[go: up one dir, main page]

CN103515285A - Semiconductor structure and manufacturing process thereof - Google Patents

Semiconductor structure and manufacturing process thereof Download PDF

Info

Publication number
CN103515285A
CN103515285A CN201210223143.XA CN201210223143A CN103515285A CN 103515285 A CN103515285 A CN 103515285A CN 201210223143 A CN201210223143 A CN 201210223143A CN 103515285 A CN103515285 A CN 103515285A
Authority
CN
China
Prior art keywords
silicon
layer
manufacture craft
rich layer
fabrication process
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201210223143.XA
Other languages
Chinese (zh)
Other versions
CN103515285B (en
Inventor
刘志建
张家隆
陈哲明
李瑞珉
林育民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
United Microelectronics Corp
Original Assignee
United Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Microelectronics Corp filed Critical United Microelectronics Corp
Priority to CN201210223143.XA priority Critical patent/CN103515285B/en
Publication of CN103515285A publication Critical patent/CN103515285A/en
Application granted granted Critical
Publication of CN103515285B publication Critical patent/CN103515285B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
    • H01L21/76229Concurrent filling of a plurality of trenches having a different trench shape or dimension, e.g. rectangular and V-shaped trenches, wide and narrow trenches, shallow and deep trenches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/022Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being a laminate, i.e. composed of sublayers, e.g. stacks of alternating high-k metal oxides

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Element Separation (AREA)

Abstract

The invention discloses a semiconductor structure and a manufacturing process thereof. The semiconductor structure comprises a liner layer, a silicon-rich layer and a filling material. The liner layer is located on the surface of the groove. The silicon-rich layer is located on the liner layer. The filling material is positioned on the silicon-rich layer and fills the groove. In addition, the invention also provides a semiconductor manufacturing process for forming the semiconductor structure.

Description

半导体结构及其制作工艺Semiconductor structure and its fabrication process

技术领域 technical field

本发明涉及一种半导体结构及其制作工艺,且特别是涉及一种形成一富硅层于凹槽表面的半导体结构及其制作工艺。The invention relates to a semiconductor structure and its manufacturing process, and in particular to a semiconductor structure and its manufacturing process in which a silicon-rich layer is formed on the groove surface.

背景技术 Background technique

在目前半导体制作工艺中,一般采用区域氧化法(localized oxidationisolation,LOCOS)或是浅沟隔离(shallow trench isolation,STI)方法来进行元件之间的隔离,以避免元件间相互干扰而产生短路现象。然而随着半导体芯片的设计与制造线宽变得越来越细时,LOCOS制作工艺中所产生的凹坑(pits)、晶体缺陷(crystal defect)以及鸟喙(bird’s beak)长度过长等缺点,便将大幅地影响半导体芯片的特性,且LOCOS方法所产生的场氧化层占据较大的体积而会影响整个半导体芯片的集成度(integration)。因此在次微米(submicron)的半导体制作工艺中,尺寸较小、可提高半导体芯片的积成度浅沟隔离(shallowtrench isolation,简称STI)制作工艺遂成为近来被广泛使用的隔离技术。In the current semiconductor manufacturing process, localized oxidation isolation (LOCOS) or shallow trench isolation (shallow trench isolation (STI)) is generally used to isolate components to avoid short circuits caused by mutual interference between components. However, as the design and manufacture of semiconductor chips become thinner and thinner, the pits, crystal defects and long bird's beaks produced in the LOCOS manufacturing process have shortcomings. , it will greatly affect the characteristics of the semiconductor chip, and the field oxide layer produced by the LOCOS method occupies a relatively large volume, which will affect the integration of the entire semiconductor chip. Therefore, in the submicron (submicron) semiconductor manufacturing process, the shallow trench isolation (shallow trench isolation, referred to as STI) manufacturing process, which is smaller in size and can increase the integration of semiconductor chips, has become a widely used isolation technology recently.

典型的STI的制作方法是在芯片表面的各MOS元件间制作一凹槽,并填入介电物质以产生电性隔离的效果。介电物质一般为氧化硅。在形成氧化硅时,用以形成氧化硅的步骤或后续制作工艺的高温会使氧扩散至凹槽旁欲形成晶体管的主动区的硅基底中,而将部分的硅基底氧化形成氧化硅。如此,不但无法精确控制每个浅沟隔离结构的大小,而且相当于所形成的浅沟隔离结构的体积增加,而减少主动区的硅基底。然而,随着半导体元件的尺寸日益微缩至接近物理极限,不同大小的浅沟隔离结构与主动区已严重影响其上元件的电性表现与制作工艺品质。A typical STI manufacturing method is to make a groove between the MOS elements on the chip surface, and fill it with a dielectric material to produce the effect of electrical isolation. The dielectric substance is generally silicon oxide. When silicon oxide is formed, the high temperature in the step of forming silicon oxide or the subsequent manufacturing process will cause oxygen to diffuse into the silicon substrate next to the groove where the active region of the transistor is to be formed, and part of the silicon substrate is oxidized to form silicon oxide. In this way, not only the size of each SDI structure cannot be precisely controlled, but also the volume of the formed SDI structure increases, reducing the silicon base of the active region. However, as the size of semiconductor devices shrinks to close to the physical limit, different sizes of shallow trench isolation structures and active regions have seriously affected the electrical performance and manufacturing process quality of the devices thereon.

