CN103480273A - Highly-activity sodium-based solid carbon dioxide absorbent - Google Patents
Highly-activity sodium-based solid carbon dioxide absorbent Download PDFInfo
- Publication number
- CN103480273A CN103480273A CN201310461696.3A CN201310461696A CN103480273A CN 103480273 A CN103480273 A CN 103480273A CN 201310461696 A CN201310461696 A CN 201310461696A CN 103480273 A CN103480273 A CN 103480273A
- Authority
- CN
- China
- Prior art keywords
- absorbent
- sodium
- carrier
- catalyst
- active component
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 title claims abstract description 72
- 239000002250 absorbent Substances 0.000 title claims abstract description 65
- 230000002745 absorbent Effects 0.000 title claims abstract description 65
- 239000007787 solid Substances 0.000 title claims abstract description 21
- 239000011734 sodium Substances 0.000 title claims abstract description 13
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 title claims abstract description 12
- 229910052708 sodium Inorganic materials 0.000 title claims abstract description 12
- 230000000694 effects Effects 0.000 title claims abstract description 10
- 229910002092 carbon dioxide Inorganic materials 0.000 title abstract description 34
- 239000001569 carbon dioxide Substances 0.000 title abstract description 12
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical group [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims abstract description 42
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 26
- 229910000029 sodium carbonate Inorganic materials 0.000 claims abstract description 21
- 238000010521 absorption reaction Methods 0.000 claims abstract description 15
- 239000003054 catalyst Substances 0.000 claims abstract description 15
- 238000003795 desorption Methods 0.000 claims abstract description 8
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 9
- 239000000203 mixture Substances 0.000 claims description 6
- 239000011148 porous material Substances 0.000 claims description 6
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 4
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims description 3
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 claims 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 abstract description 10
- 238000000034 method Methods 0.000 abstract description 10
- 229910010415 TiO(OH) Inorganic materials 0.000 abstract description 8
- 238000005516 engineering process Methods 0.000 abstract description 8
- 238000007598 dipping method Methods 0.000 abstract description 6
- 238000002360 preparation method Methods 0.000 abstract description 6
- 238000005265 energy consumption Methods 0.000 abstract description 5
- 238000001556 precipitation Methods 0.000 abstract description 4
- 238000005507 spraying Methods 0.000 abstract description 4
- 230000009467 reduction Effects 0.000 abstract description 3
- 239000002994 raw material Substances 0.000 abstract description 2
- 238000005457 optimization Methods 0.000 abstract 1
- 238000006243 chemical reaction Methods 0.000 description 10
- 238000003756 stirring Methods 0.000 description 10
- 238000011160 research Methods 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 6
- 239000003546 flue gas Substances 0.000 description 6
- 239000007921 spray Substances 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 229910052783 alkali metal Inorganic materials 0.000 description 3
- 150000001340 alkali metals Chemical class 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 238000004064 recycling Methods 0.000 description 3
- 239000004408 titanium dioxide Substances 0.000 description 3
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 239000012876 carrier material Substances 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 238000005262 decarbonization Methods 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 230000008929 regeneration Effects 0.000 description 2
- 238000011069 regeneration method Methods 0.000 description 2
- 239000002918 waste heat Substances 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 229910000288 alkali metal carbonate Inorganic materials 0.000 description 1
- 150000008041 alkali metal carbonates Chemical class 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 239000005431 greenhouse gas Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/20—Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/40—Capture or disposal of greenhouse gases of CO2
Landscapes
- Treating Waste Gases (AREA)
Abstract
本发明提供了一种高活性钠基固体二氧化碳吸收剂,包含活性组分、载体和催化剂,其中所述活性组分为碳酸钠,占固体吸收剂总质量的20-40%;所述载体为活性氧化铝,占固体吸收剂总质量的50-79%;所述催化剂为TiO2和TiO(OH)2中的一种或两种,占固体吸收剂总质量的1-10%;所述吸收剂的制备方法为浸渍法、沉淀法、浸渍沉淀法或浸渍喷雾法。本发明的固体吸收剂属于低温吸收剂,CO2吸收温度为60-80℃,CO2解吸温度为120-300℃。本发明的固体吸收剂原料廉价易得,制备工艺造价低廉且流程简单,多次循环后不易失活,可保持较高的CO2脱除率,是CO2减排技术投资和能耗较低的一种优化方案,具有广阔的应用前景。The invention provides a high-activity sodium-based solid carbon dioxide absorbent, comprising an active component, a carrier and a catalyst, wherein the active component is sodium carbonate, accounting for 20-40% of the total mass of the solid absorbent; the carrier is Activated alumina accounts for 50-79% of the total mass of the solid absorbent; the catalyst is one or both of TiO2 and TiO(OH) 2 , accounting for 1-10% of the total mass of the solid absorbent; the The preparation method of the absorbent is dipping method, precipitation method, dipping precipitation method or dipping spraying method. The solid absorbent of the present invention belongs to the low-temperature absorbent, the CO2 absorption temperature is 60-80°C, and the CO2 desorption temperature is 120-300°C. The raw material of the solid absorbent of the present invention is cheap and easy to obtain, the preparation process is cheap and the process is simple, it is not easy to be deactivated after multiple cycles, and can maintain a high CO2 removal rate, which is a CO2 emission reduction technology with low investment and energy consumption An optimization scheme of , which has broad application prospects.
Description
技术领域technical field
本发明涉及化石燃料燃烧产生的烟气中CO2的脱除和浓缩方法,采用的固体吸收剂原料来源广泛、廉价,制备方法简单易实现,吸收速度快,转化率高。属于二氧化碳减排技术领域。The invention relates to a method for removing and concentrating CO2 in flue gas produced by burning fossil fuels. The solid absorbent used has wide sources of raw materials and is cheap, the preparation method is simple and easy to implement, and the absorption speed is fast and the conversion rate is high. The invention belongs to the technical field of carbon dioxide emission reduction.
背景技术Background technique
温室效应及其带来的影响已日益成为全世界关注的焦点。其中,以CO2为主的温室气体的大量排放是造成温室效应并不断加剧的主要原因。自工业革命以来,大气中二氧化碳含量增加了25%,远远超过科学家可能勘测出来的过去16万年的全部历史纪录,而且目前尚无减缓的迹象。政府间气候变化问题小组预测,到2100年,全球气温估计将上升大约1.4-5.8℃,从而给全球环境带来重大影响。The greenhouse effect and its impact have increasingly become the focus of worldwide attention. Among them, the massive emission of greenhouse gases, mainly CO 2 , is the main cause of the greenhouse effect and its continuous aggravation. Atmospheric carbon dioxide levels have increased by 25% since the Industrial Revolution, far exceeding the entire historical record that scientists could possibly survey for the past 160,000 years, and there is no sign of slowing down. The Intergovernmental Panel on Climate Change predicts that by 2100, the global temperature is estimated to rise by about 1.4-5.8°C, which will have a significant impact on the global environment.
国际能源机构调查结果表明,我国二氧化碳排放量跃居世界第二位,排放的二氧化碳约占全球总量的13.6%。同时随着我国经济的高速发展,能源消耗量还会继续增加,作为一个负责任的大国,我国将面临更大的国际压力。因此积极开展二氧化碳减排方面的基础性研究,探索符合我国国情的二氧化碳减排之路迫在眉睫。当前,针对CO2减排的技术层出不穷,其中,基于燃烧后脱碳的技术由于只需额外增加一套CO2分离装置,改造成本低,技术可行性高。According to the survey results of the International Energy Agency, my country's carbon dioxide emissions rank second in the world, accounting for about 13.6% of the global total. At the same time, with the rapid development of my country's economy, energy consumption will continue to increase. As a responsible big country, my country will face greater international pressure. Therefore, it is imminent to actively carry out basic research on carbon dioxide emission reduction and explore a way to reduce carbon dioxide emission that is in line with my country's national conditions. At present, there are endless technologies aimed at reducing CO2 emissions. Among them, the technology based on post-combustion decarbonization requires only an additional set of CO2 separation devices, which has low retrofit costs and high technical feasibility.
碱金属基吸收剂作为一种低温CO2吸收剂,其碳酸化温度仅为60-80℃,再生温度为120-300℃,反应系统所需能量可完全由尾部烟气余热提供,能耗可比传统的MEA吸收法下降16%,具有不易失活、循环利用率高、能耗低、对设备腐蚀轻等优点。因此碱金属基吸收剂具有广阔的应用前景。As a low-temperature CO2 absorbent, the alkali metal-based absorbent has a carbonation temperature of only 60-80°C and a regeneration temperature of 120-300°C. The energy required for the reaction system can be completely provided by the waste heat of the tail flue gas, and the energy consumption is comparable to The traditional MEA absorption method is reduced by 16%, which has the advantages of not easy to deactivate, high recycling rate, low energy consumption, and light corrosion to equipment. Therefore, alkali metal-based absorbents have broad application prospects.
2000-2005年,在美国Department of Energy的资助下,Louisiana StateUniversity,Research Triangle Institute和Church&Dwight针对碱金属碳酸盐(Na2CO3、K2CO3)干法脱除CO2技术进行了研究,申请了美国专利:第6387337B1(2002.5.14.)、第6280503B1(2001.8.28.)等。近几年,在韩国科学技术部“21st Century Frontier Programs”的资助下,韩国Kyungpook NationalUniversity,Yeungnam University,Korea Electric Power Research Institute和Korea Institute of Energy Research也开展了相关的研究。韩国电力公社申请了中国专利CN200410101564.0,美国专利USP20060148642。国内东南大学也开展了这一技术的相关研究,发现碳酸钾浸渍负载于载体活性氧化铝、煤质类活性炭、木质类活性炭或粗孔硅胶后,可形成性质稳定的CO2吸收剂,在此基础上围绕钾基吸收剂干法脱除CO2技术申请了发明专利CN200810024780.8、并设计了利用该吸收剂脱除烟气中CO2的装置和方法,申请了发明专利CN200810122644.2。From 2000 to 2005, with the support of the Department of Energy in the United States, Louisiana State University, Research Triangle Institute and Church&Dwight conducted research on the dry CO 2 removal technology of alkali metal carbonates (Na 2 CO 3 , K 2 CO 3 ), Applied for US patents: No. 6387337B1 (2002.5.14.), No. 6280503B1 (2001.8.28.), etc. In recent years, under the funding of the "21st Century Frontier Programs" of the Korean Ministry of Science and Technology, Kyungpook National University, Yeungnam University, Korea Electric Power Research Institute and Korea Institute of Energy Research have also carried out related research. KEPCO has applied for Chinese patent CN200410101564.0 and US patent USP20060148642. Southeast University in China has also carried out related research on this technology, and found that potassium carbonate impregnated on the carrier activated alumina, coal-based activated carbon, wood-based activated carbon or coarse-porous silica gel can form a stable CO 2 absorbent. Based on the dry removal of CO 2 technology with potassium-based absorbents, the invention patent CN200810024780.8 was applied, and the device and method for removing CO 2 in flue gas by using the absorbent were designed, and the invention patent CN200810122644.2 was applied.
东南大学同时也针对钠基固体CO2吸收剂进行了大量研究,发现将碳酸钠浸渍负载于活性氧化铝载体后,制得的吸收剂具有发达的孔隙结构,促进了活性组分和CO2的充分接触,利于二氧化碳吸收反应的发生和进行,但CO2吸收能力不足,反应速率慢。为提高反应速率,必须对钠基固体吸收剂进行催化改性。进一步研究发现:TiO2和TiO(OH)2对钠基固体吸收剂吸收CO2的反应能起到催化作用,可有效提高与CO2的反应速率,增强CO2的吸收能力,且催化剂本身在二氧化碳吸收或解吸反应前后性状保持稳定,无副产物生成,从而不影响固体吸收剂的循环利用和解吸得到的CO2的富集。将TiO2和TiO(OH)2中的一种或两种做为催化剂与碳酸钠共同浸渍负载于活性氧化铝后,可形成一种性质稳定、孔隙发达的CO2固体吸收剂,可实现快速、高效吸收CO2。此外,本发明的吸收剂制备方法简单易行,避免了因添加粘合剂而造成的一些副作用,具有较高的经济价值和实用价值。At the same time, Southeast University has also conducted a lot of research on sodium-based solid CO2 absorbents, and found that after sodium carbonate is impregnated and loaded on the activated alumina carrier, the prepared absorbent has a well-developed pore structure, which promotes the absorption of active components and CO2 . Sufficient contact is beneficial to the occurrence and progress of the carbon dioxide absorption reaction, but the CO2 absorption capacity is insufficient and the reaction rate is slow. In order to increase the reaction rate, it is necessary to carry out catalytic modification on the sodium-based solid absorbent. Further research found that: TiO 2 and TiO(OH) 2 can play a catalytic role in the reaction of sodium-based solid absorbents to absorb CO 2 , which can effectively increase the reaction rate with CO 2 and enhance the absorption capacity of CO 2 . The properties before and after the carbon dioxide absorption or desorption reaction remain stable, and no by-products are generated, so that the recycling of the solid absorbent and the enrichment of CO2 obtained by desorption are not affected. One or both of TiO 2 and TiO(OH) 2 are impregnated and supported on activated alumina together with sodium carbonate as a catalyst to form a CO 2 solid absorbent with stable properties and well-developed pores, which can realize fast , Efficient absorption of CO 2 . In addition, the preparation method of the absorbent of the present invention is simple and easy, avoids some side effects caused by adding binders, and has high economic value and practical value.
发明内容Contents of the invention
技术问题:本发明旨在获得一种CO2吸收速度快、吸收率高、廉价易得、结构稳定、不易失活、对设备腐蚀小、制备工艺简单廉价的高活性钠基固体二氧化碳吸收剂。Technical problem: The present invention aims to obtain a highly active sodium-based solid carbon dioxide absorbent with fast CO2 absorption rate, high absorption rate, cheap and easy to obtain, stable structure, not easy to deactivate, less corrosion to equipment, and simple and cheap preparation process.
技术方案:本发明的一种高活性钠基固体二氧化碳吸收剂包含活性组分、载体和催化剂,其中所述活性组分为碳酸钠;所述载体为活性氧化铝;所述催化剂为TiO2和TiO(OH)2中的一种或两种的混合物;其中,按该吸收剂总质量计算:Technical scheme: a kind of highly active sodium-based solid carbon dioxide absorber of the present invention comprises active component, carrier and catalyst, wherein said active component is sodium carbonate; Described carrier is activated alumina; Described catalyst is TiO 2 and One or two mixtures of TiO(OH) 2 ; wherein, calculated by the total mass of the absorbent:
碳酸钠 质量含量为吸收剂总质量的20%-40%,The mass content of sodium carbonate is 20%-40% of the total mass of the absorbent,
活性氧化铝 质量含量为吸收剂总质量的50%-79%,The mass content of activated alumina is 50%-79% of the total mass of the absorbent,
催化剂 质量含量为吸收剂总质量的1%-10%。The mass content of the catalyst is 1%-10% of the total mass of the absorbent.
作为活性组分的碳酸钠是分析纯碳酸盐,或通过水合碳酸钠、碳酸氢钠、氢氧化钠作为前驱物来获得。Sodium carbonate as active component is analytically pure carbonate, or obtained by hydrated sodium carbonate, sodium bicarbonate, sodium hydroxide as a precursor.
作为载体的活性氧化铝为γ型氧化铝,比表面积大于100m2/g,孔结构发达。The activated alumina used as the carrier is γ-type alumina with a specific surface area greater than 100m 2 /g and a well-developed pore structure.
所述固体吸收剂的CO2吸收温度为60-80℃,CO2解吸温度为120-300℃。The CO2 absorption temperature of the solid absorbent is 60-80°C, and the CO2 desorption temperature is 120-300°C.
本发明的高活性钠基固体二氧化碳吸收剂是以碳酸钠作为活性组分,活性氧化铝作为吸收剂载体,TiO2和TiO(OH)2中的一种或两种作为催化剂,采用沉淀法、浸渍法、浸渍沉淀法或浸渍喷雾法制备而成。其中:活性组分的质量含量为吸收剂总质量的20%-40%,载体的质量含量为吸收剂总质量的50%-79%,催化剂的质量含量为吸收剂总质量的1%-10%。该吸收剂可制成颗粒状和粉末状。The high-activity sodium-based solid carbon dioxide absorbent of the present invention uses sodium carbonate as an active component, activated alumina as an absorbent carrier, and one or both of TiO2 and TiO(OH) 2 as a catalyst, and adopts a precipitation method, Prepared by dipping method, dipping precipitation method or dipping spray method. Among them: the mass content of the active component is 20%-40% of the total mass of the absorbent, the mass content of the carrier is 50%-79% of the total mass of the absorbent, and the mass content of the catalyst is 1%-10% of the total mass of the absorbent. %. The absorbent is available in granule and powder form.
所述的作为活性组分的碳酸钠为分析纯碳酸盐,也可使用水合碳酸钠、碳酸氢钠、氢氧化钠等作为前驱物来获得。所述的载体是活性氧化铝,属于γ型氧化铝,比表面积大于100m2/g,孔结构发达。The sodium carbonate as the active component is an analytically pure carbonate, which can also be obtained by using hydrated sodium carbonate, sodium bicarbonate, sodium hydroxide, etc. as precursors. The carrier is activated alumina, which belongs to γ-type alumina, with a specific surface area greater than 100m 2 /g and a well-developed pore structure.
有益效果:与现有技术相比,本发明具有以下优点:Beneficial effect: compared with the prior art, the present invention has the following advantages:
(1).本发明的固体吸收剂吸收CO2温度为60℃~80℃,解吸CO2温度为120℃~300℃,所需反应条件易于获得,所需热量可完全由烟气余热提供。(1). The CO2 absorption temperature of the solid absorbent of the present invention is 60°C to 80°C, and the CO2 desorption temperature is 120°C to 300°C. The required reaction conditions are easy to obtain, and the required heat can be completely provided by the waste heat of the flue gas.
(2).与普通碱金属基CO2吸收剂相比,本发明采用的催化剂可有效提高吸收剂与CO2的反应速率,提高烟气中CO2的脱除率,且催化剂本身在二氧化碳吸收或解吸反应的前后性状保持稳定,无副产物生成,不影响固体吸收剂的循环利用和解吸得到的CO2的富集。(2). Compared with ordinary alkali metal-based CO2 absorbents, the catalyst used in the present invention can effectively increase the reaction rate between the absorbent and CO2 , improve the removal rate of CO2 in the flue gas, and the catalyst itself absorbs CO2 Or the properties before and after the desorption reaction remain stable, no by-products are generated, and the recycling of the solid absorbent and the enrichment of CO obtained by desorption are not affected.
(3).本发明采用的载体材料活性氧化铝,属于γ型氧化铝,比表面积大于100m2/g,孔结构发达,具有较好的负载能力和机械强度。(3). The carrier material activated alumina used in the present invention belongs to γ-type alumina with a specific surface area greater than 100m 2 /g, well-developed pore structure, and good load capacity and mechanical strength.
(4).本发明所使用的活性组分碳酸钠以及载体材料活性氧化铝,价格低廉,简单易得,经济性高。(4). The active component sodium carbonate used in the present invention and the carrier material activated alumina are cheap, easy to obtain and highly economical.
(5).本发明的吸收剂制备工艺简单,可操作性强,活性组分和催化剂的负载量简单可控,易于自动化管理。活性组分和催化剂在载体表面分布均匀。(5). The absorbent of the present invention has a simple preparation process, strong operability, simple and controllable loading of active components and catalysts, and is easy for automatic management. Active components and catalysts are evenly distributed on the surface of the carrier.
(6).该吸收剂脱碳效率高、吸收速率快、烟气净化度高、再生能力强、性能稳定、能耗低、设备简单且腐蚀小,是燃烧后捕集CO2技术的理想固体吸收剂,具有较好的应用前景。(6). The absorbent has high decarbonization efficiency, fast absorption rate, high flue gas purification degree, strong regeneration ability, stable performance, low energy consumption, simple equipment and low corrosion. It is an ideal solid for post-combustion CO2 capture technology Absorbent, has a good application prospect.
具体实施方式Detailed ways
实施例1Example 1
称取2吨碳酸钠溶解于水中,放入7.9吨活性氧化铝载体和0.1吨二氧化钛,充分混合搅拌8-12小时。然后放于70-90℃温度下进行干燥;最后将干燥后的吸收剂在200-250℃温度下,恒温2-3小时进行焙烧;将焙烧后样品按工程需要进行筛分。Weigh 2 tons of sodium carbonate and dissolve in water, add 7.9 tons of activated alumina carrier and 0.1 tons of titanium dioxide, and mix and stir thoroughly for 8-12 hours. Then put it at a temperature of 70-90°C for drying; finally, roast the dried absorbent at a temperature of 200-250°C for 2-3 hours at a constant temperature; sieve the roasted samples according to engineering needs.
实施例2Example 2
称取4吨碳酸钠制成溶液,放入5吨活性氧化铝载体,充分混合搅拌8-12小时,然后放于70-90℃温度下进行干燥;将干燥后的吸收剂在200-250℃温度下,恒温2-3小时进行焙烧成型;称取1吨二氧化钛放入水中,同样充分搅拌制成溶液后,均匀喷洒在成型后的吸收剂上,将喷雾后制备的吸收剂进行干燥并按工程需要进行筛分。Weigh 4 tons of sodium carbonate to make a solution, put 5 tons of activated alumina carrier, mix and stir for 8-12 hours, and then put it at 70-90°C for drying; put the dried absorbent at 200-250°C 2-3 hours at a constant temperature for roasting and molding; weigh 1 ton of titanium dioxide and put it into water, stir it sufficiently to make a solution, and evenly spray it on the formed absorbent, dry the absorbent prepared after spraying and press Engineering needs to be screened.
实施例3Example 3
称取0.5吨二氧化钛放入水中,放入6.5吨活性氧化铝载体,充分搅拌8-12小时,然后放于70-90℃温度下进行干燥;将干燥后的吸收剂在200-250℃温度下,恒温2-3小时进行焙烧成型;称取3吨碳酸钠放入水中,同样充分搅拌制成溶液后,均匀喷洒在成型后的吸收剂上,将喷雾后制备的吸收剂进行干燥并按工程需要进行筛分。Weigh 0.5 tons of titanium dioxide into water, put 6.5 tons of activated alumina carrier, stir thoroughly for 8-12 hours, and then dry at 70-90°C; put the dried absorbent at 200-250°C , keep the temperature for 2-3 hours for roasting and forming; weigh 3 tons of sodium carbonate and put it into water, and stir it sufficiently to make a solution, then evenly spray it on the formed absorbent, dry the absorbent prepared after spraying and follow the project Screening is required.
实施例4Example 4
称取2吨碳酸钠溶解于水中,放入7.9吨活性氧化铝载体和0.1吨TiO(OH)2,充分混合搅拌8-12小时。然后放于70-90℃温度下进行干燥;最后将干燥后的吸收剂在200-250℃温度下,恒温2-3小时进行焙烧;将焙烧后样品按工程需要进行筛分。Weigh 2 tons of sodium carbonate and dissolve in water, add 7.9 tons of activated alumina carrier and 0.1 tons of TiO(OH) 2 , and mix and stir thoroughly for 8-12 hours. Then put it at a temperature of 70-90°C for drying; finally, roast the dried absorbent at a temperature of 200-250°C for 2-3 hours at a constant temperature; and sieve the roasted samples according to engineering needs.
实施例5Example 5
称取4吨碳酸钠制成溶液,放入5吨活性氧化铝载体,充分混合搅拌8-12小时,然后放于70-90℃温度下进行干燥;将干燥后的吸收剂在200-250℃温度下,恒温2-3小时进行焙烧成型;称取1吨TiO(OH)2放入水中,同样充分搅拌制成溶液后,均匀喷洒在成型后的吸收剂上,将喷雾后制备的吸收剂进行干燥并按工程需要进行筛分。Weigh 4 tons of sodium carbonate to make a solution, put 5 tons of activated alumina carrier, fully mix and stir for 8-12 hours, and then put it at 70-90°C for drying; dry the absorbent at 200-250°C 2-3 hours at a constant temperature for roasting and molding; weigh 1 ton of TiO(OH) 2 and put it into water, stir it sufficiently to make a solution, and spray it evenly on the formed absorbent, and spray the prepared absorbent Dry and sieve according to engineering needs.
实施例6Example 6
称取0.5吨TiO(OH)2放入水中,放入6.5吨活性氧化铝载体,充分搅拌8-12小时,然后放于70-90℃温度下进行干燥;将干燥后的吸收剂在200-250℃温度下,恒温2-3小时进行焙烧成型;称取3吨碳酸钠放入水中,同样充分搅拌制成溶液后,均匀喷洒在成型后的吸收剂上,将喷雾后制备的吸收剂进行干燥并按工程需要进行筛分。Weigh 0.5 tons of TiO(OH) 2 into water, put 6.5 tons of activated alumina carrier, stir thoroughly for 8-12 hours, and then dry at 70-90°C; put the dried absorbent at 200- At 250°C, keep the temperature constant for 2-3 hours for roasting and molding; weigh 3 tons of sodium carbonate and put it into water, stir it to make a solution, and spray it evenly on the absorbent after spraying. Dry and sieve according to engineering needs.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310461696.3A CN103480273A (en) | 2013-09-30 | 2013-09-30 | Highly-activity sodium-based solid carbon dioxide absorbent |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310461696.3A CN103480273A (en) | 2013-09-30 | 2013-09-30 | Highly-activity sodium-based solid carbon dioxide absorbent |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103480273A true CN103480273A (en) | 2014-01-01 |
Family
ID=49821061
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310461696.3A Pending CN103480273A (en) | 2013-09-30 | 2013-09-30 | Highly-activity sodium-based solid carbon dioxide absorbent |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103480273A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110871062A (en) * | 2018-08-31 | 2020-03-10 | 南京理工大学 | Composite nanoparticle catalyst suitable for carbon dioxide absorption liquid and preparation method thereof |
CN114632406A (en) * | 2022-02-28 | 2022-06-17 | 东南大学 | Preparation method and device of supported carbon dioxide solid adsorbent |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1307929A (en) * | 2000-12-25 | 2001-08-15 | 化学工业部天津化工研究设计院 | Preparation process of alumina adsorbant |
CN101780371A (en) * | 2010-03-19 | 2010-07-21 | 东南大学 | Method for jointly removing carbon dioxide and sulfur dioxide from smoke |
CN101862666A (en) * | 2010-06-13 | 2010-10-20 | 东南大学 | A carbon dioxide solid absorbent |
CN101961636A (en) * | 2010-09-13 | 2011-02-02 | 东南大学 | Method for modifying carbon dioxide solid absorbent |
CN102049257A (en) * | 2009-10-27 | 2011-05-11 | 中国石油化工股份有限公司 | Catalyst for simultaneously reducing SO2 and NO with CO as well as preparation and application of catalyst |
CN102078796A (en) * | 2009-11-30 | 2011-06-01 | 中国神华能源股份有限公司 | Carbon dioxide solid absorbent and preparation method thereof |
CN102658023A (en) * | 2012-05-17 | 2012-09-12 | 东南大学 | Carbon dioxide solid absorbent capable of effectively inhibiting active components from losing effect |
-
2013
- 2013-09-30 CN CN201310461696.3A patent/CN103480273A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1307929A (en) * | 2000-12-25 | 2001-08-15 | 化学工业部天津化工研究设计院 | Preparation process of alumina adsorbant |
CN102049257A (en) * | 2009-10-27 | 2011-05-11 | 中国石油化工股份有限公司 | Catalyst for simultaneously reducing SO2 and NO with CO as well as preparation and application of catalyst |
CN102078796A (en) * | 2009-11-30 | 2011-06-01 | 中国神华能源股份有限公司 | Carbon dioxide solid absorbent and preparation method thereof |
CN101780371A (en) * | 2010-03-19 | 2010-07-21 | 东南大学 | Method for jointly removing carbon dioxide and sulfur dioxide from smoke |
CN101862666A (en) * | 2010-06-13 | 2010-10-20 | 东南大学 | A carbon dioxide solid absorbent |
CN101961636A (en) * | 2010-09-13 | 2011-02-02 | 东南大学 | Method for modifying carbon dioxide solid absorbent |
CN102658023A (en) * | 2012-05-17 | 2012-09-12 | 东南大学 | Carbon dioxide solid absorbent capable of effectively inhibiting active components from losing effect |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110871062A (en) * | 2018-08-31 | 2020-03-10 | 南京理工大学 | Composite nanoparticle catalyst suitable for carbon dioxide absorption liquid and preparation method thereof |
CN110871062B (en) * | 2018-08-31 | 2022-10-21 | 南京理工大学 | Composite nano-particle catalyst suitable for carbon dioxide absorption liquid and preparation method thereof |
CN114632406A (en) * | 2022-02-28 | 2022-06-17 | 东南大学 | Preparation method and device of supported carbon dioxide solid adsorbent |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103331096B (en) | A kind of preparation method of modified carbon dioxide calcium-based absorbent | |
CN101804289B (en) | Preparation, application and regeneration method of flue gas desulfurizing agent | |
CN106621773B (en) | A kind of sintering flue gas ammonia charcoal combined desulfurization and denitration method | |
CN101780371B (en) | Method for jointly removing carbon dioxide and sulfur dioxide from smoke | |
CN102580679A (en) | Method for preparing modified microwave activated carbon sorbent | |
MX2013004266A (en) | Method and apparatus for capturing carbon dioxide in flue gas with activated sodium carbonate. | |
CN101862666B (en) | Carbon dioxide solid absorbent | |
CN103111264B (en) | The preparation method of a kind of ionic liquid and the two modification bacterium slag active carbon of metal and application | |
CN101269316A (en) | High-activity kalium group solid absorbing agent for removing CO2 in flue gas and preparation method thereof | |
CN110893312A (en) | Novel high-efficiency desulfurizer and preparation method thereof | |
CN103316667B (en) | A kind of fume desulfuring and denitrifying agent and ultrasonic activation preparation method thereof | |
CN102815926A (en) | A CO2 high-temperature calcium-based fly ash absorbent and preparation method thereof | |
CN105664708B (en) | A kind of carbon-dioxide absorbent, its preparation method and its application process | |
CN103301805A (en) | Carbon dioxide adsorbent and preparation method thereof | |
CN111603907A (en) | A kind of modified magnesium-based absorbent and preparation method thereof | |
CN100553747C (en) | Utilize humates simultaneously desulfurizing and denitrating to produce the method for compound fertilizer | |
CN103480273A (en) | Highly-activity sodium-based solid carbon dioxide absorbent | |
CN102908981A (en) | Preparation method of lithium-based carbon dioxide adsorbent | |
KR101491442B1 (en) | Dry absorbent or inorganic carbonate conversion agent for carbon dioxide capture and storage using fly ash, and method for manufacturing thereof | |
CN111603906B (en) | Carbon dioxide magnesium-based adsorbent and preparation method thereof | |
KR101502238B1 (en) | Carbon dioxide absorbent and carbon dioxide capture process thereof | |
CN102500372A (en) | Copper oxide loaded attapulgite catalyst and preparation method and applications thereof | |
CN110683780A (en) | A kind of modified fly ash for solidifying and sequestering carbon dioxide and preparation method thereof | |
CN102553433B (en) | A device and method for removing CO2 from coal-fired flue gas | |
CN104368323B (en) | Carbon-based catalyst for desulfurization and denitrification as well as preparation method and application of catalyst |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20140101 |