CN103499612B - A kind of combination geophysical prospecting method for embankment project Hidden Danger Detection - Google Patents
A kind of combination geophysical prospecting method for embankment project Hidden Danger Detection Download PDFInfo
- Publication number
- CN103499612B CN103499612B CN201310480499.6A CN201310480499A CN103499612B CN 103499612 B CN103499612 B CN 103499612B CN 201310480499 A CN201310480499 A CN 201310480499A CN 103499612 B CN103499612 B CN 103499612B
- Authority
- CN
- China
- Prior art keywords
- conductivity
- hidden danger
- ground
- penetrating radar
- instrument
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 22
- 238000000034 method Methods 0.000 title claims abstract description 20
- 230000000149 penetrating effect Effects 0.000 claims abstract description 19
- 230000002159 abnormal effect Effects 0.000 claims abstract description 4
- 230000008595 infiltration Effects 0.000 claims abstract description 4
- 238000001764 infiltration Methods 0.000 claims abstract description 4
- 239000000463 material Substances 0.000 claims abstract description 4
- 238000012544 monitoring process Methods 0.000 claims abstract description 4
- 230000007547 defect Effects 0.000 abstract description 4
- 201000010099 disease Diseases 0.000 abstract description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 abstract description 3
- 238000005516 engineering process Methods 0.000 description 4
- 230000002547 anomalous effect Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 230000006854 communication Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 238000011202 physical detection method Methods 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
Landscapes
- Geophysics And Detection Of Objects (AREA)
Abstract
The invention discloses a kind of combination geophysical prospecting method for embankment project Hidden Danger Detection, first be detection spacing with 10m, ground conductivity instrument is utilized to detect the conductivity of sea wall levee body 7.5m, 15m degree of depth, first time process is carried out to Monitoring Data, Primary Location is carried out to conductivity value abnormity point corresponding region; In conductivity anomaly region, utilize ground penetrating radar to carry out precise image collection to the geological condition of levee body, and carry out image procossing; Conductivity value abnormal area underground according to ground penetrating radar reflection gathers image, analyzes the reason that may cause conductivity anomaly, finds out and affects the exotic matter layer of levee body infiltration coefficient sudden change and the distribution of local anomaly material; The dyke that there is geological security hidden danger is rectified and improved.The present invention utilizes ground conductivity instrument and ground penetrating radar to combinationally use, and excavates instrument advantage to greatest extent, makes up respective defect, to can fast and effeciently detect hidden danger and seepage, carries out disease danger with a definite target in view and administers.
Description
Technical field
The present invention relates to embankment project Hidden Danger Detection field, specifically a kind of combination geophysical prospecting method for embankment project Hidden Danger Detection.
Background technology
Traditional Hidden Danger Detection method such as geological drilling, artificial detection etc. can not determine hidden danger Present site fast, accurately, and probing has locality and destructiveness.Along with the development of technology, more achievement in research is obtained based on the lossless detection of physical detecting method at the Hidden Danger Detection technical elements of dyke building over nearly 20 years, but due to the complicacy of engineering structure and the otherness of Environmental effect, single surveying instrument is difficult to be applicable to dyke building Hidden Danger Detection completely, and use different instrument to detect simultaneously, mutually check and supplement, effectively can improve accuracy and the reliability of interpretation, be the Rational Development direction of dyke defect detecting.Although the physical detection methods of embankment project safety is compared with dyke defect detecting, not essential distinction in principle, due to engineering itself and the singularity of environmental baseline, measuring technology and data interpretation judgement aspect difference all to some extent at the scene.
Summary of the invention
In order to solve the above-mentioned technical matters existed in prior art, the invention provides a kind of combination geophysical prospecting method for embankment project Hidden Danger Detection, comprising the steps:
(1) first with 10m be detection spacing, ground conductivity instrument is utilized to detect the conductivity of sea wall levee body 7.5m, 15m degree of depth, first time process is carried out to Monitoring Data, analyzes the Variation Features of conductivity value, Primary Location is carried out to conductivity value abnormity point corresponding region;
(2) in conductivity anomaly region, utilize ground penetrating radar to carry out precise image collection (in measuring process, the concrete condition for different dyke building selects detection range) to the geological condition of levee body, and carry out image procossing;
(3) gather image according to the conductivity value abnormal area underground of ground penetrating radar reflection, analyze the reason that may cause conductivity anomaly, find out and affect the exotic matter layer of levee body infiltration coefficient sudden change and the distribution of local anomaly material;
(4) dyke that there is geological security hidden danger is rectified and improved.
Further, described ground conductivity instrument is EM34-3 type ground conductivity instrument.
Further, described ground penetrating radar is RIS ground penetrating radar.
The present invention utilizes ground conductivity instrument and ground penetrating radar to combinationally use, and excavates instrument advantage to greatest extent, makes up respective defect, to can fast and effeciently detect hidden danger and seepage, carries out disease danger with a definite target in view and administers.
Accompanying drawing explanation
Fig. 1 is the combination physical prospecting method flow diagram for embankment project Hidden Danger Detection of the present invention.
Embodiment
Below in conjunction with accompanying drawing, the invention will be further described.
Ground conductivity measurement is based on the conductivity difference of underground medium, by studying the method for telemetering of the room and time distribution characteristics solving practical problems of electromagnetic field.It belongs to a kind of Low Frequency Electromagnetic Methods, its frequency of operation between audio frequency (
n× 10 ~
n× 10
4hZ) in scope.Dyke produces hidden danger (as loose in soft layer, the soil body, water stream channel etc.), or the media type of levee body and structure, factor of porosity, packing, water percentage etc. change, the electrical conductive structure of underground medium can be caused to change, therefore can be detected the spatio-temporal distribution feature of conductivity by ground conductivity instrument fast, judge the nonuniformity of levee body by this.The ground conductivity instrument that the present invention adopts, be made up of a few part of transmitter, receiver, transmitting coil and receiving coil, in use, transmitting coil and receiving coil remain in same plane, by the mode be vertically electrically excited or horizontal magnetic excites, the ground conductivity value of 7.5m, 15m, 30m and 60m4 kind depth measurement can be detected respectively.
The ground penetrating radar (GPR) that the present invention adopts utilizes frequency to be 10
6~ 10
9the radiowave of Hz descends definitely a kind of geophysical prospecting technology of dielectric distribution.During ground penetrating radar work, by the downward directional transmissions electromagnetic wave of emitting antenna, reflection and transmission is produced after running into interface in pulse electromagnetic wave communication process, reflection wave is upwards propagated and is arrived ground and be received antenna and receive, whole process is by host computer control, and the time varying signal received by receiving antenna carries out record by main frame.In Analysis of Radar record with or without reflected signal just known underground with or without electromagnet interference or anomalous body, according to the degree of depth that can calculate electromagnet interference or anomalous body hourage of reflected signal.
In the Hidden Danger Detection work of embankment project, ground conductivity instrument and ground penetrating radar combinationally use by the present invention, to can fast and effeciently detect hidden danger and seepage, carry out disease danger with a definite target in view and administer.Comprising the steps: of the method
1, be first detection spacing with 10m, utilize ground conductivity instrument to detect the conductivity of sea wall levee body 7.5m, 15m degree of depth, first time process is carried out to Monitoring Data, analyzes the Variation Features of conductivity value, Primary Location is carried out to conductivity value abnormity point corresponding region;
2, in conductivity anomaly region, utilize ground penetrating radar to carry out precise image collection (in measuring process, the concrete condition for different dyke building selects detection range) to the geological condition of levee body, and carry out image procossing;
3, gather image according to the conductivity value abnormal area underground of ground penetrating radar reflection, analyze the reason that may cause conductivity anomaly, find out and affect the exotic matter layer of levee body infiltration coefficient sudden change and the distribution of local anomaly material;
4, the dyke that there is geological security hidden danger is rectified and improved.
Described ground conductivity instrument is preferably EM34-3 type ground conductivity instrument, and described ground penetrating radar is RIS ground penetrating radar.
Claims (3)
1., for a combination geophysical prospecting method for embankment project Hidden Danger Detection, comprise the steps:
(1) first with 10m be detection spacing, ground conductivity instrument is utilized to detect the conductivity of sea wall levee body 7.5m, 15m degree of depth, first time process is carried out to Monitoring Data, analyzes the Variation Features of conductivity value, Primary Location is carried out to conductivity value abnormity point corresponding region;
(2) in conductivity anomaly region, utilize ground penetrating radar to carry out precise image collection to the geological condition of levee body, and carry out image procossing;
(3) gather image according to the conductivity value abnormal area underground of ground penetrating radar reflection, analyze the reason that may cause conductivity anomaly, find out and affect the exotic matter layer of levee body infiltration coefficient sudden change and the distribution of local anomaly material.
2., as claimed in claim 1 for the combination geophysical prospecting method of embankment project Hidden Danger Detection, it is characterized in that: described ground conductivity instrument is EM34-3 type ground conductivity instrument.
3., as claimed in claim 1 for the combination geophysical prospecting method of embankment project Hidden Danger Detection, it is characterized in that: described ground penetrating radar is RIS ground penetrating radar.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310480499.6A CN103499612B (en) | 2013-10-14 | 2013-10-14 | A kind of combination geophysical prospecting method for embankment project Hidden Danger Detection |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310480499.6A CN103499612B (en) | 2013-10-14 | 2013-10-14 | A kind of combination geophysical prospecting method for embankment project Hidden Danger Detection |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103499612A CN103499612A (en) | 2014-01-08 |
CN103499612B true CN103499612B (en) | 2015-12-09 |
Family
ID=49864840
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310480499.6A Expired - Fee Related CN103499612B (en) | 2013-10-14 | 2013-10-14 | A kind of combination geophysical prospecting method for embankment project Hidden Danger Detection |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103499612B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106770478B (en) * | 2016-11-28 | 2019-04-16 | 青岛理工大学 | Nondestructive detection method for dam stability |
CN107544097B (en) * | 2017-06-27 | 2019-02-01 | 上海市环境科学研究院 | A kind of soil pollution accurate positioning and accurate evaluation method based on geophysical probing technique |
CN112327375B (en) * | 2020-11-06 | 2021-11-02 | 河海大学 | An anti-interference air-ground unmanned aerial vehicle electromagnetic exploration method for seepage channel of dam dam |
CN113703058A (en) * | 2021-09-02 | 2021-11-26 | 天津市勘察设计院集团有限公司 | Method for detecting underground obstacle by utilizing apparent conductivity and relative dielectric constant |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4583095A (en) * | 1983-08-22 | 1986-04-15 | Glen Peterson | Radar seismograph improvement |
US7675289B1 (en) * | 2009-07-04 | 2010-03-09 | Stolar, Inc. | Underground anomalies detection vehicle and trailer |
EP2244101A1 (en) * | 2008-01-04 | 2010-10-27 | Pontificia Universidad Catolica de Chile | System and method for detecting, locating and identifying objects located above ground or below ground in a pre-referenced area of interest |
CN203149134U (en) * | 2013-04-12 | 2013-08-21 | 黑龙江科技学院 | Ground penetrating radar for geological exploration |
-
2013
- 2013-10-14 CN CN201310480499.6A patent/CN103499612B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4583095A (en) * | 1983-08-22 | 1986-04-15 | Glen Peterson | Radar seismograph improvement |
EP2244101A1 (en) * | 2008-01-04 | 2010-10-27 | Pontificia Universidad Catolica de Chile | System and method for detecting, locating and identifying objects located above ground or below ground in a pre-referenced area of interest |
US7675289B1 (en) * | 2009-07-04 | 2010-03-09 | Stolar, Inc. | Underground anomalies detection vehicle and trailer |
CN203149134U (en) * | 2013-04-12 | 2013-08-21 | 黑龙江科技学院 | Ground penetrating radar for geological exploration |
Non-Patent Citations (3)
Title |
---|
坝体渗透探测的雷达和电阻率综合法;葛双成;《工程勘察》;20051031(第5期);第69~72页 * |
综合物探技术在堤坝隐患探测中的应用;葛双成等;《地球物理学进展》;20060331;第21卷(第1期);第263~272页 * |
综合物探方法在隧道超前地质预报中的应用;郭有劲;《中国优秀硕士学位论文全文数据库 基础科学辑》;20100815(第8期);第23~60页 * |
Also Published As
Publication number | Publication date |
---|---|
CN103499612A (en) | 2014-01-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9638779B2 (en) | Equipment and method forecasting tunnel water inrush using magnetic resonance differential | |
CN106772644B (en) | mine transient electromagnetic three-component detection method | |
WO2020078003A1 (en) | Time-domain transient electromagnetic wave well logging far-boundary detection method | |
US20160223703A1 (en) | Borehole while drilling electromagnetic tomography advanced detection apparatus and method | |
CN106054258A (en) | Magnetic source ground-tunnel transient electromagnetic advanced detection method | |
CN104614774B (en) | A kind of transient electromagnetic detecting methods, devices and systems | |
CN112415615B (en) | Time-frequency electromagnetic fracturing monitoring system and monitoring method based on distributed optical fiber sensing | |
CN113281812B (en) | A transient electromagnetic detection method for small pit goaf | |
CN105589069B (en) | A kind of mining drilling radar detecting water by pilot hole predictor and method | |
CN103499612B (en) | A kind of combination geophysical prospecting method for embankment project Hidden Danger Detection | |
EP1982216A2 (en) | Electromagnetic surveying | |
CN103499841B (en) | Hole, lane transient electromagnetic device and measuring method | |
CN105116453A (en) | Transient electromagnetic exploration method and device for natural gas hydrate in permafrost zone | |
CN107861159A (en) | Double Electric Dipole ground well transient electromagnetic detecting methods | |
CN103207412A (en) | Method for detecting solution leaching and groundwater pollution scope of acid in-situ leaching of uranium | |
EP3749988A1 (en) | Mapping fracture length using downhole ground penetrating radar | |
CN106032748A (en) | Detection method for hydrofracture crack extension rule based on borehole transient electromagnetic technology | |
CN104459807A (en) | One-sending and multi-receiving radio wave tunnel penetration field strength measuring system and method between double roadways | |
CN104236488A (en) | Mark belt real-time depth-measuring system based on radar detection technology | |
CN107884834A (en) | Homologous more transient electromagnetic detecting methods | |
CN113703058A (en) | Method for detecting underground obstacle by utilizing apparent conductivity and relative dielectric constant | |
CN204855829U (en) | Data acquisition of electromagnetic survey frequently device during ground - well | |
Simi et al. | The NeTTUN project: Design of a GPR antenna for a TBM | |
CN114839671A (en) | Method for finely identifying coal measure stratum electrical interface by ground and ground roadway transient electromagnetic method | |
CN104793251B (en) | Testing method for far-mid distance protection layer mining protection range |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20151209 Termination date: 20161014 |