CN103474483B - A kind of back reflector of periodic structure and preparation method thereof - Google Patents
A kind of back reflector of periodic structure and preparation method thereof Download PDFInfo
- Publication number
- CN103474483B CN103474483B CN201310416645.9A CN201310416645A CN103474483B CN 103474483 B CN103474483 B CN 103474483B CN 201310416645 A CN201310416645 A CN 201310416645A CN 103474483 B CN103474483 B CN 103474483B
- Authority
- CN
- China
- Prior art keywords
- layer
- microspheres
- periodic structure
- glass substrate
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000000737 periodic effect Effects 0.000 title claims abstract description 85
- 238000002360 preparation method Methods 0.000 title claims abstract description 11
- 239000000758 substrate Substances 0.000 claims abstract description 93
- 239000004005 microsphere Substances 0.000 claims abstract description 78
- 239000004793 Polystyrene Substances 0.000 claims abstract description 66
- 239000010408 film Substances 0.000 claims abstract description 65
- 229920002223 polystyrene Polymers 0.000 claims abstract description 58
- 229910052751 metal Inorganic materials 0.000 claims abstract description 38
- 239000002184 metal Substances 0.000 claims abstract description 38
- 239000010409 thin film Substances 0.000 claims abstract description 37
- 230000000694 effects Effects 0.000 claims abstract description 34
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 33
- 238000000034 method Methods 0.000 claims abstract description 21
- 238000001755 magnetron sputter deposition Methods 0.000 claims abstract description 18
- 238000001704 evaporation Methods 0.000 claims abstract description 11
- 230000004048 modification Effects 0.000 claims abstract description 10
- 238000012986 modification Methods 0.000 claims abstract description 10
- 238000001228 spectrum Methods 0.000 claims abstract description 9
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 4
- 229910052709 silver Inorganic materials 0.000 claims abstract description 4
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 3
- 239000010410 layer Substances 0.000 claims description 71
- 239000011521 glass Substances 0.000 claims description 64
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 17
- 239000005977 Ethylene Substances 0.000 claims description 17
- 239000002356 single layer Substances 0.000 claims description 16
- 239000000243 solution Substances 0.000 claims description 16
- 238000001020 plasma etching Methods 0.000 claims description 15
- 239000002245 particle Substances 0.000 claims description 14
- 230000008020 evaporation Effects 0.000 claims description 10
- 238000012876 topography Methods 0.000 claims description 10
- 238000005530 etching Methods 0.000 claims description 8
- 239000004816 latex Substances 0.000 claims description 8
- 229920000126 latex Polymers 0.000 claims description 8
- 239000011259 mixed solution Substances 0.000 claims description 8
- 238000001338 self-assembly Methods 0.000 claims description 8
- 238000009210 therapy by ultrasound Methods 0.000 claims description 8
- 238000006243 chemical reaction Methods 0.000 abstract description 4
- 238000004544 sputter deposition Methods 0.000 description 51
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 38
- 229910052786 argon Inorganic materials 0.000 description 19
- 229910021424 microcrystalline silicon Inorganic materials 0.000 description 15
- 239000007789 gas Substances 0.000 description 14
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 10
- 229920002554 vinyl polymer Polymers 0.000 description 10
- 230000001965 increasing effect Effects 0.000 description 7
- 239000013077 target material Substances 0.000 description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 6
- 239000001301 oxygen Substances 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 239000008188 pellet Substances 0.000 description 6
- 239000011324 bead Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 229910021417 amorphous silicon Inorganic materials 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 239000005543 nano-size silicon particle Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 241000409201 Luina Species 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- KTSFMFGEAAANTF-UHFFFAOYSA-N [Cu].[Se].[Se].[In] Chemical compound [Cu].[Se].[Se].[In] KTSFMFGEAAANTF-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 210000000085 cashmere Anatomy 0.000 description 1
- WILFBXOGIULNAF-UHFFFAOYSA-N copper sulfanylidenetin zinc Chemical compound [Sn]=S.[Zn].[Cu] WILFBXOGIULNAF-UHFFFAOYSA-N 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 230000001795 light effect Effects 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Physical Vapour Deposition (AREA)
- Photovoltaic Devices (AREA)
- Treatments Of Macromolecular Shaped Articles (AREA)
Abstract
一种周期性结构的背反射电极,包括衬底层、形成模板作用的第一层金属薄膜和起修饰作用的第二层金属薄膜,两层金属薄膜均为金属Ag、Al或Mo薄膜,构成具有宽光谱散射作用的周期性结构的背反射电极;其制备方法,利用水浴方法组装聚苯乙烯(PS)微球,用O2等离子刻蚀PS微球,利用刻蚀后的聚苯乙烯微球的模板作用,得到具有宽光谱散射作用的周期性结构的背反射电极用于作薄膜太阳电池的背反射电极。本发明的优点是:利用聚苯乙烯微球的模板作用和磁控溅射或蒸发金属薄膜,实现了高散射的周期性结构背反射电极的制备;应用于薄膜太阳电池,其短路电流密度和转换效率得到了提高。
A back reflective electrode with a periodic structure, comprising a substrate layer, a first layer of metal film forming a template and a second layer of metal film for modification, the two layers of metal films are metal Ag, Al or Mo films, forming a A back reflective electrode with a periodic structure of wide-spectrum scattering; its preparation method uses a water bath method to assemble polystyrene (PS) microspheres, etches PS microspheres with O2 plasma, and utilizes the etched polystyrene microspheres The template effect, obtain the back reflective electrode of periodic structure with broad spectrum scattering effect and be used as the back reflective electrode of thin-film solar cell. The advantages of the present invention are: utilizing the template effect of polystyrene microspheres and magnetron sputtering or evaporating metal thin films to realize the preparation of high-scattering periodic structure back reflection electrodes; when applied to thin-film solar cells, the short-circuit current density and Conversion efficiency has been improved.
Description
技术领域technical field
本发明属于薄膜太阳电池的高散射背电极的制备技术,尤其是一种周期性结构的背反射电极及其制备方法。The invention belongs to the preparation technology of a high-scattering back electrode of a thin-film solar cell, in particular to a back reflection electrode with a periodic structure and a preparation method thereof.
背景技术Background technique
光伏作为未来能源主力,必须大幅提高效率、降低成本才能得以生存。银背反射电极作为太阳电池的重要组成部分,其绒度特性对电池的性能影响至关重要。当前薄膜电池中应用最为广泛的金属背反射电极是基于绒度的金属铝结合银来构建的随机绒面的背反射电极,这种方法生长的金属背电极粗糙度不是很大,导致这种衬底的散射效果不是很好。研究表明:对于NIP型的Si基薄膜太阳电池(非晶硅电池、微晶硅电池以及硅基多结薄膜叠层电池)来说,背反射电极的陷光作用对器件性能的影响尤为重要。绒度的金属背反射电极结构可以有效的将光反射回电池,增加反射回电池光的光程,从而有效增强本征层的光学吸收,提高短路电流密度,进而提高电池效率,更为重要的是,陷光的引入,可以减薄电池的有源层厚度,这对降低成本是非常重要的。Photovoltaics, as the main energy source in the future, must greatly improve efficiency and reduce costs in order to survive. Silver back reflective electrode is an important part of solar cells, and its texture characteristics are very important to the performance of the cells. At present, the most widely used metal back reflector in thin film batteries is a random textured back reflector based on the metal aluminum combined with silver. The roughness of the metal back electrode grown by this method is not very large, which leads to the The scattering effect of the bottom is not very good. Studies have shown that for NIP Si-based thin-film solar cells (amorphous silicon cells, microcrystalline silicon cells, and silicon-based multi-junction thin-film laminated cells), the light trapping effect of the back reflector electrode is particularly important for device performance. The velvet metal back reflective electrode structure can effectively reflect light back to the battery and increase the optical path of light reflected back to the battery, thereby effectively enhancing the optical absorption of the intrinsic layer, increasing the short-circuit current density, and improving battery efficiency. Yes, the introduction of light trapping can reduce the thickness of the active layer of the battery, which is very important to reduce the cost.