发明内容 Contents of the invention

本发明的目的在于提供一种半导体结构及其制作工艺,其形成一富硅层于凹槽表面,特别是用以形成浅沟隔离结构的凹槽表面,以解决上述问题。The object of the present invention is to provide a semiconductor structure and its manufacturing process, which forms a silicon-rich layer on the surface of the groove, especially the surface of the groove used to form the shallow trench isolation structure, so as to solve the above problems.

为达上述目的,本发明提供一种半导体结构位于一基底的一凹槽中。半导体结构包含有一衬垫层、一富硅层以及一填充材料。衬垫层位于凹槽的表面。富硅层位于衬垫层上。填充材料位于富硅层上并填满凹槽。To achieve the above purpose, the present invention provides a semiconductor structure located in a groove of a substrate. The semiconductor structure includes a pad layer, a silicon-rich layer and a filling material. The backing layer is on the surface of the groove. The silicon-rich layer is on the liner layer. The fill material is on the silicon-rich layer and fills the grooves.

本发明还提供一种半导体制作工艺,包含有下述步骤。首先,形成一凹槽于一基底中。接着,形成一衬垫层覆盖凹槽的表面。接续,形成一富硅层于衬垫层上。继之,填入一硅氮化物于凹槽中。然后,进行一转化制作工艺,将硅氮化物转化成一氧化硅,并至少氧化部分富硅层。The present invention also provides a semiconductor manufacturing process, which includes the following steps. First, a groove is formed in a substrate. Next, a liner layer is formed to cover the surface of the groove. Next, a silicon-rich layer is formed on the liner layer. Then, filling a silicon nitride in the groove. Then, a conversion process is performed to convert the silicon nitride into silicon monoxide, and at least part of the silicon-rich layer is oxidized.

基于上述,本发明提出一种半导体结构及其制作工艺,其形成一富硅层于凹槽表面,特别是用以形成浅沟隔离结构的凹槽表面,然后填入硅氮化物于凹槽中,再将此硅氮化物转化为填充材料以作为主动区之间的绝缘用。如此,由于本发明在填入硅氮化物之前已先形成富硅层于凹槽表面,是以可防止转化过程中所通入的成分例如氧原子扩散至凹槽旁的基底中,其占据部分主动区的基底并扩充所形成的浅沟隔离结构的体积。Based on the above, the present invention proposes a semiconductor structure and its manufacturing process, which forms a silicon-rich layer on the surface of the groove, especially the surface of the groove for forming a shallow trench isolation structure, and then fills silicon nitride in the groove , and then convert the silicon nitride into a filling material for insulation between active regions. In this way, since the present invention has formed a silicon-rich layer on the surface of the groove before filling the silicon nitride, it can prevent the components introduced during the transformation process, such as oxygen atoms, from diffusing into the substrate next to the groove, occupying part of the groove. The base of the active region and expand the volume of the formed shallow trench isolation structure.

附图说明 Description of drawings

图1-图10为本发明一实施例的半导体制作工艺的剖面示意图。1-10 are schematic cross-sectional views of a semiconductor manufacturing process according to an embodiment of the present invention.

