CN103513350B - A kind of array waveguide device based on particle cluster algorithm aims at coupling process and device - Google Patents
A kind of array waveguide device based on particle cluster algorithm aims at coupling process and device Download PDFInfo
- Publication number
- CN103513350B CN103513350B CN201310467810.3A CN201310467810A CN103513350B CN 103513350 B CN103513350 B CN 103513350B CN 201310467810 A CN201310467810 A CN 201310467810A CN 103513350 B CN103513350 B CN 103513350B
- Authority
- CN
- China
- Prior art keywords
- algorithm
- array
- rightarrow
- coupling
- module
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002245 particle Substances 0.000 title claims abstract description 105
- 238000010168 coupling process Methods 0.000 title claims abstract description 79
- 230000008878 coupling Effects 0.000 claims abstract description 59
- 238000005859 coupling reaction Methods 0.000 claims abstract description 59
- 238000005457 optimization Methods 0.000 claims abstract description 37
- 239000013307 optical fiber Substances 0.000 claims abstract description 31
- 230000003287 optical effect Effects 0.000 claims abstract description 28
- 238000000034 method Methods 0.000 claims abstract description 16
- 238000001514 detection method Methods 0.000 claims abstract description 12
- 230000003044 adaptive effect Effects 0.000 claims abstract description 9
- 230000008859 change Effects 0.000 claims abstract description 8
- 238000004088 simulation Methods 0.000 claims abstract description 6
- 238000004458 analytical method Methods 0.000 claims abstract description 5
- 239000000835 fiber Substances 0.000 claims description 27
- 230000007246 mechanism Effects 0.000 claims description 11
- 239000013598 vector Substances 0.000 claims description 8
- 230000002068 genetic effect Effects 0.000 claims description 7
- 238000004806 packaging method and process Methods 0.000 claims description 5
- 238000012544 monitoring process Methods 0.000 claims description 3
- 238000009396 hybridization Methods 0.000 claims 2
- 230000008569 process Effects 0.000 abstract description 6
- 238000004891 communication Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000012858 packaging process Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
Landscapes
- Optical Couplings Of Light Guides (AREA)
Abstract
本发明公开了一种基于粒子群算法的阵列波导器件对准耦合方法与装置,该方法为:对阵列波导器进行初始寻光;基于粒子群算法—数学优化寻找峰值位置,加入自适应变化惯性权重并进行仿真分析;采用有限测量光功率值并进行优化迭代;通过优化迭代找到实际峰值位置;该装置包括:CCD系统模块、激光光源、第一定位模块、第二定位模块、波导芯片、第一阵列光纤、第二阵列光纤、光功率检测模块、控制系统及对准耦合算法模块;本发明基于粒子群算法只需通过较少的迭代次数即可找到峰值点,提高了搜索效率;在寻优过程中不涉及人为权限设定,解决了现行自动对准耦合的不足之处,提高了收敛速度、局部搜索能力和搜索精度。
The invention discloses a method and device for aligning and coupling an arrayed waveguide device based on a particle swarm algorithm. The method includes: performing initial light-seeking on the arrayed waveguide; finding a peak position based on a particle swarm algorithm-mathematical optimization, and adding adaptive change inertia weight and perform simulation analysis; use finite measured optical power values and perform optimization iterations; find the actual peak position through optimization iterations; the device includes: CCD system module, laser light source, first positioning module, second positioning module, waveguide chip, second An array of optical fibers, a second array of optical fibers, an optical power detection module, a control system, and an alignment coupling algorithm module; based on the particle swarm algorithm, the present invention can find the peak point only through a small number of iterations, which improves the search efficiency; The optimization process does not involve human authority setting, which solves the shortcomings of the current automatic alignment coupling, and improves the convergence speed, local search ability and search accuracy.
Description
技术领域technical field
本发明属于阵列波导器件领域,尤其涉及一种基于粒子群算法的阵列波导器件对准耦合方法及装置。The invention belongs to the field of arrayed waveguide devices, and in particular relates to a particle swarm algorithm-based alignment coupling method and device for arrayed waveguide devices.
背景技术Background technique
阵列波导器件是光网络通信系统中的关键部件,主要用于光信号的转换和传输。随着光通信系统的高速发展,该领域对阵列波导器件的需求越来越大,对器件的质量要求也越来越高。但是阵列波导器件较高的成本成为制约光网络通信发展的因素之一,阵列波导器件的制造成本主要集中在封装过程中,而封装过程的关键技术则是光子器件的耦合与对准,所以高效耦合对准算法的提出对集成光子器件的成本降低和质量提高有重要意义。Arrayed waveguide devices are key components in optical network communication systems, mainly used for conversion and transmission of optical signals. With the rapid development of optical communication systems, the demand for arrayed waveguide devices in this field is increasing, and the quality requirements for devices are also getting higher and higher. However, the high cost of arrayed waveguide devices has become one of the factors restricting the development of optical network communications. The manufacturing cost of arrayed waveguide devices is mainly concentrated in the packaging process, and the key technology of the packaging process is the coupling and alignment of photonic devices, so efficient The proposed coupling alignment algorithm is of great significance to the cost reduction and quality improvement of integrated photonic devices.
目前,在阵列波导器件封装制造业中,国内广泛采用的是手动工艺来进行阵列波导器件的对准耦合。传统的阵列波导器件对准耦合方法存在对准精度低,需要较多的耦合次数,搜索效率低,波导芯片与阵列光纤的低损耗快速对准耦合的自动化程度低的问题。而自动化对准的速度快,耦合结果好,劳动力成本较低,是阵列波导器件对准耦合工艺的发展方向。但全自动的阵列波导器件封装又被少数几家国外企业垄断,因此对阵列波导器件自动化对准耦合装置及算法的研究可以有效的打破国外垄断,降低阵列波导器件的成本。At present, in the arrayed waveguide device packaging manufacturing industry, the manual process is widely used in China to carry out the alignment coupling of the arrayed waveguide device. The traditional alignment and coupling methods of arrayed waveguide devices have the problems of low alignment accuracy, more coupling times, low search efficiency, and low automation of low-loss fast alignment coupling between waveguide chips and array fibers. The speed of automatic alignment is fast, the coupling result is good, and the labor cost is low, which is the development direction of the alignment coupling process of arrayed waveguide devices. However, the fully automatic packaging of arrayed waveguide devices is monopolized by a few foreign companies. Therefore, the research on automatic alignment coupling devices and algorithms for arrayed waveguide devices can effectively break the foreign monopoly and reduce the cost of arrayed waveguide devices.
发明内容Contents of the invention
本发明的目的在于提供一种基于粒子群算法的阵列波导器件对准耦合方法及装置,旨在解决传统的阵列波导器件对准耦合方法存在对准精度低,需要较多的耦合次数,搜素效率低,波导芯片与阵列光纤的低损耗快速对准耦合的自动化程度低的问题。The purpose of the present invention is to provide an arrayed waveguide device alignment coupling method and device based on the particle swarm algorithm, aiming to solve the problem of low alignment accuracy and the need for more coupling times in the traditional arrayed waveguide device alignment coupling method. Low efficiency, low-loss fast alignment coupling of waveguide chips and array fibers, and low automation.
本发明是这样实现的,一种基于粒子群算法的阵列波导器件对准耦合方法,该基于粒子群算法的阵列波导器件对准耦合方法包括:The present invention is achieved in this way, a particle swarm algorithm-based arrayed waveguide device alignment coupling method, the particle swarm algorithm-based arrayed waveguide device alignment coupling method includes:
步骤一:对阵列波导器件进行初始寻光;Step 1: Initially search for light on the arrayed waveguide device;
步骤二:基于粒子群算法—数学优化寻找峰值位置,加入自适应变化惯性权重并进行仿真分析;Step 2: Based on the particle swarm algorithm-mathematical optimization to find the peak position, add adaptive variable inertia weight and conduct simulation analysis;
步骤三:采用有限测量光功率值并进行优化迭代;Step 3: Use limited measured optical power values and perform optimization iterations;
步骤四:通过优化迭代找到实际峰值位置。Step 4: Find the actual peak position through optimization iterations.
进一步,该基于粒子群算法寻找峰值的方法为初始化粒子群体,初始化完成后通过计算各粒子的适应度来更新粒子的位置和速度,当搜索目标符合阀值要求之后,搜索终止。Further, the method of finding the peak value based on the particle swarm optimization algorithm is to initialize the particle population. After the initialization is completed, the position and velocity of the particles are updated by calculating the fitness of each particle. When the search target meets the threshold requirements, the search is terminated.
进一步,可以用改进粒子群算法代替粒子群算法,改进粒子群算法是采用引入交叉机制的杂交PSO模型与自适应变化惯性权重相结合的粒子群算法,杂交PSO模型把选择机制引入基本粒子群算法中,对每一次迭代产生的新粒子根据适应度进行选择,以适应度高的部分粒子取代适应度低的部分粒子。Further, the improved particle swarm optimization algorithm can be used instead of the particle swarm optimization algorithm. The improved particle swarm optimization algorithm is a particle swarm optimization algorithm that combines the hybrid PSO model with the introduction of crossover mechanism and the adaptive variable inertia weight. The hybrid PSO model introduces the selection mechanism into the basic particle swarm optimization algorithm. In , the new particles generated in each iteration are selected according to the fitness, and some particles with high fitness are used to replace some particles with low fitness.
进一步,交叉机制类似于遗传算法中的交叉遗传,以交叉概率选择待交叉粒子,两两组合交叉操作之后产生新粒子,新粒子的位置和速度矢量如下式所示:Further, the crossover mechanism is similar to the crossover inheritance in the genetic algorithm. The particles to be crossed are selected according to the crossover probability, and new particles are generated after the pairwise crossover operation. The position and velocity vector of the new particles are shown in the following formula:
其中是D维的位置向量;和k=1,2,分别用来表明新生粒子和待交叉粒子的位置;是D维均匀分布的随机数向量,分量取值范围是[0,1]。in is the position vector of D dimension; and k=1,2, respectively used to indicate the positions of newborn particles and particles to be intersected; is a D-dimensional uniformly distributed random number vector, and the value range of the components is [0,1].
进一步,该基于粒子群算法的阵列波导器件对准耦合方法自适应变化惯性权重ω值的大小达标粒子对当前速度的继承能力,改变惯性权重值可以控制算法的搜索能力,自适应变化惯性权重ω值的公式Further, the arrayed waveguide device alignment coupling method based on the particle swarm optimization algorithm adaptively changes the size of the inertia weight ω value to meet the particle’s ability to inherit the current speed, changing the inertia weight value can control the search ability of the algorithm, and adaptively changing the inertia weight ω value formula
其中,ωstart是初始惯性权重;ωend是迭代至最大次数时的惯性权重;k是当前迭代次数;Tmax是最大迭代代数。Among them, ω start is the initial inertia weight; ω end is the inertia weight when iterating to the maximum number; k is the current iteration number; T max is the maximum iteration algebra.
本发明的另一目的在于提供一种基于粒子群算法的阵列波导器件对准耦合装置,该基于粒子群算法的阵列波导器件对准耦合装置包括:CCD系统模块、激光光源、第一定位模块、第二定位模块、波导芯片、第一阵列光纤、第二阵列光纤、光功率检测模块、控制系统及对准耦合算法模块;Another object of the present invention is to provide an alignment and coupling device for arrayed waveguide devices based on particle swarm optimization algorithm. The alignment and coupling device for arrayed waveguide devices based on particle swarm optimization algorithm includes: CCD system module, laser light source, first positioning module, The second positioning module, waveguide chip, first array optical fiber, second array optical fiber, optical power detection module, control system and alignment coupling algorithm module;
与控制系统及对准耦合算法模块连接,用于对阵列波导器件对准耦合装置实现初始对准的CCD系统模块;Connected with the control system and the alignment coupling algorithm module, the CCD system module used to realize the initial alignment of the alignment coupling device of the arrayed waveguide device;
激光光源设置在第一定位模块的左侧;The laser light source is arranged on the left side of the first positioning module;
用于安装输入光纤、输出光纤的第一定位模块和第二定位模块,分别安装在控制系统及对准耦合算法模块的左右两侧;The first positioning module and the second positioning module for installing the input optical fiber and the output optical fiber are respectively installed on the left and right sides of the control system and the alignment coupling algorithm module;
波导芯片设置在控制系统及对准耦合算法模块的中间位置;The waveguide chip is set in the middle of the control system and the alignment coupling algorithm module;
第一阵列光纤连接激光光源,设置在第一定位模块的上面;The first array of optical fibers is connected to the laser light source, and is arranged above the first positioning module;
用于对阵列波导器件封装装置实现精密对准的光功率检测模块,设置在第二阵列光纤的右侧;第二阵列光纤连接光功率检测模块,设置在第二定位模块的上面;用于对对准耦合装置进行控制的控制系统及对准耦合算法模块。The optical power detection module for precise alignment of the arrayed waveguide device packaging device is arranged on the right side of the second array of optical fibers; the second array of optical fibers is connected to the optical power detection module and is arranged on the top of the second positioning module; A control system for controlling an alignment coupling device and an alignment coupling algorithm module.
进一步,该基于粒子群算法的阵列波导器件对准耦合装置还包括:Further, the arrayed waveguide device alignment coupling device based on the particle swarm optimization algorithm also includes:
用于安装输入光纤、波导芯片和输出光纤的六轴超精定位模块;Six-axis ultra-precise positioning module for installing input fiber, waveguide chip and output fiber;
用于六轴高精度调整模块固定的精密光学夹具模块。Precision optical fixture module for six-axis high-precision adjustment module fixation.
进一步,该基于粒子群算法的阵列波导器件对准耦合装置对准步骤如下:Further, the alignment steps of the arrayed waveguide device alignment coupling device based on the particle swarm optimization algorithm are as follows:
利用精密夹具将波导芯片固定,在CCD系统模块监控下移动输入阵列光纤;Fix the waveguide chip with a precision fixture, and move the input array fiber under the monitoring of the CCD system module;
激光光源与输入端第一阵列光纤耦合,红外相机检测波导芯片输出的光,按照粗对准算法加精确对准算法的顺序移动输入端第一阵列光纤,直至红外相机检测到N个规则的圆形光斑;The laser light source is coupled to the first array of optical fibers at the input end, and the infrared camera detects the light output from the waveguide chip, and moves the first array of optical fibers at the input end in the order of coarse alignment algorithm plus precise alignment algorithm until the infrared camera detects N regular circles shaped spot;
在CCD系统模块的引导下,移动输出端第二阵列光纤至波导芯片,按照粗对准算法移动输出端第二阵列光纤,直至检测到光功率值,然后按照精确对准算法移动输出端第二阵列光纤,直至1或N通道光功率值达到最大;Under the guidance of the CCD system module, move the second array fiber at the output end to the waveguide chip, move the second array fiber at the output end according to the coarse alignment algorithm until the optical power value is detected, and then move the second array fiber at the output end according to the fine alignment algorithm Array optical fibers until the optical power value of 1 or N channels reaches the maximum;
按照多通道对准方案旋转输出端第二阵列光纤,直至1和N通道光功率值达到最佳均衡状态。Rotate the second array of optical fibers at the output end according to the multi-channel alignment scheme until the optical power values of the 1 and N channels reach the best balance.
进一步,该基于粒子群算法的阵列波导器件对准耦合装置采用的是自动化对准算法。Further, the arrayed waveguide device alignment coupling device based on the particle swarm algorithm adopts an automatic alignment algorithm.
本发明提供的基于粒子群算法的阵列波导器件对准耦合方法及装置,解决传统的阵列波导器件对准耦合方法存在对准精度低,需要较多的耦合次数,搜素效率低,波导芯片与阵列光纤的低损耗快速对准耦合的自动化程度低的问题,基于粒子群算法只需通过较少的迭代次数即可找到峰值点,可大幅提高搜索效率。本发明在寻优过程中不涉及人为权限设定,解决了现行自动对准耦合的不足之处,具有更快的收敛速度,更强大的局部搜索能力以及更高的搜索精度,有效提高了实现波导芯片与阵列光纤的低损耗快速对准耦合的自动化程度和工作效率。The arrayed waveguide device alignment and coupling method and device based on the particle swarm algorithm provided by the present invention solve the problem of low alignment accuracy, more coupling times, and low search efficiency in the traditional arrayed waveguide device alignment and coupling method. The low-loss fast alignment coupling of the array fiber has a low degree of automation. Based on the particle swarm optimization algorithm, only a small number of iterations can be used to find the peak point, which can greatly improve the search efficiency. The present invention does not involve artificial authority setting in the optimization process, solves the shortcomings of the existing automatic alignment coupling, has faster convergence speed, stronger local search ability and higher search accuracy, and effectively improves the realization of The degree of automation and work efficiency of low-loss fast alignment coupling of waveguide chip and array fiber.
附图说明Description of drawings
图1是本发明实施例提供的基于粒子群算法的阵列波导器件对准装置的结构示意图;FIG. 1 is a schematic structural diagram of an arrayed waveguide device alignment device based on a particle swarm algorithm provided by an embodiment of the present invention;
图中:1、CCD系统模块;2、激光光源;3、第一定位模块;4、第二定位模块;5、波导芯片;6、第一阵列光纤;7、第二阵列光纤;8、光功率检测模块;、控制系统及对准耦合算法模块;In the figure: 1. CCD system module; 2. Laser light source; 3. First positioning module; 4. Second positioning module; 5. Waveguide chip; 6. First array optical fiber; 7. Second array optical fiber; 8. Light Power detection module; control system and alignment coupling algorithm module;
图2是本发明实施例提供的基本粒子群算法搜索原理的流程图;Fig. 2 is a flow chart of the basic particle swarm optimization algorithm search principle provided by the embodiment of the present invention;
图3本发明实施例提供的基于粒子群算法的阵列波导器件对准耦合方法流程图;Fig. 3 is a flow chart of the method for aligning and coupling arrayed waveguide devices based on the particle swarm algorithm provided by the embodiment of the present invention;
图4是本发明实施例提供的基于粒子群算法的阵列波导器件对准装置的应用效果图。Fig. 4 is an application effect diagram of the arrayed waveguide device alignment device based on the particle swarm algorithm provided by the embodiment of the present invention.
具体实施方式detailed description
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。In order to make the object, technical solution and advantages of the present invention more clear, the present invention will be further described in detail below in conjunction with the examples. It should be understood that the specific embodiments described here are only used to explain the present invention, not to limit the present invention.
下面结合附图及具体实施例对本发明的应用原理作进一步描述。The application principle of the present invention will be further described below in conjunction with the accompanying drawings and specific embodiments.
图1和图4示出了本发明提供的基于粒子群算法的阵列波导器件对准耦合装置的结构。为了便于说明,仅仅示出了与本发明相关的部分。Fig. 1 and Fig. 4 show the structure of the arrayed waveguide device alignment coupling device based on the particle swarm algorithm provided by the present invention. For ease of illustration, only the parts relevant to the present invention are shown.
本发明实施例的基于粒子群算法的阵列波导器件对准耦合装置,该装置的结构主要由:CCD系统模块1、激光光源2、第一定位模块3、第二定位模块4、波导芯片5、第一阵列光纤6、第二阵列光纤7、光功率检测模块8、控制系统及对准耦合算法模块9组成;The arrayed waveguide device alignment coupling device based on the particle swarm algorithm in the embodiment of the present invention, the structure of the device is mainly composed of: CCD system module 1, laser light source 2, first positioning module 3, second positioning module 4, waveguide chip 5, The first array of optical fibers 6, the second array of optical fibers 7, an optical power detection module 8, a control system and an alignment coupling algorithm module 9;
与控制系统及对准耦合算法模块9连接,用于对阵列波导器件对准耦合装置实现初始对准的CCD系统模块1;Connected with the control system and the alignment coupling algorithm module 9, the CCD system module 1 used to implement the initial alignment of the arrayed waveguide device alignment coupling device;
激光光源2设置在第一定位模块3的左侧;The laser light source 2 is arranged on the left side of the first positioning module 3;
用于安装输入光纤、输出光纤的第一定位模块3和第二定位模块4,分别安装在控制系统及对准耦合算法模块9的左右两侧;The first positioning module 3 and the second positioning module 4 for installing the input optical fiber and the output optical fiber are respectively installed on the left and right sides of the control system and the alignment coupling algorithm module 9;
波导芯片5设置在控制系统及对准耦合算法模块9的中间位置;The waveguide chip 5 is arranged in the middle of the control system and the alignment coupling algorithm module 9;
第一阵列光纤6连接激光光源2,设置在第一定位模块3的上面;The first array of optical fibers 6 is connected to the laser light source 2 and arranged on the first positioning module 3;
用于对阵列波导器件封装装置实现精密对准的光功率检测模块8,设置在第二阵列光纤7的右侧;第二阵列光纤7连接光功率检测模块8,设置在第二定位模块4的上面;The optical power detection module 8 for precise alignment of the arrayed waveguide device packaging device is arranged on the right side of the second array optical fiber 7; the second array optical fiber 7 is connected to the optical power detection module 8 and is arranged on the second positioning module 4 above;
用于对对准耦合装置进行控制的控制系统及对准耦合算法模块9;A control system and an alignment coupling algorithm module 9 for controlling the alignment coupling device;
该基于粒子群算法的阵列波导器件对准耦合装置还包括:The arrayed waveguide device alignment coupling device based on the particle swarm algorithm also includes:
用于安装输入光纤、波导芯片和输出光纤的六轴超精定位模块;Six-axis ultra-precise positioning module for installing input fiber, waveguide chip and output fiber;
用于六轴高精度调整模块固定的精密光学夹具模块。Precision optical fixture module for six-axis high-precision adjustment module fixation.
本发明实施例的基于粒子群算法的阵列波导器件对准耦合装置,对准步骤如下:The alignment and coupling device for arrayed waveguide devices based on the particle swarm algorithm in the embodiment of the present invention is as follows:
1)、利用精密夹具将波导芯片5固定,在CCD系统模块1监控下移动输入阵列光纤至合适位置;1) Use a precision fixture to fix the waveguide chip 5, and move the input array fiber to a suitable position under the monitoring of the CCD system module 1;
2)、激光光源2与输入端第一阵列光纤6耦合,红外相机检测波导芯片5输出的光,按照粗对准算法加精确对准算法的顺序移动输入端第一阵列光纤6,直至红外相机检测到N个规则的圆形光斑;2), the laser light source 2 is coupled to the first array fiber 6 at the input end, the infrared camera detects the light output by the waveguide chip 5, and moves the first array fiber 6 at the input end in the order of coarse alignment algorithm plus precise alignment algorithm until the infrared camera Detect N regular circular light spots;
3)、在CCD系统模块1的引导下,移动输出端第二阵列光纤7至波导芯片5附近,按照粗对准算法移动输出端第二阵列光纤7,直至检测到一定数值的光功率值,然后按照精确对准算法移动输出端第二阵列光纤7,直至1或N通道光功率值达到最大;3) Under the guidance of the CCD system module 1, move the second array optical fiber 7 at the output end to the vicinity of the waveguide chip 5, and move the second array optical fiber 7 at the output end according to the coarse alignment algorithm until a certain optical power value is detected, Then move the second array optical fiber 7 at the output end according to the precise alignment algorithm until the optical power value of the 1 or N channel reaches the maximum;
4)、按照多通道对准方案旋转输出端第二阵列光纤7,直至1和N通道光功率值达到最佳均衡状态。4) According to the multi-channel alignment scheme, rotate the second array optical fiber 7 at the output end until the optical power values of the 1 and N channels reach the best balance state.
该装置中的光功率检测模块用于实现精密对准,采用的是自动化对准算法。自动化对准算法是阵列波导器件自动化对准的关键技术,一种快速可靠的对准算法可以有效降低对准时间,保证对准精度;The optical power detection module in the device is used to achieve precise alignment, using an automatic alignment algorithm. Automatic alignment algorithm is the key technology for automatic alignment of arrayed waveguide devices. A fast and reliable alignment algorithm can effectively reduce alignment time and ensure alignment accuracy;
本发明采用的是基本粒子群算法,并参考遗传算法的特性提出了一种改进型粒子群算法。The invention adopts the basic particle swarm algorithm, and proposes an improved particle swarm algorithm with reference to the characteristics of the genetic algorithm.
结合附图2、3对本发明进行说明,本发明是这样实现的,一种基于粒子群算法的阵列波导器件对准耦合方法,该方法包括:The present invention is described in conjunction with accompanying drawings 2 and 3, the present invention is realized in this way, a kind of arrayed waveguide device alignment coupling method based on particle swarm algorithm, this method comprises:
S301:对阵列波导器件进行初始寻光;S301: Initially search for light on the arrayed waveguide device;
S302:基于粒子群算法—数学优化寻找峰值位置,加入自适应变化惯性权重并进行仿真分析;S302: Based on the particle swarm algorithm-mathematical optimization to find the peak position, add adaptive change inertia weight and conduct simulation analysis;
S303:采用有限测量光功率值并进行优化迭代;S303: Using a limited measured optical power value and performing optimization iterations;
S304:通过优化迭代找到实际峰值位置。S304: Find the actual peak position through optimization iterations.
基于粒子群算法寻找峰值的方法为初始化粒子群体,初始化完成后通过计算各粒子的适应度来更新粒子的位置和速度,当搜索目标符合阀值要求之后,搜索终止;The method of finding the peak value based on the particle swarm optimization algorithm is to initialize the particle swarm. After the initialization is completed, the position and speed of the particles are updated by calculating the fitness of each particle. When the search target meets the threshold requirements, the search is terminated;
可以用改进粒子群算法代替粒子群算法,改进粒子群算法是采用引入交叉机制的杂交PSO模型(HybridPSO,HPSO)与自适应变化惯性权重相结合的粒子群算法。杂交PSO模型把选择机制引入基本粒子群算法中,对每一次迭代产生的新粒子根据适应度进行选择,以适应度较高的部分粒子取代适应度较低的部分粒子。该交叉机制类似于遗传算法中的交叉遗传,以一定的交叉概率选择待交叉粒子,两两组合交叉操作之后产生新粒子。新粒子的位置和速度矢量如下式所示:The improved particle swarm optimization algorithm can be used instead of the particle swarm optimization algorithm. The improved particle swarm optimization algorithm is a particle swarm optimization algorithm that combines the hybrid PSO model (HybridPSO, HPSO) that introduces a crossover mechanism and the adaptive variable inertia weight. The hybrid PSO model introduces the selection mechanism into the basic particle swarm optimization algorithm, and selects the new particles generated in each iteration according to the fitness, and replaces some particles with lower fitness with some particles with higher fitness. The crossover mechanism is similar to the crossover inheritance in the genetic algorithm. The particles to be crossed are selected with a certain crossover probability, and new particles are generated after pairwise crossover operations. The position and velocity vectors of the new particles are given by:
其中是D维的位置向量;和k=1,2,分别用来表明新生粒子和待交叉粒子的位置;是D维均匀分布的随机数向量,其分量取值范围是[0,1]。交叉机制的引入在理论上可以提高基本粒子群算法的收敛速度,增强算法的局部搜索能力。in is the position vector of D dimension; and k=1,2, respectively used to indicate the positions of newborn particles and particles to be intersected; is a D-dimensional uniformly distributed random number vector, and its component value range is [0,1]. The introduction of the crossover mechanism can theoretically improve the convergence speed of the basic particle swarm optimization algorithm and enhance the local search ability of the algorithm.
自适应变化惯性权重ω值的大小达标粒子对当前速度的继承能力,改变惯性权重值可以控制算法的搜索能力,自适应变化惯性权重ω值的公式Adaptively change the size of the inertia weight ω value to meet the standard particle’s ability to inherit the current speed. Changing the inertia weight value can control the search ability of the algorithm. The formula for adaptively changing the inertia weight ω value
其中,ωstart是初始惯性权重;ωend是迭代至最大次数时的惯性权重;k是当前迭代次数;Tmax是最大迭代代数。Among them, ω start is the initial inertia weight; ω end is the inertia weight when iterating to the maximum number; k is the current iteration number; T max is the maximum iteration algebra.
利用上式可使惯性权重ω自适应非线性减小,ω值在早期迭代过程中保持较大的值,以保证粒子具有较大搜索范围,ω值在迭代后期变化较小,进一步缩减粒子的搜索范围,均衡了算法全局和局部搜索能力。Using the above formula, the inertia weight ω can be adaptively reduced nonlinearly. The value of ω keeps a larger value in the early iteration process to ensure that the particles have a larger search range. The value of ω changes less in the later iterations, further reducing the The search range balances the global and local search capabilities of the algorithm.
通过仿真分析和实验,可以看到交叉PSO算法(HPSO)引入了交叉机制这一概念,相当于遗传算法中的遗传交叉,可以加快粒子的寻优过程,自适应变化惯性权重与交叉PSO算法的结合等同于同时拥有了粒子群算法和遗传算法的优点,仿真结果也证明这种改进型粒子群算法可以更快的收敛于最优解。Through simulation analysis and experiments, it can be seen that the crossover PSO algorithm (HPSO) introduces the concept of crossover mechanism, which is equivalent to the genetic crossover in the genetic algorithm, which can speed up the particle optimization process, adaptively change the inertia weight and the crossover PSO algorithm. Combining the advantages of particle swarm optimization and genetic algorithm at the same time, the simulation results also prove that this improved particle swarm algorithm can converge to the optimal solution faster.
本发明提供的基于粒子群算法的阵列波导器件对准耦合方法,用于阵列波导器件自动对准耦合的方法基于粒子群算法——数学优化寻找峰值位置,采用有限测量光功率值并进行优化迭代,进而找到实际峰值位置。本发明基于粒子群算法只需通过较少的迭代次数即可找到峰值点,可大幅提高搜索效率。本发明在寻优过程中不涉及人为权限设定,解决了现行自动对准耦合的不足之处,具有更快的收敛速度,更强大的局部搜索能力以及更高的搜索精度,有效提高了实现波导芯片与阵列光纤的低损耗快速对准耦合的自动化程度和工作效率。The alignment and coupling method of arrayed waveguide devices based on particle swarm algorithm provided by the present invention, the method for automatic alignment and coupling of arrayed waveguide devices is based on particle swarm algorithm-mathematical optimization to find the peak position, using limited measurement of optical power values and performing optimization iterations , and then find the actual peak position. The present invention is based on the particle swarm algorithm to find the peak point only through a small number of iterations, which can greatly improve the search efficiency. The present invention does not involve artificial authority setting in the optimization process, solves the shortcomings of the existing automatic alignment coupling, has faster convergence speed, stronger local search ability and higher search accuracy, and effectively improves the realization of The degree of automation and work efficiency of low-loss fast alignment coupling of waveguide chip and array fiber.
