 2010-06-16 | 华为技术有限公司 | Method and device for eliminating interference signals |
CN102932041A (en) * | 2012-11-21 | 2013-02-13 | 西安电子科技大学 | Method for encoding and decoding asynchronous space-time code for collaborative multi-point transmission |
Non-Patent Citations (1)
Title |
---|
沈彩耀: "多天线信号联合接收的合成技术研究", 《中国博士学位论文电子期刊网》, 15 July 2012 (2012-07-15) * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021217895A1 (en) * | 2020-04-28 | 2021-11-04 | 北京升哲科技有限公司 | Multi-antenna diversity receiver |
CN112039613A (en) * | 2020-08-07 | 2020-12-04 | 中国卫通集团股份有限公司 | A kind of processing method and device of asymmetric PCMA mixed signal |
CN112039613B (en) * | 2020-08-07 | 2022-07-29 | 中国卫通集团股份有限公司 | Processing method and device for asymmetric PCMA (pulse code division multiple Access) mixed signal |
CN113258984A (en) * | 2021-04-29 | 2021-08-13 | 东方红卫星移动通信有限公司 | Multi-user self-adaptive frequency offset elimination method and device and low-orbit satellite communication system |
Also Published As
Publication number | Publication date |
---|---|
CN103516642B (en) | 2017-01-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109450486B (en) | Digital self-interference cancellation method for asynchronous simultaneous same-frequency full-duplex underwater acoustic communication system | |
CN106341359B (en) | A kind of data subcarrier is synchronous and phase noise compensation method | |
US9722845B2 (en) | Bluetooth low energy frequency offset and modulation index estimation | |
CN107342960B (en) | A Non-data-aided Frequency Offset Estimation Method Suitable for Amplitude Phase Shift Keying | |
US8755459B2 (en) | Methods and apparatuses for interference cancellation with frequency error compensation for equalizer adaptation | |
CN102546509A (en) | Carrier frequency offset estimation method based on chirp training sequence | |
CN106789791B (en) | Carrier Frequency Offset Estimation Method for Mobile Communication System Based on Conjugate Symmetrical Training Sequence | |
JP4109513B2 (en) | Delay profile measuring method and apparatus | |
CN102347927A (en) | Method and device for increasing EVM (Error Vector Magnitude) measurement precision for LTE (Long Term Evolution) system | |
TWI484787B (en) | Method and device for estimating channel and noise | |
CN103516642A (en) | Method and device for jointly estimating interference signal physical parameters | |
US20110206105A1 (en) | Method for determining hybrid domain compensation parameters for analog loss in ofdm communication systems and compensating for the same | |
CN103188067B (en) | A kind of chip clock frequency departure estimation error of spread spectrum system and the method for correction | |
CN103457630B (en) | Interference signal amplitude method of estimation under a kind of complex field and device | |
CN106656304A (en) | Correlation-based satellite-borne AIS signal reception processing method and device | |
KR20110128550A (en) | Synchronization device and method of wireless repeater | |
JP2016131352A (en) | COMMUNICATION DEVICE, COMMUNICATION METHOD, AND COMMUNICATION PROGRAM | |
CN105075131B (en) | Device and method for frequency offset estimation | |
US9276704B1 (en) | Maximum likelihood sequence detection in the phase domain | |
US20190028322A1 (en) | Joint noncoherent demodulation and carrier frequency offset correction based on non-linear filtering | |
US9106326B2 (en) | Method for determining the imperfections of a transmit pathway and of a receive pathway of an apparatus, and associated radio apparatus | |
US20170180182A1 (en) | Joint noncoherent demodulation and carrier frequency offset correction based on non-linear filtering | |
CN102710565B (en) | Combined estimation method for distributed multi-antenna mobile channel characteristic parameters | |
CN103428131A (en) | Method for calculating dc components and judgment threshold in DMR communication | |
CN104486283B (en) | A kind of distributed IQ imbalances estimation and suppressing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20170104 Termination date: 20210909 |