主要元件符号说明Description of main component symbols

110:基底110: base

120:硬掩模层120: hard mask layer

122:垫氧化层122: pad oxide layer

124:垫氮化层124: pad nitride layer

120’:图案化的硬掩模层120': patterned hard mask layer

122’:图案化的垫氧化层122': Patterned Pad Oxide

124’:图案化的垫氮化层124': patterned pad nitride layer

130:衬垫层130: Underlayment

130a:平坦化的衬垫层130a: Planarized liner layer

140、140a:富硅层140, 140a: silicon-rich layer

140b:平坦化的富硅层140b: planarized silicon-rich layer

150:硅氮化物150: Silicon nitride

160:填充材料160: filling material

160a:平坦化的填充材料160a: Planarized fill material

A、B:主动区A, B: active area

G:浅沟隔离结构G: shallow trench isolation structure

P1:转化制作工艺P1: Conversion Manufacturing Process

P2:致密化制作工艺P2: Densification process

R:凹槽R: Groove

S:表面S: surface

S1、S2:接触面S1, S2: contact surface

具体实施方式 Detailed ways

图1-图10绘示本发明一实施例的半导体制作工艺的剖面示意图。如图1-图3所示,提供具有一凹槽R的一基底110。详细而言,如图1所示,提供基底110,其中基底110例如是一硅基底、一含硅基底、一三五族覆硅基底(例如GaN-on-silicon)、一石墨烯覆硅基底(graphene-on-silicon)或一硅覆绝缘(silicon-on-insulator,SOI)基底等半导体基底。接着,形成一硬掩模层120于基底110上。在本实施例中,硬掩模层120由下而上可包含一垫氧化层122以及一垫氮化层124于基底110上,但本发明不以此为限。1-10 are schematic cross-sectional views of a semiconductor manufacturing process according to an embodiment of the present invention. As shown in FIGS. 1-3 , a substrate 110 having a groove R is provided. In detail, as shown in FIG. 1, a substrate 110 is provided, wherein the substrate 110 is, for example, a silicon substrate, a silicon-containing substrate, a group III-V silicon-coated substrate (such as GaN-on-silicon), a graphene silicon-coated substrate (graphene-on-silicon) or a semiconductor substrate such as a silicon-on-insulator (SOI) substrate. Next, a hard mask layer 120 is formed on the substrate 110 . In this embodiment, the hard mask layer 120 may include a pad oxide layer 122 and a pad nitride layer 124 on the substrate 110 from bottom to top, but the invention is not limited thereto.

如图2所示,将硬掩模层120图案化以形成一图案化的硬掩模层120’,其包含一图案化的垫氧化层122’以及一图案化的垫氮化层124’。形成图案化的硬掩模层120’的方法可例如为:先利用光刻的方法,形成一图案化的光致抗蚀剂(未绘示)于硬掩模层120上,此图案化的光致抗蚀剂(未绘示)的图案则定义其下方对应欲形成凹槽R的位置。然后进行蚀刻,并以图案化的光致抗蚀剂(未绘示)的图案当作掩模来形成图案化的硬掩模层120’。接着在选择性去除图案化的光致抗蚀剂(未绘示)后,如图3所示,再利用蚀刻等方法,将图案化的硬掩模层120’的图案转移至基底110,以于基底110中形成凹槽R。As shown in FIG. 2, the hard mask layer 120 is patterned to form a patterned hard mask layer 120', which includes a patterned pad oxide layer 122' and a patterned pad nitride layer 124'. The method for forming the patterned hard mask layer 120 ′ can be, for example, firstly using a photolithography method to form a patterned photoresist (not shown) on the hard mask layer 120 , the patterned The pattern of the photoresist (not shown) defines the position corresponding to the groove R to be formed thereunder. Etching is then performed, and a patterned hard mask layer 120' is formed using a patterned photoresist (not shown) pattern as a mask. Then, after selectively removing the patterned photoresist (not shown), as shown in FIG. A groove R is formed in the substrate 110 .

如图4所示,形成一衬垫层130全面覆盖基底110,特别是凹槽R的表面S。衬垫层130可例如为一氧化层和/或一氮化层等,可例如经由原处蒸汽产生((in situ steam generation,ISSG)制作工艺形成,但本发明不以此为限。As shown in FIG. 4 , a liner layer 130 is formed to completely cover the substrate 110 , especially the surface S of the groove R. As shown in FIG. The liner layer 130 can be, for example, an oxide layer and/or a nitride layer, and can be formed, for example, by an in situ steam generation (ISSG) process, but the invention is not limited thereto.

如图5所示,形成一富硅层140于衬垫层130上。在本实施例中,富硅层140为一硅质层。但在其他实施例中,富硅层140也可为一氮化硅层、一氧化硅层、一氮氧化硅层或一氮化碳硅层等富含硅成分的化合材料层,亦即在该多个化合材料层中,含有低于正常定比组成的氧的比例,例如若为氧化硅层,则其分子式为SiOx,x小于2。再者,富硅层140可由等离子体辅助化学气相沉积(Plasma Enhanced Chemical Vapor Deposition,PECVD)制作工艺或原子层沉积(Atomic Layer Deposition,ALD)制作工艺等形成,采用何种方式形成富硅层140是由欲形成富硅层140的作用而定。As shown in FIG. 5 , a silicon-rich layer 140 is formed on the liner layer 130 . In this embodiment, the silicon-rich layer 140 is a silicon layer. However, in other embodiments, the silicon-rich layer 140 can also be a silicon nitride layer, a silicon monoxide layer, a silicon oxynitride layer, or a silicon carbon nitride layer, etc. The multiple compound material layers contain oxygen at a ratio lower than the normal constant composition, for example, if it is a silicon oxide layer, its molecular formula is SiOx, and x is less than 2. Furthermore, the silicon-rich layer 140 can be formed by a plasma-assisted chemical vapor deposition (Plasma Enhanced Chemical Vapor Deposition, PECVD) process or an atomic layer deposition (Atomic Layer Deposition, ALD) process, etc., and what method is used to form the silicon-rich layer 140 It depends on the function of forming the silicon-rich layer 140 .

本发明形成富硅层140的目的是为防止后续填入于凹槽R而形成于富硅层140上的填充材料(未绘示)中的成分或者是后续制作工艺中所通入的成分,例如氧,扩散至凹槽R旁的基底110中,占据部分欲形成晶体管等半导体结构的主动区A、B并扩充所形成的浅沟隔离结构(未绘示)的体积。因此,防止填充材料或后续制作工艺的成分污染基底110的方法可例如:(1)以富硅层140吸收该填充材料或后续制作工艺的成分,例如提供硅的反应源,以消耗该填充材料中的氧原子,进而防止填充材料或后续制作工艺的氧成分进入基底110中。此时富硅层140较佳为一具有较松散的结构,能有足够空间吸收填充材料或后续制作工艺的成分,此时较佳适用以等离子体辅助化学气相沉积(Plasma Enhanced Chemical Vapor Deposition,PECVD)制作工艺形成富硅层140。或者,(2)直接阻挡该填充材料或后续制作工艺的成分进入富硅层140中。此时的富硅层140较佳为一具有较致密的结构,能有效阻挡填充材料或后续制作工艺的成分进入富硅层140中,而富硅层140因此较佳适用以原子层沉积(Atomic Layer Deposition,ALD)制作工艺形成。The purpose of forming the silicon-rich layer 140 in the present invention is to prevent components in the filling material (not shown) that is subsequently filled into the groove R and formed on the silicon-rich layer 140 or components introduced in subsequent manufacturing processes, Oxygen, for example, diffuses into the substrate 110 beside the groove R, occupies part of the active regions A and B where semiconductor structures such as transistors are to be formed, and expands the volume of the formed shallow trench isolation structure (not shown). Therefore, the method of preventing the filling material or components of the subsequent manufacturing process from contaminating the substrate 110 can be, for example: (1) absorbing the filling material or the components of the subsequent manufacturing process with the silicon-rich layer 140 , such as providing a reactive source of silicon to consume the filling material Oxygen atoms in the substrate 110 are prevented from entering into the substrate 110 by filling materials or oxygen components of subsequent manufacturing processes. At this time, the silicon-rich layer 140 preferably has a relatively loose structure, which can have enough space to absorb the components of the filling material or the subsequent manufacturing process. At this time, it is preferable to use plasma-assisted chemical vapor deposition (Plasma Enhanced Chemical Vapor Deposition, PECVD) ) fabrication process to form the silicon-rich layer 140 . Or, (2) directly prevent the filling material or components of the subsequent manufacturing process from entering the silicon-rich layer 140 . At this time, the silicon-rich layer 140 preferably has a denser structure, which can effectively block the filling material or components of the subsequent manufacturing process from entering the silicon-rich layer 140, and the silicon-rich layer 140 is therefore preferably suitable for atomic layer deposition (Atomic Layer Deposition). Layer Deposition, ALD) manufacturing process is formed.

另外,富硅层140较佳形成于衬垫层130上,由于富硅层140富含硅成分且一般基底110也为硅基底,衬垫层130可隔离二者,使所形成的富硅层140具有较佳的结构,且衬垫层130可进一步阻挡填充材料中的成分进入基底110中。更进一步而言,当富硅层140的应力较大时,例如为一具有高应力的富硅氮化硅层,则衬垫层130可以作为应力缓冲层以预防富硅层140剥落。In addition, the silicon-rich layer 140 is preferably formed on the liner layer 130. Since the silicon-rich layer 140 is rich in silicon components and the substrate 110 is generally a silicon substrate, the liner layer 130 can isolate the two, so that the formed silicon-rich layer 140 has a better structure, and the liner layer 130 can further prevent components in the filling material from entering the substrate 110 . Furthermore, when the stress of the silicon-rich layer 140 is relatively large, such as a silicon-rich silicon nitride layer with high stress, the liner layer 130 can serve as a stress buffer layer to prevent the silicon-rich layer 140 from peeling off.

如图6所示,填入一填入物150于凹槽R中。在本实施例中,填入物150为一硅氮化物;但在其他实施例中,填入物150也可为一硅氧化物等,本发明不以此为限。填入物150一般呈液态以充分填满凹槽R,其中填入物150例如包含三甲基硅烷胺(trisilylamine,TSA),但本发明不以此为限。因为当半导体元件微缩后,凹槽R的深度可达例如3000埃(angstrom),开口直径仅有500埃(angstrom)的大小,欲蚀刻如此高深宽比的凹槽并使其具有上宽下窄的平滑剖面结构实为不易,是以当填入物150呈液态状时,则可完整流入并填满具高深宽比的凹槽R。当然,在其他实施例中,填入物150也可呈其他物性状态。As shown in FIG. 6 , a filler 150 is filled in the groove R. As shown in FIG. In this embodiment, the filler 150 is a silicon nitride; but in other embodiments, the filler 150 can also be a silicon oxide, etc., and the present invention is not limited thereto. The filler 150 is generally in a liquid state to fully fill the groove R, wherein the filler 150 includes, for example, trisilylamine (TSA), but the invention is not limited thereto. Because when the semiconductor element is miniaturized, the depth of the groove R can reach, for example, 3000 angstrom (angstrom), and the opening diameter is only 500 angstrom (angstrom). It is not easy to have a smooth section structure, so when the filler 150 is in a liquid state, it can completely flow into and fill the groove R with a high aspect ratio. Of course, in other embodiments, the filler 150 can also be in other physical states.

接着如图7所示,进行一转化制作工艺P1,将填入物150转化成一填充材料160,以位于欲形成晶体管等半导体元件的二主动区A,B之间作绝缘之用。在本实施例中,填充材料160为一氧化硅,并且在转化填入物150时,此转化制作工艺P1会至少氧化部分富硅层140,而形成一含氧的富硅层140a。由于本实施例的富硅层140为一硅质层,故在一较佳的实施态样中,可将富硅层140完全转化为一氧化硅层。如此,富硅层140可与填充材料160一并转化为氧化硅,以作绝缘之用,但本发明不以此为限。在其他实施例中,当富硅层140为一氮化硅层,则含氧的富硅层140a为一氮氧化硅层;当富硅层140为一氮化碳硅层,则含氧的富硅层140a为一氮氧化碳硅层。在本实施例中,转化制作工艺P1为一氧化制作工艺,但本发明不以此为限。具体而言,氧化制作工艺可包含直接通入氧气、臭氧或水蒸气等。转化制作工艺P1的制作工艺温度是例如500℃~700℃,以充分将填入物150转化成填充材料160。当然,在填入物150转化成填充材料160的过程中,会有部分的富硅层140也同时被氧化而形成含氧的富硅层140a。在一实施例中,含氧的富硅层140a的含氧量呈一梯度分布。例如,含氧的富硅层140a的含氧量呈一自填充材料160与含氧的富硅层140a的接触面S1向含氧的富硅层140a与衬垫层130的接触面S2递减的梯度分布。含氧的富硅层140a的含氧量多寡则视所通入的氧的浓度或者富硅层140的结构致密度等而定。承前述所言,当富硅层140由等离子体辅助化学气相沉积(Plasma Enhanced ChemicalVapor Deposition,PECVD)制作工艺形成,则具有较为松散的结构,而会吸附较多的氧原子,故含氧的富硅层140a的含氧量较多;当富硅层140由原子层沉积(Atomic Layer Deposition,ALD)制作工艺形成,则具有较为致密的结构,其将多数的氧原子阻挡于其之外,使较少的氧原子位于其中,故含氧的富硅层140a的含氧量较少。Next, as shown in FIG. 7 , a conversion process P1 is performed to convert the filling material 150 into a filling material 160 for insulation between two active regions A and B where semiconductor elements such as transistors are to be formed. In this embodiment, the filling material 160 is silicon monoxide, and when the filling material 150 is converted, the conversion process P1 will at least oxidize part of the silicon-rich layer 140 to form an oxygen-containing silicon-rich layer 140a. Since the silicon-rich layer 140 in this embodiment is a silicon layer, in a preferred embodiment, the silicon-rich layer 140 can be completely transformed into a silicon oxide layer. In this way, the silicon-rich layer 140 can be transformed into silicon oxide together with the filling material 160 for insulation, but the invention is not limited thereto. In other embodiments, when the silicon-rich layer 140 is a silicon nitride layer, the oxygen-containing silicon-rich layer 140a is a silicon oxynitride layer; when the silicon-rich layer 140 is a silicon carbon nitride layer, the oxygen-containing The silicon-rich layer 140a is a silicon oxynitride layer. In this embodiment, the conversion process P1 is an oxidation process, but the present invention is not limited thereto. Specifically, the oxidation process may include direct feeding of oxygen, ozone or water vapor. The manufacturing process temperature of the conversion manufacturing process P1 is, for example, 500° C.˜700° C. to fully convert the filler 150 into the filling material 160 . Of course, during the process of converting the filling material 150 into the filling material 160 , a part of the silicon-rich layer 140 is also oxidized to form an oxygen-containing silicon-rich layer 140 a. In one embodiment, the oxygen content of the oxygen-containing silicon-rich layer 140a presents a gradient distribution. For example, the oxygen content of the oxygen-containing silicon-rich layer 140a decreases from the contact surface S1 between the filling material 160 and the oxygen-containing silicon-rich layer 140a to the contact surface S2 between the oxygen-containing silicon-rich layer 140a and the liner layer 130. gradient distribution. The oxygen content of the oxygen-containing silicon-rich layer 140 a depends on the concentration of the injected oxygen or the structural density of the silicon-rich layer 140 . Based on the foregoing, when the silicon-rich layer 140 is formed by a plasma-assisted chemical vapor deposition (Plasma Enhanced Chemical Vapor Deposition, PECVD) process, it has a relatively loose structure and can absorb more oxygen atoms, so the oxygen-rich layer 140 The silicon layer 140a contains more oxygen; when the silicon-rich layer 140 is formed by atomic layer deposition (Atomic Layer Deposition, ALD) manufacturing process, it has a relatively dense structure, which blocks most of the oxygen atoms out of it, making Fewer oxygen atoms are located therein, so the oxygen-containing silicon-rich layer 140a contains less oxygen.

如图8所示,可选择性地再进行一致密化制作工艺P2,以进一步致密化填充材料160以及含氧的富硅层140a。致密化制作工艺P2可包含一热制作工艺或一含氧制作工艺等。致密化制作工艺P2的制作工艺温度较佳高于1000℃,以达到显著的致密效果。在一较佳的实施例中,致密化制作工艺P2的制作工艺温度为1100℃。相类似的,本发明的富硅层140a同样可用以吸收或阻挡此致密化制作工艺P2本身或受其高温活化的氧原子。As shown in FIG. 8 , a densification process P2 may optionally be performed to further densify the filling material 160 and the oxygen-containing silicon-rich layer 140 a. The densification process P2 may include a thermal process or an oxygen-containing process. The temperature of the densification process P2 is preferably higher than 1000° C. to achieve a significant densification effect. In a preferred embodiment, the process temperature of the densification process P2 is 1100°C. Similarly, the silicon-rich layer 140a of the present invention can also be used to absorb or block the oxygen atoms activated by the densification process P2 itself or by its high temperature.

随后,平坦化填充材料160、含氧的富硅层140a以及衬垫层130,而如图9所示,形成一平坦化的填充材料160a、一平坦化的富硅层140b以及一平坦化的衬垫层130a,使之与硬掩模层120’齐平。之后,移除硬掩模层120’,如图10所示,形成一浅沟隔离结构G。然后,可进行主动区A、B中的晶体管等半导体制作工艺。此半导体制作工艺为本领域的通常知识者所熟知故不再赘述。Subsequently, the filling material 160, the oxygen-containing silicon-rich layer 140a and the liner layer 130 are planarized, and as shown in FIG. The liner layer 130a is flush with the hard mask layer 120'. Afterwards, the hard mask layer 120' is removed, as shown in FIG. 10 , to form a shallow trench isolation structure G. Then, semiconductor manufacturing processes such as transistors in the active regions A and B can be performed. The semiconductor fabrication process is well known to those skilled in the art and thus will not be repeated here.

承上,本发明先填入填入物150,再进行转化制作工艺P1以形成填充材料160并至少氧化部分的富硅层140的步骤可应用一流体化学气相沉积(flowable chemical vapor deposition,FCVD)制作工艺或一旋转涂布介电层(spin-on dielectric,SOD)制作工艺的步骤,但本发明不以此为限。Based on the above, the present invention first fills the filling material 150, and then performs the transformation process P1 to form the filling material 160 and oxidize at least part of the silicon-rich layer 140. A fluid chemical vapor deposition (flowable chemical vapor deposition, FCVD) can be applied. manufacturing process or a spin-on dielectric layer (spin-on dielectric, SOD) manufacturing process steps, but the present invention is not limited thereto.

综上所述,本发明提出一种半导体结构及其制作工艺,其形成一富硅层于凹槽表面,特别是用以形成浅沟隔离结构的凹槽表面,然后填入硅氮化物于凹槽中,再将此硅氮化物转化为填充材料以作为二主动区之间的绝缘用。如此,由于本发明在填入硅氮化物之前已先形成一富硅层于凹槽表面,是以可防止转化过程中所通入的成分或者是填充材料本身的成分,例如氧原子,扩散至凹槽旁的基底中,占据部分主动区的基底并扩张所形成的浅沟隔离结构的体积。更进一步而言,富硅层可包含一硅质层、一氮化硅层、一氧化硅层、一氮氧化硅层或一氮化碳硅层,且富硅层可由等离子体辅助化学气相沉积(Plasma Enhanced Chemical Vapor Deposition,PECVD)制作工艺或原子层沉积(Atomic Layer Deposition,ALD)制作工艺等形成。In summary, the present invention proposes a semiconductor structure and its manufacturing process, which forms a silicon-rich layer on the surface of the groove, especially the surface of the groove for forming a shallow trench isolation structure, and then fills the silicon nitride in the groove In the trench, the silicon nitride is converted into a filling material for insulation between the two active regions. In this way, since the present invention forms a silicon-rich layer on the surface of the groove before filling the silicon nitride, it can prevent the components introduced in the conversion process or the components of the filling material itself, such as oxygen atoms, from diffusing to the surface of the groove. The substrate beside the groove occupies part of the substrate of the active region and expands the volume of the formed shallow trench isolation structure. Furthermore, the silicon-rich layer may include a silicon layer, a silicon nitride layer, a silicon oxide layer, a silicon oxynitride layer, or a silicon carbon nitride layer, and the silicon-rich layer may be deposited by plasma-assisted chemical vapor deposition (Plasma Enhanced Chemical Vapor Deposition, PECVD) manufacturing process or atomic layer deposition (Atomic Layer Deposition, ALD) manufacturing process.

以上所述仅为本发明的较佳实施例,凡依本发明权利要求所做的均等变化与修饰,皆应属本发明的涵盖范围。The above descriptions are only preferred embodiments of the present invention, and all equivalent changes and modifications made according to the claims of the present invention shall fall within the scope of the present invention.

Claims (19)

1. a semiconductor structure, is arranged in a groove of a substrate, and this semiconductor structure includes:
Laying, is positioned at the surface of this groove;
Silicon-rich layer, is positioned on this laying; And
Packing material, is positioned in this silicon-rich layer and fills up this groove.
2. semiconductor structure as claimed in claim 1, wherein this laying comprises oxide layer.
3. semiconductor structure as claimed in claim 1, wherein this silicon-rich layer comprises silicrete, silicon nitride layer, silicon oxide layer, silicon oxynitride layer or carbonitride silicon layer.
4. semiconductor structure as claimed in claim 1, wherein this silicon-rich layer comprises oxygen containing silicon-rich layer.
5. semiconductor structure as claimed in claim 4, wherein the oxygen content distribution gradient of this oxygen containing silicon-rich layer.
6. semiconductor structure as claimed in claim 5, wherein to distribute be that the contact-making surface to this silicon-rich layer and this laying successively decreases from the contact-making surface of this packing material and this silicon-rich layer to this gradient.
7. semiconductor structure as claimed in claim 1, wherein this packing material comprises silica.
8. a semiconductor fabrication process, includes:
Form a groove in a substrate;
Form the surface that a laying covers this groove;
Form a silicon-rich layer on this laying;
Insert a silicon nitride in this groove; And
Carry out a conversion manufacture craft, this silicon nitride is changed into silicon monoxide, and this silicon-rich layer of oxidized portion at least.
9. semiconductor fabrication process as claimed in claim 8, wherein this laying comprises oxide layer.
10. semiconductor fabrication process as claimed in claim 8, wherein this silicon-rich layer comprises with plasma auxiliary chemical vapor deposition (Plasma Enhanced Chemical Vapor Deposition, PECVD) manufacture craft or ald (Atomic Layer Deposition, ALD) manufacture craft forms.
11. semiconductor fabrication process as claimed in claim 8, wherein this silicon-rich layer comprises silicrete, silicon nitride layer, silicon oxide layer, silicon oxynitride layer or carbonitride silicon layer.
12. semiconductor fabrication process as claimed in claim 8, wherein the manufacture craft temperature of this conversion manufacture craft is 500 ℃~700 ℃.
13. semiconductor fabrication process as claimed in claim 8, wherein this conversion manufacture craft comprises an oxidation manufacture craft.
14. semiconductor fabrication process as claimed in claim 13, wherein this oxidation manufacture craft comprises and passes into oxygen, ozone or steam.
15. semiconductor fabrication process as claimed in claim 8, after carrying out this conversion manufacture craft, also comprise:
Carry out a densification manufacture craft, with this silica of densification and this silicon-rich layer.
16. semiconductor fabrication process as claimed in claim 15, wherein the manufacture craft temperature of this densification manufacture craft is higher than 1000 ℃.
17. semiconductor fabrication process as claimed in claim 16, wherein the manufacture craft temperature of this densification manufacture craft is 1100 ℃.
18. semiconductor fabrication process as claimed in claim 8, wherein this silicon nitride comprises trimethyl silicane alkanamine (trisilylamine, TSA).
19. semiconductor fabrication process as claimed in claim 8, the step of wherein inserting this silicon nitride and carrying out this conversion manufacture craft is first-class body chemical vapor phase growing (flowable chemical vapor deposition, FCVD) step of manufacture craft or a rotary coating dielectric layer (spin-on dielectric, SOD) manufacture craft.
CN201210223143.XA 2012-06-28 2012-06-28 Semiconductor structure and manufacturing process thereof Active CN103515285B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210223143.XA CN103515285B (en) 2012-06-28 2012-06-28 Semiconductor structure and manufacturing process thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210223143.XA CN103515285B (en) 2012-06-28 2012-06-28 Semiconductor structure and manufacturing process thereof

Publications (2)

Publication Number Publication Date
CN103515285A true CN103515285A (en) 2014-01-15
CN103515285B CN103515285B (en) 2018-03-27

Family

ID=49897788

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210223143.XA Active CN103515285B (en) 2012-06-28 2012-06-28 Semiconductor structure and manufacturing process thereof

Country Status (1)

Country Link
CN (1) CN103515285B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6576530B1 (en) * 2002-10-01 2003-06-10 Nanya Technology Corporation Method of fabricating shallow trench isolation
US20040005781A1 (en) * 2002-07-02 2004-01-08 Chartered Semiconductor Manufacturing Ltd. HDP SRO liner for beyond 0.18 um STI gap-fill
CN1534758A (en) * 2003-04-02 2004-10-06 株式会社瑞萨科技 Semiconductor device mfg. method
CN101528974A (en) * 2006-10-16 2009-09-09 应用材料股份有限公司 Formation of high quality dielectric films of silicon dioxide for sti: usage of different siloxane-based precursors for harp II-remote plasma enhanced deposition processes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040005781A1 (en) * 2002-07-02 2004-01-08 Chartered Semiconductor Manufacturing Ltd. HDP SRO liner for beyond 0.18 um STI gap-fill
US6576530B1 (en) * 2002-10-01 2003-06-10 Nanya Technology Corporation Method of fabricating shallow trench isolation
CN1534758A (en) * 2003-04-02 2004-10-06 株式会社瑞萨科技 Semiconductor device mfg. method
CN101528974A (en) * 2006-10-16 2009-09-09 应用材料股份有限公司 Formation of high quality dielectric films of silicon dioxide for sti: usage of different siloxane-based precursors for harp II-remote plasma enhanced deposition processes

Also Published As

Publication number Publication date
CN103515285B (en) 2018-03-27

Similar Documents

Publication Publication Date Title
CN101635270B (en) Method for fabricating integrated circuit structures
US8912074B2 (en) Method of forming shallow trench isolations
US9209243B2 (en) Method of forming a shallow trench isolation structure
US7947551B1 (en) Method of forming a shallow trench isolation structure
US20060043521A1 (en) Liner for shallow trench isolation
JP2012231007A (en) Method of manufacturing semiconductor device
US9034726B2 (en) Semiconductor process
US20150064929A1 (en) Method of gap filling
CN103794543B (en) Isolation structure and forming method thereof
US9117878B2 (en) Method for manufacturing shallow trench isolation
CN103943621B (en) Shallow trench isolation structure and forming method thereof
US7358145B2 (en) Method of fabricating shallow trench isolation structure
KR20100059297A (en) Method for fabricating semiconductor device
US9130014B2 (en) Method for fabricating shallow trench isolation structure
US20120098088A1 (en) Method of forming isolation structure and semiconductor device with the isolation structure
TWI579959B (en) Shallow trench isolation and method of forming the same
CN103515285B (en) Semiconductor structure and manufacturing process thereof
TWI541936B (en) Semiconductor structure and process thereof
KR20080074486A (en) Device Separator Formation Method of Semiconductor Device
TWI581367B (en) Method for manufacturing semiconductor structure
TWI357126B (en) Shallow trench insulation region process in semico
KR20100076659A (en) Method for forming isolation layer of semiconductor device and method for fabricating the semiconductor device
TW201304054A (en) Method of forming isolation structure
KR20090056676A (en) Device Separating Method of Semiconductor Device
KR20090056675A (en) Device Separating Method of Semiconductor Device

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant