[go: up one dir, main page]

CN103499354A - Neyman-Pearson criterion-based zero speed detection method - Google Patents

Neyman-Pearson criterion-based zero speed detection method Download PDF

Info

Publication number
CN103499354A
CN103499354A CN201310449336.1A CN201310449336A CN103499354A CN 103499354 A CN103499354 A CN 103499354A CN 201310449336 A CN201310449336 A CN 201310449336A CN 103499354 A CN103499354 A CN 103499354A
Authority
CN
China
Prior art keywords
omega
theta
zero
unknown
measurement unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310449336.1A
Other languages
Chinese (zh)
Other versions
CN103499354B (en
Inventor
于飞
于春阳
兰海钰
刘凤
周广涛
赵博
李佳璇
郭妍
姜鑫
林萌萌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Engineering University
Original Assignee
Harbin Engineering University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Engineering University filed Critical Harbin Engineering University
Priority to CN201310449336.1A priority Critical patent/CN103499354B/en
Publication of CN103499354A publication Critical patent/CN103499354A/en
Application granted granted Critical
Publication of CN103499354B publication Critical patent/CN103499354B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
    • G01C25/005Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass initial alignment, calibration or starting-up of inertial devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Navigation (AREA)

Abstract

本发明公开了一种基于内曼—皮尔逊准则的零速检测方法,该方法包括:手持掌上电脑实时接收单兵导航系统中脚步运动时传感器输出的量测信息;根据系统采样频率和数据传输速率确定窗口函数N;利用双假设检验理论将零速检测问题转化为模型化数学问题,并求得内曼—皮尔逊准则下的零速检测不等式;确定微型惯性测量单元传感器输出信号及掌上电脑接收信号的数学模型;求出微型惯性测量单元传感器输出信号的联合概率密度函数;利用未知信号元素的极大似然估计值取代零速检测不等式中未知元素得到广泛概率似然比不等式;将微型惯性测量单元输出数据代入广泛概率似然比不等式中,进而检测零速状态。本发明使检测方法问题数学化、模型化,提高了检测精度。

Figure 201310449336

The invention discloses a zero-speed detection method based on the Neiman-Pearson criterion. The method includes: receiving the measurement information output by the sensor when the footsteps are moving in the individual soldier navigation system in real time with a hand-held palm computer; according to the system sampling frequency and data transmission Determine the window function N of the speed; use the double hypothesis test theory to transform the zero-speed detection problem into a modeled mathematical problem, and obtain the zero-speed detection inequality under the Neiman-Pearson criterion; determine the output signal of the miniature inertial measurement unit sensor and the handheld computer The mathematical model of the received signal; obtain the joint probability density function of the output signal of the miniature inertial measurement unit sensor; use the maximum likelihood estimation value of the unknown signal element to replace the unknown element in the zero-speed detection inequality to obtain the extensive probability likelihood ratio inequality; the miniature The inertial measurement unit output data is substituted into the extensive probability-likelihood ratio inequality to detect the zero-velocity condition. The invention makes the problem of the detection method mathematized and modeled, and improves the detection accuracy.

Figure 201310449336

Description

一种基于内曼-皮尔逊准则的零速检测方法A Zero Speed Detection Method Based on Neyman-Pearson Criterion

技术领域technical field

本发明属于单兵自主导航系统零速检测技术领域,尤其涉及一种基于内曼-皮尔逊准则的零速检测方法。The invention belongs to the technical field of zero-speed detection of an individual soldier's autonomous navigation system, and in particular relates to a zero-speed detection method based on the Neyman-Pearson criterion.

背景技术Background technique

基于微型惯性测量单元(Micro Inertial Measurement Unit)惯性解算的单兵导航自主定位装置工作时,微机械系统(Micro-Electro-Mechanical System)惯性器件误差发散严重,由惯性解算算法得到的单兵航位推算结果验证了在导航阶段,若微机械惯性器件误差不能得到有效补偿,位置误差会以时间三次方的趋势发散,系统最终将丧失导航功能,因此,微机械系统惯性解算算法应用于单兵导航系统的最大难点在于设计有效的误差修正算法,零速校正是一种有效的误差补偿算法,利用正常人步行时,每一只脚都存在步态静止和步态运动(两种运动持续时间都在0.5秒左右)两种运动方式,将基于微惯性测量单元的单兵导航系统固联在步行者鞋上,称之为“导航鞋”,当脚步触地时,惯性解算得到的速度理论值应为零,但通过惯性解算却能够得到速度分量,此速度分量即由微机械惯性测量器件误差随时间累计造成的速度误差,将此速度分量输入到零速校正误差补偿器对惯性器件测量结果和导航输出进行校正;When the individual navigation autonomous positioning device based on the inertial calculation of the Micro Inertial Measurement Unit is working, the error of the inertial device of the Micro-Electro-Mechanical System (Micro-Electro-Mechanical System) diverges seriously. The results of dead reckoning have verified that in the navigation stage, if the error of the MEMS inertial device cannot be effectively compensated, the position error will diverge with the trend of the cube of time, and the system will eventually lose its navigation function. Therefore, the inertial calculation algorithm of the MEMS is applied to The biggest difficulty of the individual navigation system is to design an effective error correction algorithm. Zero-speed correction is an effective error compensation algorithm. When a normal person walks, each foot has both gait static and gait motion (two kinds of motion) The duration is about 0.5 seconds) Two movement modes, the individual navigation system based on the micro inertial measurement unit is fixedly connected to the walker's shoes, which are called "navigation shoes". When the foot touches the ground, the inertial solution is obtained The theoretical value of the velocity should be zero, but the velocity component can be obtained through the inertial solution. This velocity component is the velocity error caused by the accumulation of the error of the micromechanical inertial measurement device over time. This velocity component is input to the zero-speed correction error compensator Correction of inertial device measurements and navigation output;

然而,现有的采用零速校正作为惯性解算误差修正算法的单兵导航系统大都存在零速检测不准确的问题,零速检测是触发零速校正的前提,以往的零速检测方案主要是利用三轴加速度计或三轴陀螺的输出在设定的时间内小于某个阈值,则判定为零速区间,其阈值的选取缺少理论研究。实际测量中,以往的检测方法只能检测出正常行走时的零速区间,跑步时零速区间的检测相对困难,且已有的零速检测方法都是特定方式下的,并不是适用于所有单兵运动状态,如运动加速度方差检测方案并不适用于匀加速直线运动,加速度幅值检测方案不可以用于检测单脚绕某一轴线旋转的情况。However, most of the existing individual navigation systems that use zero-speed correction as an inertial solution error correction algorithm have the problem of inaccurate zero-speed detection. Zero-speed detection is the prerequisite for triggering zero-speed correction. The previous zero-speed detection schemes mainly If the output of the three-axis accelerometer or three-axis gyroscope is less than a certain threshold within the set time, it is judged to be in the zero-speed interval, and the selection of the threshold lacks theoretical research. In actual measurement, the previous detection methods can only detect the zero-speed interval during normal walking, and the detection of the zero-speed interval during running is relatively difficult, and the existing zero-speed detection methods are all in a specific way, not suitable for all For the individual soldier's movement state, for example, the motion acceleration variance detection scheme is not suitable for uniformly accelerated linear motion, and the acceleration amplitude detection scheme cannot be used to detect the rotation of a single foot around a certain axis.

总体来说现有的零速检测的方法的稳定性差,致使零速校正后导航精度仍旧较低,难以满足单兵导航精确可靠的要求。Generally speaking, the existing zero-speed detection method has poor stability, resulting in low navigation accuracy after zero-speed correction, which is difficult to meet the requirements of accurate and reliable individual navigation.

发明内容Contents of the invention

本发明实施例的目的在于提供一种基于内曼-皮尔逊准则的零速检测方法,旨在解决现有的零速检测方法存在的稳定性差、准确性低,致使零速校正后导航精度较低,难以满足单兵导航精确可靠的要求的问题。The purpose of the embodiments of the present invention is to provide a zero-speed detection method based on the Neiman-Pearson criterion, aiming to solve the problem of poor stability and low accuracy in the existing zero-speed detection method, which leads to poor navigation accuracy after zero-speed correction. Low, it is difficult to meet the requirements of accurate and reliable individual navigation.

本发明实施例是这样实现的,一种基于内曼-皮尔逊准则的零速检测方法,该基于内曼-皮尔逊准则的零速检测方法包括以下步骤:The embodiment of the present invention is achieved in this way, a zero-speed detection method based on the Neiman-Pearson criterion, the zero-speed detection method based on the Neiman-Pearson criterion includes the following steps:

步骤一,手持掌上电脑实时接收并存储单兵自主导航系统中脚步微型惯性测量单元输出的量测信息;Step 1, the handheld handheld computer receives and stores the measurement information output by the step miniature inertial measurement unit in the individual soldier's autonomous navigation system in real time;

步骤二:根据单兵自主导航系统中各传感器的采样频率、系统使用前微型惯性测量单元静止时间长度以及步骤一测量过程中微型惯性测量单元与掌上电脑之间数据传送速率,获得本次零速检测过程中窗口函数N的具体取值,N为整数;Step 2: According to the sampling frequency of each sensor in the individual soldier's autonomous navigation system, the static time length of the miniature inertial measurement unit before the system is used, and the data transmission rate between the miniature inertial measurement unit and the handheld computer during the measurement process of step 1, obtain the current zero speed The specific value of the window function N during the detection process, where N is an integer;

步骤三:利用步骤一采集到的微型惯性测量单元输出数据以及步骤二确定的窗口函数N,将零速检测问题转化为模型化的双假设检验问题,检测结果为假设微型惯性测量单元运动H0、微型惯性测量单元静止H1之一,利用内曼-皮尔逊定理获得零速检测判断的数学模型:已知假报警概率PFA=α时,若满足零速判断不等式为

Figure BDA0000386676830000031
则H1为真,即单兵自主导航系统零速检测结果为脚步微型惯性测量单元静止;函数L(zn)与概率比有关,对于zn的每个值,表示了H1假设概率值对H0假设概率值的比值;Step 3: Using the output data of the miniature inertial measurement unit collected in step 1 and the window function N determined in step 2, the zero-speed detection problem is transformed into a modeled double hypothesis testing problem, and the detection result is the hypothetical miniature inertial measurement unit motion H 0 , One of the static miniature inertial measurement units H 1 , using the Neiman-Pearson theorem to obtain the mathematical model of zero-speed detection and judgment: when the false alarm probability P FA = α is known, if the zero-speed judgment inequality is satisfied:
Figure BDA0000386676830000031
Then H 1 is true, that is, the zero-speed detection result of the individual soldier's autonomous navigation system is that the miniature inertial measurement unit is stationary; the function L(z n ) is related to the probability ratio, and for each value of z n , it represents the hypothetical probability value of H 1 the ratio of hypothesized probability values to H 0 ;

其中,假报警概率PFA={H1∣H0}表示微型惯性测量单元为运动状态时判断为静止状态的概率;zn={yk}n+N-1k=n为一段时间内微型惯性测量单元的测量值;γ取值由式

Figure BDA0000386676830000032
定义;p(zn;H0)、p(zn;H1)分别表示两种假设下观测数据的概率密度函数;Among them, the false alarm probability P FA ={H 1 ∣H 0 } indicates the probability that the miniature inertial measurement unit is judged to be in a static state when it is in motion; z n ={y k }n+N-1k=n is the miniature inertial measurement unit within a period of time The measured value of the inertial measurement unit; the value of γ is given by the formula
Figure BDA0000386676830000032
Definition; p(z n ;H 0 ) and p(z n ;H 1 ) respectively represent the probability density functions of the observed data under two assumptions;

步骤四:利用微型惯性测量单元传感器输出信号特点、掌上电脑接收到的信号及误差扰动信号的性质,以及公式,获得微型惯性测量单元惯性传感器输出信号的数学模型;Step 4: Utilize the characteristics of the output signal of the miniature inertial measurement unit sensor, the nature of the signal received by the handheld computer and the error disturbance signal, and the formula to obtain the mathematical model of the output signal of the miniature inertial measurement unit inertial sensor;

步骤五:利用步骤一中采集到的单兵自主导航系统运动过程中微型惯性测量单元输出的数据、步骤四中确定的微型惯性测量单元惯性传感器输出信号的数学模型以及公式,获得传感器量测量的联合概率密度函数p(zni,Hi);Step 5: Using the data output by the miniature inertial measurement unit collected in step 1 during the movement of the individual autonomous navigation system, the mathematical model and formula of the output signal of the miniature inertial measurement unit inertial sensor determined in step 4, to obtain the sensor quantity measurement Joint probability density function p(z ni ,H i );

步骤六:利用步骤五中得到的观测信号联合概率密度函数p(zni,Hi),根据公式,获得一个含有未知元素的单兵自主导航系统零速检测广泛概率似然比测试Lg(zn);Step 6: Using the joint probability density function p(z ni ,H i ) of the observation signals obtained in step 5, according to the formula, obtain a broad probability likelihood ratio test for zero-speed detection of the individual autonomous navigation system with unknown elements L g (z n );

步骤七:利用式:Step 7: Use formula:

θθ ^^ 00 == argarg maxmax (( pp (( zz nno ;; θθ 00 ,, Hh 00 )) ))

θθ ^^ 11 == argarg maxmax (( pp (( zz nno ;; θθ 11 ,, Hh 11 )) ))