当然,本发明还可有其他实施方案,在不背离本发明精神及其实质的情况下,所属技术领域的技术人员当可根据本发明作出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明的权利要求的保护范围。Of course, the present invention also has other embodiments, without departing from the spirit and essence of the present invention, those skilled in the art can make various corresponding changes and deformations according to the present invention, but these corresponding changes and All deformations should belong to the protection scope of the claims of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310467810.3A CN103513350B (en) | 2013-10-09 | 2013-10-09 | A kind of array waveguide device based on particle cluster algorithm aims at coupling process and device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310467810.3A CN103513350B (en) | 2013-10-09 | 2013-10-09 | A kind of array waveguide device based on particle cluster algorithm aims at coupling process and device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103513350A CN103513350A (en) | 2014-01-15 |
CN103513350B true CN103513350B (en) | 2016-01-06 |
Family
ID=49896348
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310467810.3A Active CN103513350B (en) | 2013-10-09 | 2013-10-09 | A kind of array waveguide device based on particle cluster algorithm aims at coupling process and device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103513350B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104122633B (en) * | 2014-07-10 | 2015-09-23 | 中南大学 | A kind of chip of light waveguide and fiber angle automatic alignment apparatus and method |
CN104614718B (en) * | 2015-01-08 | 2017-02-22 | 南京大学 | Method for decomposing laser radar waveform data based on particle swarm optimization |
CN105093441B (en) * | 2015-09-10 | 2017-12-05 | 江苏亨通光网科技有限公司 | A kind of USB interface active optical cable and its producing device and preparation method, method of testing |
CN108398781B (en) * | 2018-03-12 | 2021-05-04 | 北京理工大学 | Method for simulating coherent synthesis energy distribution of fiber laser free space |
CN109633603B (en) * | 2018-12-04 | 2020-08-25 | 国科光芯(海宁)科技股份有限公司 | Coupling device and method for phase-control optical waveguide chip and input optical fiber |
CN113820802B (en) * | 2021-11-22 | 2022-03-29 | 西安奇芯光电科技有限公司 | CWDM coupling device |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101726806A (en) * | 2008-10-15 | 2010-06-09 | 中国科学院半导体研究所 | Automatic control system for aligning and coupling optical fiber and electrooptical modulator |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2261953A3 (en) * | 2001-05-17 | 2011-05-25 | Optronx, Inc. | Optical waveguide devices with additional polysilicon layers |
US8326099B2 (en) * | 2008-07-14 | 2012-12-04 | Chiral Photonics, Inc. | Optical fiber coupler array |
-
2013
- 2013-10-09 CN CN201310467810.3A patent/CN103513350B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101726806A (en) * | 2008-10-15 | 2010-06-09 | 中国科学院半导体研究所 | Automatic control system for aligning and coupling optical fiber and electrooptical modulator |
Non-Patent Citations (1)
Title |
---|
基于遗传算法的集成光子器件对准;李雅娟;《光子学报》;20091025;第38卷(第10期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN103513350A (en) | 2014-01-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103513350B (en) | A kind of array waveguide device based on particle cluster algorithm aims at coupling process and device | |
CN103513335B (en) | A kind of array waveguide device alignment methods and device based on coupling model | |
CN111865387A (en) | Design method of beamforming for smart reflector-assisted wireless communication system | |
CN111273410B (en) | Space light-optical fiber coupling automatic alignment system and control method thereof | |
CN106646758B (en) | A single-mode fiber adaptive coupling system based on two-dimensional scanning of fiber end face | |
CN102663514A (en) | Constrained optimization evolution algorithm based on feasible equilibrium mechanism | |
CN102830474B (en) | Automatic coupling device from optical fiber laser device to single mode optical fiber | |
Wei et al. | Accurate visible light positioning technique using extreme learning machine and meta-heuristic algorithm | |
CN110598834A (en) | Binocular vision detection system structure optimization method | |
CN116307648B (en) | Inspection task allocation and traversal optimization method and system for multiple inspection robots in substations | |
CN108021534A (en) | Permanent magnet spherical motor method for detecting position based on 3-D magnetic field sensors | |
CN102170312B (en) | Self-adaptive polarization mode optical dispersion compensation method | |
Zhang et al. | Improved particle swarm optimization with less manual intervention for photonic inverse design | |
CN106209237B (en) | Optic communication automatic tracking system and optic communication automatic tracking method | |
CN104836620A (en) | Optical waveguide array-optical fiber array automatic butt-coupling parallel index optimization method | |
CN105319655B (en) | Automatic coupling method and system for optical integrated chip and optical fiber assembly | |
CN203786388U (en) | Free space optical communication adjustable optical attenuation device | |
CN208401849U (en) | Polarization Coding quantum communications terminal chip | |
CN205427237U (en) | PLC optical divider aims at encapsulation system | |
CN205643771U (en) | Optic fibre coupled system that can keep light polarization attitude | |
CN112329209B (en) | A design method for on-chip photonic devices based on appearance contour control | |
CN109117575A (en) | The structural parameter determining method and equipment of surface plasmon waveguide system | |
CN208162847U (en) | Laser microscopic carvings reticulate pattern intelligent digital focusing system | |
CN207601362U (en) | A kind of space optical coupling device | |
CN114301523A (en) | Vortex light beam pointing error detection and correction device based on spatial self-filtering |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20211102 Address after: 245000 No. 66 Cuiwei North Road, Huangshan Jiulong Low Carbon Economic Park, Huangshan City, Anhui Province Patentee after: HUANGSHAN BOLANTE SEMICONDUCTOR TECHNOLOGY CO.,LTD. Address before: Yuelu District City, Hunan province 410083 Changsha Lushan Road No. 932 Patentee before: CENTRAL SOUTH University |
|
TR01 | Transfer of patent right |