相比于随机绒面的金属背反射电极,周期性结构的背反射电极由于其具有高的散射特性而引起关注。目前周期性结构的背反射电极的制备方法主要是阳极氧化铝(AAO),由于在阳极氧化过程中电压大于500V时会有大量的热量产生和阳极氧化的不稳定性,其周期性不能很好的控制,而且很难制作大尺寸的‘酒窝’状。AAO方法制备的背反射电极虽然增加了对短波长光的散射,电池的短波响应得到了提高,起到了对短波长光的陷光效果,但是长波长光的陷光由于其‘酒窝’状尺寸受限,导致电池对长波长光的利用率不高。Compared with random textured metal back reflectors, periodically structured back reflectors have attracted attention due to their high scattering properties. At present, the preparation method of the back reflector electrode with periodic structure is mainly anodized aluminum oxide (AAO). Due to the large amount of heat generated and the instability of anodic oxidation during the anodic oxidation process when the voltage is greater than 500V, its periodicity is not very good. control, and it is difficult to make a large size 'dimple' shape. Although the back reflective electrode prepared by the AAO method increases the scattering of short-wavelength light, the short-wave response of the battery is improved, and it has a light-trapping effect on short-wavelength light, but the light-trapping effect of long-wavelength light is due to its 'dimple' shape. Limited, resulting in low utilization of long-wavelength light by the battery.
发明内容Contents of the invention
本发明目的是为克服现有技术的上述不足,提供一种有利于提高薄膜太阳电池性能的具有高散射比例的周期性结构的背反射电极,该周期性结构的背反射电极能够实现良好的陷光效果,使电池吸收层未被吸收的光能够更多的再散射回电池,增加光在电池中的光程,以达到提高光利用率,增强电池的短路电流密度,进而达到提高电池效率的目的,而且最为重要的是通过控制制备工艺可增加400-1500nm波长范围的散射比率,使电池对光的利用率得到大大提高。The purpose of the present invention is to overcome the above-mentioned deficiencies in the prior art, and provide a back reflective electrode with a periodic structure with a high scattering ratio that is beneficial to improve the performance of thin-film solar cells. The back reflective electrode with a periodic structure can achieve good trapping Light effect, so that the unabsorbed light of the battery absorbing layer can be scattered back to the battery more, increasing the optical path of light in the battery, so as to improve the light utilization rate, enhance the short-circuit current density of the battery, and then achieve the goal of improving battery efficiency. Purpose, and the most important thing is that by controlling the preparation process, the scattering ratio in the wavelength range of 400-1500nm can be increased, so that the light utilization rate of the battery can be greatly improved.
本发明的技术方案:Technical scheme of the present invention:
一种周期性结构的背反射电极,包括衬底层、形成模板作用的第一层金属薄膜和起修饰作用的第二层金属薄膜,衬底层为硬质衬底玻璃,两层金属薄膜均为金属Ag、Al或Mo薄膜,其中第一层薄膜厚度为300-1000nm,第二层金属薄膜的厚度为100-500nm,构成具有宽光谱散射作用的周期性结构的背反射电极,周期性结构的背反射电极均方根粗糙度为50-200 nm。A back reflective electrode with a periodic structure, including a substrate layer, a first layer of metal film forming a template and a second layer of metal film for modification, the substrate layer is a hard substrate glass, and the two layers of metal film are metal Ag, Al or Mo film, wherein the thickness of the first layer of film is 300-1000nm, and the thickness of the second layer of metal film is 100-500nm, which constitutes the back reflection electrode of the periodic structure with wide spectrum scattering effect, and the back reflection electrode of the periodic structure The root mean square roughness of the reflective electrode is 50-200 nm.
一种所述周期性结构的背反射电极的制备方法,利用水浴方法组装聚苯乙烯(PS)微球,用O2等离子刻蚀PS微球,利用刻蚀后的聚苯乙烯微球的模板作用,得到具有宽光谱散射作用的周期性结构的背反射电极,步骤如下:A method for preparing a back reflective electrode with a periodic structure, using a water bath method to assemble polystyrene (PS) microspheres, using O2 plasma to etch the PS microspheres, using the etched polystyrene microspheres as a template function, to obtain a back reflection electrode with a periodic structure with broad-spectrum scattering, the steps are as follows:
1)将玻璃衬底浸泡在H2SO4与H2O2的体积比为2:1的混合溶液里进行亲水处理,处理时间为2-10小时;1) Soak the glass substrate in a mixed solution of H 2 SO 4 and H 2 O 2 with a volume ratio of 2:1 for hydrophilic treatment, and the treatment time is 2-10 hours;
2)把上述玻璃衬底放在水平台上,将粒径为1-5μm、浓度为5wt%的聚苯乙烯微球乳胶溶液垂直滴在玻璃衬底上,溶液慢慢扩散开使乙烯微球不均匀散布于玻璃衬底上,然后把玻璃衬底放在水蒸气上进行自组装,经过30min的水浴,玻璃衬底上的形成单层六方密排的聚苯乙烯微球;2) Put the above glass substrate on a horizontal platform, drop the latex solution of polystyrene microspheres with a particle size of 1-5 μm and a concentration of 5wt% vertically on the glass substrate, and slowly spread the solution to make the vinyl microspheres Unevenly spread on the glass substrate, and then put the glass substrate on the water vapor for self-assembly. After 30 minutes of water bath, a single layer of hexagonal close-packed polystyrene microspheres are formed on the glass substrate;
3)将上述单层六方密排的聚苯乙烯微球,进行O2等离子刻蚀(RIE),刻蚀后相对应乙烯微球的大小为0.5-4μm;3) Perform O 2 plasma etching (RIE) on the above monolayer hexagonal close-packed polystyrene microspheres, and the size of the corresponding ethylene microspheres after etching is 0.5-4 μm;
4)在刻蚀后的乙烯微球上采用磁控溅射方法或蒸发的方法沉积第一层厚度为300-1000nm的金属薄膜,然后将玻璃衬底放在水里进行超声处理直至乙烯小球完全处理干净;4) Deposit the first layer of metal film with a thickness of 300-1000nm on the etched ethylene microspheres by magnetron sputtering or evaporation, and then put the glass substrate in water for ultrasonic treatment until the ethylene beads completely cleaned up;
5)采用磁控溅射或蒸发的方法再沉积第二层厚度为100-500nm的金属薄膜,即可制得具有周期性结构的背反射电极。5) A second layer of metal thin film with a thickness of 100-500nm is deposited by magnetron sputtering or evaporation to obtain a back reflection electrode with a periodic structure.
一种所述周期性结构的背反射电极的应用,用于作薄膜太阳电池的背反射电极,所述薄膜太阳电池为非晶硅基、微晶硅基、纳米硅基薄膜太阳电池、多结叠层硅基薄膜太阳电池、铜铟镓硒太阳电池或铜锌锡硫太阳电池。A kind of application of the back reflective electrode of described periodic structure, be used as the back reflective electrode of thin-film solar cell, described thin-film solar cell is amorphous silicon-based, microcrystalline silicon-based, nano-silicon-based thin-film solar cell, multi-junction Stacked silicon-based thin film solar cells, copper indium gallium selenide solar cells or copper zinc tin sulfur solar cells.
本发明的优点和积极效果:Advantage and positive effect of the present invention:
本发明利用聚苯乙烯微球的模板作用和磁控溅射或蒸发金属薄膜,实现了高散射的周期性结构背反射电极的制备;将本周期性结构的背电极应用于薄膜太阳电池,较传统的绒度金属Ag薄膜作为背反射电极制备的相同条件的电池短路电流密度提高了9.4%,转换效率提高了18.4%,对300-1500nm电池所能利用的波长范围内具有良好散射作用。The present invention utilizes the template effect of polystyrene microspheres and magnetron sputtering or evaporated metal thin film to realize the preparation of the back reflective electrode of the periodic structure of high scattering; Apply the back electrode of this periodic structure to the thin film solar cell, relatively The short-circuit current density of the battery under the same conditions prepared by the traditional cashmere metal Ag film as the back reflector electrode is increased by 9.4%, the conversion efficiency is increased by 18.4%, and it has a good scattering effect on the wavelength range that can be used by the 300-1500nm battery.