获得两种假设条件下未知信号元素的极大似然估计

Figure BDA0000386676830000043
Obtain maximum likelihood estimates of unknown signal elements under two assumptions
Figure BDA0000386676830000043

式中,

Figure BDA0000386676830000044
是在假设H1条件未知元素的极大似然估计;
Figure BDA0000386676830000045
是在假设H0条件下未知元素的极大似然估计;p(zn1,H1)表示在假设H1条件下,未知信号元素集合为θ1时微型惯性测量单元输出信息的联合概率密度函数;p(zn0,H0)表示在假设H0条件下,未知信号元素集合为θ0时微型惯性测量单元输出信息的联合概率密度函数;argmax(·)表示使括号内取最大值时未知元素集合的值;In the formula,
Figure BDA0000386676830000044
is the maximum likelihood estimate of the unknown element under the assumption of H 1 condition;
Figure BDA0000386676830000045
is the maximum likelihood estimation of unknown elements under the assumption of H 0 ; p(z n1 ,H 1 ) represents the output information of the miniature inertial measurement unit when the set of unknown signal elements is θ 1 under the assumption of H 1 Joint probability density function; p(z n0 ,H 0 ) represents the joint probability density function of the output information of the micro IMU when the set of unknown signal elements is θ 0 under the assumption of H 0 ; argmax(·) represents the The value of the unknown element set when taking the maximum value in the brackets;

pp (( zz nno ;; θθ 11 ,, Hh 11 )) == ΠΠ kk ∈∈ ΩΩ nno pp (( ythe y kk aa ;; θθ 11 ,, Hh 11 )) pp (( ythe y kk ωω ;; θθ 11 ,, Hh 11 ))

pp (( zz nno ,, θθ 00 ,, Hh 00 )) == ΠΠ kk ∈∈ ΩΩ nno pp (( ythe y kk aa ;; θθ 00 ,, Hh 00 )) pp (( ythe y kk ωω ;; θθ 00 ,, Hh 00 )) ;;

步骤八:使用步骤七求得未知信号元素的极大似然估计取代步骤六Lg(zn)中的未知信号元素集合得到不含未知元素的广泛概率似然比LG(zn);Step 8: Use Step 7 to obtain the maximum likelihood estimation of the unknown signal elements Replacing the unknown signal element set in step six L g (z n ) to obtain a broad probability likelihood ratio L G (z n ) that does not contain unknown elements;

步骤九:利用步骤八中获得的LG(zn)以及不等式,确定单兵自主导航系统零速检测结果。Step 9: Use L G (z n ) and the inequality obtained in Step 8 to determine the zero-speed detection result of the individual autonomous navigation system.

进一步,在步骤一中,任意时刻k接收到的微型惯性测量单元总输出信息:为:Further, in step 1, the total output information of the miniature inertial measurement unit received at any time k: is:

ythe y kk == ythe y kk aa ythe y kk ωω TT ;;

其中,T表示转置操作, y k ω = y k ωx y k ωy y k ωz T 为微机械系统三轴陀螺仪输出的角速率信息; y k a = y k ax y k ay y k az T 为微机械系统三轴加速度计输出的比力信息。Among them, T represents the transpose operation, the y k ω = the y k ωx the y k ωy the y k ωz T Angular rate information output by the three-axis gyroscope of the micro-mechanical system; the y k a = the y k ax the y k ay the y k az T It is the specific force information output by the MEMS triaxial accelerometer.

进一步,在步骤四中,通过公式:Further, in step 4, through the formula:

yk=sk(θ)+vk y k = s k (θ) + v k

获得微型惯性测量单元惯性传感器输出信号的数学模型;Obtain the mathematical model of the output signal of the inertial sensor of the miniature inertial measurement unit;

式中, s k ( θ ) = s k a ( θ ) s k ω ( θ ) T , v k = v k a v k ω T , s k a ( θ ) ∈ Ω 3 s k ω ( θ ) ∈ Ω 3 分别表示k时刻微型惯性测量单元测量到的比力和角速率信息,θ表示需要描述信号中未知元素的集合;

Figure BDA0000386676830000058
Figure BDA0000386676830000059
分别表示与加速度计和陀螺仪相关的噪声集合,T表示转置操作;假设噪声是独立、零均值高斯分布的,协方差矩阵为 C = E v k v k T = diag σ a 2 I 3 σ ω 2 I 3 T , 其中I3(03)表示3×3的单位(零)阵;diag[·]表示对角阵;E{·}表示求期望,
Figure BDA00003866768300000512
分别表示微机械加速度计和陀螺仪的噪声方差。In the formula, the s k ( θ ) = the s k a ( θ ) the s k ω ( θ ) T , v k = v k a v k ω T , the s k a ( θ ) ∈ Ω 3 , the s k ω ( θ ) ∈ Ω 3 respectively represent the specific force and angular rate information measured by the micro inertial measurement unit at time k, and θ represents the set of unknown elements that need to be described in the signal;
Figure BDA0000386676830000058
and
Figure BDA0000386676830000059
Represents the noise collection associated with the accelerometer and gyroscope, respectively, and T represents the transpose operation; assuming that the noise is independent and zero-mean Gaussian distribution, the covariance matrix is C = E. v k v k T = diag σ a 2 I 3 σ ω 2 I 3 T , Among them, I 3 (0 3 ) represents a 3×3 unit (zero) matrix; diag[ ] represents a diagonal matrix; E{ } represents expectation, and
Figure BDA00003866768300000512
denote the noise variance of the micromachined accelerometer and gyroscope, respectively.

进一步,在步骤五中,通过公式:Further, in step five, through the formula:

pp (( zz nno ,, θθ ii ,, Hh ii )) == ΠΠ kk ∈∈ ΩΩ nno pp (( ythe y kk ;; θθ ii ,, Hh ii ))

== ΠΠ kk ∈∈ ΩΩ nno pp (( ythe y kk aa ;; θθ ii ,, Hh ii )) pp (( ythe y kk ωω ;; θθ ii ,, Hh ii ))

获得传感器量测量的联合概率密度函数p(zni,Hi);Obtain the joint probability density function p(z ni ,H i ) of the sensor quantity measurement;

其中,

Figure BDA00003866768300000514
i=0,1;θi表示在假设Hi条件下未知信号元素集合,Π表示连乘;p(zni,Hi)表示在假设Hi条件下未知信号元素集合为θi时单兵自主导航系统输出信号的联合概率密度函数;
Figure BDA0000386676830000061
表示k时刻,在假设Hi条件下未知信号元素集合为θi时微机械加速度计输出概率密度函数;
Figure BDA0000386676830000062
表示k时刻,在假设Hi条件下未知信号元素集合为θi时微机械陀螺仪输出的概率密度函数;in,
Figure BDA00003866768300000514
i=0, 1; θ i represents the set of unknown signal elements under the assumption of H i , and Π represents the multiplication; p(z ni ,H i ) represents the set of unknown signal elements under the assumption of H i as θ i The joint probability density function of the output signal of the individual autonomous navigation system;
Figure BDA0000386676830000061
Represents the probability density function of the output probability density function of the micromachined accelerometer when the set of unknown signal elements is θ i under the assumption of H i at time k;
Figure BDA0000386676830000062
Indicates the probability density function of the output of the micromechanical gyroscope when the set of unknown signal elements is θ i at time k under the assumption that H i is assumed;

pp (( ythe y kk aa ;; θθ ii ,, Hh ii )) == 11 (( 22 ππ σσ aa 22 )) 33 // 22 expexp {{ -- 11 22 σσ aa 22 || || ythe y kk aa -- sthe s kk aa (( θθ ii )) || || 22 }}

pp (( ythe y kk ωω ;; θθ ii ,, Hh ii )) == 11 (( 22 ππ σσ ωω 22 )) 33 // 22 expexp {{ -- 11 22 σσ ωω 22 || || ythe y kk ωω -- sthe s kk ωω (( θθ ii )) || || 22 }}

其中,exp{.}表示e的指数函数;||.||表示求范数;σ2a、σ2ω分别表示加速度计和陀螺仪的噪声方差。Among them, exp{.} represents the exponential function of e; ||.|| represents the norm; σ2a and σ2ω represent the noise variance of the accelerometer and gyroscope, respectively.

进一步,在步骤六中,根据公式:Further, in step six, according to the formula:

LL gg (( zz nno )) == ΠΠ kk ∈∈ ΩΩ nno pp (( ythe y kk aa ;; θθ 11 ,, Hh 11 )) pp (( ythe y kk ωω ;; θθ 11 ,, Hh 11 )) ΠΠ kk ∈∈ ΩΩ nno pp (( ythe y kk aa ;; θθ 00 ,, Hh 00 )) pp (( ythe y kk ωω ;; θθ 00 ,, Hh 00 ))

获得一个含有未知元素的单兵自主导航系统零速检测广泛概率似然比测试Lg(zn);Obtain an extensive probability likelihood ratio test L g (z n ) for zero-speed detection of an individual soldier autonomous navigation system containing unknown elements;

其中,在假设H1条件信号sk(θ)完全未知,未知元素的集合为:Among them, assuming that the H 1 conditional signal s k (θ) is completely unknown, the set of unknown elements is:

θθ 00 ≡≡ {{ zz kk }} kk == nno nno ++ NN -- 11 ;;

在假设H0条件只有比力矢量的方向是未知的,未知元素的集合为:Under the condition of assuming H 0 only the direction of the force vector is unknown, the set of unknown elements is:

θ1≡gunθ 1 ≡ gu n ,

式中,un∈Ωu,Ωu={u∈R3:‖u‖=1};g为当地重力向量;where u n ∈Ω u , Ω u ={u∈R 3 :‖u‖=1}; g is the local gravity vector;

Figure BDA0000386676830000067
表示k时刻在假设H1条件下,未知信号元素集合为θ1时微机械加速度计输出信号的概率密度函数;
Figure BDA0000386676830000068
表示k时刻在假设H0条件下,未知信号元素集合为θ0时微机械加速度计输出信号的概率密度函数;
Figure BDA0000386676830000071
表示k时刻在假设H1条件下,未知信号元素集合为θ1时微机械陀螺仪输出信号的概率密度函数;
Figure BDA0000386676830000072
表示k时刻在假设H0条件下,未知信号元素集合为θ0时微机械陀螺仪输出信号的概率密度函数。
Figure BDA0000386676830000067
Represents the probability density function of the output signal of the micromachined accelerometer when the set of unknown signal elements is θ 1 under the assumption of H 1 at time k;
Figure BDA0000386676830000068
Represents the probability density function of the output signal of the micromachined accelerometer when the set of unknown signal elements is θ 0 under the assumption of H 0 at time k;
Figure BDA0000386676830000071
Represents the probability density function of the output signal of the micromechanical gyroscope when the set of unknown signal elements is θ 1 under the assumption of H 1 at time k;
Figure BDA0000386676830000072
Represents the probability density function of the output signal of the micromechanical gyroscope when the set of unknown signal elements is θ 0 under the assumption of H 0 at time k.

进一步,在步骤八中,广泛概率似然比LG(zn)表示为;Further, in step eight, the extensive probability likelihood ratio L G (z n ) is expressed as;

LL GG (( zz nno )) == pp (( zz nno ;; θθ ^^ 11 ,, Hh 11 )) pp (( zz nno ;; θθ ^^ 00 ,, Hh 00 ))

式中,

Figure BDA0000386676830000074
表示在假设H1条件下,未知信号元素集合为
Figure BDA0000386676830000075
时微型惯性测量单元输出信息的联合概率密度函数;
Figure BDA0000386676830000076
表示在假设H0条件下,未知信号元素集合为时微型惯性测量单元输出信息的联合概率密度函数。In the formula,
Figure BDA0000386676830000074
Indicates that under the assumption of H 1 , the set of unknown signal elements is
Figure BDA0000386676830000075
The joint probability density function of the output information of the miniature inertial measurement unit;
Figure BDA0000386676830000076
Indicates that under the assumption of H 0 , the set of unknown signal elements is The joint probability density function of the output information of the miniature inertial measurement unit.

进一步,在步骤九中,不等式表示为:Further, in step nine, the inequality is expressed as:

TT (( zz nno )) == 11 NN &Sigma;&Sigma; kk &Element;&Element; &Omega;&Omega; nno (( 11 &sigma;&sigma; aa 22 || || ythe y kk aa -- gg ythe y -- nno aa || || ythe y -- nno aa || || || || 22 ++ 11 &sigma;&sigma; &omega;&omega; 22 || || ythe y kk &omega;&omega; || || 22 )) << &gamma;&gamma; &prime;&prime;

若不等式成立,则单兵自主导航系统零速检测结果为静止—H1为真,否则,零速检测结果为运动—H0为真;If the inequality is established, the zero-speed detection result of the individual soldier autonomous navigation system is static—H 1 is true, otherwise, the zero-speed detection result is motion—H 0 is true;

其中, y - n a = 1 N &Sigma; k &Element; &Omega; n y k a , T ( z n ) = - 2 N ln L G ( z n ) , γ′=-(2/N)ln(γ),ln(.)表示求以e为底数的对数。in, the y - no a = 1 N &Sigma; k &Element; &Omega; no the y k a , T ( z no ) = - 2 N ln L G ( z no ) , γ'=-(2/N)ln(γ), ln(.) means to seek the logarithm taking e as the base.

本发明提供的基于内曼-皮尔逊准则的零速检测方法,通过利用内曼-皮尔逊准则,使用双假设检验和极大似然估计的方式使检测方法问题数学化、模型化。使用统计检测的理论分析检测方案,克服了传统阈值检测方案中理论性差、稳定性低的缺点,在不增加系统成本的条件下,提高了检测的精度;本发明采用假设检验等统计检测理论分析检测结果,使基于内曼-皮尔逊准则的零速检测方法适用于多种运动情况下的零速检测,克服了传统的零速检测方法在突变机动模式下准确性低的缺点。本发明方法简单,稳定性和可靠性高,提高了一种便捷检测零速的方法,有效的提高了零速校正技术的准确性。The zero-speed detection method based on the Neiman-Pearson criterion provided by the present invention uses the Neiman-Pearson criterion to mathematicize and model the detection method problem by means of double hypothesis testing and maximum likelihood estimation. The theoretical analysis and detection scheme using statistical detection overcomes the shortcomings of poor theory and low stability in the traditional threshold detection scheme, and improves the detection accuracy without increasing the system cost; the present invention adopts statistical detection theory analysis such as hypothesis testing The detection results make the zero-speed detection method based on the Neiman-Pearson criterion suitable for zero-speed detection in various sports situations, and overcome the shortcomings of the traditional zero-speed detection method in low accuracy in sudden maneuvers. The method of the invention is simple, high in stability and reliability, improves a convenient zero-speed detection method, and effectively improves the accuracy of the zero-speed correction technology.

附图说明Description of drawings

图1是本发明实施例提供的基于内曼-皮尔逊准则的零速检测方法的流程图;Fig. 1 is the flowchart of the zero-speed detection method based on Neyman-Pearson criterion provided by the embodiment of the present invention;

图2是本发明实施例提供的行人步行(30~35s)及跑步(35~38s)时Y轴陀螺输出值的示意图;Fig. 2 is a schematic diagram of the output value of the Y-axis gyro when pedestrians walk (30-35s) and run (35-38s) according to the embodiment of the present invention;

图3是本发明实施例提供的行走及跑步时不同方法零速区间检测结果比较示意图;Fig. 3 is a schematic diagram of the comparison of detection results in the zero-speed interval of different methods when walking and running provided by an embodiment of the present invention;

a:步行及跑步时真实的零速区间;b:步行及跑步时方差阈值法检测的零速区间;c:步行及跑步时本发明基于N-P准则的零速检测法检测的零速区间;a: the real zero-speed interval when walking and running; b: the zero-speed interval detected by the variance threshold method when walking and running; c: the zero-speed interval detected by the zero-speed detection method based on the N-P criterion of the present invention when walking and running;

图4是本发明实施例提供的行人慢跑(5~11s)及快跑(11~14s)时Y轴陀螺输出值的示意图;Fig. 4 is a schematic diagram of the output value of the Y-axis gyro when pedestrians are jogging (5-11s) and running fast (11-14s) according to the embodiment of the present invention;

图5是本发明实施例提供的慢跑及快跑时不同方法零速区间检测结果比较的示意图;Fig. 5 is a schematic diagram of the comparison of the zero-speed interval detection results of different methods when jogging and fast running provided by the embodiment of the present invention;

a:慢跑及快跑时真实的零速区间;b:慢跑及快跑时方差阈值法检测的零速区间;c:慢跑及快跑时本发明基于N-P准则的零速检测法检测的零速区间。a: the real zero-speed interval when jogging and fast running; b: the zero-speed interval detected by the variance threshold method during jogging and fast running; c: the zero-speed detection method based on the N-P criterion of the present invention when jogging and fast running interval.

具体实施方式Detailed ways

为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。In order to make the object, technical solution and advantages of the present invention more clear, the present invention will be further described in detail below in conjunction with the examples. It should be understood that the specific embodiments described here are only used to explain the present invention, not to limit the present invention.

图1示出了本发明提供的基于内曼-皮尔逊准则的零速检测方法流程。为了便于说明,仅仅示出了与本发明相关的部分。Fig. 1 shows the flow of the zero-speed detection method based on the Neiman-Pearson criterion provided by the present invention. For ease of illustration, only the parts relevant to the present invention are shown.

本发明实施例的基于内曼-皮尔逊准则的零速检测方法,该基于内曼-皮尔逊准则的零速检测方法包括以下步骤:The zero-speed detection method based on the Neiman-Pearson criterion of the embodiment of the present invention, the zero-speed detection method based on the Neiman-Pearson criterion comprises the following steps:

步骤一,手持掌上电脑实时接收并存储单兵自主导航系统中脚步微型惯性测量单元输出的量测信息;Step 1, the handheld handheld computer receives and stores the measurement information output by the step miniature inertial measurement unit in the individual soldier's autonomous navigation system in real time;

步骤二:根据单兵自主导航系统中各传感器的采样频率、系统使用前微型惯性测量单元静止时间长度以及步骤一测量过程中微型惯性测量单元与掌上电脑之间数据传送速率,获得本次零速检测过程中窗口函数N的具体取值,N为整数;Step 2: According to the sampling frequency of each sensor in the individual soldier's autonomous navigation system, the static time length of the miniature inertial measurement unit before the system is used, and the data transmission rate between the miniature inertial measurement unit and the handheld computer during the measurement process of step 1, obtain the current zero speed The specific value of the window function N during the detection process, where N is an integer;

步骤三:利用步骤一采集到的微型惯性测量单元输出数据以及步骤二确定的窗口函数N,将零速检测问题转化为模型化的双假设检验问题,检测结果为假设微型惯性测量单元运动H0、微型惯性测量单元静止H1之一,利用内曼-皮尔逊定理获得零速检测判断的数学模型:已知假报警概率PFA=α时,若满足零速判断不等式为

Figure BDA0000386676830000091
则H1为真,即单兵自主导航系统零速检测结果为脚步微型惯性测量单元静止;函数L(zn)与概率比有关,对于zn的每个值,表示了H1假设概率值对H0假设概率值的比值;Step 3: Using the output data of the miniature inertial measurement unit collected in step 1 and the window function N determined in step 2, the zero-speed detection problem is transformed into a modeled double hypothesis testing problem, and the detection result is the hypothetical miniature inertial measurement unit motion H 0 , One of the static miniature inertial measurement units H 1 , using the Neiman-Pearson theorem to obtain the mathematical model of zero-speed detection and judgment: when the false alarm probability P FA = α is known, if the zero-speed judgment inequality is satisfied:
Figure BDA0000386676830000091
Then H 1 is true, that is, the zero-speed detection result of the individual soldier's autonomous navigation system is that the miniature inertial measurement unit is stationary; the function L(z n ) is related to the probability ratio, and for each value of z n , it represents the hypothetical probability value of H 1 the ratio of hypothesized probability values to H 0 ;

其中,假报警概率PFA={H1∣H0}表示微型惯性测量单元为运动状态时判断为静止状态的概率;zn={yk}n+N-1k=n为一段时间内微型惯性测量单元的测量值;γ取值由式

Figure BDA0000386676830000101
定义;p(zn;H0)、p(zn;H1)分别表示两种假设下观测数据的概率密度函数;Among them, the false alarm probability P FA ={H 1 ∣H 0 } indicates the probability that the miniature inertial measurement unit is judged to be in a static state when it is in motion; z n ={y k }n+N-1k=n is the miniature inertial measurement unit within a period of time The measured value of the inertial measurement unit; the value of γ is given by the formula
Figure BDA0000386676830000101
Definition; p(z n ;H 0 ) and p(z n ;H 1 ) respectively represent the probability density functions of the observed data under two assumptions;

步骤四:利用微型惯性测量单元传感器输出信号特点、掌上电脑接收到的信号及误差扰动信号的性质,以及公式,获得微型惯性测量单元惯性传感器输出信号的数学模型;Step 4: Utilize the characteristics of the output signal of the miniature inertial measurement unit sensor, the nature of the signal received by the handheld computer and the error disturbance signal, and the formula to obtain the mathematical model of the output signal of the miniature inertial measurement unit inertial sensor;

步骤五:利用步骤一中采集到的单兵自主导航系统运动过程中微型惯性测量单元输出的数据、步骤四中确定的微型惯性测量单元惯性传感器输出信号的数学模型以及公式,获得传感器量测量的联合概率密度函数p(zni,Hi);Step 5: Using the data output by the miniature inertial measurement unit collected in step 1 during the movement of the individual autonomous navigation system, the mathematical model and formula of the output signal of the miniature inertial measurement unit inertial sensor determined in step 4, to obtain the sensor quantity measurement Joint probability density function p(z ni ,H i );

步骤六:利用步骤五中得到的观测信号联合概率密度函数Step 6: Use the joint probability density function of the observed signals obtained in step 5

p(zni,Hi),根据p(z ni ,H i ), according to

公式,获得一个含有未知元素的单兵自主导航系统零速检测广泛概率似然比测试Lg(zn);Formula, to obtain a broad probability likelihood ratio test L g (z n ) of the zero-speed detection of the individual autonomous navigation system containing unknown elements;

步骤七:利用式:Step 7: Use formula:

&theta;&theta; ^^ 00 == argarg maxmax (( pp (( zz nno ;; &theta;&theta; 00 ,, Hh 00 )) ))

&theta;&theta; ^^ 11 == argarg maxmax (( pp (( zz nno ;; &theta;&theta; 11 ,, Hh 11 )) ))

获得两种假设条件下未知信号元素的极大似然估计 Obtain maximum likelihood estimates of unknown signal elements under two assumptions

式中,是在假设H1条件未知元素的极大似然估计;

Figure BDA0000386676830000106
是在假设H0条件下未知元素的极大似然估计;p(zn1,H1)表示在假设H1条件下,未知信号元素集合为θ1时微型惯性测量单元输出信息的联合概率密度函数;p(zn0,H0)表示在假设H0条件下,未知信号元素集合为θ0时微型惯性测量单元输出信息的联合概率密度函数;argmax(·)表示使括号内取最大值时未知元素集合的值;In the formula, is the maximum likelihood estimate of the unknown element under the assumption of H 1 condition;
Figure BDA0000386676830000106
is the maximum likelihood estimation of unknown elements under the assumption of H 0 ; p(z n1 ,H 1 ) represents the output information of the miniature inertial measurement unit when the set of unknown signal elements is θ 1 under the assumption of H 1 Joint probability density function; p(z n0 ,H 0 ) represents the joint probability density function of the output information of the micro IMU when the set of unknown signal elements is θ 0 under the assumption of H 0 ; argmax(·) represents the The value of the unknown element set when taking the maximum value in the brackets;

pp (( zz nno ;; &theta;&theta; 11 ,, Hh 11 )) == &Pi;&Pi; kk &Element;&Element; &Omega;&Omega; nno pp (( ythe y kk aa ;; &theta;&theta; 11 ,, Hh 11 )) pp (( ythe y kk &omega;&omega; ;; &theta;&theta; 11 ,, Hh 11 ))

pp (( zz nno ,, &theta;&theta; 00 ,, Hh 00 )) == &Pi;&Pi; kk &Element;&Element; &Omega;&Omega; nno pp (( ythe y kk aa ;; &theta;&theta; 00 ,, Hh 00 )) pp (( ythe y kk &omega;&omega; ;; &theta;&theta; 00 ,, Hh 00 )) ;;

步骤八:使用步骤七求得未知信号元素的极大似然估计取代步骤六Lg(zn)中的未知信号元素集合得到不含未知元素的广泛概率似然比LG(zn);Step 8: Use Step 7 to obtain the maximum likelihood estimation of the unknown signal elements Replacing the unknown signal element set in step six L g (z n ) to obtain a broad probability likelihood ratio L G (z n ) that does not contain unknown elements;

步骤九:利用步骤八中获得的LG(zn)以及不等式,确定单兵自主导航系统零速检测结果。Step 9: Use L G (z n ) and the inequality obtained in Step 8 to determine the zero-speed detection result of the individual autonomous navigation system.

作为本发明实施例的一优化方案,在步骤一中,任意时刻k接收到的微型惯性测量单元总输出信息为: y k = y k a y k &omega; T ; As an optimization scheme of the embodiment of the present invention, in step 1, the total output information of the miniature inertial measurement unit received at any time k is: the y k = the y k a the y k &omega; T ;

其中,T表示转置操作, y k &omega; = y k &omega;x y k &omega;y y k &omega;z T 为微机械系统三轴陀螺仪输出的角速率信息; y k a = y k ax y k ay y k az T 为微机械系统三轴加速度计输出的比力信息。Among them, T represents the transpose operation, the y k &omega; = the y k &omega;x the y k &omega;y the y k &omega;z T Angular rate information output by the three-axis gyroscope of the micro-mechanical system; the y k a = the y k ax the y k ay the y k az T It is the specific force information output by the MEMS triaxial accelerometer.

作为本发明实施例的一优化方案,在步骤四,通过公式:As an optimization scheme of the embodiment of the present invention, in step 4, through the formula:

yk=sk(θ)+vk y k = s k (θ) + v k

获得微型惯性测量单元惯性传感器输出信号的数学模型;Obtain the mathematical model of the output signal of the inertial sensor of the miniature inertial measurement unit;

式中, s k ( &theta; ) = s k a ( &theta; ) s k &omega; ( &theta; ) T , v k = v k a v k &omega; T , s k a ( &theta; ) &Element; &Omega; 3 s k &omega; ( &theta; ) &Element; &Omega; 3 分别表示k时刻微型惯性测量单元测量到的比力和角速率,θ表示需要描述信号中未知元素的集合;

Figure BDA00003866768300001112
分别表示与加速度计和陀螺仪相关的噪声集合,T表示转置操作;假设噪声是独立、零均值高斯分布的,协方差矩阵为 C = E v k v k T = diag &sigma; a 2 I 3 &sigma; &omega; 2 I 3 T , 其中I3(03)表示3×3的单位(零)阵;diag[·]表示对角阵;E{·}表示求期望,
Figure BDA0000386676830000121
Figure BDA0000386676830000122
分别表示微机械加速度计和陀螺仪的噪声方差。In the formula, the s k ( &theta; ) = the s k a ( &theta; ) the s k &omega; ( &theta; ) T , v k = v k a v k &omega; T , the s k a ( &theta; ) &Element; &Omega; 3 the s k &omega; ( &theta; ) &Element; &Omega; 3 respectively represent the specific force and angular velocity measured by the micro inertial measurement unit at time k, and θ represents the set of unknown elements that need to be described in the signal; and
Figure BDA00003866768300001112
Represents the noise collection associated with the accelerometer and gyroscope, respectively, and T represents the transpose operation; assuming that the noise is independent and zero-mean Gaussian distribution, the covariance matrix is C = E. v k v k T = diag &sigma; a 2 I 3 &sigma; &omega; 2 I 3 T , Among them, I 3 (0 3 ) represents a 3×3 unit (zero) matrix; diag[ ] represents a diagonal matrix; E{ } represents expectation,
Figure BDA0000386676830000121
and
Figure BDA0000386676830000122
denote the noise variance of the micromachined accelerometer and gyroscope, respectively.

作为本发明实施例的一优化方案,在步骤五中,通过公式:As an optimization scheme of the embodiment of the present invention, in step 5, through the formula:

pp (( zz nno ,, &theta;&theta; ii ,, Hh ii )) == &Pi;&Pi; kk &Element;&Element; &Omega;&Omega; nno pp (( ythe y kk ;; &theta;&theta; ii ,, Hh ii ))

== &Pi;&Pi; kk &Element;&Element; &Omega;&Omega; nno pp (( ythe y kk aa ;; &theta;&theta; ii ,, Hh ii )) pp (( ythe y kk &omega;&omega; ;; &theta;&theta; ii ,, Hh ii ))

获得传感器量测量的联合概率密度函数p(zni,Hi);Obtain the joint probability density function p(z ni ,H i ) of the sensor quantity measurement;

其中,i=0,1;θi表示在假设Hi条件下未知信号元素集合,Π表示连乘;p(zni,Hi)表示在假设Hi条件下未知信号元素集合为θi时单兵自主导航系统输出信号的联合概率密度函数;

Figure BDA0000386676830000126
表示k时刻,在假设Hi条件下未知信号元素集合为θi时微机械加速度计输出信息的概率密度函数;
Figure BDA0000386676830000127
表示k时刻,在假设Hi条件下未知信号元素集合为θi时微机械陀螺仪输出信息的概率密度函数;in, i=0, 1; θ i represents the set of unknown signal elements under the assumption of H i , and Π represents the multiplication; p(z ni ,H i ) represents the set of unknown signal elements under the assumption of H i as θ i The joint probability density function of the output signal of the individual autonomous navigation system;
Figure BDA0000386676830000126
Indicates the probability density function of the output information of the micromachined accelerometer when the set of unknown signal elements is θi under the assumption of H i at time k;
Figure BDA0000386676830000127
Indicates the probability density function of the output information of the micromechanical gyroscope when the set of unknown signal elements is θ i under the assumption of H i at time k;

pp (( ythe y kk aa ;; &theta;&theta; ii ,, Hh ii )) == 11 (( 22 &pi;&pi; &sigma;&sigma; aa 22 )) 33 // 22 expexp {{ -- 11 22 &sigma;&sigma; aa 22 || || ythe y kk aa -- sthe s kk aa (( &theta;&theta; ii )) || || 22 }}

pp (( ythe y kk &omega;&omega; ;; &theta;&theta; ii ,, Hh ii )) == 11 (( 22 &pi;&pi; &sigma;&sigma; &omega;&omega; 22 )) 33 // 22 expexp {{ -- 11 22 &sigma;&sigma; &omega;&omega; 22 || || ythe y kk &omega;&omega; -- sthe s kk &omega;&omega; (( &theta;&theta; ii )) || || 22 }}

其中,exp{.}表示e的指数函数;||.||表示求范数;σ2a、σ2ω分别表示加速度计和陀螺仪的噪声方差。Among them, exp{.} represents the exponential function of e; ||.|| represents the norm; σ2a and σ2ω represent the noise variance of the accelerometer and gyroscope, respectively.

作为本发明实施例的一优化方案,在步骤六中,根据公式:As an optimization scheme of the embodiment of the present invention, in step 6, according to the formula:

LL gg (( zz nno )) == &Pi;&Pi; kk &Element;&Element; &Omega;&Omega; nno pp (( ythe y kk aa ;; &theta;&theta; 11 ,, Hh 11 )) pp (( ythe y kk &omega;&omega; ;; &theta;&theta; 11 ,, Hh 11 )) &Pi;&Pi; kk &Element;&Element; &Omega;&Omega; nno pp (( ythe y kk aa ;; &theta;&theta; 00 ,, Hh 00 )) pp (( ythe y kk &omega;&omega; ;; &theta;&theta; 00 ,, Hh 00 ))

获得一个含有未知元素的单兵自主导航系统零速检测广泛概率似然比测试Lg(zn);Obtain an extensive probability likelihood ratio test L g (z n ) for zero-speed detection of an individual soldier autonomous navigation system containing unknown elements;

其中,在假设H1条件信号sk(θ)完全未知,未知元素的集合为:Among them, assuming that the H 1 conditional signal s k (θ) is completely unknown, the set of unknown elements is:

&theta;&theta; 00 &equiv;&equiv; {{ zz kk }} kk == nno nno ++ NN -- 11 ;;

在假设H0条件只有比力矢量的方向是未知的,未知元素的集合为:Under the condition of assuming H 0 only the direction of the force vector is unknown, the set of unknown elements is:

θ1≡gunθ 1 ≡ gu n ,

式中,un∈Ωu,Ωu={u∈R3:‖u‖=1};g为当地重力向量;where u n ∈Ω u , Ω u ={u∈R 3 :‖u‖=1}; g is the local gravity vector;

Figure BDA0000386676830000132
表示k时刻在假设H1条件下,未知信号元素集合为θ1时微机械加速度计输出概率密度函数;表示k时刻在假设H0条件下,未知信号元素集合为θ0时微机械加速度计输出概率密度函数;
Figure BDA0000386676830000134
表示k时刻在假设H1条件下,未知信号元素集合为θ1时微机械陀螺仪输出的概率密度函数;
Figure BDA0000386676830000135
表示k时刻在假设H0条件下,未知信号元素集合为θ0时微机械陀螺仪输出的概率密度函数。
Figure BDA0000386676830000132
Represents the output probability density function of the micromechanical accelerometer when the set of unknown signal elements is θ 1 under the assumption of H 1 at time k; Represents the output probability density function of the micromechanical accelerometer when the set of unknown signal elements is θ 0 under the assumption of H 0 at time k;
Figure BDA0000386676830000134
Represents the probability density function of the micromechanical gyroscope output when the set of unknown signal elements is θ 1 under the assumption of H 1 at time k;
Figure BDA0000386676830000135
Represents the probability density function of the micromachined gyroscope output when the set of unknown signal elements is θ 0 under the assumption of H 0 at time k.

作为本发明实施例的一优化方案,在步骤八中,广泛概率似然比LG(zn)表示为;As an optimization scheme of the embodiment of the present invention, in step 8, the broad probability likelihood ratio L G (z n ) is expressed as;

LL GG (( zz nno )) == pp (( zz nno ;; &theta;&theta; ^^ 11 ,, Hh 11 )) pp (( zz nno ;; &theta;&theta; ^^ 00 ,, Hh 00 ))

式中,

Figure BDA0000386676830000137
表示在假设H1条件下,未知信号元素集合为时微型惯性测量单元输出信息的联合概率密度函数;
Figure BDA0000386676830000139
表示在假设H0条件下,未知信号元素集合为
Figure BDA00003866768300001310
时微型惯性测量单元输出信息的联合概率密度函数。In the formula,
Figure BDA0000386676830000137
Indicates that under the assumption of H 1 , the set of unknown signal elements is The joint probability density function of the output information of the miniature inertial measurement unit;
Figure BDA0000386676830000139
Indicates that under the assumption of H 0 , the set of unknown signal elements is
Figure BDA00003866768300001310
The joint probability density function of the output information of the miniature inertial measurement unit.

作为本发明实施例的一优化方案,在步骤九中,不等式表示为:As an optimization scheme of the embodiment of the present invention, in step 9, the inequality is expressed as:

TT (( zz nno )) == 11 NN &Sigma;&Sigma; kk &Element;&Element; &Omega;&Omega; nno (( 11 &sigma;&sigma; aa 22 || || ythe y kk aa -- gg ythe y -- nno aa || || ythe y -- nno aa || || || || 22 ++ 11 &sigma;&sigma; &omega;&omega; 22 || || ythe y kk &omega;&omega; || || 22 )) << &gamma;&gamma; &prime;&prime;

若不等式成立,则单兵自主导航系统零速检测结果为静止—H1为真,否则,零速检测结果为运动—H0为真;If the inequality is established, the zero-speed detection result of the individual soldier autonomous navigation system is static—H 1 is true, otherwise, the zero-speed detection result is motion—H 0 is true;

其中, y - n a = 1 N &Sigma; k &Element; &Omega; n y k a , T ( z n ) = - 2 N ln L G ( z n ) , γ′=-(2/N)ln(γ),ln(.)表示求以e为底数的对数。in, the y - no a = 1 N &Sigma; k &Element; &Omega; no the y k a , T ( z no ) = - 2 N ln L G ( z no ) , γ'=-(2/N)ln(γ), ln(.) means to seek the logarithm taking e as the base.

下面结合附图及具体实施例对本发明的应用原理作进一步描述。The application principle of the present invention will be further described below in conjunction with the accompanying drawings and specific embodiments.

如图1所示,本发明实施例的基于内曼-皮尔逊准则的零速检测方法包括以下步骤:As shown in Figure 1, the zero-speed detection method based on the Neyman-Pearson criterion of the embodiment of the present invention includes the following steps:

S101:手持掌上电脑实时接收并存储单兵自主导航系统中脚步微型惯性测量单元输出的量测信息;S101: The hand-held handheld computer receives and stores the measurement information output by the footstep miniature inertial measurement unit in the individual soldier's autonomous navigation system in real time;

S102:根据单兵自主导航系统中各传感器的采样频率、系统使用前微型惯性测量单元静止时间长度以及测量过程中微型惯性测量单元与掌上电脑之间数据传送速率,获得本次零速检测过程中窗口函数N的具体取值;S102: According to the sampling frequency of each sensor in the individual soldier's autonomous navigation system, the static time length of the miniature inertial measurement unit before the system is used, and the data transmission rate between the miniature inertial measurement unit and the handheld computer during the measurement process, obtain the zero-speed detection process. The specific value of the window function N;

S103:利用采集到的微型惯性测量单元输出数据以及窗口函数N,将零速检测问题转化为模型化的双假设检验问题;S103: Using the collected output data of the micro inertial measurement unit and the window function N, transform the zero-speed detection problem into a modeled double hypothesis testing problem;

S104:利用微型惯性测量单元传感器输出信号特点、掌上电脑接收到的信号及其误差扰动信号的性质,以及公式,获得微型惯性测量单元惯性传感器输出信号的数学模型;S104: Using the characteristics of the output signal of the miniature inertial measurement unit sensor, the nature of the signal received by the handheld computer and its error disturbance signal, and the formula, to obtain the mathematical model of the output signal of the miniature inertial measurement unit inertial sensor;

S105:利用采集到的单兵自主导航系统运动过程中微型惯性测量单元输出的数据、确定的微型惯性测量单元惯性传感器输出信号的数学模型以及公式,获得传感器量测量的联合概率密度函数;S105: Using the collected data output by the miniature inertial measurement unit during the movement of the individual soldier autonomous navigation system, the determined mathematical model and formula of the output signal of the miniature inertial measurement unit inertial sensor, to obtain a joint probability density function of sensor quantity measurement;

S106:利用得到的观测信号联合概率密度函数,根据公式,获得一个含有未知元素的单兵自主导航系统零速检测广泛概率似然比测试;S106: Utilize the observed signal joint probability density function obtained, according to the formula, obtain a zero-velocity detection extensive probability likelihood ratio test of the individual soldier autonomous navigation system containing unknown elements;

S107:利用公式,获得两种假设条件下未知信号元素的极大似然估计;S107: Using a formula to obtain maximum likelihood estimates of unknown signal elements under two assumptions;

S108:使用:求得未知信号元素的极大似然估计,取代广泛概率似然比测试中的未知信号元素集合得到不含未知元素的广泛概率似然比;S108: use: obtain the maximum likelihood estimate of the unknown signal element, replace the unknown signal element set in the extensive probability likelihood ratio test to obtain the extensive probability likelihood ratio without unknown elements;

S109:利用获得的广泛概率似然比以及不等式,确定单兵自主导航系统零速检测结果;S109: Using the obtained extensive probability likelihood ratio and inequality, determine the zero-speed detection result of the individual autonomous navigation system;

本发明的具体步骤为:Concrete steps of the present invention are:

步骤一:手持掌上电脑实时接收并存储单兵自主导航系统中脚步微型惯性测量单元输出的量测信息,任意时刻k接收到的微型惯性测量单元总输出信息为 y k = y k a y k &omega; T ; Step 1: The hand-held handheld computer receives and stores the measurement information output by the miniature inertial measurement unit in the individual soldier's autonomous navigation system in real time. The total output information of the miniature inertial measurement unit received by k at any time is the y k = the y k a the y k &omega; T ;

其中,T表示转置操作, y k &omega; = y k &omega;x y k &omega;y y k &omega;z T 为微机械系统(Micro-Electro-MechanicalSystem)三轴陀螺仪输出的角速率信息; y k a = y k ax y k ay y k az T 为微机械系统三轴加速度计输出的比力信息;Among them, T represents the transpose operation, the y k &omega; = the y k &omega;x the y k &omega;y the y k &omega;z T The angular rate information output by the three-axis gyroscope of the Micro-Electro-Mechanical System; the y k a = the y k ax the y k ay the y k az T is the specific force information output by the three-axis accelerometer of the micro-mechanical system;

步骤二:根据单兵自主导航系统中各传感器的采样频率、系统使用前微型惯性测量单元静止时间长度以及步骤一测量过程中微型惯性测量单元与掌上电脑之间数据传送速率,获得本次零速检测过程中窗口函数N的具体取值(N为整数);Step 2: According to the sampling frequency of each sensor in the individual soldier's autonomous navigation system, the static time length of the miniature inertial measurement unit before the system is used, and the data transmission rate between the miniature inertial measurement unit and the handheld computer during the measurement process of step 1, obtain the current zero speed The specific value of the window function N in the detection process (N is an integer);

步骤三:利用步骤一采集到的微型惯性测量单元输出数据以及步骤二确定的窗口函数N,将零速检测问题转化为模型化的双假设检验问题,检测结果为假设H0(微型惯性测量单元运动)、H1(微型惯性测量单元静止)之一,利用内曼-皮尔逊定理获得零速检测判断的数学模型:已知假报警概率PFA=α时,若满足零速判断不等式为

Figure BDA0000386676830000154
则H1为真,即单兵自主导航系统零速检测结果为脚步微型惯性测量单元静止;函数L(zn)与概率比有关,对于zn的每个值,它表示了H1假设概率值对H0假设概率值的比值;Step 3: Using the output data of the miniature inertial measurement unit collected in step 1 and the window function N determined in step 2, the zero-speed detection problem is transformed into a modeled double hypothesis testing problem, and the detection result is the hypothesis H 0 (miniature inertial measurement unit Motion), one of H 1 (miniature inertial measurement unit static), using the Neiman-Pearson theorem to obtain the mathematical model of zero-speed detection and judgment: when the false alarm probability P FA = α is known, if the zero-speed judgment inequality is satisfied:
Figure BDA0000386676830000154
Then H 1 is true, that is, the zero-speed detection result of the individual soldier's autonomous navigation system is that the miniature inertial measurement unit is stationary; the function L(z n ) is related to the probability ratio, and for each value of z n , it represents the hypothetical probability of H 1 The ratio of the value to the hypothesized probability value of H 0 ;

其中,假报警概率PFA={H1∣H0}表示微型惯性测量单元为运动状态时将其判断为静止状态的概率;zn={yk}n+N-1k=n为一段时间内微型惯性测量单元的测量值;γ取值由式

Figure BDA0000386676830000161
定义;p(zn;H0)、p(zn;H1)分别表示两种假设下观测数据的概率密度函数;Among them, the false alarm probability P FA ={H 1 ∣H 0 } indicates the probability that the miniature inertial measurement unit is judged to be in a static state when it is in motion; z n ={y k }n+N-1k=n is a period of time The measured value of the inner miniature inertial measurement unit; the value of γ is given by the formula
Figure BDA0000386676830000161
Definition; p(z n ;H 0 ) and p(z n ;H 1 ) respectively represent the probability density functions of the observed data under two assumptions;

步骤四:利用微型惯性测量单元传感器输出信号特点、掌上电脑接收到的信号及其误差扰动信号的性质,以及公式:Step 4: Utilize the characteristics of the output signal of the miniature inertial measurement unit sensor, the nature of the signal received by the handheld computer and its error disturbance signal, and the formula:

yk=sk(θ)+vk y k = s k (θ) + v k

获得微型惯性测量单元惯性传感器输出信号的数学模型;Obtain the mathematical model of the output signal of the inertial sensor of the miniature inertial measurement unit;

式中, s k ( &theta; ) = s k a ( &theta; ) s k &omega; ( &theta; ) T , v k = v k a v k &omega; T , s k a ( &theta; ) &Element; &Omega; 3 , s k &omega; ( &theta; ) &Element; &Omega; 3 分别表示k时刻微型惯性测量单元测量到的比力和角速率,θ表示需要描述信号中未知元素的集合;

Figure BDA0000386676830000166
Figure BDA0000386676830000167
分别表示与加速度计和陀螺仪相关的噪声集合,T表示转置操作;假设噪声是独立、零均值高斯分布的,其协方差矩阵为 C = E v k v k T = diag &sigma; a 2 I 3 &sigma; &omega; 2 I 3 T , 其中I3(03)表示3×3的单位(零)阵;diag[·]表示对角阵;E{·}表示求期望,
Figure BDA0000386676830000169
Figure BDA00003866768300001610
分别表示微机械加速度计和陀螺仪的噪声方差;In the formula, the s k ( &theta; ) = the s k a ( &theta; ) the s k &omega; ( &theta; ) T , v k = v k a v k &omega; T , the s k a ( &theta; ) &Element; &Omega; 3 , the s k &omega; ( &theta; ) &Element; &Omega; 3 respectively represent the specific force and angular velocity measured by the micro inertial measurement unit at time k, and θ represents the set of unknown elements that need to be described in the signal;
Figure BDA0000386676830000166
and
Figure BDA0000386676830000167
Represents the noise collection associated with the accelerometer and gyroscope, respectively, and T represents the transpose operation; assuming that the noise is independent and zero-mean Gaussian distribution, its covariance matrix is C = E. v k v k T = diag &sigma; a 2 I 3 &sigma; &omega; 2 I 3 T , Among them, I 3 (0 3 ) represents a 3×3 unit (zero) matrix; diag[ ] represents a diagonal matrix; E{ } represents expectation,
Figure BDA0000386676830000169
and
Figure BDA00003866768300001610
denote the noise variance of the micromachined accelerometer and gyroscope, respectively;

步骤五:利用步骤一中采集到的单兵自主导航系统运动过程中微型惯性测量单元输出的数据、步骤四中确定的微型惯性测量单元惯性传感器输出信号的数学模型以及公式:Step 5: Use the data output by the miniature inertial measurement unit collected in step 1 during the movement of the individual soldier's autonomous navigation system, the mathematical model and formula of the output signal of the miniature inertial measurement unit inertial sensor determined in step 4:

pp (( zz nno ,, &theta;&theta; ii ,, Hh ii )) == &Pi;&Pi; kk &Element;&Element; &Omega;&Omega; nno pp (( ythe y kk ;; &theta;&theta; ii ,, Hh ii ))

== &Pi;&Pi; kk &Element;&Element; &Omega;&Omega; nno pp (( ythe y kk aa ;; &theta;&theta; ii ,, Hh ii )) pp (( ythe y kk &omega;&omega; ;; &theta;&theta; ii ,, Hh ii ))

获得传感器量测量的联合概率密度函数p(zni,Hi);Obtain the joint probability density function p(z ni ,H i ) of the sensor quantity measurement;

其中,

Figure BDA0000386676830000171
i=0,1;θi表示在假设Hi条件下未知信号元素集合,Π表示连乘;p(zni,Hi)表示在假设Hi条件下未知信号元素集合为θi时单兵自主导航系统输出信号的联合概率密度函数;
Figure BDA0000386676830000172
表示k时刻,在假设Hi条件下未知信号元素集合为θi时微机械加速度计输出信号的概率密度函数;
Figure BDA0000386676830000173
表示k时刻,在假设Hi条件下未知信号元素集合为θi时微机械陀螺仪输出信号的概率密度函数;in,
Figure BDA0000386676830000171
i=0, 1; θ i represents the set of unknown signal elements under the assumption of H i , and Π represents the multiplication; p(z ni ,H i ) represents the set of unknown signal elements under the assumption of H i as θ i The joint probability density function of the output signal of the individual autonomous navigation system;
Figure BDA0000386676830000172
Indicates the probability density function of the output signal of the micromechanical accelerometer when the set of unknown signal elements is θ i at time k under the assumption of H i ;
Figure BDA0000386676830000173
Indicates the probability density function of the output signal of the micromechanical gyroscope when the set of unknown signal elements is θ i at time k, assuming H i ;

pp (( ythe y kk aa ;; &theta;&theta; ii ,, Hh ii )) == 11 (( 22 &pi;&pi; &sigma;&sigma; aa 22 )) 33 // 22 expexp {{ -- 11 22 &sigma;&sigma; aa 22 || || ythe y kk aa -- sthe s kk aa (( &theta;&theta; ii )) || || 22 }}

pp (( ythe y kk &omega;&omega; ;; &theta;&theta; ii ,, Hh ii )) == 11 (( 22 &pi;&pi; &sigma;&sigma; &omega;&omega; 22 )) 33 // 22 expexp {{ -- 11 22 &sigma;&sigma; &omega;&omega; 22 || || ythe y kk &omega;&omega; -- sthe s kk &omega;&omega; (( &theta;&theta; ii )) || || 22 }}

其中,exp{.}表示e的指数函数;||.||表示求范数;σ2a、σ2ω分别表示加速度计和陀螺仪的噪声方差;Among them, exp{.} represents the exponential function of e; ||.|| represents the norm; σ2a and σ2ω represent the noise variance of the accelerometer and gyroscope respectively;

步骤六:利用步骤五中得到的观测信号联合概率密度函数Step 6: Use the joint probability density function of the observed signals obtained in step 5

p(zni,Hi),根据公式: L g ( z n ) = &Pi; k &Element; &Omega; n p ( y k a ; &theta; 1 , H 1 ) p ( y k &omega; ; &theta; 1 , H 1 ) &Pi; k &Element; &Omega; n p ( y k a ; &theta; 0 , H 0 ) p ( y k &omega; ; &theta; 0 , H 0 ) p(z ni ,H i ), according to the formula: L g ( z no ) = &Pi; k &Element; &Omega; no p ( the y k a ; &theta; 1 , h 1 ) p ( the y k &omega; ; &theta; 1 , h 1 ) &Pi; k &Element; &Omega; no p ( the y k a ; &theta; 0 , h 0 ) p ( the y k &omega; ; &theta; 0 , h 0 )

获得一个含有未知元素的单兵自主导航系统零速检测广泛概率似然比测试Lg(zn);Obtain an extensive probability likelihood ratio test L g (z n ) for zero-speed detection of an individual soldier autonomous navigation system containing unknown elements;

其中,在假设H1条件信号sk(θ)完全未知,未知元素的集合为:Among them, assuming that the H 1 conditional signal s k (θ) is completely unknown, the set of unknown elements is:

&theta;&theta; 00 &equiv;&equiv; {{ zz kk }} kk == nno nno ++ NN -- 11 ;;

在假设H0条件只有比力矢量的方向是未知的,未知元素的集合为:Under the condition of assuming H 0 only the direction of the force vector is unknown, the set of unknown elements is:

θ1≡gunθ 1 ≡ gu n ,

式中,un∈Ωu,Ωu={u∈R3:‖u‖=1};g为当地重力向量;where u n ∈Ω u , Ω u ={u∈R 3 :‖u‖=1}; g is the local gravity vector;

表示k时刻在假设H1条件下,未知信号元素集合为θ1时微机械加速度计输出信号的概率密度函数;

Figure BDA0000386676830000182
表示k时刻在假设H0条件下,未知信号元素集合为θ0时微机械加速度计输出信号的概率密度函数;
Figure BDA0000386676830000183
表示k时刻在假设H1条件下,未知信号元素集合为θ1时微机械陀螺仪输出信号的概率密度函数;
Figure BDA0000386676830000184
表示k时刻在假设H0条件下,未知信号元素集合为θ0时微机械陀螺仪输出信号的概率密度函数; Represents the probability density function of the output signal of the micromachined accelerometer when the set of unknown signal elements is θ 1 under the assumption of H 1 at time k;
Figure BDA0000386676830000182
Represents the probability density function of the output signal of the micromachined accelerometer when the set of unknown signal elements is θ 0 under the assumption of H 0 at time k;
Figure BDA0000386676830000183
Represents the probability density function of the output signal of the micromechanical gyroscope when the set of unknown signal elements is θ 1 under the assumption of H 1 at time k;
Figure BDA0000386676830000184
Represents the probability density function of the output signal of the micromechanical gyroscope when the set of unknown signal elements is θ 0 under the assumption of H 0 at time k;

步骤七:利用式:Step 7: Use the formula:

&theta;&theta; ^^ 00 == argarg maxmax (( pp (( zz nno ;; &theta;&theta; 00 ,, Hh 00 )) ))

&theta;&theta; ^^ 11 == argarg maxmax (( pp (( zz nno ;; &theta;&theta; 11 ,, Hh 11 )) ))

获得两种假设条件下未知信号元素的极大似然估计 Obtain maximum likelihood estimates of unknown signal elements under two assumptions

式中,

Figure BDA0000386676830000188
是在假设H1条件未知元素的极大似然估计;
Figure BDA0000386676830000189
是在假设H0条件下未知元素的极大似然估计;p(zn1,H1)表示在假设H1条件下,未知信号元素集合为θ1时微型惯性测量单元输出信息的联合概率密度函数;p(zn0,H0)表示在假设H0条件下,未知信号元素集合为θ0时微型惯性测量单元输出信息的联合概率密度函数;argmax(·)表示使括号内取最大值时未知元素集合的值;In the formula,
Figure BDA0000386676830000188
is the maximum likelihood estimate of the unknown element under the assumption of H 1 condition;
Figure BDA0000386676830000189
is the maximum likelihood estimation of unknown elements under the assumption of H 0 ; p(z n1 ,H 1 ) represents the output information of the miniature inertial measurement unit when the set of unknown signal elements is θ 1 under the assumption of H 1 Joint probability density function; p(z n0 ,H 0 ) represents the joint probability density function of the output information of the micro IMU when the set of unknown signal elements is θ 0 under the assumption of H 0 ; argmax(·) represents the The value of the unknown element set when taking the maximum value in the brackets;

pp (( zz nno ;; &theta;&theta; 11 ,, Hh 11 )) == &Pi;&Pi; kk &Element;&Element; &Omega;&Omega; nno pp (( ythe y kk aa ;; &theta;&theta; 11 ,, Hh 11 )) pp (( ythe y kk &omega;&omega; ;; &theta;&theta; 11 ,, Hh 11 ))

pp (( zz nno ,, &theta;&theta; 00 ,, Hh 00 )) == &Pi;&Pi; kk &Element;&Element; &Omega;&Omega; nno pp (( ythe y kk aa ;; &theta;&theta; 00 ,, Hh 00 )) pp (( ythe y kk &omega;&omega; ;; &theta;&theta; 00 ,, Hh 00 )) ;;

步骤八:使用步骤七求得未知信号元素的极大似然估计

Figure BDA00003866768300001812
取代步骤六Lg(zn)中的未知信号元素集合得到不含未知元素的广泛概率似然比LG(zn);Step 8: Use Step 7 to obtain the maximum likelihood estimation of the unknown signal elements
Figure BDA00003866768300001812
Replacing the unknown signal element set in step six L g (z n ) to obtain a broad probability likelihood ratio L G (z n ) that does not contain unknown elements;

LL GG (( zz nno )) == pp (( zz nno ;; &theta;&theta; ^^ 11 ,, Hh 11 )) pp (( zz nno ;; &theta;&theta; ^^ 00 ,, Hh 00 ))

式中,

Figure BDA0000386676830000192
表示在假设H1条件下,未知信号元素集合为
Figure BDA0000386676830000193
时微型惯性测量单元输出信息的联合概率密度函数;
Figure BDA0000386676830000194
表示在假设H0条件下,未知信号元素集合为
Figure BDA0000386676830000195
时微型惯性测量单元输出信息的联合概率密度函数;In the formula,
Figure BDA0000386676830000192
Indicates that under the assumption of H 1 , the set of unknown signal elements is
Figure BDA0000386676830000193
The joint probability density function of the output information of the miniature inertial measurement unit;
Figure BDA0000386676830000194
Indicates that under the assumption of H 0 , the set of unknown signal elements is
Figure BDA0000386676830000195
The joint probability density function of the output information of the miniature inertial measurement unit;

步骤九:利用步骤八中获得的LG(zn)以及不等式:Step 9: Use L G (z n ) and inequality obtained in step 8:

TT (( zz nno )) == 11 NN &Sigma;&Sigma; kk &Element;&Element; &Omega;&Omega; nno (( 11 &sigma;&sigma; aa 22 || || ythe y kk aa -- gg ythe y -- nno aa || || ythe y -- nno aa || || || || 22 ++ 11 &sigma;&sigma; &omega;&omega; 22 || || ythe y kk &omega;&omega; || || 22 )) << &gamma;&gamma; &prime;&prime;

确定单兵自主导航系统零速检测结果:若不等式成立,则单兵自主导航系统零速检测结果为静止—H1为真,否则,零速检测结果为运动—H0为真;Determine the zero-speed detection result of the individual soldier's autonomous navigation system: if the inequality is established, the zero-speed detection result of the individual soldier's autonomous navigation system is static—H 1 is true, otherwise, the zero-speed detection result is motion—H 0 is true;

其中, y - n a = 1 N &Sigma; k &Element; &Omega; n y k a , T ( z n ) = - 2 N ln L G ( z n ) , γ′=-(2/N)ln(γ),ln(.)表示求以e为底数的对数;in, the y - no a = 1 N &Sigma; k &Element; &Omega; no the y k a , T ( z no ) = - 2 N ln L G ( z no ) , γ '=-(2/N) ln (γ), ln (.) represents asking for the logarithm of base number with e;

结合以下实验对本发明的优益效果做进一步的说明:The beneficial effect of the present invention is further described in conjunction with the following experiments:

利用自研三轴惯性测量组件(集成了微机械系统三轴磁力计、加速度计、陀螺仪)搭建真实单兵导航系统模型,设备参数如表1所示,通过合理的零速检测试验验证基于双微型惯性测量单元惯性解算的单兵导航零速检测算法在真实环境中的可靠性、实用性、准确性,试验场景选在室外空旷的哈尔滨工程大学军工操场,A self-developed three-axis inertial measurement component (integrated with a micro-mechanical system three-axis magnetometer, accelerometer, and gyroscope) is used to build a real individual navigation system model. The reliability, practicability, and accuracy of the individual navigation zero-speed detection algorithm based on the inertial solution of dual micro-inertial measurement units in the real environment. The test scene was selected in the open outdoor military playground of Harbin Engineering University.

表1自研微型惯性测量单元惯性测量组件各传感器性能指标Table 1 The performance indicators of each sensor of the self-developed miniature inertial measurement unit inertial measurement component

Figure BDA0000386676830000199
Figure BDA0000386676830000199

实验过程中相关参数设置如下:During the experiment, the relevant parameters were set as follows:

单兵导航自主定位系统采样频率:100HzIndividual navigation autonomous positioning system sampling frequency: 100Hz

窗口函数N:5window function N: 5

微机械系统陀螺标准偏差:σa=0.01m/s2 MEMS gyro standard deviation: σ a =0.01m/s 2

微机械加速度计标准偏差:σg=0.1*pi/180rad/sMicromachined accelerometer standard deviation: σ g = 0.1*pi/180rad/s

参数γ=0.3e5 Parameter γ = 0.3e 5

实验开始前,测试者在实验场进行15分钟的系统静止预热,完成系统的初始化;Before the start of the experiment, the tester performed a 15-minute static warm-up of the system in the experimental field to complete the initialization of the system;

试验1:Test 1:

测试者在长方形操场的轨道上分别进行“步行(1.05m/s)”、“慢跑(2.14m/s)”、“快跑(3.50m/s)”等运动,实验过程中实时采集并保存微型惯性测量单元的输出数据,作为参考,将观测陀螺输出值得出的零速区间视为真实的零速区间,如图2所示为步行者先步行后慢跑时Y轴陀螺的输出值;The testers performed "walking (1.05m/s)", "jogging (2.14m/s)", "fast running (3.50m/s)" and other sports on the track of the rectangular playground, and the data were collected and saved in real time during the experiment The output data of the miniature inertial measurement unit is used as a reference, and the zero-speed interval obtained by observing the output value of the gyro is regarded as the real zero-speed interval, as shown in Figure 2, the output value of the Y-axis gyro when the pedestrian walks first and then jogs;

将实验数据进行离线分析,为了比较验证本发明的实验结果,同时给出传统的方差阈值零速检测方法及本发明提出的基于N-P准则的零速检测方法的检测结果,并与陀螺仪的原始数据进行对比,如图3所示为先步行后慢跑不时同检测方法的检测结果;Experimental data is carried out off-line analysis, in order to compare and verify the experimental result of the present invention, provide the detection result of traditional variance threshold zero-speed detection method and the zero-speed detection method based on N-P criterion that the present invention proposes simultaneously, and compare with the original of gyroscope The data are compared, as shown in Figure 3, it is the detection result of first walking and then jogging with different detection methods;

从图3可以看出,方差阈值脚步静止检测方法在慢跑时零速检测失效,而本发明所提到的算法能准确地检测出零速区间;As can be seen from Figure 3, the variance threshold footstep detection method is invalid when jogging, and the algorithm mentioned in the present invention can accurately detect the zero-speed interval;

如图4所示为步行者慢跑和快跑时Y轴陀螺的输出值,零速检测结果如图5所示,从图中可以看出当步行者快跑时,方差阈值脚步静止检测方法检测结果失效,在上述实验中,本发明所提到的算法能准确地检测出零速区间;Figure 4 shows the output value of the Y-axis gyro when the pedestrian is jogging and running fast. Result invalidation, in above-mentioned experiment, the algorithm mentioned in the present invention can accurately detect zero-speed interval;

试验2:Test 2:

为了在数量上对比各种方法的性能,我们让步行者以不同的速度行走或跑30步,其中每一步都有一个零速区间,共有30个零速区间,方差阈值脚步零速检测方法与本发明提出的基于内曼-皮尔逊(N-P)准则的零速检测方法检测的零速区间数量如表2所示,当行走时,两种算法都能准确的检测出零速区间;当跑步时,方差阈值零速检测方法失效,本发明的算法无论走或跑均能准确地检测出零速区间的数量,In order to quantitatively compare the performance of various methods, we let walkers walk or run 30 steps at different speeds, each step has a zero-speed interval, and there are 30 zero-speed intervals in total. The number of zero-speed intervals detected by the zero-speed detection method based on the Neiman-Pearson (N-P) criterion proposed by the invention is shown in Table 2. When walking, both algorithms can accurately detect the zero-speed interval; when running, The variance threshold zero-speed detection method fails, and the algorithm of the present invention can accurately detect the number of zero-speed intervals no matter walking or running,

表2不同方法检测到的零速区间数目比较(实际零速区间数目为30)Table 2 Comparison of the number of zero-speed intervals detected by different methods (the actual number of zero-speed intervals is 30)

表3给出了各种算法零速区间的错误检测数量,即将非零速区间错误的检测为零速区间的数量,从表3可以看出,方差阈值零速检测方法有时会错误地检测零速区间,而本发明所提到的N-P零速检测算法无论是步行状态还是跑步状态均能准确可靠地检测出零速区间,此算法对于正常行走和跑步时的零速检测均有效,可靠性高、稳定性好;Table 3 shows the number of false detections in the zero-speed interval of various algorithms, that is, the number of false detections of non-zero-speed intervals as zero-speed intervals. It can be seen from Table 3 that the variance threshold zero-speed detection method sometimes incorrectly detects zero speed interval, and the N-P zero-speed detection algorithm mentioned in the present invention can accurately and reliably detect the zero-speed interval whether it is a walking state or a running state. This algorithm is all effective for the zero-speed detection during normal walking and running, and the reliability High, good stability;

表3不同方法错误检测零速区间的数目比较Table 3 Comparison of the number of false detection zero-speed intervals by different methods

Figure BDA0000386676830000222
Figure BDA0000386676830000222

Figure BDA0000386676830000231
Figure BDA0000386676830000231

以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present invention should be included in the protection of the present invention. within range.

Claims (7)

1.一种基于内曼-皮尔逊准则的零速检测方法,其特征在于,该基于内曼-皮尔逊准则的零速检测方法包括以下步骤:1. a zero-speed detection method based on Neiman-Pearson criterion, it is characterized in that, this zero-speed detection method based on Neiman-Pearson criterion comprises the following steps: 步骤一,手持掌上电脑实时接收并存储单兵自主导航系统中脚步微型惯性测量单元输出的量测信息;Step 1, the handheld handheld computer receives and stores the measurement information output by the step miniature inertial measurement unit in the individual soldier's autonomous navigation system in real time; 步骤二:根据单兵自主导航系统中各传感器的采样频率、系统使用前微型惯性测量单元静止时间长度以及步骤一测量过程中微型惯性测量单元与掌上电脑之间数据传送速率,获得本次零速检测过程中窗口函数N的具体取值,N为整数;Step 2: According to the sampling frequency of each sensor in the individual soldier's autonomous navigation system, the static time length of the miniature inertial measurement unit before the system is used, and the data transmission rate between the miniature inertial measurement unit and the handheld computer during the measurement process of step 1, obtain the current zero speed The specific value of the window function N during the detection process, where N is an integer; 步骤三:利用步骤一采集到的微型惯性测量单元输出数据以及步骤二确定的窗口函数N,将零速检测问题转化为模型化的双假设检验问题,假设检测结果为微型惯性测量单元运动H0、微型惯性测量单元静止H1之一,利用内曼-皮尔逊定理获得零速检测判断的数学模型:已知假报警概率PFA=α时,若满足零速判断不等式为
Figure FDA0000386676820000011
则H1为真,即单兵自主导航系统零速检测结果为微型惯性测量单元静止;函数L(zn)与概率比有关,对于zn的每个值,表示了H1假设概率值对H0假设概率值的比值;
Step 3: Using the output data of the miniature inertial measurement unit collected in step 1 and the window function N determined in step 2, the zero-speed detection problem is transformed into a modeled double hypothesis testing problem, assuming that the detection result is the miniature inertial measurement unit motion H 0 , One of the static miniature inertial measurement units H 1 , using the Neiman-Pearson theorem to obtain the mathematical model of zero-speed detection and judgment: when the false alarm probability P FA = α is known, if the zero-speed judgment inequality is satisfied:
Figure FDA0000386676820000011
Then H 1 is true, that is, the zero-speed detection result of the individual soldier autonomous navigation system is that the miniature inertial measurement unit is stationary; the function L(z n ) is related to the probability ratio, and for each value of z n , it represents the pair of hypothetical probability values of H 1 H 0 The ratio of hypothesized probability values;
其中,假报警概率PFA={H1∣H0}表示微型惯性测量单元为运动状态时,零速检测结果为静止状态的概率;zn={yk}n+N-1k=n为一段时间内微型惯性测量单元的测量值;γ取值由式
Figure FDA0000386676820000012
定义;p(zn;H0)、p(zn;H1)分别表示两种假设下观测数据的概率密度函数;
Among them, the false alarm probability P FA ={H 1 ∣H 0 } indicates the probability that the zero-speed detection result is in a stationary state when the miniature inertial measurement unit is in motion; z n ={y k }n+N-1k=n is The measured value of the miniature inertial measurement unit within a period of time; the value of γ is given by the formula
Figure FDA0000386676820000012
Definition; p(z n ;H 0 ) and p(z n ;H 1 ) respectively represent the probability density functions of the observed data under two assumptions;
步骤四:利用微型惯性测量单元传感器输出信号特点、掌上电脑接收到的信号及误差扰动信号的性质,以及公式,获得微型惯性测量单元惯性传感器输出信号的数学模型;Step 4: Utilize the characteristics of the output signal of the miniature inertial measurement unit sensor, the nature of the signal received by the handheld computer and the error disturbance signal, and the formula to obtain the mathematical model of the output signal of the miniature inertial measurement unit inertial sensor; 步骤五:利用步骤一中采集到的单兵自主导航系统运动过程中微型惯性测量单元输出的数据、步骤四中确定的微型惯性测量单元惯性传感器输出信号的数学模型以及公式,获得传感器量测量的联合概率密度函数p(zni,Hi);Step 5: Using the data output by the miniature inertial measurement unit collected in step 1 during the movement of the individual autonomous navigation system, the mathematical model and formula of the output signal of the miniature inertial measurement unit inertial sensor determined in step 4, to obtain the sensor quantity measurement Joint probability density function p(z ni ,H i ); 步骤六:利用步骤五中得到的观测信号联合概率密度函数p(zni,Hi),根据公式,获得一个含有未知元素的单兵自主导航系统零速检测广泛概率似然比测试Lg(zn);Step 6: Using the joint probability density function p(z ni ,H i ) of the observation signals obtained in step 5, according to the formula, obtain a broad probability likelihood ratio test for zero-speed detection of the individual autonomous navigation system with unknown elements L g (z n ); 步骤七:利用式:Step 7: Use formula: &theta;&theta; ^^ 00 == argarg maxmax (( pp (( zz nno ;; &theta;&theta; 00 ,, Hh 00 )) )) &theta;&theta; ^^ 11 == argarg maxmax (( pp (( zz nno ;; &theta;&theta; 11 ,, Hh 11 )) )) 获得两种假设条件下未知信号元素的极大似然估计
Figure FDA0000386676820000023
Obtain maximum likelihood estimates of unknown signal elements under two assumptions
Figure FDA0000386676820000023
式中,
Figure FDA0000386676820000024
是在假设H1条件未知元素的极大似然估计;
Figure FDA0000386676820000025
是在假设H0条件下未知元素的极大似然估计;p(zn1,H1)表示在假设H1条件下,未知信号元素集合为θ1时微型惯性测量单元输出信息的联合概率密度函数;p(zn0,H0)表示在假设H0条件下,未知信号元素集合为θ0时微型惯性测量单元输出信息的联合概率密度函数;argmax(·)表示使括号内取最大值时未知元素集合的值;
In the formula,
Figure FDA0000386676820000024
is the maximum likelihood estimate of the unknown element under the assumption of H 1 condition;
Figure FDA0000386676820000025
is the maximum likelihood estimation of unknown elements under the assumption of H 0 ; p(z n1 ,H 1 ) represents the output information of the miniature inertial measurement unit when the set of unknown signal elements is θ 1 under the assumption of H 1 Joint probability density function; p(z n0 ,H 0 ) represents the joint probability density function of the output information of the micro IMU when the set of unknown signal elements is θ 0 under the assumption of H 0 ; argmax(·) represents the The value of the unknown element set when taking the maximum value in the brackets;
pp (( zz nno ;; &theta;&theta; 11 ,, Hh 11 )) == &Pi;&Pi; kk &Element;&Element; &Omega;&Omega; nno pp (( ythe y kk aa ;; &theta;&theta; 11 ,, Hh 11 )) pp (( ythe y kk &omega;&omega; ;; &theta;&theta; 11 ,, Hh 11 )) pp (( zz nno ,, &theta;&theta; 00 ,, Hh 00 )) == &Pi;&Pi; kk &Element;&Element; &Omega;&Omega; nno pp (( ythe y kk aa ;; &theta;&theta; 00 ,, Hh 00 )) pp (( ythe y kk &omega;&omega; ;; &theta;&theta; 00 ,, Hh 00 )) ;; 步骤八:使用步骤七求得未知信号元素的极大似然估计
Figure FDA0000386676820000032
取代步骤六Lg(zn)中的未知信号元素集合得到不含未知元素的广泛概率似然比LG(zn);
Step 8: Use Step 7 to obtain the maximum likelihood estimation of the unknown signal elements
Figure FDA0000386676820000032
Replacing the unknown signal element set in step six L g (z n ) to obtain a broad probability likelihood ratio L G (z n ) that does not contain unknown elements;
步骤九:利用步骤八中获得的LG(zn)以及不等式,确定单兵自主导航系统零速检测结果。Step 9: Use L G (z n ) and the inequality obtained in Step 8 to determine the zero-speed detection result of the individual autonomous navigation system.
2.如权利要求1所述的基于内曼-皮尔逊准则的零速检测方法,其特征在于,在步骤一中,任意时刻k接收到的微型惯性测量单元总输出信息为 y k = y k a y k &omega; T ; 2. the zero-speed detection method based on Neiman-Pearson criterion as claimed in claim 1, is characterized in that, in step 1, the total output information of the miniature inertial measurement unit that arbitrary moment k receives is the y k = the y k a the y k &omega; T ; 其中,T表示转置操作, y k &omega; = y k &omega;x y k &omega;y y k &omega;z T 为微机械系统三轴陀螺仪输出的角速率信息; y k a = y k ax y k ay y k az T 为微机械系统三轴加速度计输出的比力信息。Among them, T represents the transpose operation, the y k &omega; = the y k &omega;x the y k &omega;y the y k &omega;z T Angular rate information output by the three-axis gyroscope of the micro-mechanical system; the y k a = the y k ax the y k ay the y k az T It is the specific force information output by the MEMS triaxial accelerometer. 3.如权利要求1所述的基于内曼-皮尔逊准则的零速检测方法,其特征在于,在步骤四中,通过公式:3. the zero-speed detection method based on Neiman-Pearson criterion as claimed in claim 1, is characterized in that, in step 4, by formula: yk=sk(θ)+vk y k = s k (θ) + v k 获得微型惯性测量单元惯性传感器输出信号的数学模型;Obtain the mathematical model of the output signal of the inertial sensor of the miniature inertial measurement unit; 式中, s k ( &theta; ) = s k a ( &theta; ) s k &omega; ( &theta; ) T , v k = v k a v k &omega; T , s k a ( &theta; ) &Element; &Omega; 3 s k &omega; ( &theta; ) &Element; &Omega; 3 分别表示k时刻微型惯性测量单元测量到的比力和角速率,θ表示需要描述信号中未知元素的集合;
Figure FDA00003866768200000310
Figure FDA00003866768200000311
分别表示与加速度计和陀螺仪相关的噪声集合,T表示转置操作;假设噪声是独立、零均值高斯分布的,协方差矩阵为 C = E v k v k T = diag &sigma; a 2 I 3 &sigma; &omega; 2 I 3 T , 其中I3(03)表示3×3的单位(零)阵;diag[·]表示对角阵;E{·}表示求期望,
Figure FDA0000386676820000041
Figure FDA00003866768200000410
分别表示微机械加速度计和陀螺仪的噪声方差。
In the formula, the s k ( &theta; ) = the s k a ( &theta; ) the s k &omega; ( &theta; ) T , v k = v k a v k &omega; T , the s k a ( &theta; ) &Element; &Omega; 3 , the s k &omega; ( &theta; ) &Element; &Omega; 3 respectively represent the specific force and angular velocity measured by the micro inertial measurement unit at time k, and θ represents the set of unknown elements that need to be described in the signal;
Figure FDA00003866768200000310
and
Figure FDA00003866768200000311
Represents the noise collection associated with the accelerometer and gyroscope, respectively, and T represents the transpose operation; assuming that the noise is independent and zero-mean Gaussian distribution, the covariance matrix is C = E. v k v k T = diag &sigma; a 2 I 3 &sigma; &omega; 2 I 3 T , Among them, I 3 (0 3 ) represents a 3×3 unit (zero) matrix; diag[ ] represents a diagonal matrix; E{ } represents expectation,
Figure FDA0000386676820000041
and
Figure FDA00003866768200000410
denote the noise variance of the micromachined accelerometer and gyroscope, respectively.
4.如权利要求1所述的基于内曼-皮尔逊准则的零速检测方法,其特征在于,在步骤五中,通过公式:4. the zero-speed detection method based on Neiman-Pearson criterion as claimed in claim 1, is characterized in that, in step 5, by formula: pp (( zz nno ,, &theta;&theta; ii ,, Hh ii )) == &Pi;&Pi; kk &Element;&Element; &Omega;&Omega; nno pp (( ythe y kk ;; &theta;&theta; ii ,, Hh ii )) == &Pi;&Pi; kk &Element;&Element; &Omega;&Omega; nno pp (( ythe y kk aa ;; &theta;&theta; ii ,, Hh ii )) pp (( ythe y kk &omega;&omega; ;; &theta;&theta; ii ,, Hh ii )) 获得传感器量测量的联合概率密度函数p(zni,Hi);Obtain the joint probability density function p(z ni ,H i ) of the sensor quantity measurement; 其中,
Figure FDA0000386676820000044
i=0,1;θi表示在假设Hi条件下未知信号元素集合,Π表示连乘;p(zni,Hi)表示在假设Hi条件下未知信号元素集合为θi时单兵自主导航系统输出信号的联合概率密度函数;
Figure FDA0000386676820000045
表示k时刻,在假设Hi条件下未知信号元素集合为θi时微机械加速度计输出信号的概率密度函数;
Figure FDA0000386676820000046
表示k时刻,在假设Hi条件下未知信号元素集合为θi时微机械陀螺仪输出信号的概率密度函数;
in,
Figure FDA0000386676820000044
i=0, 1; θ i represents the set of unknown signal elements under the assumption of H i , and Π represents the multiplication; p(z ni ,H i ) represents the set of unknown signal elements under the assumption of H i as θ i The joint probability density function of the output signal of the individual autonomous navigation system;
Figure FDA0000386676820000045
Indicates the probability density function of the output signal of the micromechanical accelerometer when the set of unknown signal elements is θ i at time k under the assumption of H i ;
Figure FDA0000386676820000046
Indicates the probability density function of the output signal of the micromechanical gyroscope when the set of unknown signal elements is θ i at time k, assuming H i ;
pp (( ythe y kk aa ;; &theta;&theta; ii ,, Hh ii )) == 11 (( 22 &pi;&pi; &sigma;&sigma; aa 22 )) 33 // 22 expexp {{ -- 11 22 &sigma;&sigma; aa 22 || || ythe y kk aa -- sthe s kk aa (( &theta;&theta; ii )) || || 22 }} pp (( ythe y kk &omega;&omega; ;; &theta;&theta; ii ,, Hh ii )) == 11 (( 22 &pi;&pi; &sigma;&sigma; &omega;&omega; 22 )) 33 // 22 expexp {{ -- 11 22 &sigma;&sigma; &omega;&omega; 22 || || ythe y kk &omega;&omega; -- sthe s kk &omega;&omega; (( &theta;&theta; ii )) || || 22 }} 其中,exp{.}表示e的指数函数;||·||表示求范数;σ2a、σ2ω分别表示加速度计和陀螺仪的噪声方差。Among them, exp{.} represents the exponential function of e; ||·|| represents the norm; σ2a and σ2ω represent the noise variance of the accelerometer and gyroscope, respectively.
5.如权利要求1所述的基于内曼-皮尔逊准则的零速检测方法,其特征在于,5. the zero speed detection method based on Neyman-Pearson criterion as claimed in claim 1, is characterized in that, 在步骤六中,根据公式: L g ( z n ) = &Pi; k &Element; &Omega; n p ( y k a ; &theta; 1 , H 1 ) p ( y k &omega; ; &theta; 1 , H 1 ) &Pi; k &Element; &Omega; n p ( y k a ; &theta; 0 , H 0 ) p ( y k &omega; ; &theta; 0 , H 0 ) In step six, according to the formula: L g ( z no ) = &Pi; k &Element; &Omega; no p ( the y k a ; &theta; 1 , h 1 ) p ( the y k &omega; ; &theta; 1 , h 1 ) &Pi; k &Element; &Omega; no p ( the y k a ; &theta; 0 , h 0 ) p ( the y k &omega; ; &theta; 0 , h 0 ) 获得一个含有未知元素的单兵自主导航系统零速检测广泛概率似然比测试Lg(zn);Obtain an extensive probability likelihood ratio test L g (z n ) for zero-speed detection of an individual soldier autonomous navigation system containing unknown elements; 其中,在假设H1条件信号sk(θ)完全未知,未知元素的集合为:Among them, assuming that the H 1 conditional signal s k (θ) is completely unknown, the set of unknown elements is: &theta;&theta; 00 &equiv;&equiv; {{ zz kk }} kk == nno nno ++ NN -- 11 ;; 在假设H0条件只有比力矢量的方向是未知的,未知元素的集合为:Under the condition of assuming H 0 only the direction of the force vector is unknown, the set of unknown elements is: θ1≡gunθ 1 ≡ gu n , 式中,un∈Ωu,Ωu={u∈R3:‖u‖=1};g为当地重力向量;where u n ∈Ω u , Ω u ={u∈R 3 :‖u‖=1}; g is the local gravity vector;
Figure FDA0000386676820000052
表示k时刻在假设H1条件下,未知信号元素集合为θ1时微机械加速度计输出信号的概率密度函数;
Figure FDA0000386676820000053
表示k时刻在假设H0条件下,未知信号元素集合为θ0时微机械加速度计输出信号的概率密度函数;
Figure FDA0000386676820000054
表示k时刻在假设H1条件下,未知信号元素集合为θ1时微机械陀螺仪输出信号的概率密度函数;
Figure FDA0000386676820000055
表示k时刻在假设H0条件下,未知信号元素集合为θ0时微机械陀螺仪输出信号的概率密度函数。
Figure FDA0000386676820000052
Represents the probability density function of the output signal of the micromachined accelerometer when the set of unknown signal elements is θ 1 under the assumption of H 1 at time k;
Figure FDA0000386676820000053
Represents the probability density function of the output signal of the micromachined accelerometer when the set of unknown signal elements is θ 0 under the assumption of H 0 at time k;
Figure FDA0000386676820000054
Represents the probability density function of the output signal of the micromechanical gyroscope when the set of unknown signal elements is θ 1 under the assumption of H 1 at time k;
Figure FDA0000386676820000055
Represents the probability density function of the output signal of the micromechanical gyroscope when the set of unknown signal elements is θ 0 under the assumption of H 0 at time k.
6.如权利要求1所述的基于内曼-皮尔逊准则的零速检测方法,其特征在于,在步骤八中,广泛概率似然比LG(zn)表示为;6. the zero-speed detection method based on Neyman-Pearson criterion as claimed in claim 1, is characterized in that, in step 8, extensive probability likelihood ratio L G (z n ) is expressed as; LL GG (( zz nno )) == pp (( zz nno ;; &theta;&theta; ^^ 11 ,, Hh 11 )) pp (( zz nno ;; &theta;&theta; ^^ 00 ,, Hh 00 )) 式中,
Figure FDA0000386676820000057
表示在假设H1条件下,未知信号元素集合为
Figure FDA0000386676820000058
时微型惯性测量单元输出信息的联合概率密度函数;
Figure FDA0000386676820000059
表示在假设H0条件下,未知信号元素集合为时微型惯性测量单元输出信息的联合概率密度函数。
In the formula,
Figure FDA0000386676820000057
Indicates that under the assumption of H 1 , the set of unknown signal elements is
Figure FDA0000386676820000058
The joint probability density function of the output information of the miniature inertial measurement unit;
Figure FDA0000386676820000059
Indicates that under the assumption of H 0 , the set of unknown signal elements is The joint probability density function of the output information of the miniature inertial measurement unit.
7.如权利要求1所述的基于内曼-皮尔逊准则的零速检测方法,其特征在于,在步骤九中,不等式表示为:7. the zero-speed detection method based on Neiman-Pearson criterion as claimed in claim 1, is characterized in that, in step 9, inequality is expressed as: TT (( zz nno )) == 11 NN &Sigma;&Sigma; kk &Element;&Element; &Omega;&Omega; nno (( 11 &sigma;&sigma; aa 22 || || ythe y kk aa -- gg ythe y -- nno aa || || ythe y -- nno aa || || || || 22 ++ 11 &sigma;&sigma; &omega;&omega; 22 || || ythe y kk &omega;&omega; || || 22 )) << &gamma;&gamma; &prime;&prime; 若不等式成立,则单兵自主导航系统零速检测结果为静止—H1为真,否则,零速检测结果为运动—H0为真;If the inequality is established, the zero-speed detection result of the individual soldier autonomous navigation system is static—H 1 is true, otherwise, the zero-speed detection result is motion—H 0 is true; 其中, y - n a = 1 N &Sigma; k &Element; &Omega; n y k a , T ( z n ) = - 2 N ln L G ( z n ) , γ′=-(2/N)ln(γ),ln(.)表示求以e为底数的对数。in, the y - no a = 1 N &Sigma; k &Element; &Omega; no the y k a , T ( z no ) = - 2 N ln L G ( z no ) , γ'=-(2/N)ln(γ), ln(.) means to seek the logarithm taking e as the base.
CN201310449336.1A 2013-09-24 2013-09-24 Neyman-Pearson criterion-based zero speed detection method Expired - Fee Related CN103499354B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310449336.1A CN103499354B (en) 2013-09-24 2013-09-24 Neyman-Pearson criterion-based zero speed detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310449336.1A CN103499354B (en) 2013-09-24 2013-09-24 Neyman-Pearson criterion-based zero speed detection method

Publications (2)

Publication Number Publication Date
CN103499354A true CN103499354A (en) 2014-01-08
CN103499354B CN103499354B (en) 2017-01-18

Family

ID=49864585

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310449336.1A Expired - Fee Related CN103499354B (en) 2013-09-24 2013-09-24 Neyman-Pearson criterion-based zero speed detection method

Country Status (1)

Country Link
CN (1) CN103499354B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104976997A (en) * 2014-04-02 2015-10-14 北京自动化控制设备研究所 An integrated design method for personal indoor navigation system
CN108120450A (en) * 2016-11-29 2018-06-05 华为技术有限公司 The determination methods and device of a kind of stationary state
CN108680184A (en) * 2018-04-19 2018-10-19 东南大学 A kind of zero-speed detection method based on Generalized Likelihood Ratio statistic curve geometric transformation
CN110702104A (en) * 2019-09-27 2020-01-17 同济大学 An Inertial Navigation Error Correction Method Based on Vehicle Zero Speed Detection
CN113434816A (en) * 2020-09-21 2021-09-24 重庆工商大学 Method for detecting signal under noise enhancement neman-pearson criterion
CN113466634A (en) * 2021-08-20 2021-10-01 青岛鼎信通讯股份有限公司 Ground fault waveform identification method based on fault indicator

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6292751B1 (en) * 2000-02-08 2001-09-18 Bae Systems Positioning refinement algorithm
US6459990B1 (en) * 1999-09-23 2002-10-01 American Gnc Corporation Self-contained positioning method and system thereof for water and land vehicles
CN101419080A (en) * 2008-06-13 2009-04-29 哈尔滨工程大学 Zero-velocity Correction Method for Miniature Strapdown Inertial Measurement System
US20090254276A1 (en) * 2008-04-08 2009-10-08 Ensco, Inc. Method and computer-readable storage medium with instructions for processing data in an internal navigation system
CN101694391A (en) * 2009-07-28 2010-04-14 姚戈 Walking navigation instrument
CN202661629U (en) * 2012-03-05 2013-01-09 西安邮电学院 Individual-solider joint navigation positioning system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6459990B1 (en) * 1999-09-23 2002-10-01 American Gnc Corporation Self-contained positioning method and system thereof for water and land vehicles
US6292751B1 (en) * 2000-02-08 2001-09-18 Bae Systems Positioning refinement algorithm
US20090254276A1 (en) * 2008-04-08 2009-10-08 Ensco, Inc. Method and computer-readable storage medium with instructions for processing data in an internal navigation system
CN101419080A (en) * 2008-06-13 2009-04-29 哈尔滨工程大学 Zero-velocity Correction Method for Miniature Strapdown Inertial Measurement System
CN101694391A (en) * 2009-07-28 2010-04-14 姚戈 Walking navigation instrument
CN202661629U (en) * 2012-03-05 2013-01-09 西安邮电学院 Individual-solider joint navigation positioning system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
刘英坤等: "《基于聂曼-皮尔逊准则和无线信道的一种次最优分布式检测算法》", 《 电子与信息学报 》 *
高宗余等: "《结合零速检测的微惯性系统混合滤波 》", 《光学精密工程》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104976997A (en) * 2014-04-02 2015-10-14 北京自动化控制设备研究所 An integrated design method for personal indoor navigation system
CN108120450A (en) * 2016-11-29 2018-06-05 华为技术有限公司 The determination methods and device of a kind of stationary state
WO2018099089A1 (en) * 2016-11-29 2018-06-07 华为技术有限公司 Method and device for recognizing stationary state
CN108680184A (en) * 2018-04-19 2018-10-19 东南大学 A kind of zero-speed detection method based on Generalized Likelihood Ratio statistic curve geometric transformation
CN108680184B (en) * 2018-04-19 2021-09-07 东南大学 A Zero-speed Detection Method Based on Generalized Likelihood Ratio Statistical Curve Geometric Transformation
CN110702104A (en) * 2019-09-27 2020-01-17 同济大学 An Inertial Navigation Error Correction Method Based on Vehicle Zero Speed Detection
CN110702104B (en) * 2019-09-27 2023-09-26 同济大学 An inertial navigation error correction method based on vehicle zero speed detection
CN113434816A (en) * 2020-09-21 2021-09-24 重庆工商大学 Method for detecting signal under noise enhancement neman-pearson criterion
CN113466634A (en) * 2021-08-20 2021-10-01 青岛鼎信通讯股份有限公司 Ground fault waveform identification method based on fault indicator
CN113466634B (en) * 2021-08-20 2023-12-29 青岛鼎信通讯股份有限公司 Ground fault waveform identification method based on fault indicator

Also Published As

Publication number Publication date
CN103499354B (en) 2017-01-18

Similar Documents

Publication Publication Date Title
CN104061934B (en) Pedestrian indoor position tracking method based on inertial sensor
CN103776446B (en) A kind of pedestrian&#39;s independent navigation computation based on double MEMS-IMU
Zhou et al. Use it free: Instantly knowing your phone attitude
Mikov et al. A localization system using inertial measurement units from wireless commercial hand-held devices
CN103499354B (en) Neyman-Pearson criterion-based zero speed detection method
Shi et al. A robust pedestrian dead reckoning system using low-cost magnetic and inertial sensors
CN103968827B (en) A kind of autonomic positioning method of wearable body gait detection
EP2740256B1 (en) Moving direction determination with noisy signals from inertial navigation systems on mobile devices
CN109141475B (en) A Robust Inter-Travel Initial Alignment Method for DVL-assisted SINS
Zhao et al. Pseudo-zero velocity re-detection double threshold zero-velocity update (ZUPT) for inertial sensor-based pedestrian navigation
CN103616030A (en) Autonomous navigation system positioning method based on strapdown inertial navigation resolving and zero-speed correction
CN108957510A (en) Based on inertia/zero-speed/GPS pedestrian is seamless combined navigation locating method
CN104132662A (en) Closed-loop Kalman filter inertial positioning method based on zero velocity update
CN107076554A (en) Determined for normal trajectories and the automatic method and system detected that jumps
CN103644910A (en) Personal autonomous navigation system positioning method based on segment RTS smoothing algorithm
CN103630147A (en) Zero-speed detection method for individually autonomous navigation system based on hidden Markov model (HMM)
Wu et al. Indoor positioning system based on inertial MEMS sensors: Design and realization
CN105547291B (en) The adaptive static detection method of indoor occupant freedom positioning system
Yuan et al. Indoor pedestrian navigation using miniaturized low-cost MEMS inertial measurement units
Qian et al. RPNOS: Reliable pedestrian navigation on a smartphone
Chen et al. A novel zero-velocity detector for pedestrian inertial navigation based on deep learning
Bonilla et al. Pedestrian dead reckoning towards indoor location based applications
Liu et al. An adaptive selection algorithm of threshold value in zero velocity updating for personal navigation system
Gui et al. Heading constraint algorithm for foot-mounted PNS using low-cost IMU
CN106574830B (en) Inertial sensor is initialized using soft-constraint and penalty

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170118

Termination date: 20170924