[go: up one dir, main page]

CN103516642A - Method and device for jointly estimating interference signal physical parameters - Google Patents

Method and device for jointly estimating interference signal physical parameters Download PDF

Info

Publication number
CN103516642A
CN103516642A CN201310405521.0A CN201310405521A CN103516642A CN 103516642 A CN103516642 A CN 103516642A CN 201310405521 A CN201310405521 A CN 201310405521A CN 103516642 A CN103516642 A CN 103516642A
Authority
CN
China
Prior art keywords
signal
compensation
frequency
interference
interference signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310405521.0A
Other languages
Chinese (zh)
Other versions
CN103516642B (en
Inventor
周智勋
陈翔
田华
胥小武
徐迪宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Research Institute Tsinghua University
Original Assignee
Shenzhen Research Institute Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Research Institute Tsinghua University filed Critical Shenzhen Research Institute Tsinghua University
Priority to CN201310405521.0A priority Critical patent/CN103516642B/en
Publication of CN103516642A publication Critical patent/CN103516642A/en
Application granted granted Critical
Publication of CN103516642B publication Critical patent/CN103516642B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Noise Elimination (AREA)
  • Radio Relay Systems (AREA)

Abstract

一种联合估计干扰信号物理参数的方法,该方法包括如下步骤:接收一混合信号;对所述混合信号采样得到离散观测信号样本,其中,所述离散观测信号样本包括一干扰信号及一有用信号;对一与所述干扰信号携带信息相同的本地信号进行时延补偿;估计所述干扰信号的频偏;根据估计出的频偏对时延补偿后的所述本地信号进行频率补偿;根据做好时延补偿以及频率补偿后的本地信号以及所述离散观测样本估计干扰信号的相移;根据估计出的相移对做好时延补偿以及频率补偿后的本地信号进行相位补偿;以及根据做好时延补偿、频率补偿以及相移补偿后的本地信号以及离散观测样本估计所述干扰信号的幅度。本发明还涉及一种联合估计干扰信号物理参数的装置。

Figure 201310405521

A method for jointly estimating physical parameters of an interference signal, the method comprising the steps of: receiving a mixed signal; sampling the mixed signal to obtain a discrete observation signal sample, wherein the discrete observation signal sample includes an interference signal and a useful signal ; performing time delay compensation on a local signal carrying the same information as the interference signal; estimating the frequency offset of the interference signal; performing frequency compensation on the time delay compensated local signal according to the estimated frequency offset; The local signal after time delay compensation and frequency compensation and the phase shift of the discrete observation sample estimate the interference signal; perform phase compensation on the local signal after time delay compensation and frequency compensation according to the estimated phase shift; and according to the done The amplitude of the interfering signal is estimated using the time delay compensated, frequency compensated and phase shift compensated local signals and discrete observation samples. The invention also relates to a device for jointly estimating physical parameters of interference signals.

Figure 201310405521

Description

联合估计干扰信号物理参数的方法和装置Method and device for jointly estimating physical parameters of interference signals

技术领域 technical field

本发明涉及通信系统中两路信号混叠后的干扰消除技术,尤其涉及一种联合估计干扰信号物理参数的方法和装置。 The invention relates to an interference elimination technology after two-way signals are aliased in a communication system, in particular to a method and a device for jointly estimating physical parameters of an interference signal.

背景技术 Background technique

在无线通信的某些应用场景中,两个站点之间由于距离或地理环境的限制无法直接进行通信,必须利用中继站来进行信号的转发和放大。为了提高频谱利用率及信息的抗截获水平,通常还需要相互通信的两个站点所发射的信号在时域、频域甚至码空间上完全重叠。 In some application scenarios of wireless communication, due to the limitation of distance or geographical environment, two sites cannot communicate directly, and relay stations must be used to forward and amplify signals. In order to improve the spectrum utilization rate and the anti-interception level of information, it is usually required that the signals transmitted by two stations communicating with each other completely overlap in time domain, frequency domain and even code space.

通信时,双方站点分别在相同时间向中继站发送相同频率的上行信号,在中继上叠加,经过中继的下变频和功率放大以后,两个站点均可接收到由本地信号成分(即干扰信号)与对方信号成分(即有用信号)组成的下行混合信号。由于每个站点都确切知道自己所发送的信息以及本地收发的信号处理过程,因此能够对混合信号中的本地信号成分(干扰信号)作出较为有效的估计。将这部分信号作为干扰信号从混合下行信号中消除以后,即可实现对对方信号成分(有用信号)的可靠解调。这样,即使双方信号在时域、频域、码空间上完全重叠,链路对称时的信道资源利用率也可以提高一倍。 During communication, the two sites send uplink signals of the same frequency to the relay station at the same time, superimposed on the relay, and after the down-conversion and power amplification of the relay, both stations can receive the local signal component (that is, the interference signal ) and the other signal component (that is, the useful signal) is composed of a downlink mixed signal. Since each station knows exactly the information it sends and the signal processing process of local transmission and reception, it can make a more effective estimation of the local signal component (interference signal) in the mixed signal. After eliminating this part of the signal as an interference signal from the mixed downlink signal, reliable demodulation of the other party's signal component (useful signal) can be achieved. In this way, even if the signals of both parties completely overlap in the time domain, frequency domain, and code space, the channel resource utilization rate can be doubled when the link is symmetrical.

为了能够将干扰信号尽可能地消除,站点采用的接收机就需要在信号解调器的前端增加一系列的物理参数估计模块。待估计的物理参数包括干扰信号的频偏、时延、相移、幅度等等。这些物理参数的估计精准与否将直接影响到有用信号能否被正确解调,因此成为这一类通信应用场景下的最关键技术。为了实现混合信号的分离,一般先使用广义相关法估计出干扰信号的物理参数,然后在此基础上重构出干扰信号,最后再将干扰信号从混合信号中减去得到接收端所需要的有用信号。 In order to eliminate the interference signal as much as possible, the receiver used by the site needs to add a series of physical parameter estimation modules at the front end of the signal demodulator. The physical parameters to be estimated include frequency offset, time delay, phase shift, amplitude, etc. of the interference signal. Whether the estimation of these physical parameters is accurate or not will directly affect whether the useful signal can be correctly demodulated, so it becomes the most critical technology in this type of communication application scenario. In order to realize the separation of mixed signals, the generalized correlation method is generally used to estimate the physical parameters of the interference signal, and then the interference signal is reconstructed on this basis, and finally the interference signal is subtracted from the mixed signal to obtain the useful parameters required by the receiving end. Signal.

然而,传统的广义相关法在估计前或是假设其余参数均是已知参数,或是不考虑其中的某一个或某几个参数,并且每次只能估计出一个参数值。这样的假设不仅不符合实际,也没有考虑到待估计的物理参数之间的相互影响。采用这种方法估计出的物理参数不但不准确,也不便用于实时处理。 However, the traditional generalized correlation method either assumes that the rest of the parameters are known before estimating, or does not consider one or several of them, and can only estimate one parameter value each time. Such an assumption is not only unrealistic, but also does not take into account the interaction between the physical parameters to be estimated. The physical parameters estimated by this method are not only inaccurate, but also inconvenient for real-time processing.

发明内容 Contents of the invention

针对上述问题,有必要提供一种联合估计干扰信号物理参数的方法,其能准确估计出干扰信号的各项物理参数。 In view of the above problems, it is necessary to provide a method for jointly estimating the physical parameters of the interference signal, which can accurately estimate various physical parameters of the interference signal.

另外,还有必要提供一种联合估计干扰信号物理参数的装置,其能准确估计出干扰信号的各项物理参数。 In addition, it is also necessary to provide a device for jointly estimating the physical parameters of the interference signal, which can accurately estimate various physical parameters of the interference signal.

一种联合估计干扰信号物理参数的方法,该方法包括如下步骤: A method for jointly estimating physical parameters of an interference signal, the method comprising the steps of:

接收一混合信号; receiving a mixed signal;

对所述混合信号采样得到离散观测信号样本,其中,所述离散观测信号样本包括一干扰信号及一有用信号; Sampling the mixed signal to obtain a discrete observation signal sample, wherein the discrete observation signal sample includes an interference signal and a useful signal;

对一与所述干扰信号携带信息相同的本地信号进行时延补偿; performing delay compensation on a local signal carrying the same information as the interference signal;

估计所述干扰信号的频偏; estimating a frequency offset of the interfering signal;

根据估计出的频偏对时延补偿后的所述本地信号进行频率补偿; performing frequency compensation on the local signal after delay compensation according to the estimated frequency offset;

根据做好时延补偿以及频率补偿后的本地信号以及所述离散观测样本估计干扰信号的相移; Estimate the phase shift of the interference signal according to the local signal after time delay compensation and frequency compensation and the discrete observation samples;

根据估计出的相移对做好时延补偿以及频率补偿后的本地信号进行相位补偿;以及 performing phase compensation on the local signal after delay compensation and frequency compensation according to the estimated phase shift; and

根据做好时延补偿、频率补偿以及相移补偿后的本地信号以及离散观测样本估计所述干扰信号的幅度。 Estimate the amplitude of the interference signal according to the local signal after time delay compensation, frequency compensation and phase shift compensation and discrete observation samples.

一种联合估计干扰信号物理参数的装置,该装置包括: A device for jointly estimating physical parameters of an interference signal, the device comprising:

信号接收模块,用于接收一混合信号; A signal receiving module, configured to receive a mixed signal;

采样模块,用于对所述混合信号采样得到离散观测信号样本,其中,所述离散观测信号样本包括一干扰信号及一有用信号; A sampling module, configured to sample the mixed signal to obtain a discrete observation signal sample, wherein the discrete observation signal sample includes an interference signal and a useful signal;

时延补偿模块,用于对一与所述干扰信号携带信息相同的本地信号进行时延补偿; A delay compensation module, configured to perform delay compensation on a local signal carrying the same information as the interference signal;

频偏估计模块,用于估计所述干扰信号的频偏; a frequency offset estimation module, configured to estimate the frequency offset of the interference signal;

频率补偿模块,用于根据估计出的频偏对时延补偿后的所述本地信号进行频率补偿; A frequency compensation module, configured to perform frequency compensation on the delay-compensated local signal according to the estimated frequency offset;

相移估计模块,用于根据做好时延补偿以及频率补偿后的本地信号以及所述离散观测样本估计干扰信号的相移; A phase shift estimation module, configured to estimate the phase shift of the interference signal according to the local signal after delay compensation and frequency compensation and the discrete observation samples;

相位补偿模块,用于根据估计出的相移对做好时延补偿以及频率补偿后的本地信号进行相位补偿;以及 A phase compensation module, configured to perform phase compensation on the local signal after delay compensation and frequency compensation according to the estimated phase shift; and

幅度估计模块,用于根据做好时延补偿、频率补偿以及相移补偿后的本地信号以及离散观测样本估计所述干扰信号的幅度。 The amplitude estimation module is used for estimating the amplitude of the interference signal according to the local signal after time delay compensation, frequency compensation and phase shift compensation and discrete observation samples.

所述的联合估计干扰信号物理参数的方法及装置通过顺序估计出干扰信号的时延、频偏以及相移等物理参数。在估计下一个待估参数之前,预先补偿(对齐)上一个已估参数,优化了整个装置的整体性能。相对于传统的基于频率细分,并在一定的范围内进行搜索的频偏估计方法,采用本发明所提供的联合估计干扰信号物理参数的方法及装置可以更加快速准确地估计出干扰信号的频偏,更加适用于实时处理。 The method and device for jointly estimating the physical parameters of the interference signal sequentially estimate the physical parameters of the interference signal such as time delay, frequency offset and phase shift. Before estimating the next parameter to be estimated, pre-compensating (aligning) the last estimated parameter optimizes the overall performance of the entire device. Compared with the traditional frequency offset estimation method based on frequency subdivision and searching within a certain range, the method and device for jointly estimating the physical parameters of the interference signal provided by the present invention can estimate the frequency of the interference signal more quickly and accurately. Bias, more suitable for real-time processing.

附图说明 Description of drawings

图1为使用本发明较佳实施方式的联合估计干扰信号物理参数的方法及装置的通信系统的示意图。 FIG. 1 is a schematic diagram of a communication system using the method and device for jointly estimating physical parameters of interference signals according to a preferred embodiment of the present invention.

图2为本发明较佳实施方式的联合估计干扰信号物理参数的装置的功能模块图。 Fig. 2 is a functional block diagram of an apparatus for jointly estimating physical parameters of interference signals according to a preferred embodiment of the present invention.

图3为本发明较佳实施方式的联合估计干扰信号物理参数的方法的流程图。 Fig. 3 is a flowchart of a method for jointly estimating physical parameters of interference signals according to a preferred embodiment of the present invention.

主要元件符号说明 Description of main component symbols

无线通信系统wireless communication system 100100 站点site A、BA.B 中继站checkpoint CC 联合估计干扰信号物理参数的装置Apparatus for jointly estimating physical parameters of interference signals 1010 信号接收模块Signal receiving module 1111 采样模块Sampling module 1212 时延补偿模块Delay Compensation Module 1313 相关运算模块Correlation operation module 1414 自相关参量计算模块Autocorrelation parameter calculation module 1515 频偏估计模块Frequency Offset Estimation Module 1616 频率补偿模块Frequency Compensation Module 1717 相移估计模块Phase Shift Estimation Module 1818 相位补偿模块Phase Compensation Module 1919 幅度估计模块Amplitude Estimation Module 2020

如下具体实施方式将结合上述附图进一步说明本发明。 The following specific embodiments will further illustrate the present invention in conjunction with the above-mentioned drawings.

具体实施方式 Detailed ways

本发明较佳实施方式的联合估计干扰信号物理参数的方法及装置应用于一无线通信系统,用于对干扰信号的各项物理参数进行联合估计。 The method and device for jointly estimating physical parameters of an interference signal in a preferred embodiment of the present invention are applied to a wireless communication system, and are used for jointly estimating various physical parameters of the interference signal.

首先,对本发明使用的各种符号、函数及公式等进行定义及说明。 First, various symbols, functions, formulas, etc. used in the present invention are defined and described.

对于任意一个复数                                               

Figure 2013104055210100002DEST_PATH_IMAGE002
代表的实部,
Figure 2013104055210100002DEST_PATH_IMAGE004
代表
Figure 872659DEST_PATH_IMAGE003
的虚部,
Figure 2013104055210100002DEST_PATH_IMAGE005
为复数的虚数单位。
Figure 2013104055210100002DEST_PATH_IMAGE006
代表取
Figure 450271DEST_PATH_IMAGE003
的共轭,即
Figure 2013104055210100002DEST_PATH_IMAGE007
Figure 2013104055210100002DEST_PATH_IMAGE008
代表对
Figure 497862DEST_PATH_IMAGE003
进行求模运算,即
Figure 2013104055210100002DEST_PATH_IMAGE009
。 for any plural ,
Figure 2013104055210100002DEST_PATH_IMAGE002
represent the real part of
Figure 2013104055210100002DEST_PATH_IMAGE004
represent
Figure 872659DEST_PATH_IMAGE003
the imaginary part of
Figure 2013104055210100002DEST_PATH_IMAGE005
is the imaginary unit of complex numbers.
Figure 2013104055210100002DEST_PATH_IMAGE006
representative take
Figure 450271DEST_PATH_IMAGE003
the conjugate of
Figure 2013104055210100002DEST_PATH_IMAGE007
.
Figure 2013104055210100002DEST_PATH_IMAGE008
representative pair
Figure 497862DEST_PATH_IMAGE003
Carry out the modulo operation, that is,
Figure 2013104055210100002DEST_PATH_IMAGE009
.

任意一个复数

Figure 869937DEST_PATH_IMAGE003
都与一个在复平面内以原点
Figure 2013104055210100002DEST_PATH_IMAGE010
为始点,
Figure 2013104055210100002DEST_PATH_IMAGE011
为终点的向量一一对应。复数的辐角是以x轴的正半轴为起始边,向量
Figure 2013104055210100002DEST_PATH_IMAGE012
所在的射线(起点是
Figure 238864DEST_PATH_IMAGE010
,终点是
Figure 354587DEST_PATH_IMAGE011
)为终边的角
Figure 2013104055210100002DEST_PATH_IMAGE013
。因此,复数还可以表示为
Figure 2013104055210100002DEST_PATH_IMAGE014
,其中。 any plural
Figure 869937DEST_PATH_IMAGE003
are related to a point in the complex plane with the origin
Figure 2013104055210100002DEST_PATH_IMAGE010
as a starting point,
Figure 2013104055210100002DEST_PATH_IMAGE011
One-to-one correspondence for the vectors of the end points. The argument of a complex number starts from the positive semi-axis of the x-axis, and the vector
Figure 2013104055210100002DEST_PATH_IMAGE012
The ray at which the origin is
Figure 238864DEST_PATH_IMAGE010
, the end point is
Figure 354587DEST_PATH_IMAGE011
) is the angle of the terminal edge
Figure 2013104055210100002DEST_PATH_IMAGE013
. Therefore, the plural can also be expressed as
Figure 2013104055210100002DEST_PATH_IMAGE014
,in .

任意一个复数

Figure 799661DEST_PATH_IMAGE003
的辐角有无限多个值,且这些值之间相差
Figure 2013104055210100002DEST_PATH_IMAGE016
的整数倍。把适合于
Figure 2013104055210100002DEST_PATH_IMAGE017
的辐角
Figure 918533DEST_PATH_IMAGE013
的值,叫做
Figure 510052DEST_PATH_IMAGE003
的辐角的主值,记作
Figure 2013104055210100002DEST_PATH_IMAGE018
。 any plural
Figure 799661DEST_PATH_IMAGE003
The argument of has infinitely many values, and the difference between these values is
Figure 2013104055210100002DEST_PATH_IMAGE016
Integer multiples of . put suitable for
Figure 2013104055210100002DEST_PATH_IMAGE017
Argument of
Figure 918533DEST_PATH_IMAGE013
value, called
Figure 510052DEST_PATH_IMAGE003
The principal value of the argument angle, denoted as
Figure 2013104055210100002DEST_PATH_IMAGE018
.

请参阅图1,本发明较佳实施方式的联合估计干扰信号物理参数的方法及装置应用于一无线通信系统100,其包括站点A、站点B以及中继站C。中继站C用于转发及放大站点A及站点B发送的信号。具体地,当站点A与站点B之间需要通信时,站点A与站点B分别在相同的时间向中继站C发送相同频率的信号。例如,设站点A输出的信号为

Figure 2013104055210100002DEST_PATH_IMAGE019
;站点B输出的信号为
Figure 2013104055210100002DEST_PATH_IMAGE020
。中继站C将站点A与站点B发送的信号进行叠加,形成一混合信号
Figure 2013104055210100002DEST_PATH_IMAGE021
,并对所述混合信号
Figure 594551DEST_PATH_IMAGE021
进行频率转换及功率放大,再分别输出至站点A及站点B。也就是说,中继站C仅对混合信号
Figure 246112DEST_PATH_IMAGE021
进行频率转换及功率放大,即,完成透明转发功能,而不对混合信号
Figure 88167DEST_PATH_IMAGE021
做其他信号处理。如此,站点A不仅会接收到来自站点B经过中继站C转发的信号
Figure 483376DEST_PATH_IMAGE020
,此时相对于站点A为有用信号,还会接收到来自站点A自身的经过中继站C转发的信号
Figure 683992DEST_PATH_IMAGE019
,此时
Figure 951026DEST_PATH_IMAGE019
相对于站点A为干扰信号。同样地,站点B不仅会接收到来自站点A经过中继站C转发的信号
Figure 149926DEST_PATH_IMAGE019
,此时
Figure 881121DEST_PATH_IMAGE019
相对于站点B为有用信号,还会接收到来自站点B自身的经过中继站C转发的信号
Figure 874485DEST_PATH_IMAGE020
,此时
Figure 691131DEST_PATH_IMAGE020
相对于站点B为干扰信号。 Please refer to FIG. 1 , the method and apparatus for jointly estimating physical parameters of interference signals according to a preferred embodiment of the present invention are applied to a wireless communication system 100 , which includes a station A, a station B and a relay station C. The relay station C is used for forwarding and amplifying the signals sent by the station A and the station B. Specifically, when station A and station B need to communicate, station A and station B respectively send signals of the same frequency to relay station C at the same time. For example, suppose the signal output by site A is
Figure 2013104055210100002DEST_PATH_IMAGE019
; The signal output by station B is
Figure 2013104055210100002DEST_PATH_IMAGE020
. Relay station C superimposes the signals sent by station A and station B to form a mixed signal
Figure 2013104055210100002DEST_PATH_IMAGE021
, and for the mixed signal
Figure 594551DEST_PATH_IMAGE021
Perform frequency conversion and power amplification, and then output to site A and site B respectively. That is to say, the relay station C only responds to the mixed signal
Figure 246112DEST_PATH_IMAGE021
Perform frequency conversion and power amplification, that is, complete the transparent forwarding function without performing mixed signal
Figure 88167DEST_PATH_IMAGE021
Do other signal processing. In this way, station A will not only receive the signal forwarded by station B via relay station C
Figure 483376DEST_PATH_IMAGE020
,at this time Compared with the useful signal of station A, it will also receive the signal forwarded by relay station C from station A itself
Figure 683992DEST_PATH_IMAGE019
,at this time
Figure 951026DEST_PATH_IMAGE019
It is an interference signal relative to station A. Similarly, station B will not only receive the signal forwarded by station A via relay station C
Figure 149926DEST_PATH_IMAGE019
,at this time
Figure 881121DEST_PATH_IMAGE019
Compared with the useful signal of station B, it will also receive the signal forwarded by relay station C from station B itself
Figure 874485DEST_PATH_IMAGE020
,at this time
Figure 691131DEST_PATH_IMAGE020
It is an interfering signal relative to station B.

无论站点A或者站点B哪一方作为观测站,若需在本地正确解调出有用信号的信息,则需首先估计出本地自身所发射出去的经过中继站C转发的干扰信号的物理参数,包括时延、频偏、相移、幅度等等。 No matter which side of site A or site B is used as the observation station, if you want to correctly demodulate the information of the useful signal locally, you need to first estimate the physical parameters of the interference signal transmitted by the local itself and forwarded by the relay station C, including the time delay , frequency offset, phase shift, amplitude, etc.

请结合参阅图2,本发明较佳实施方式的联合估计干扰信号物理参数的装置10包括信号接收模块11、采样模块12、时延补偿模块13、相关运算模块14、自相关参量计算模块15、频偏估计模块16、频率补偿模块17、相移估计模块18、相位补偿模块19以及幅度估计模块20。联合估计干扰信号物理参数的装置10的各模块的功能将在图3中进行详细描述。 Please refer to FIG. 2 , the device 10 for jointly estimating the physical parameters of an interference signal in a preferred embodiment of the present invention includes a signal receiving module 11, a sampling module 12, a delay compensation module 13, a correlation operation module 14, an autocorrelation parameter calculation module 15, Frequency offset estimation module 16 , frequency compensation module 17 , phase shift estimation module 18 , phase compensation module 19 and amplitude estimation module 20 . The functions of each module of the apparatus 10 for jointly estimating physical parameters of interference signals will be described in detail in FIG. 3 .

请参阅图3,下面以站点A为例对本发明的联合估计干扰信号物理参数的方法及装置进行说明。 Referring to FIG. 3 , the method and device for jointly estimating physical parameters of interference signals of the present invention will be described below by taking station A as an example.

步骤S1:信号接收模块11接收中继站C发送的混合信号

Figure 217108DEST_PATH_IMAGE021
的复基带模型表示为: Step S1: The signal receiving module 11 receives the mixed signal sent by the relay station C .
Figure 217108DEST_PATH_IMAGE021
The complex baseband model of is expressed as:

Figure 2013104055210100002DEST_PATH_IMAGE022
Figure 2013104055210100002DEST_PATH_IMAGE022

其中,

Figure 2013104055210100002DEST_PATH_IMAGE023
Figure DEST_PATH_IMAGE024
分别为相对于站点A的干扰信号和有用信号的波形,均值为0,方差为1,且统计独立;
Figure DEST_PATH_IMAGE025
Figure DEST_PATH_IMAGE026
分别为干扰信号和有用信号的幅度;
Figure DEST_PATH_IMAGE027
为复高斯白噪声。
Figure DEST_PATH_IMAGE028
为干扰信号的传输时延,
Figure DEST_PATH_IMAGE029
为载波频偏,
Figure DEST_PATH_IMAGE030
为载波相移。 in,
Figure 2013104055210100002DEST_PATH_IMAGE023
and
Figure DEST_PATH_IMAGE024
are the waveforms of the interference signal and the useful signal relative to station A, respectively, with a mean of 0 and a variance of 1, and are statistically independent;
Figure DEST_PATH_IMAGE025
and
Figure DEST_PATH_IMAGE026
are the amplitudes of the interfering signal and the useful signal, respectively;
Figure DEST_PATH_IMAGE027
is complex Gaussian white noise.
Figure DEST_PATH_IMAGE028
is the transmission delay of the interfering signal,
Figure DEST_PATH_IMAGE029
is the carrier frequency offset,
Figure DEST_PATH_IMAGE030
is the carrier phase shift.

步骤S2:采样模块12对接收到的混合信号

Figure 66859DEST_PATH_IMAGE021
进行采样,以得到离散观测样本
Figure DEST_PATH_IMAGE031
。在本实施方式中,按照符号速率进行采样,即采样速率为单位码元的持续时间。采样模块12首先对接收到的混合信号
Figure 370801DEST_PATH_IMAGE021
进行匹配滤波,然后对混合信号
Figure 911504DEST_PATH_IMAGE021
进行抽取。假设干扰信号的传输时延
Figure 289396DEST_PATH_IMAGE028
的精确值可以获得,对应于无符号间串扰点,抽取时刻
Figure DEST_PATH_IMAGE034
,则可以得到离散观测样本
Figure 952458DEST_PATH_IMAGE031
,其表示为: Step S2: The sampling module 12 compares the received mixed signal
Figure 66859DEST_PATH_IMAGE021
Sampling to get discrete observation samples
Figure DEST_PATH_IMAGE031
. In this embodiment, sampling is performed according to the symbol rate, that is, the sampling rate , is the duration of the unit symbol. Sampling module 12 is first to the received mixed signal
Figure 370801DEST_PATH_IMAGE021
Matched filtering is then performed on the mixed signal
Figure 911504DEST_PATH_IMAGE021
to extract. Assuming the transmission delay of the interfering signal
Figure 289396DEST_PATH_IMAGE028
An exact value of can be obtained, corresponding to the point of no intersymbol-talk, at the decimation time
Figure DEST_PATH_IMAGE034
, then the discrete observation samples can be obtained
Figure 952458DEST_PATH_IMAGE031
, which is expressed as:

Figure DEST_PATH_IMAGE035
Figure DEST_PATH_IMAGE035

其中,以及

Figure DEST_PATH_IMAGE038
分别表示对干扰信号
Figure 979582DEST_PATH_IMAGE019
、有用信号
Figure 323976DEST_PATH_IMAGE020
以及噪声
Figure 556374DEST_PATH_IMAGE027
按照符号速率进行采样所得样本。
Figure DEST_PATH_IMAGE039
为干扰信号的传输时延
Figure 390338DEST_PATH_IMAGE028
在采样后所对应的离散值。
Figure DEST_PATH_IMAGE040
的取值从1到
Figure 340976DEST_PATH_IMAGE041
为观测长度。 in, , as well as
Figure DEST_PATH_IMAGE038
Respectively represent the interference signal
Figure 979582DEST_PATH_IMAGE019
, useful signal
Figure 323976DEST_PATH_IMAGE020
and noise
Figure 556374DEST_PATH_IMAGE027
Samples obtained by sampling at the symbol rate.
Figure DEST_PATH_IMAGE039
is the transmission delay of the interfering signal
Figure 390338DEST_PATH_IMAGE028
The corresponding discrete value after sampling.
Figure DEST_PATH_IMAGE040
The value ranges from 1 to ,
Figure 340976DEST_PATH_IMAGE041
is the observation length.

步骤S3:时延补偿模块13对一与干扰信号样本

Figure 223482DEST_PATH_IMAGE036
携带信息相同的本地信号进行时延补偿,即: Step S3: The time delay compensation module 13 compares the interference signal samples one-to-one
Figure 223482DEST_PATH_IMAGE036
Local signals carrying the same information are used for delay compensation, namely:

Figure DEST_PATH_IMAGE042
Figure DEST_PATH_IMAGE042

所述本地信号保存于站点A,

Figure DEST_PATH_IMAGE043
即为根据符号同步方法做好时延补偿后的本地信号。 The local signal is stored at site A,
Figure DEST_PATH_IMAGE043
That is, the local signal after delay compensation is performed according to the symbol synchronization method.

步骤S4:相关运算模块14对得到的每一个离散观测样本与完成时延补偿后的本地信号

Figure 638282DEST_PATH_IMAGE043
做相关运算,得到一个相关信号
Figure DEST_PATH_IMAGE044
: Step S4: The correlation operation module 14 compares each obtained discrete observation sample with the local signal after delay compensation
Figure 638282DEST_PATH_IMAGE043
Do the correlation operation to get a correlation signal
Figure DEST_PATH_IMAGE044
:

Figure DEST_PATH_IMAGE045
Figure DEST_PATH_IMAGE045

其中,对于两个复数符号

Figure DEST_PATH_IMAGE046
Figure DEST_PATH_IMAGE047
,相关运算是指
Figure 643148DEST_PATH_IMAGE046
乘以
Figure 81082DEST_PATH_IMAGE047
的共轭,即
Figure DEST_PATH_IMAGE048
。因此,
Figure DEST_PATH_IMAGE049
表示
Figure DEST_PATH_IMAGE050
Figure 328130DEST_PATH_IMAGE043
的相关运算,即
Figure DEST_PATH_IMAGE051
。 where, for two complex symbols
Figure DEST_PATH_IMAGE046
and
Figure DEST_PATH_IMAGE047
, the correlation operation refers to
Figure 643148DEST_PATH_IMAGE046
multiply by
Figure 81082DEST_PATH_IMAGE047
the conjugate of
Figure DEST_PATH_IMAGE048
. therefore,
Figure DEST_PATH_IMAGE049
express
Figure DEST_PATH_IMAGE050
and
Figure 328130DEST_PATH_IMAGE043
The related operations of
Figure DEST_PATH_IMAGE051
.

步骤S5:自相关参量计算模块15计算相关信号

Figure 535121DEST_PATH_IMAGE044
个自相关参量
Figure DEST_PATH_IMAGE053
: Step S5: The autocorrelation parameter calculation module 15 calculates the correlation signal
Figure 535121DEST_PATH_IMAGE044
of autocorrelation parameter
Figure DEST_PATH_IMAGE053
:

Figure DEST_PATH_IMAGE054
Figure DEST_PATH_IMAGE054

其中,的取值从1到

Figure 773204DEST_PATH_IMAGE052
Figure 698435DEST_PATH_IMAGE052
为符号间隔数,满足
Figure DEST_PATH_IMAGE057
代表向上(正无穷方向)取整数。 in, The value ranges from 1 to
Figure 773204DEST_PATH_IMAGE052
,
Figure 698435DEST_PATH_IMAGE052
is the number of symbol intervals, satisfying .
Figure DEST_PATH_IMAGE057
Represents rounding up (in the direction of positive infinity) to an integer.

步骤S6:频偏估计模块16根据

Figure 985060DEST_PATH_IMAGE052
个自相关参量
Figure 312136DEST_PATH_IMAGE053
估计干扰信号
Figure 330907DEST_PATH_IMAGE019
的频偏: Step S6: Frequency offset estimation module 16 according to
Figure 985060DEST_PATH_IMAGE052
autocorrelation parameter
Figure 312136DEST_PATH_IMAGE053
Estimate interfering signal
Figure 330907DEST_PATH_IMAGE019
frequency deviation :

Figure DEST_PATH_IMAGE059
Figure DEST_PATH_IMAGE059

Figure 307216DEST_PATH_IMAGE052
的值越大,则频偏
Figure 335215DEST_PATH_IMAGE058
估计的值越准确。在本实施方式中,考虑到计算复杂度的限制,
Figure 516797DEST_PATH_IMAGE052
的值最大取
Figure DEST_PATH_IMAGE060
Figure 307216DEST_PATH_IMAGE052
The larger the value of , the frequency deviation
Figure 335215DEST_PATH_IMAGE058
The estimated value is more accurate. In this embodiment, considering the limitation of computational complexity,
Figure 516797DEST_PATH_IMAGE052
The value of the maximum
Figure DEST_PATH_IMAGE060
.

步骤S7:频率补偿模块17根据估计出的频偏

Figure 34366DEST_PATH_IMAGE058
对时延补偿后的本地信号
Figure 668610DEST_PATH_IMAGE043
进行频率补偿,以对齐频率,更新本地信号。更新后的本地信号为
Figure DEST_PATH_IMAGE061
: Step S7: The frequency compensation module 17 according to the estimated frequency offset
Figure 34366DEST_PATH_IMAGE058
Local signal after delay compensation
Figure 668610DEST_PATH_IMAGE043
Perform frequency compensation to align frequency and update local signal. The updated local signal is
Figure DEST_PATH_IMAGE061
:

也就是说,信号

Figure 297038DEST_PATH_IMAGE061
是做好时延补偿以及频率补偿后的本地信号。 That is, the signal
Figure 297038DEST_PATH_IMAGE061
It is a local signal after delay compensation and frequency compensation.

步骤S8:相移估计模块18根据做好时延补偿以及频率补偿后的本地信号

Figure 598706DEST_PATH_IMAGE061
以及离散观测样本
Figure 224859DEST_PATH_IMAGE031
估计干扰信号
Figure 408716DEST_PATH_IMAGE019
的相移: Step S8: The phase shift estimation module 18 is based on the local signal after delay compensation and frequency compensation
Figure 598706DEST_PATH_IMAGE061
and discrete observation samples
Figure 224859DEST_PATH_IMAGE031
Estimate interfering signal
Figure 408716DEST_PATH_IMAGE019
phase shift of :

Figure DEST_PATH_IMAGE064
Figure DEST_PATH_IMAGE064

步骤S9:相位补偿模块19根据估计出的相移

Figure 778517DEST_PATH_IMAGE063
对做好时延补偿以及频率补偿后的本地信号
Figure 495544DEST_PATH_IMAGE061
进行相位补偿,以对齐相位,再次更新本地信号。再次更新后的本地信号为
Figure DEST_PATH_IMAGE065
: Step S9: Phase compensation module 19 according to the estimated phase shift
Figure 778517DEST_PATH_IMAGE063
For local signals after delay compensation and frequency compensation
Figure 495544DEST_PATH_IMAGE061
Phase compensation is done to align the phase, again updating the local signal. The local signal after updating again is
Figure DEST_PATH_IMAGE065
:

Figure DEST_PATH_IMAGE066
Figure DEST_PATH_IMAGE066

也就是说,信号

Figure 292599DEST_PATH_IMAGE065
是做好时延补偿、频率补偿以及相移补偿后的本地信号。 That is, the signal
Figure 292599DEST_PATH_IMAGE065
It is the local signal after delay compensation, frequency compensation and phase shift compensation.

步骤S10:幅度估计模块20根据做好时延补偿、频率补偿以及相移补偿后的本地信号

Figure 963752DEST_PATH_IMAGE065
以及离散观测样本
Figure 871665DEST_PATH_IMAGE031
估计干扰信号
Figure 882346DEST_PATH_IMAGE019
的幅度
Figure DEST_PATH_IMAGE067
: Step S10: The amplitude estimation module 20 is based on the local signal after delay compensation, frequency compensation and phase shift compensation
Figure 963752DEST_PATH_IMAGE065
and discrete observation samples
Figure 871665DEST_PATH_IMAGE031
Estimate interfering signal
Figure 882346DEST_PATH_IMAGE019
Amplitude
Figure DEST_PATH_IMAGE067
:

Figure DEST_PATH_IMAGE068
Figure DEST_PATH_IMAGE068

所述的联合估计干扰信号物理参数的方法及装置通过顺序估计出干扰信号的时延、频偏以及相移等物理参数。在估计下一个待估参数之前,预先补偿(对齐)上一个已估参数,优化了整个装置的整体性能。相对于传统的基于频率细分,并在一定的范围内进行搜索的频偏估计方法,采用本发明所提供的联合估计干扰信号物理参数的方法及装置可以更加快速准确地估计出干扰信号的频偏,更加适用于实时处理。 The method and device for jointly estimating the physical parameters of the interference signal sequentially estimate the physical parameters of the interference signal such as time delay, frequency offset and phase shift. Before estimating the next parameter to be estimated, pre-compensating (aligning) the last estimated parameter optimizes the overall performance of the entire device. Compared with the traditional frequency offset estimation method based on frequency subdivision and searching within a certain range, the method and device for jointly estimating the physical parameters of the interference signal provided by the present invention can estimate the frequency of the interference signal more quickly and accurately. Bias, more suitable for real-time processing.

Claims (10)

1.一种联合估计干扰信号物理参数的方法,该方法包括如下步骤: 1. A method for jointly estimating an interference signal physical parameter, the method comprising the steps of: (a)接收一混合信号; (a) receiving a mixed signal; (b)对所述混合信号采样得到离散观测信号样本,其中,所述离散观测信号样本包括一干扰信号及一有用信号; (b) sampling the mixed signal to obtain a discrete observation signal sample, wherein the discrete observation signal sample includes an interference signal and a useful signal; (c)对一与所述干扰信号携带信息相同的本地信号进行时延补偿; (c) performing delay compensation on a local signal carrying the same information as the interference signal; (d)估计所述干扰信号的频偏; (d) estimating a frequency offset of the interfering signal; (e)根据估计出的频偏对时延补偿后的所述本地信号进行频率补偿; (e) performing frequency compensation on the local signal after delay compensation according to the estimated frequency offset; (f)根据做好时延补偿以及频率补偿后的本地信号以及所述离散观测样本估计干扰信号的相移; (f) Estimate the phase shift of the interference signal according to the local signal after the delay compensation and frequency compensation and the discrete observation samples; (g)根据估计出的相移对做好时延补偿以及频率补偿后的本地信号进行相位补偿;以及 (g) performing phase compensation on the local signal after delay compensation and frequency compensation according to the estimated phase shift; and (h)根据做好时延补偿、频率补偿以及相移补偿后的本地信号以及离散观测样本估计所述干扰信号的幅度。 (h) Estimate the amplitude of the interference signal according to the local signal after time delay compensation, frequency compensation and phase shift compensation and discrete observation samples. 2.如权利要求1所述的联合估计干扰信号物理参数的方法,其特征在于,步骤(d)具体包括如下步骤: 2. The method for jointly estimating the physical parameters of interference signals as claimed in claim 1, wherein step (d) specifically comprises the following steps: 对得到的每一个离散观测样本与完成时延补偿后的本地信号做相关运算,得到一个相关信号                                               
Figure 2013104055210100001DEST_PATH_IMAGE001
,其中,
Figure 2013104055210100001DEST_PATH_IMAGE003
表示所述离散观测样本,为完成时延补偿后的本地信号,
Figure 2013104055210100001DEST_PATH_IMAGE005
表示
Figure 188720DEST_PATH_IMAGE004
的共轭,
Figure 2013104055210100001DEST_PATH_IMAGE006
的取值从1到
Figure 2013104055210100001DEST_PATH_IMAGE007
Figure 632078DEST_PATH_IMAGE007
为观测长度;
Correlate each obtained discrete observation sample with the local signal after delay compensation to obtain a correlated signal
Figure 2013104055210100001DEST_PATH_IMAGE001
: ,in,
Figure 2013104055210100001DEST_PATH_IMAGE003
represents the discrete observation sample, is the local signal after delay compensation,
Figure 2013104055210100001DEST_PATH_IMAGE005
express
Figure 188720DEST_PATH_IMAGE004
the conjugate of
Figure 2013104055210100001DEST_PATH_IMAGE006
The value ranges from 1 to
Figure 2013104055210100001DEST_PATH_IMAGE007
,
Figure 632078DEST_PATH_IMAGE007
is the observation length;
计算所述相关信号的L个自相关参量
Figure 2013104055210100001DEST_PATH_IMAGE008
Figure 2013104055210100001DEST_PATH_IMAGE009
,其中,
Figure 2013104055210100001DEST_PATH_IMAGE010
的取值从1到
Figure 46879DEST_PATH_IMAGE011
为符号间隔数;以及
Calculate the L autocorrelation parameters of the correlation signal
Figure 2013104055210100001DEST_PATH_IMAGE008
:
Figure 2013104055210100001DEST_PATH_IMAGE009
,in,
Figure 2013104055210100001DEST_PATH_IMAGE010
The value ranges from 1 to ,
Figure 46879DEST_PATH_IMAGE011
is the number of symbol intervals; and
根据
Figure 723848DEST_PATH_IMAGE011
个自相关参量
Figure 161782DEST_PATH_IMAGE008
估计所述干扰信号的频偏
Figure 2013104055210100001DEST_PATH_IMAGE012
according to
Figure 723848DEST_PATH_IMAGE011
autocorrelation parameter
Figure 161782DEST_PATH_IMAGE008
Estimate the frequency offset of the interfering signal
Figure 2013104055210100001DEST_PATH_IMAGE012
:
Figure 2013104055210100001DEST_PATH_IMAGE013
,其中,
Figure 2013104055210100001DEST_PATH_IMAGE014
为单位码元的持续时间。
Figure 2013104055210100001DEST_PATH_IMAGE013
,in,
Figure 2013104055210100001DEST_PATH_IMAGE014
is the duration of the unit symbol.
3.如权利要求2所述的联合估计干扰信号物理参数的方法,其特征在于,在步骤(e)中,通过如下公式对时延补偿后的本地信号进行频率补偿: 3. the method for jointly estimating the interference signal physical parameter as claimed in claim 2, is characterized in that, in step (e), carries out frequency compensation to the local signal after time delay compensation by following formula:
Figure 2013104055210100001DEST_PATH_IMAGE015
,其中,
Figure 2013104055210100001DEST_PATH_IMAGE016
表示做好时延补偿以及频率补偿后的本地信号。
Figure 2013104055210100001DEST_PATH_IMAGE015
,in,
Figure 2013104055210100001DEST_PATH_IMAGE016
Indicates the local signal after delay compensation and frequency compensation.
4.如权利要求3所述的联合估计干扰信号物理参数的方法,其特征在于:在步骤(f)中,估计出的所述干扰信号的相移
Figure 2013104055210100001DEST_PATH_IMAGE017
为:;且在步骤(g)中,做好时延补偿、频率补偿以及相移补偿后的本地信号
Figure 2013104055210100001DEST_PATH_IMAGE019
为:
Figure 2013104055210100001DEST_PATH_IMAGE020
4. The method for jointly estimating physical parameters of interference signals as claimed in claim 3, characterized in that: in step (f), the phase shift of the estimated interference signal
Figure 2013104055210100001DEST_PATH_IMAGE017
for: ; and in step (g), the local signal after delay compensation, frequency compensation and phase shift compensation
Figure 2013104055210100001DEST_PATH_IMAGE019
for:
Figure 2013104055210100001DEST_PATH_IMAGE020
.
5.如权利要求4所述的联合估计干扰信号物理参数的方法,其特征在于:在步骤(h)中,估计出的所述干扰信号的幅度
Figure 2013104055210100001DEST_PATH_IMAGE021
为:
Figure 2013104055210100001DEST_PATH_IMAGE022
5. The method for jointly estimating the physical parameters of the interference signal as claimed in claim 4, characterized in that: in step (h), the estimated amplitude of the interference signal
Figure 2013104055210100001DEST_PATH_IMAGE021
for:
Figure 2013104055210100001DEST_PATH_IMAGE022
.
6.一种联合估计干扰信号物理参数的装置,其特征在于,该装置包括: 6. A device for jointly estimating physical parameters of interference signals, characterized in that the device comprises: 信号接收模块,用于接收一混合信号; A signal receiving module, configured to receive a mixed signal; 采样模块,用于对所述混合信号采样得到离散观测信号样本,其中,所述离散观测信号样本包括一干扰信号及一有用信号; A sampling module, configured to sample the mixed signal to obtain a discrete observation signal sample, wherein the discrete observation signal sample includes an interference signal and a useful signal; 时延补偿模块,用于对一与所述干扰信号携带信息相同的本地信号进行时延补偿; A delay compensation module, configured to perform delay compensation on a local signal carrying the same information as the interference signal; 频偏估计模块,用于估计所述干扰信号的频偏; a frequency offset estimation module, configured to estimate the frequency offset of the interference signal; 频率补偿模块,用于根据估计出的频偏对时延补偿后的所述本地信号进行频率补偿; A frequency compensation module, configured to perform frequency compensation on the delay-compensated local signal according to the estimated frequency offset; 相移估计模块,用于根据做好时延补偿以及频率补偿后的本地信号以及所述离散观测样本估计干扰信号的相移; A phase shift estimation module, configured to estimate the phase shift of the interference signal according to the local signal after delay compensation and frequency compensation and the discrete observation samples; 相位补偿模块,用于根据估计出的相移对做好时延补偿以及频率补偿后的本地信号进行相位补偿;以及 A phase compensation module, configured to perform phase compensation on the local signal after delay compensation and frequency compensation according to the estimated phase shift; and 幅度估计模块,用于根据做好时延补偿、频率补偿以及相移补偿后的本地信号以及离散观测样本估计所述干扰信号的幅度。 The amplitude estimation module is used for estimating the amplitude of the interference signal according to the local signal after time delay compensation, frequency compensation and phase shift compensation and discrete observation samples. 7.如权利要求6所述的联合估计干扰信号物理参数的装置,其特征在于,该装置还包括: 7. The device for jointly estimating the physical parameter of an interference signal as claimed in claim 6, wherein the device further comprises: 相关运算模块,用于对得到的每一个离散观测样本与完成时延补偿后的本地信号做相关运算,得到一个相关信号
Figure 536394DEST_PATH_IMAGE001
Figure 743384DEST_PATH_IMAGE002
,其中,
Figure 919151DEST_PATH_IMAGE003
表示所述离散观测样本,
Figure 844381DEST_PATH_IMAGE004
为完成时延补偿后的本地信号,
Figure 68689DEST_PATH_IMAGE005
表示
Figure 458082DEST_PATH_IMAGE004
的共轭,
Figure 742433DEST_PATH_IMAGE006
的取值从1到
Figure 889381DEST_PATH_IMAGE007
Figure 917380DEST_PATH_IMAGE007
为观测长度;
The correlation calculation module is used to perform correlation calculations on each obtained discrete observation sample and the local signal after delay compensation to obtain a correlation signal
Figure 536394DEST_PATH_IMAGE001
:
Figure 743384DEST_PATH_IMAGE002
,in,
Figure 919151DEST_PATH_IMAGE003
represents the discrete observation sample,
Figure 844381DEST_PATH_IMAGE004
is the local signal after delay compensation,
Figure 68689DEST_PATH_IMAGE005
express
Figure 458082DEST_PATH_IMAGE004
the conjugate of
Figure 742433DEST_PATH_IMAGE006
The value ranges from 1 to
Figure 889381DEST_PATH_IMAGE007
,
Figure 917380DEST_PATH_IMAGE007
is the observation length;
自相关参量计算模块,用于计算所述相关信号的L个自相关参量Autocorrelation parameter calculation module, used to calculate L autocorrelation parameters of the correlation signal :
Figure 616531DEST_PATH_IMAGE009
,其中,的取值从1到
Figure 643317DEST_PATH_IMAGE011
为符号间隔数,N为观测长度;
Figure 616531DEST_PATH_IMAGE009
,in, The value ranges from 1 to
Figure 643317DEST_PATH_IMAGE011
, is the symbol interval number, N is the observation length;
所述频偏估计模块根据
Figure 305559DEST_PATH_IMAGE011
个自相关参量
Figure 427099DEST_PATH_IMAGE008
估计所述干扰信号的频偏
Figure 859217DEST_PATH_IMAGE012
The frequency offset estimation module is based on
Figure 305559DEST_PATH_IMAGE011
autocorrelation parameter
Figure 427099DEST_PATH_IMAGE008
Estimate the frequency offset of the interfering signal
Figure 859217DEST_PATH_IMAGE012
:
,其中,
Figure 812447DEST_PATH_IMAGE014
为单位码元的持续时间。
,in,
Figure 812447DEST_PATH_IMAGE014
is the duration of the unit symbol.
8.如权利要求7所述的联合估计干扰信号物理参数的装置,其特征在于:所述频率补偿模块根据如下公式对时延补偿后的本地信号进行频率补偿: 8. The device for jointly estimating the physical parameters of an interference signal as claimed in claim 7, wherein the frequency compensation module performs frequency compensation on the local signal after delay compensation according to the following formula:
Figure 483600DEST_PATH_IMAGE015
,其中,
Figure 391513DEST_PATH_IMAGE016
表示做好时延补偿以及频率补偿后的本地信号。
Figure 483600DEST_PATH_IMAGE015
,in,
Figure 391513DEST_PATH_IMAGE016
Indicates the local signal after delay compensation and frequency compensation.
9.如权利要求8所述的联合估计干扰信号物理参数的装置,其特征在于:相移估计模块估计出的所述干扰信号的相移
Figure 402194DEST_PATH_IMAGE017
为:
Figure 432467DEST_PATH_IMAGE018
;且做好时延补偿、频率补偿以及相移补偿后的本地信号
Figure 528599DEST_PATH_IMAGE019
为:
Figure 240203DEST_PATH_IMAGE020
9. The device for jointly estimating the physical parameters of an interference signal as claimed in claim 8, wherein the phase shift of the interference signal estimated by the phase shift estimation module is
Figure 402194DEST_PATH_IMAGE017
for:
Figure 432467DEST_PATH_IMAGE018
; and the local signal after delay compensation, frequency compensation and phase shift compensation
Figure 528599DEST_PATH_IMAGE019
for:
Figure 240203DEST_PATH_IMAGE020
.
10.如权利要求9所述的联合估计干扰信号物理参数的装置,其特征在于:幅度估计模块估计出的所述干扰信号的幅度
Figure 370970DEST_PATH_IMAGE021
为:
Figure 73609DEST_PATH_IMAGE022
10. The device for jointly estimating the physical parameters of an interference signal as claimed in claim 9, wherein the amplitude of the interference signal estimated by the amplitude estimation module is
Figure 370970DEST_PATH_IMAGE021
for:
Figure 73609DEST_PATH_IMAGE022
.
CN201310405521.0A 2013-09-09 2013-09-09 The method and apparatus of Combined estimator interference signal physical parameter Expired - Fee Related CN103516642B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310405521.0A CN103516642B (en) 2013-09-09 2013-09-09 The method and apparatus of Combined estimator interference signal physical parameter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310405521.0A CN103516642B (en) 2013-09-09 2013-09-09 The method and apparatus of Combined estimator interference signal physical parameter

Publications (2)

Publication Number Publication Date
CN103516642A true CN103516642A (en) 2014-01-15
CN103516642B CN103516642B (en) 2017-01-04

Family

ID=49898696

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310405521.0A Expired - Fee Related CN103516642B (en) 2013-09-09 2013-09-09 The method and apparatus of Combined estimator interference signal physical parameter

Country Status (1)

Country Link
CN (1) CN103516642B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112039613A (en) * 2020-08-07 2020-12-04 中国卫通集团股份有限公司 A kind of processing method and device of asymmetric PCMA mixed signal
CN113258984A (en) * 2021-04-29 2021-08-13 东方红卫星移动通信有限公司 Multi-user self-adaptive frequency offset elimination method and device and low-orbit satellite communication system
WO2021217895A1 (en) * 2020-04-28 2021-11-04 北京升哲科技有限公司 Multi-antenna diversity receiver

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6791964B1 (en) * 1998-12-31 2004-09-14 Samsung Electronics Co., Ltd. Multicarrier CDMA rake receiver apparatus
CN101741776A (en) * 2009-11-10 2010-06-16 华为技术有限公司 Method and device for eliminating interference signals
CN102932041A (en) * 2012-11-21 2013-02-13 西安电子科技大学 Method for encoding and decoding asynchronous space-time code for collaborative multi-point transmission

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6791964B1 (en) * 1998-12-31 2004-09-14 Samsung Electronics Co., Ltd. Multicarrier CDMA rake receiver apparatus
CN101741776A (en) * 2009-11-10 2010-06-16 华为技术有限公司 Method and device for eliminating interference signals
CN102932041A (en) * 2012-11-21 2013-02-13 西安电子科技大学 Method for encoding and decoding asynchronous space-time code for collaborative multi-point transmission

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
沈彩耀: "多天线信号联合接收的合成技术研究", 《中国博士学位论文电子期刊网》, 15 July 2012 (2012-07-15) *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021217895A1 (en) * 2020-04-28 2021-11-04 北京升哲科技有限公司 Multi-antenna diversity receiver
CN112039613A (en) * 2020-08-07 2020-12-04 中国卫通集团股份有限公司 A kind of processing method and device of asymmetric PCMA mixed signal
CN112039613B (en) * 2020-08-07 2022-07-29 中国卫通集团股份有限公司 Processing method and device for asymmetric PCMA (pulse code division multiple Access) mixed signal
CN113258984A (en) * 2021-04-29 2021-08-13 东方红卫星移动通信有限公司 Multi-user self-adaptive frequency offset elimination method and device and low-orbit satellite communication system

Also Published As

Publication number Publication date
CN103516642B (en) 2017-01-04

Similar Documents

Publication Publication Date Title
CN109450486B (en) Digital self-interference cancellation method for asynchronous simultaneous same-frequency full-duplex underwater acoustic communication system
CN106341359B (en) A kind of data subcarrier is synchronous and phase noise compensation method
US9722845B2 (en) Bluetooth low energy frequency offset and modulation index estimation
CN107342960B (en) A Non-data-aided Frequency Offset Estimation Method Suitable for Amplitude Phase Shift Keying
US8755459B2 (en) Methods and apparatuses for interference cancellation with frequency error compensation for equalizer adaptation
CN102546509A (en) Carrier frequency offset estimation method based on chirp training sequence
CN106789791B (en) Carrier Frequency Offset Estimation Method for Mobile Communication System Based on Conjugate Symmetrical Training Sequence
JP4109513B2 (en) Delay profile measuring method and apparatus
CN102347927A (en) Method and device for increasing EVM (Error Vector Magnitude) measurement precision for LTE (Long Term Evolution) system
TWI484787B (en) Method and device for estimating channel and noise
CN103516642A (en) Method and device for jointly estimating interference signal physical parameters
US20110206105A1 (en) Method for determining hybrid domain compensation parameters for analog loss in ofdm communication systems and compensating for the same
CN103188067B (en) A kind of chip clock frequency departure estimation error of spread spectrum system and the method for correction
CN103457630B (en) Interference signal amplitude method of estimation under a kind of complex field and device
CN106656304A (en) Correlation-based satellite-borne AIS signal reception processing method and device
KR20110128550A (en) Synchronization device and method of wireless repeater
JP2016131352A (en) COMMUNICATION DEVICE, COMMUNICATION METHOD, AND COMMUNICATION PROGRAM
CN105075131B (en) Device and method for frequency offset estimation
US9276704B1 (en) Maximum likelihood sequence detection in the phase domain
US20190028322A1 (en) Joint noncoherent demodulation and carrier frequency offset correction based on non-linear filtering
US9106326B2 (en) Method for determining the imperfections of a transmit pathway and of a receive pathway of an apparatus, and associated radio apparatus
US20170180182A1 (en) Joint noncoherent demodulation and carrier frequency offset correction based on non-linear filtering
CN102710565B (en) Combined estimation method for distributed multi-antenna mobile channel characteristic parameters
CN103428131A (en) Method for calculating dc components and judgment threshold in DMR communication
CN104486283B (en) A kind of distributed IQ imbalances estimation and suppressing method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170104

Termination date: 20210909