附图说明Description of drawings
图1为该周期性结构的背反射电极的结构示意图。FIG. 1 is a schematic structural view of the back reflection electrode with the periodic structure.
图2为采用传统溅射法制备的有一定粗糙度的Ag薄膜的背反射电极的形貌图。Fig. 2 is a topography diagram of a back reflection electrode of an Ag thin film with a certain roughness prepared by a traditional sputtering method.
图3为采用PS小球为模板制备的周期性结构的背反射电极的形貌图。Fig. 3 is a topography diagram of a back reflection electrode with a periodic structure prepared by using PS pellets as a template.
图4为采用PS小球为模板制备的周期性结构的背反射电极与采用传统溅射法制备的有一定粗糙度的Ag薄膜的背反射电极的积分反射和绒度比较结果。Figure 4 shows the comparison results of integrated reflection and velvet between the back reflective electrode with periodic structure prepared by using PS balls as the template and the back reflective electrode with Ag film with certain roughness prepared by traditional sputtering method.
图5为采用PS小球为模板制备的周期性结构的背反射电极与采用传统溅射法制备的有一定粗糙度的Ag薄膜的背反射电极应用于微晶硅基太阳电池的外量子效率比较结果。Figure 5 is a comparison of the external quantum efficiency of the back reflection electrode with a periodic structure prepared by using PS spheres as a template and the back reflection electrode with a certain roughness of Ag film prepared by traditional sputtering method applied to microcrystalline silicon-based solar cells result.
图6为采用PS小球为模板制备的周期性结构的背反射电极与采用传统溅射法制备的有一定粗糙度的Ag薄膜的背反射电极应用于微晶硅基太阳电池的电池效率比较结果。Figure 6 shows the cell efficiency comparison results of the back reflective electrode with a periodic structure prepared by using PS beads as a template and the back reflective electrode with a certain roughness of Ag film prepared by traditional sputtering method applied to microcrystalline silicon-based solar cells .
具体实施方式detailed description
实施例1:Example 1:
一种周期性结构的背反射电极,如图1所示,包括衬底层、形成模板作用的第一层Ag薄膜和起修饰作用的第二层Ag薄膜,衬底层为硬质衬底玻璃,两层金属薄膜均为金属Ag薄膜,其中第一层Ag薄膜厚度为600nm,第二层Ag薄膜的厚度为300nm,构成具有宽光谱散射作用的周期性结构的背反射电极,周期性结构的背反射电极均方根粗糙度为180nm。A back reflective electrode with a periodic structure, as shown in Figure 1, includes a substrate layer, a first layer of Ag thin film forming a template effect and a second layer of Ag thin film for modification, the substrate layer is a hard substrate glass, and the two The first layer of Ag film is 600nm thick, and the thickness of the second Ag film is 300nm, forming a periodic structure back reflection electrode with wide spectrum scattering effect, and the back reflection electrode of the periodic structure The root mean square roughness of the electrode is 180nm.
一种所述周期性结构的背反射电极的制备方法,利用水浴方法组装聚苯乙烯(PS)微球,用O2等离子刻蚀PS微球,利用刻蚀后的聚苯乙烯微球的模板作用,得到具有宽光谱散射作用的周期性结构的背反射电极,步骤如下:A method for preparing a back reflective electrode with a periodic structure, using a water bath method to assemble polystyrene (PS) microspheres, using O2 plasma to etch the PS microspheres, using the etched polystyrene microspheres as a template function, to obtain a back reflection electrode with a periodic structure with broad-spectrum scattering, the steps are as follows:
1)将玻璃衬底浸泡在H2SO4与H2O2的体积比为2:1的混合溶液里进行亲水处理,处理时间为5小时;1) Soak the glass substrate in a mixed solution of H 2 SO 4 and H 2 O 2 with a volume ratio of 2:1 for hydrophilic treatment, and the treatment time is 5 hours;
2)把上述玻璃衬底放在水平台上,将粒径为2μm、浓度为5wt%的聚苯乙烯微球乳胶溶液垂直滴在玻璃衬底上,溶液慢慢扩散开使乙烯微球不均匀散布于玻璃衬底上,然后把玻璃衬底放在水蒸气上进行自组装,经过30min的水浴,玻璃衬底上形成单层六方密排的粒径2μm的聚苯乙烯微球;2) Put the above glass substrate on a horizontal platform, drop the latex solution of polystyrene microspheres with a particle size of 2 μm and a concentration of 5wt% vertically on the glass substrate, and the solution slowly diffuses to make the vinyl microspheres uneven Scatter on the glass substrate, then put the glass substrate on the water vapor for self-assembly, after 30 minutes of water bath, a single layer of hexagonal close-packed polystyrene microspheres with a particle size of 2 μm are formed on the glass substrate;
3)将上述单层六方密排的聚苯乙烯微球,进行O2等离子刻蚀(RIE),氧气流量10Sccm,气压11pa,射频功率150W,刻蚀时间为6分钟,相对应乙烯微球的大小为1.8μm;3) The above-mentioned single-layer hexagonal close-packed polystyrene microspheres were subjected to O2 plasma etching (RIE), the oxygen flow rate was 10Sccm, the air pressure was 11pa, the RF power was 150W, and the etching time was 6 minutes. The size is 1.8 μm;
4)在刻蚀后的乙烯微球上采用磁控溅射的方法沉积第一层厚度Ag薄膜,靶材为纯度99.999%的Ag金属靶,采用纯氩气溅射,制备致密的Ag薄膜:衬底温度为室温,本底真空为5×10-5 Pa,氩气流量为40 sccm,溅射气压为4mTorr,电极间距为110 mm,溅射功率为50 W,溅射时间为28 min,得到厚度为600 nm的第一层Ag薄膜,然后将玻璃衬底放在水里进行超声处理直至乙烯小球完全处理干净;4) On the etched ethylene microspheres, the first thickness of Ag film is deposited by magnetron sputtering. The target material is an Ag metal target with a purity of 99.999%. Pure argon gas sputtering is used to prepare a dense Ag film: The substrate temperature is room temperature, the background vacuum is 5×10 -5 Pa, the argon gas flow rate is 40 sccm, the sputtering pressure is 4 mTorr, the electrode distance is 110 mm, the sputtering power is 50 W, and the sputtering time is 28 min. Obtain the first layer of Ag film with a thickness of 600 nm, and then place the glass substrate in water for ultrasonic treatment until the vinyl beads are completely cleaned;
5)采用磁控溅射或蒸发的方法再沉积第二层Ag薄膜,衬底温度为室温,本底真空为5×10-5 Pa,氩气流量为40 sccm,溅射气压为4mTorr,电极间距为110 mm,溅射功率为50W,溅射时间为14 min,得到厚度为300 nm的第二层Ag薄膜,即可制得具有周期性结构的背反射电极。5) Deposit the second layer of Ag film by magnetron sputtering or evaporation. The substrate temperature is room temperature, the background vacuum is 5×10 -5 Pa, the argon gas flow rate is 40 sccm, the sputtering pressure is 4mTorr, and the electrode The spacing is 110 mm, the sputtering power is 50 W, and the sputtering time is 14 min, and the second layer of Ag film with a thickness of 300 nm is obtained, and the back reflective electrode with a periodic structure can be prepared.
图2为采用传统溅射法制备的有一定粗糙度的Ag薄膜的背反射电极的形貌图。图3为采用PS小球为模板制备的周期性结构的背反射电极的形貌图。从形貌图比较显示:当采用本发明的周期性结构的背反射电极时,能够得到较大的绒面粗糙度,且周期性结构很明显,均方根粗糙度为180nm,远大于传统84 nm。Fig. 2 is a topography diagram of a back reflection electrode of an Ag thin film with a certain roughness prepared by a traditional sputtering method. Fig. 3 is a topography diagram of a back reflection electrode with a periodic structure prepared by using PS pellets as a template. From the comparison of the topography diagrams, it is shown that: when the back reflection electrode with a periodic structure of the present invention is used, a larger suede roughness can be obtained, and the periodic structure is obvious, and the root mean square roughness is 180nm, which is far greater than the traditional 84 nm.
图4为采用PS小球为模板制备的周期性结构的背反射电极与采用传统溅射法制备的有一定粗糙度的Ag薄膜的背反射电极的积分反射和绒度比较结果。图中表明:周期性背反射电极的积分反射和绒度远远高于传统的有一定粗糙度的金属背反射电极。Figure 4 shows the comparison results of integrated reflection and velvet between the back reflective electrode with periodic structure prepared by using PS balls as the template and the back reflective electrode with Ag film with certain roughness prepared by traditional sputtering method. The figure shows that the integral reflection and velvet of the periodic back reflection electrode are much higher than the traditional metal back reflection electrode with a certain roughness.
将制备的周期性结构的背反射电极应用于微晶硅基太阳电池。The prepared back reflective electrode with periodic structure was applied to microcrystalline silicon-based solar cells.
图5为本发明采用PS小球为模板制备的周期性结构的背反射电极与传统的采用溅射法制备得到的有一定粗糙度的Ag薄膜的背反射电极应用于微晶硅基太阳电池的外量子效率比较结果。图中表明:周期性结构背反射电极对入射光的短波和长波同时起到了陷光的效果,使得微晶硅基太阳电池具有较大的短路电流密度,短路电流密度提高了9.4%。Fig. 5 is that the present invention adopts the back reflection electrode of periodic structure prepared by PS pellet as template and the back reflection electrode of the Ag film with certain roughness prepared by traditional sputtering method is applied to microcrystalline silicon-based solar cell External quantum efficiency comparison results. The figure shows that the periodic structure back reflection electrode has the effect of light trapping on the short-wave and long-wave incident light at the same time, so that the microcrystalline silicon-based solar cell has a larger short-circuit current density, and the short-circuit current density has increased by 9.4%.
图6为本发明采用PS小球为模板制备的周期性结构的背反射电极与传统的采用溅射法制备得到的有一定粗糙度的Ag薄膜的背反射电极应用于微晶硅基太阳电池的电池效率比较结果。图中表明:将周期性结构背反射电极应用于微晶硅基电池可获得较高的电池效率,转换效率提高了18.4%。Fig. 6 is the back reflective electrode of periodic structure that the present invention adopts PS ball as template preparation and the back reflective electrode of Ag thin film with certain roughness prepared by traditional sputtering method is applied to microcrystalline silicon-based solar cell Battery efficiency comparison results. The figure shows that the application of the periodic structure back reflection electrode to the microcrystalline silicon-based battery can obtain higher battery efficiency, and the conversion efficiency is increased by 18.4%.
实施例2:Example 2:
一种周期性结构的背反射电极,如图1所示,包括衬底层、形成模板作用的第一层Al薄膜和起修饰作用的第二层Ag薄膜,衬底层为硬质衬底玻璃,其中第一层Al薄膜厚度为500nm,第二层Ag薄膜的厚度为300nm,构成具有宽光谱散射作用的周期性结构的背反射电极,周期性结构的背反射电极均方根粗糙度为120nm。A back reflection electrode with a periodic structure, as shown in Figure 1, includes a substrate layer, a first layer of Al thin film forming a template effect and a second layer of Ag thin film that acts as a modification, and the substrate layer is a hard substrate glass, wherein The thickness of the first layer of Al thin film is 500nm, and the thickness of the second layer of Ag thin film is 300nm, forming a back reflective electrode with a periodic structure with broad spectrum scattering, and the root mean square roughness of the back reflective electrode with a periodic structure is 120nm.
一种所述周期性结构的背反射电极的制备方法,利用水浴方法组装聚苯乙烯(PS)微球,用O2等离子刻蚀PS微球,利用刻蚀后的聚苯乙烯微球的模板作用,得到具有宽光谱散射作用的周期性结构的背反射电极,步骤如下:A method for preparing a back reflective electrode with a periodic structure, using a water bath method to assemble polystyrene (PS) microspheres, using O2 plasma to etch the PS microspheres, using the etched polystyrene microspheres as a template function, to obtain a back reflection electrode with a periodic structure with broad-spectrum scattering, the steps are as follows:
1)将玻璃衬底浸泡在H2SO4与H2O2的体积比为2:1的混合溶液里进行亲水处理,处理时间为6小时;1) Soak the glass substrate in a mixed solution of H 2 SO 4 and H 2 O 2 with a volume ratio of 2:1 for hydrophilic treatment, and the treatment time is 6 hours;
2)把上述玻璃衬底放在水平台上,将粒径为2μm、浓度为5wt%的聚苯乙烯微球乳胶溶液垂直滴在玻璃衬底上,溶液慢慢扩散开使乙烯微球不均匀散布于玻璃衬底上,然后把玻璃衬底放在水蒸气上进行自组装,经过30min的水浴,玻璃衬底上形成单层六方密排的粒径2μm的聚苯乙烯微球;2) Put the above glass substrate on a horizontal platform, drop the latex solution of polystyrene microspheres with a particle size of 2 μm and a concentration of 5wt% vertically on the glass substrate, and the solution slowly diffuses to make the vinyl microspheres uneven Scatter on the glass substrate, then put the glass substrate on the water vapor for self-assembly, after 30 minutes of water bath, a single layer of hexagonal close-packed polystyrene microspheres with a particle size of 2 μm are formed on the glass substrate;
3)将上述单层六方密排的聚苯乙烯微球,进行O2等离子刻蚀(RIE),氧气流量10Sccm,气压11pa,射频功率150W,刻蚀时间为9分钟,相对应乙烯微球的大小为1.5μm;3) The above-mentioned single-layer hexagonal close-packed polystyrene microspheres were subjected to O2 plasma etching (RIE), the oxygen flow rate was 10Sccm, the air pressure was 11pa, the radio frequency power was 150W, and the etching time was 9 minutes, corresponding to the ethylene microspheres The size is 1.5 μm;
4)在刻蚀后的乙烯微球上采用磁控溅射的方法沉积第一层厚度Al薄膜,靶材为纯度99.999%的Al金属靶,采用纯氩气溅射,制备致密的Al薄膜:衬底温度为室温,本底真空为5×10-5 Pa,氩气流量为40 sccm,溅射气压为4mTorr,电极间距为110 mm,溅射功率为50 W,溅射时间为23 min,得到厚度为500 nm的第一层Al薄膜,然后将玻璃衬底放在水里进行超声处理直至乙烯小球完全处理干净;4) Deposit the first thick Al film on the etched ethylene microspheres by magnetron sputtering, the target material is an Al metal target with a purity of 99.999%, and use pure argon gas sputtering to prepare a dense Al film: The substrate temperature was room temperature, the background vacuum was 5×10 -5 Pa, the argon gas flow rate was 40 sccm, the sputtering pressure was 4 mTorr, the electrode distance was 110 mm, the sputtering power was 50 W, and the sputtering time was 23 min. Obtain the first layer of Al film with a thickness of 500 nm, and then place the glass substrate in water for ultrasonic treatment until the ethylene pellets are completely cleaned;
5)采用磁控溅射或蒸发的方法再沉积第二层Ag薄膜,靶材为纯度99.999%的Ag金属靶,采用纯氩气溅射,制备致密的Ag薄膜:衬底温度为室温,本底真空为5×10-5 Pa,氩气流量为40 sccm,溅射气压为4mTorr,电极间距为110 mm,溅射功率为50 W,溅射时间为14min,得到厚度为300 nm的第二层Ag薄膜,即可制得具有周期性结构的背反射电极。5) The second layer of Ag film is deposited by magnetron sputtering or evaporation. The target material is an Ag metal target with a purity of 99.999%, and a dense Ag film is prepared by sputtering with pure argon: the substrate temperature is room temperature, and the The bottom vacuum is 5×10 -5 Pa, the argon gas flow rate is 40 sccm, the sputtering pressure is 4mTorr, the electrode spacing is 110 mm, the sputtering power is 50 W, and the sputtering time is 14 min, and the second layer with a thickness of 300 nm is obtained. A layer of Ag thin film can be used to produce a back reflective electrode with a periodic structure.
采用本发明的周期性结构的背反射电极的技术效果与实施例1类同;周期性结构的背反射电极应用于微晶硅基太阳电池的技术效果与实施例1类同。The technical effect of using the back reflective electrode with periodic structure of the present invention is similar to that of embodiment 1; the technical effect of applying the back reflective electrode with periodic structure to microcrystalline silicon-based solar cells is similar to that of embodiment 1.
实施例3:Embodiment 3:
一种周期性结构的背反射电极,如图1所示,包括衬底层、形成模板作用的第一层Ag薄膜和起修饰作用的第二层Ag薄膜,衬底层为硬质衬底玻璃,两层金属薄膜均为金属Ag薄膜,其中第一层Ag薄膜厚度为400nm,第二层Ag薄膜的厚度为300nm,构成具有宽光谱散射作用的周期性结构的背反射电极,周期性结构的背反射电极均方根粗糙度为85nm。A back reflective electrode with a periodic structure, as shown in Figure 1, includes a substrate layer, a first layer of Ag thin film forming a template effect and a second layer of Ag thin film for modification, the substrate layer is a hard substrate glass, and the two The first layer of Ag film is 400nm thick, and the thickness of the second Ag film is 300nm, forming a periodic structure back reflection electrode with wide spectrum scattering effect, and the back reflection electrode of the periodic structure The root mean square roughness of the electrode is 85nm.
一种所述周期性结构的背反射电极的制备方法,利用水浴方法组装聚苯乙烯(PS)微球,用O2等离子刻蚀PS微球,利用刻蚀后的聚苯乙烯微球的模板作用,得到具有宽光谱散射作用的周期性结构的背反射电极,步骤如下:A method for preparing a back reflective electrode with a periodic structure, using a water bath method to assemble polystyrene (PS) microspheres, using O2 plasma to etch the PS microspheres, using the etched polystyrene microspheres as a template function, to obtain a back reflection electrode with a periodic structure with broad-spectrum scattering, the steps are as follows:
1)将玻璃衬底浸泡在H2SO4与H2O2的体积比为2:1的混合溶液里进行亲水处理,处理时间为5小时;1) Soak the glass substrate in a mixed solution of H 2 SO 4 and H 2 O 2 with a volume ratio of 2:1 for hydrophilic treatment, and the treatment time is 5 hours;
2)把上述玻璃衬底放在水平台上,将粒径为2μm、浓度为5wt%的聚苯乙烯微球乳胶溶液垂直滴在玻璃衬底上,溶液慢慢扩散开使乙烯微球不均匀散布于玻璃衬底上,然后把玻璃衬底放在水蒸气上进行自组装,经过30min的水浴,玻璃衬底上形成单层六方密排的粒径2μm的聚苯乙烯微球;2) Put the above glass substrate on a horizontal platform, drop the latex solution of polystyrene microspheres with a particle size of 2 μm and a concentration of 5wt% vertically on the glass substrate, and the solution slowly diffuses to make the vinyl microspheres uneven Spread on the glass substrate, and then put the glass substrate on the water vapor for self-assembly, after 30 minutes of water bath, a single layer of hexagonal close-packed polystyrene microspheres with a particle size of 2 μm are formed on the glass substrate;
3)将上述单层六方密排的聚苯乙烯微球,进行O2等离子刻蚀(RIE),氧气流量10Sccm,气压11pa,射频功率150W,刻蚀时间为6分钟,相对应乙烯微球的大小为1.8μm;3) The above-mentioned single-layer hexagonal close-packed polystyrene microspheres were subjected to O2 plasma etching (RIE), the oxygen flow rate was 10Sccm, the air pressure was 11pa, the RF power was 150W, and the etching time was 6 minutes. The size is 1.8 μm;
4)在刻蚀后的乙烯微球上采用磁控溅射的方法沉积第一层厚度Ag薄膜,靶材为纯度99.999%的Ag金属靶,采用纯氩气溅射,制备致密的Ag薄膜:衬底温度为室温,本底真空为5×10-5 Pa,氩气流量为40 sccm,溅射气压为4mTorr,电极间距为110 mm,溅射功率为50 W,溅射时间为19 min,得到厚度为400 nm的第一层Ag薄膜,然后将玻璃衬底放在水里进行超声处理直至乙烯小球完全处理干净;4) On the etched ethylene microspheres, the first thickness of Ag film is deposited by magnetron sputtering. The target material is an Ag metal target with a purity of 99.999%. Pure argon gas sputtering is used to prepare a dense Ag film: The substrate temperature was room temperature, the background vacuum was 5×10 -5 Pa, the argon flow rate was 40 sccm, the sputtering pressure was 4 mTorr, the electrode spacing was 110 mm, the sputtering power was 50 W, and the sputtering time was 19 min. Obtain the first layer of Ag film with a thickness of 400 nm, and then place the glass substrate in water for ultrasonic treatment until the vinyl beads are completely cleaned;
5)采用磁控溅射或蒸发的方法再沉积第二层Ag薄膜,衬底温度为室温,本底真空为5×10-5 Pa,氩气流量为40 sccm,溅射气压为4mTorr,电极间距为110 mm,溅射功率为50W,溅射时间为14 min,得到厚度为300nm的第二层Ag薄膜,即可制得具有周期性结构的背反射电极。5) Deposit the second layer of Ag film by magnetron sputtering or evaporation. The substrate temperature is room temperature, the background vacuum is 5×10 -5 Pa, the argon gas flow rate is 40 sccm, the sputtering pressure is 4mTorr, and the electrode The spacing is 110 mm, the sputtering power is 50 W, and the sputtering time is 14 min to obtain a second layer of Ag film with a thickness of 300 nm, and then a back reflective electrode with a periodic structure can be prepared.
采用本发明的周期性结构的背反射电极的技术效果与实施例1类同;周期性结构的背反射电极应用于微晶硅基太阳电池的技术效果与实施例1类同。The technical effect of using the back reflective electrode with periodic structure of the present invention is similar to that of embodiment 1; the technical effect of applying the back reflective electrode with periodic structure to microcrystalline silicon-based solar cells is similar to that of embodiment 1.
实施例4:Embodiment 4:
一种周期性结构的背反射电极,如图1所示,包括衬底层、形成模板作用的第一层Ag薄膜和起修饰作用的第二层Ag薄膜,衬底层为硬质衬底玻璃,两层金属薄膜均为金属Ag薄膜,其中第一层Ag薄膜厚度为500nm,第二层Ag薄膜的厚度为300nm,构成具有宽光谱散射作用的周期性结构的背反射电极,周期性结构的背反射电极均方根粗糙度为170nm。A back reflective electrode with a periodic structure, as shown in Figure 1, includes a substrate layer, a first layer of Ag thin film forming a template effect and a second layer of Ag thin film for modification, the substrate layer is a hard substrate glass, and the two The first layer of Ag film is 500nm thick, and the thickness of the second Ag film is 300nm, forming a periodic structure back reflection electrode with wide spectrum scattering effect, and the back reflection electrode of the periodic structure The root mean square roughness of the electrode is 170nm.
一种所述周期性结构的背反射电极的制备方法,利用水浴方法组装聚苯乙烯(PS)微球,用O2等离子刻蚀PS微球,利用刻蚀后的聚苯乙烯微球的模板作用,得到具有宽光谱散射作用的周期性结构的背反射电极,步骤如下:A method for preparing a back reflective electrode with a periodic structure, using a water bath method to assemble polystyrene (PS) microspheres, using O2 plasma to etch the PS microspheres, using the etched polystyrene microspheres as a template function, to obtain a back reflection electrode with a periodic structure with broad-spectrum scattering, the steps are as follows:
1)将玻璃衬底浸泡在H2SO4与H2O2的体积比为2:1的混合溶液里进行亲水处理,处理时间为8小时;1) Soak the glass substrate in a mixed solution of H 2 SO 4 and H 2 O 2 with a volume ratio of 2:1 for hydrophilic treatment, and the treatment time is 8 hours;
2)把上述玻璃衬底放在水平台上,将粒径为4μm、浓度为5wt%的聚苯乙烯微球乳胶溶液垂直滴在玻璃衬底上,溶液慢慢扩散开使乙烯微球不均匀散布于玻璃衬底上,然后把玻璃衬底放在水蒸气上进行自组装,经过30min的水浴,玻璃衬底上形成单层六方密排的粒径4μm的聚苯乙烯微球;2) Put the above glass substrate on a horizontal platform, drop the latex solution of polystyrene microspheres with a particle size of 4 μm and a concentration of 5wt% vertically on the glass substrate, and the solution slowly diffuses to make the vinyl microspheres uneven Spread on the glass substrate, and then put the glass substrate on the water vapor for self-assembly, after 30 minutes of water bath, a single layer of hexagonal close-packed polystyrene microspheres with a particle size of 4 μm are formed on the glass substrate;
3)将上述单层六方密排的聚苯乙烯微球,进行O2等离子刻蚀(RIE),氧气流量10Sccm,气压11pa,射频功率150W,刻蚀时间为15分钟,相对应乙烯微球的大小为3.0μm;3) The above-mentioned single-layer hexagonal close-packed polystyrene microspheres were subjected to O2 plasma etching (RIE), the oxygen flow rate was 10Sccm, the air pressure was 11pa, the radio frequency power was 150W, and the etching time was 15 minutes, corresponding to the ethylene microspheres The size is 3.0 μm;
4)在刻蚀后的乙烯微球上采用磁控溅射的方法沉积第一层厚度Ag薄膜,靶材为纯度99.999%的Ag金属靶,采用纯氩气溅射,制备致密的Ag薄膜:衬底温度为室温,本底真空为5×10-5 Pa,氩气流量为40 sccm,溅射气压为4mTorr,电极间距为110 mm,溅射功率为50 W,溅射时间为23 min,得到厚度为500 nm的第一层Ag薄膜,然后将玻璃衬底放在水里进行超声处理直至乙烯小球完全处理干净;4) On the etched ethylene microspheres, the first thickness of Ag film is deposited by magnetron sputtering. The target material is an Ag metal target with a purity of 99.999%. Pure argon gas sputtering is used to prepare a dense Ag film: The substrate temperature was room temperature, the background vacuum was 5×10 -5 Pa, the argon gas flow rate was 40 sccm, the sputtering pressure was 4 mTorr, the electrode distance was 110 mm, the sputtering power was 50 W, and the sputtering time was 23 min. Obtain the first layer of Ag film with a thickness of 500 nm, and then place the glass substrate in water for ultrasonic treatment until the vinyl beads are completely cleaned;
5)采用磁控溅射或蒸发的方法再沉积第二层Ag薄膜,衬底温度为室温,本底真空为5×10-5 Pa,氩气流量为40 sccm,溅射气压为4mTorr,电极间距为110 mm,溅射功率为50W,溅射时间为14 min,得到厚度为300nm的第二层Ag薄膜,即可制得具有周期性结构的背反射电极。5) Deposit the second layer of Ag film by magnetron sputtering or evaporation. The substrate temperature is room temperature, the background vacuum is 5×10 -5 Pa, the argon gas flow rate is 40 sccm, the sputtering pressure is 4mTorr, and the electrode The spacing is 110 mm, the sputtering power is 50 W, and the sputtering time is 14 min to obtain a second layer of Ag film with a thickness of 300 nm, and then a back reflective electrode with a periodic structure can be prepared.
采用本发明的周期性结构的背反射电极的技术效果与实施例1类同;周期性结构的背反射电极应用于微晶硅基太阳电池的技术效果与实施例1类同。The technical effect of using the back reflective electrode with periodic structure of the present invention is similar to that of embodiment 1; the technical effect of applying the back reflective electrode with periodic structure to microcrystalline silicon-based solar cells is similar to that of embodiment 1.
实施例5:Embodiment 5:
一种周期性结构的背反射电极,如图1所示,包括衬底层、形成模板作用的第一层Mo金属薄膜和起修饰作用的第二层Mo金属薄膜,衬底层为硬质衬底玻璃,两层金属薄膜均为金属Mo薄膜,其中第一层Mo薄膜厚度为600nm,第二层Mo薄膜的厚度为300nm,构成具有宽光谱散射作用的周期性结构的背反射电极,周期性结构的背反射电极均方根粗糙度为160nm。A back reflective electrode with a periodic structure, as shown in Figure 1, includes a substrate layer, a first layer of Mo metal film forming a template and a second layer of Mo metal film for modification, and the substrate layer is a hard substrate glass , the two layers of metal films are metal Mo films, wherein the thickness of the first Mo film is 600nm, and the thickness of the second Mo film is 300nm, which constitutes a periodic back reflective electrode with wide-spectrum scattering, and the periodic structure The root mean square roughness of the back reflective electrode is 160nm.
一种所述周期性结构的背反射电极的制备方法,利用水浴方法组装聚苯乙烯(PS)微球,用O2等离子刻蚀PS微球,利用刻蚀后的聚苯乙烯微球的模板作用,得到具有宽光谱散射作用的周期性结构的背反射电极,步骤如下:A method for preparing a back reflective electrode with a periodic structure, using a water bath method to assemble polystyrene (PS) microspheres, using O2 plasma to etch the PS microspheres, using the etched polystyrene microspheres as a template function, to obtain a back reflection electrode with a periodic structure with broad-spectrum scattering, the steps are as follows:
1)将玻璃衬底浸泡在H2SO4与H2O2的体积比为2:1的混合溶液里进行亲水处理,处理时间为7小时;1) Soak the glass substrate in a mixed solution of H 2 SO 4 and H 2 O 2 with a volume ratio of 2:1 for hydrophilic treatment, and the treatment time is 7 hours;
2)把上述玻璃衬底放在水平台上,将粒径为3μm、浓度为5wt%的聚苯乙烯微球乳胶溶液垂直滴在玻璃衬底上,溶液慢慢扩散开使乙烯微球不均匀散布于玻璃衬底上,然后把玻璃衬底放在水蒸气上进行自组装,经过30min的水浴,玻璃衬底上形成单层六方密排的粒径3μm的聚苯乙烯微球;2) Put the above glass substrate on a horizontal platform, drop the latex solution of polystyrene microspheres with a particle size of 3 μm and a concentration of 5wt% vertically on the glass substrate, and the solution slowly diffuses to make the vinyl microspheres uneven Scatter on the glass substrate, then put the glass substrate on the water vapor for self-assembly, after 30 minutes of water bath, a single layer of hexagonal close-packed polystyrene microspheres with a particle size of 3 μm are formed on the glass substrate;
3)将上述单层六方密排的聚苯乙烯微球,进行O2等离子刻蚀(RIE),氧气流量10Sccm,气压11pa,射频功率150W,刻蚀时间为10分钟,相对应乙烯微球的大小为2.4μm;3) The above-mentioned single-layer hexagonal close-packed polystyrene microspheres were subjected to O2 plasma etching (RIE), the oxygen flow rate was 10Sccm, the air pressure was 11pa, the radio frequency power was 150W, and the etching time was 10 minutes, corresponding to the ethylene microspheres The size is 2.4 μm;
4)在刻蚀后的乙烯微球上采用磁控溅射的方法沉积第一层厚度Mo薄膜,靶材为纯度99.999%的Mo金属靶,采用纯氩气溅射,制备致密的Mo薄膜:衬底温度为室温,本底真空为5×10-5 Pa,氩气流量为40 sccm,溅射气压为4mTorr,电极间距为110 mm,溅射功率为50 W,溅射时间为24 min,得到厚度为600 nm的第一层Mo薄膜,然后将玻璃衬底放在水里进行超声处理直至乙烯小球完全处理干净;4) On the etched ethylene microspheres, magnetron sputtering is used to deposit the first thick Mo film. The target material is a Mo metal target with a purity of 99.999%. Pure argon gas sputtering is used to prepare a dense Mo film: The substrate temperature was room temperature, the background vacuum was 5×10 -5 Pa, the argon flow rate was 40 sccm, the sputtering pressure was 4 mTorr, the electrode spacing was 110 mm, the sputtering power was 50 W, and the sputtering time was 24 min. Obtain the first layer of Mo film with a thickness of 600 nm, and then place the glass substrate in water for ultrasonic treatment until the ethylene pellets are completely cleaned;
5)采用磁控溅射或蒸发的方法再沉积第二层Mo薄膜,衬底温度为室温,本底真空为5×10-5 Pa,氩气流量为40 sccm,溅射气压为4mTorr,电极间距为110 mm,溅射功率为50W,溅射时间为15 min,得到厚度为300nm的第二层Mo薄膜,即可制得具有周期性结构的背反射电极。5) Deposit the second layer of Mo film by magnetron sputtering or evaporation. The substrate temperature is room temperature, the background vacuum is 5×10 -5 Pa, the argon flow rate is 40 sccm, the sputtering pressure is 4mTorr, and the electrode The spacing is 110 mm, the sputtering power is 50 W, and the sputtering time is 15 min to obtain a second layer of Mo film with a thickness of 300 nm, and then a back reflective electrode with a periodic structure can be prepared.
采用本发明的周期性结构的背反射电极的技术效果与实施例1类同;周期性结构的背反射电极应用于微晶硅基太阳电池的技术效果与实施例1类同。The technical effect of using the back reflective electrode with periodic structure of the present invention is similar to that of embodiment 1; the technical effect of applying the back reflective electrode with periodic structure to microcrystalline silicon-based solar cells is similar to that of embodiment 1.
实施例6:Embodiment 6:
一种周期性结构的背反射电极,如图1所示,包括衬底层、形成模板作用的第一层Al薄膜和起修饰作用的第二层Al薄膜,衬底层为硬质衬底玻璃,两层金属薄膜均为金属Al薄膜,其中第一层Al薄膜厚度为600nm,第二层Al薄膜的厚度为200nm,构成具有宽光谱散射作用的周期性结构的背反射电极,周期性结构的背反射电极均方根粗糙度为140nm。A back reflection electrode with a periodic structure, as shown in Figure 1, includes a substrate layer, a first layer of Al thin film forming a template and a second layer of Al thin film for modification, the substrate layer is a hard substrate glass, and the two The first layer of Al film is 600nm thick, and the second layer of Al film is 200nm in thickness, which constitutes a periodic structure back reflection electrode with wide spectrum scattering effect, and the back reflection electrode of the periodic structure The root mean square roughness of the electrode is 140nm.
一种所述周期性结构的背反射电极的制备方法,利用水浴方法组装聚苯乙烯(PS)微球,用O2等离子刻蚀PS微球,利用刻蚀后的聚苯乙烯微球的模板作用,得到具有宽光谱散射作用的周期性结构的背反射电极,步骤如下:A method for preparing a back reflective electrode with a periodic structure, using a water bath method to assemble polystyrene (PS) microspheres, using O2 plasma to etch the PS microspheres, using the etched polystyrene microspheres as a template function, to obtain a back reflection electrode with a periodic structure with broad-spectrum scattering, the steps are as follows:
1)将玻璃衬底浸泡在H2SO4与H2O2的体积比为2:1的混合溶液里进行亲水处理,处理时间为5小时;1) Soak the glass substrate in a mixed solution of H 2 SO 4 and H 2 O 2 with a volume ratio of 2:1 for hydrophilic treatment, and the treatment time is 5 hours;
2)把上述玻璃衬底放在水平台上,将粒径为3μm、浓度为5wt%的聚苯乙烯微球乳胶溶液垂直滴在玻璃衬底上,溶液慢慢扩散开使乙烯微球不均匀散布于玻璃衬底上,然后把玻璃衬底放在水蒸气上进行自组装,经过30min的水浴,玻璃衬底上形成单层六方密排的粒径2μm的聚苯乙烯微球;2) Put the above glass substrate on a horizontal platform, drop the latex solution of polystyrene microspheres with a particle size of 3 μm and a concentration of 5wt% vertically on the glass substrate, and the solution slowly diffuses to make the vinyl microspheres uneven Scatter on the glass substrate, then put the glass substrate on the water vapor for self-assembly, after 30 minutes of water bath, a single layer of hexagonal close-packed polystyrene microspheres with a particle size of 2 μm are formed on the glass substrate;
3)将上述单层六方密排的聚苯乙烯微球,进行O2等离子刻蚀(RIE),氧气流量10Sccm,气压11pa,射频功率150W,刻蚀时间为12分钟,相对应乙烯微球的大小为2.2μm;3) The above-mentioned single-layer hexagonal close-packed polystyrene microspheres were subjected to O2 plasma etching (RIE), the oxygen flow rate was 10Sccm, the air pressure was 11pa, the radio frequency power was 150W, and the etching time was 12 minutes, corresponding to the ethylene microspheres The size is 2.2 μm;
4)在刻蚀后的乙烯微球上采用磁控溅射的方法沉积第一层厚度Al薄膜,靶材为纯度99.999%的Al金属靶,采用纯氩气溅射,制备致密的Al薄膜:衬底温度为室温,本底真空为5×10-5 Pa,氩气流量为40 sccm,溅射气压为4mTorr,电极间距为110 mm,溅射功率为50 W,溅射时间为28 min,得到厚度为600 nm的第一层Al薄膜,然后将玻璃衬底放在水里进行超声处理直至乙烯小球完全处理干净;4) Deposit the first thick Al film on the etched ethylene microspheres by magnetron sputtering, the target material is an Al metal target with a purity of 99.999%, and use pure argon gas sputtering to prepare a dense Al film: The substrate temperature is room temperature, the background vacuum is 5×10 -5 Pa, the argon gas flow rate is 40 sccm, the sputtering pressure is 4 mTorr, the electrode distance is 110 mm, the sputtering power is 50 W, and the sputtering time is 28 min. Obtain the first layer of Al film with a thickness of 600 nm, and then put the glass substrate in water for ultrasonic treatment until the ethylene pellets are completely cleaned;
5)采用磁控溅射或蒸发的方法再沉积第二层Al薄膜,衬底温度为室温,本底真空为5×10-5 Pa,氩气流量为40 sccm,溅射气压为4mTorr,电极间距为110 mm,溅射功率为50W,溅射时间为14 min,得到厚度为300nm的第二层Al薄膜,即可制得具有周期性结构的背反射电极。5) Deposit the second layer of Al thin film by magnetron sputtering or evaporation. The substrate temperature is room temperature, the background vacuum is 5×10 -5 Pa, the argon flow rate is 40 sccm, the sputtering pressure is 4mTorr, and the electrode The spacing is 110 mm, the sputtering power is 50 W, and the sputtering time is 14 min to obtain a second layer of Al thin film with a thickness of 300 nm, and then a back reflective electrode with a periodic structure can be prepared.
采用本发明的周期性结构的背反射电极的技术效果与实施例1类同;周期性结构的背反射电极应用于微晶硅基太阳电池的技术效果与实施例1类同。The technical effect of using the back reflective electrode with periodic structure of the present invention is similar to that of embodiment 1; the technical effect of applying the back reflective electrode with periodic structure to microcrystalline silicon-based solar cells is similar to that of embodiment 1.
综上,本发明提供了一种提高硅基薄膜太阳电池背反射电极散射特性的有效方法,该方法与传统的硅基薄膜电池背反射电极制备工艺完全兼容,并且普遍适用于非晶硅基、微晶硅基、纳米硅基薄膜单结及多结NIP太阳电池。由于该周期型结构的背反射电极同时增加了对长波长和短波长光的利用,从而有利于提高电池的光吸收,改善电池短路电流,进而提高太阳电池的光电转换效率。In summary, the present invention provides an effective method for improving the scattering characteristics of back reflective electrodes of silicon-based thin film solar cells. Microcrystalline silicon-based, nano-silicon-based thin film single-junction and multi-junction NIP solar cells. Since the back reflective electrode of the periodic structure increases the utilization of long-wavelength and short-wavelength light at the same time, it is beneficial to improve the light absorption of the battery, improve the short-circuit current of the battery, and then improve the photoelectric conversion efficiency of the solar battery.
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。The above is only a preferred embodiment of the present invention, but the scope of protection of the present invention is not limited thereto. Any person skilled in the art can easily conceive of changes or modifications within the technical scope disclosed in the present invention. Replacement should be covered within the protection scope of the present invention. Therefore, the protection scope of the present invention should be determined by the protection scope of the claims.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310416645.9A CN103474483B (en) | 2013-09-13 | 2013-09-13 | A kind of back reflector of periodic structure and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310416645.9A CN103474483B (en) | 2013-09-13 | 2013-09-13 | A kind of back reflector of periodic structure and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103474483A CN103474483A (en) | 2013-12-25 |
CN103474483B true CN103474483B (en) | 2017-10-17 |
Family
ID=49799268
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310416645.9A Active CN103474483B (en) | 2013-09-13 | 2013-09-13 | A kind of back reflector of periodic structure and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103474483B (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107112378B (en) * | 2015-01-07 | 2020-02-14 | 株式会社钟化 | Solar cell, method for manufacturing same, and solar cell module |
CN104671197B (en) * | 2015-02-26 | 2016-05-25 | 中国科学院合肥物质科学研究院 | The preparation method of transferable orderly metal nano/micron casement plate |
CN106270534B (en) * | 2016-08-08 | 2018-02-06 | 玉环县中科应用技术成果中心 | The preparation method of orderly metal nano/micron ring |
CN106159040B (en) * | 2016-08-24 | 2018-05-08 | 华南师范大学 | A kind of method that Whote-wet method prepares flexible metal network transparency electrode |
CN106653914B (en) * | 2016-12-22 | 2018-11-13 | 浙江大学 | A kind of ultra-thin sun light heater and preparation method |
CN109504994B (en) * | 2018-12-13 | 2020-08-21 | 上海科技大学 | A new type of anodic aluminum oxide template and preparation method of nano-array |
CN111208059B (en) * | 2020-02-11 | 2022-09-30 | 南京信息工程大学 | Fiber-optic hydrogen sensor based on core/shell nanoperiodic wire array plasmonic metamaterial |
CN111653633B (en) * | 2020-06-03 | 2025-07-08 | 东方日升新能源股份有限公司 | Decorative solar cell, preparation method and cell assembly |
CN112760707B (en) * | 2020-12-22 | 2022-06-07 | 南京师范大学 | A TiO2/PS colloidal photonic crystal, its preparation method and its application in humidity sensor |
CN113921392B (en) * | 2021-09-03 | 2022-09-23 | 南京信息工程大学 | A Cyclic Etching Process of PS Balls Based on Oxygen Plasma Etching |
CN114544557A (en) * | 2022-03-03 | 2022-05-27 | 南京邮电大学 | Wide-spectrum high-sensitivity high-flux biochemical sensor and sensing method thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5101260A (en) * | 1989-05-01 | 1992-03-31 | Energy Conversion Devices, Inc. | Multilayer light scattering photovoltaic back reflector and method of making same |
CN101143710A (en) * | 2007-10-17 | 2008-03-19 | 中国科学院光电技术研究所 | Fabrication method of diamond-shaped metal nanoparticle array structure |
CN102082186A (en) * | 2010-10-29 | 2011-06-01 | 华南师范大学 | Electrode and manufacturing method thereof |
CN102931244A (en) * | 2012-11-23 | 2013-02-13 | 南开大学 | High-velvet-degree reflection conductive white back reflection electrode and manufacturing method thereof |
-
2013
- 2013-09-13 CN CN201310416645.9A patent/CN103474483B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5101260A (en) * | 1989-05-01 | 1992-03-31 | Energy Conversion Devices, Inc. | Multilayer light scattering photovoltaic back reflector and method of making same |
CN101143710A (en) * | 2007-10-17 | 2008-03-19 | 中国科学院光电技术研究所 | Fabrication method of diamond-shaped metal nanoparticle array structure |
CN102082186A (en) * | 2010-10-29 | 2011-06-01 | 华南师范大学 | Electrode and manufacturing method thereof |
CN102931244A (en) * | 2012-11-23 | 2013-02-13 | 南开大学 | High-velvet-degree reflection conductive white back reflection electrode and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN103474483A (en) | 2013-12-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103474483B (en) | A kind of back reflector of periodic structure and preparation method thereof | |
CN103515484B (en) | Matte transparent conductive film of a kind of periodic structure and preparation method thereof | |
CN102709402B (en) | Thin film solar cell of graphic based metal substrate and preparation method thereof | |
WO2016019767A1 (en) | Acidic texturing solution for etching solar cell silicon wafer, texturing method, solar cell and manufacturing method for solar cell | |
CN102254961A (en) | Conductive suede glass special for solar cells, and preparation method and application thereof | |
CN102779891A (en) | Copper indium gallium selenide thin-film type solar cell device and preparation method thereof | |
CN102403376B (en) | n-i-p heterojunction solar cell with silicon quantum dot and preparation method thereof | |
CN102664198A (en) | Broad-spectrum light trapping zinc oxide transparent conductive film and preparation method thereof | |
CN103151399A (en) | Flexible thin film solar cell with periodic trapping structure and preparation method for flexible thin film solar cell | |
CN102660776A (en) | Method for preparing black silicon through Mn ion catalysis and corrosion | |
CN106206779A (en) | Heterojunction solar battery with silicon nano column array as substrate and preparation method thereof | |
CN107275442A (en) | Black silicon solar cell and preparation method thereof | |
CN101820003B (en) | Double layer zinc oxide transparent conductive film for thin film solar cell and preparation method thereof | |
CN104409528B (en) | Electrode and application before the HAZO/AZO composite transparent conductions that a kind of wide spectrum characteristic improves | |
CN108389937A (en) | A kind of preparation method based on three-dimensional radial junction nanostructure high power quality than flexible solar battery | |
CN103280466B (en) | Based on the high reverse--bias height suede degree back electrode of AlOx/Ag/ZnO structure | |
CN104485367A (en) | Micro-nano structure capable of improving properties of HIT solar cells and preparation method of micro-nano structure | |
CN103094375A (en) | Novel aluminum nanometer particle surface plasmon enhanced solar battery | |
CN104505461B (en) | Multilayer anti-reflection film hybrid solar cell based on organic polymer and preparation method | |
CN103030100B (en) | A kind of preparation method with the sub-wavelength silicon nanowire array of antireflection characteristic | |
CN103094404A (en) | Method of improving light current of silicon thin film solar cell | |
CN102931244A (en) | High-velvet-degree reflection conductive white back reflection electrode and manufacturing method thereof | |
CN103794665A (en) | High-reflection and high-texture-degree composite structure back electrode and manufacturing method thereof | |
CN108456895A (en) | A kind of α-Fe2O3/ Au nanometers of round platform array photoelectric pole and its preparation method and application | |
CN211295115U (en) | A solar cell based on a silicon nanowire structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |